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the existence of an equivariant smooth solution with prescribed boundary 
values. In the last section, we obtain existence results for equivariant 
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26 A. FARDOUN 

0. INTRODUCTION 

In this paper we study p-harmonic maps in several equivariant contexts. If 
f : WC 9) + m h) is a smooth map between two Riemannian manifolds, 
its p-energy is defined by 

(0.1) 

The p-energy functional (0.1) includes as a special case (p = 2) the energy 
functional, whose critical points are the usual harmonic maps (see [5] for 
background). We say that f is a p-harmonic map if it is a critical point 
of the p-energy functional, that is to say, if it satisfies the Euler-Lagrange 
equation of the functional (O.l), that is, 

(0.2) div ( ]dfjpP2 df) = 0. 

In particular, we note that every harmonic map with constant energy 
density is p-harmonic for all p 2 2. By the theorem of Nash, we can 
suppose that the target manifold N is isometrically embedded in IF+‘, 
where n = dim N and Ic is large enough. Let F = i o f, where i denotes 
the embedding of N into FPk. The p-energy of F is still defined by (0.1) 
and equation (0.2) becomes equivalent to 

(0.3) -div (IdF(p-2 dF) + IdFlpe2 A (F) (dF, dF) = 0, 

where A denotes the second fundamental form of N in lR”+“. We can then 
consider the Sobolev space 

(0.4) H1,p (M, N) = {u E H1>p (M, Rnfk ) : u (2~) E N a.e.}. 

If F E H’,* (M, N), we say that F is weakly p-harmonic if it is a weak 
solution of (0.3): that is, if 

(0.5) J IdFlp-’ {dF& + &A (F) (dF, 0’)) dw, = 0 
M 

for all 4 E Cr (M, IV+“). 

When p = 2, a key regularity theorem [5] says that any continuous weakly 
harmonic map is smooth (thus harmonic). But, if p > 2, the regularity of 
weakly p-harmonic maps is more difficult to obtain because equation (0.3) 
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is not elliptic at points where ]dF] = 0 (for instance, see [4], [8] for more 
general results on the regularity of p-harmonic maps). 

It is well known that, in some favorable cases, certain geometrical 
symmetries allow us to reduce the existence of harmonic maps to the study 
of an ordinary differential equation (equivariant theory, see [6]). In this 
paper, we apply the equivariant methods to p-harmonic maps: in general, 
we can say that the reduction technics are easily extended to the case that 
p>2. By contrast, the resulting ordinary differential equations are more 
difficult to handle. 

Our first results concern the Dirichlet problem for maps of the Euclidean 
ball into an ellipsoid: these are stated in Section 1 and complement the 
analysis of Baldes [l] and Jager-Kaul [ 111. Section 2 contains the proofs 
of the results stated in Section 1. In Section 3, we obtain existence results 
for p-harmonic maps between spheres and ellipsoids. Some of the results 
of this paper were announced in [7]. 

1. DIRICHLET PROBLEM: NOTATION AND RESULTS 

We assume that m 2 3 unless otherwise specified. For b > 0, let 

and E,“(b) = (w, y) E R” x BB : lw12 + $ = 1, y > 0 . 
> 

For z E B”, we set T = 1~1 and say that F = F, : B” --+ E+“(b) is 
equivariant (or rotationally symmetric) if 

(1.1) 
F, (3) = F sin a (T), b cos (u (r) , 

> 
where Q : [0, l] -+ [0, 7r/2]. 

In particular, the equator map U* (z) = (:, 0) belongs to 
f@(Bm, E,“(b)) d an is weakly p-harmonic if p < m. In the quadratic 
case (p = 2), Baldes [I] obtained the following results (Theorem [l]). 

(i) If b2 2 4 (:I.)~ and F, : B” --f E,” (b) is an equivariant weakly 
harmonic map such that F, = u* on 8B”, then F, z u* on B”. 

(ii) If b2 < 4 71a-1 (,-2)a, then there exists an equivariant harmonic map 
F, E C” (B”, E+“(b)) such that F, - u* on dB”. 

Vol. 15, no l-1998. 



28 A. FARDOUN 

We generalize this result to the case p 2 2: indeed, our first results are 

THEOREM 1. - Suppose 2 5 p < m. 

(i) If b2 2 4 * and F,, : B”’ + ET (b) is an equivariant weakly 
p-harmonic map such that F, = u* on dB’“, then F, = u+ on B”“. 

(ii) rf b2 < 4 e. then there exists a unique equivariant p-harmonic 
map F, E C” (B”, Ey (b)) such that F, = U* on dB” and 

(1.2) EP (Fe) = Inf {Et1 (u) : u E H1’” (B,‘, E;” (b)), 

us equivariant and u q u+ on 6’BTr’}. 

THEOREM 2. - Suppose p > m 2 2 and b > 0. Then there exists a unique 
equivariant p-harmonic map F, E C” (B’“: E,” (b)) such that F, =: II,* 
on dB” and which satisJies (1.2). 

We can extend a to [Ot +oc) in such a way that F, extends to a 
map F, : R’” + E”” (b). We shall study the asymptotic behavior of 
solutions u. In a similar spirit, let p E (0, n]: we also state the following 
Dirichlet problem Dir (p, rn): Does there exists an equivariant p-harmonic 
map F, : Bm -+ E” (b) such that Q (0) = 0 and Q: (1) = p ? 

If we set 7’ = et and A (t) = o (et), our results in this context are stated 
in the following propositions and generalize the analysis of Jager-Kaul for 
1) = 2 and b = 1 [ll]. 

PROPOSITION 1. - Let 2 2 p < m. 

(i) Suppose b2 > 4 a. (“L-p) 
[f 7r/2 5 p 5 7r, then Dir (p, m) has no solution. 

If 0 < p < 7r/2, then Dir (p, m) admits a solution: the function A (t) 
associated to this solution satisfies A (t) > 0, t lirnn A (t) = 7r/2 and 

lirn A (t) = 0. In the phase plane (A, A), the point (7r/2,0) is an 
t++CC 
improper node if b2 > 4 e, a proper node otherwise. Then the image 

of the extension F, : R”” -+ E”” (b) coincide with the interior of E;i” (6). 

(ii) Suppose b2 < 4 q: (m-p) then there exists o E R such that 
7r/2 < a < T and Dir (p, rn) admitsatleast one solution if0 < p < o, while 
Dir (p, m) has no solution if p > 0. Moreover, if A (t) = o (e”) t E R, is 
an extension of a solution of Dir (p, m), then 0 < A (t) < K *JliW A (t) = 

7r/2 and t liym A (t) = 0. In the phase plane (A, A), the point (7r/2,0) is 

a focus and then A (t) oscillate around ~12 when t tends to +ocj. 

Annrrle.r de I’Imtitut Henn’ Pomcuri Analyae non l~n&ire 
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PROPOSITION 2. - (i) Suppose p = m > 2. Then Dir (p, m) admits a 
solution A (t) = cy (et) f or all 0 < p < n-. Moreover, 0 < A (t) < 7r, the 
function A is increasing on W and ,<lia A (t) = K. In particular, the images 

of the extensions F, : W” -+ E” (b) coincide with E”” (b)-{South Pole). 
(ii) Suppose p > m > 2. Then, for any 0 < p < x Dir (p, m) 

admits an injinite number of solutions A (t) = cv (et). Moreover, the 
function A is increasing on Iw and lim t-++co A (t) = +oo. Then the extensions 

F,, : IF!” i E” (b) cover E”” (b) an injinite number of times. 
Remark 1. - The conclusion & A (t) = +cc in Proposition 2 

(ii) shows that for all p > m > 2 and b > 0, the Dirichlet problem 
u : B”” --+ E”(b), ~1~~“’ 3 South Pole, admits an infinite number of 
nonconstant solutions (whose homotopic classification can be found in [ 151 
Lemma 4.1, Corollaries 4.1 and 4.2). 

The situation is completely different if p < m. Indeed, we obtain the 
following generalization of a result of Karcher and Wood [lo]: 

THEOREM 3. - Let N be a Riemannian manifold of dimension > 2 and 
suppose 2 5 p < ml. If u : B” + N is a p-harmonic map such that 
Ulap G constant, then u is constant on B”. 

Remark 2. - The conclusion of Theorem 3 is still true if we suppose B’” 
equipped with a metric of the form g = f2 go, where go is the Euclidean 
metric and f a positive function which satisfies $ (rf (z)) 2 0 for all 
:I: E B”‘. 

Remark 3. - The conclusion of Theorem 3 is still true if p = 2 = m (see 
[14]). It would be interesting to extend this result to the case p = m 2 3. 

2. PROOFS OF THE RESULTS STATED IN 0 1 

In order to study equivariant maps as in (1. I), it is convenient to introduce 
the following function spaces: 

(2.1) 

x = {a E IIl,p ([O, I]; R) : Ilall’ = I’ [l&l” + IQI”] F--l dr < co} 

x0 = {a E x : 0 < cr (7-) 2 7r/2; a (1) = 7r/2} Jl=ITP+ ([O, 11; IF!). 

The p-energy of F, is given by 

(2.2) Ep (Fey) = vol (SW’-‘) Jp (a), 

Vol. 15, no l-1998 
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where 

Jp (a) = 1 p 
J’ 

o1 [ix” (r) h2 (Ly (r)) + y sin* (a (r))]“” rTnpl dr, 

with h* (a) = b2 sin2 (a) -I- cos2 ((1). 

Proof of Theorem 1. - We denote by Q,/~ the constant critical point 
CI: = 7r/2. Theorem 1 is obtained essentially by minimisation of the 
functional Jp (a) on X a. More precisely, assertion (i) follows from the 
fact that, if b2 2 4 e, then a,i2 is the absolute minimum of .JTl 
on X0. In this case, a priori estimates allow us to exclude the existence 
of other equivariant solutions. As for part (ii), we first prove that the 
minimum aa is different from o,j2 (indeed, if b2 < 4 (~~-=& then a,/:! is 
an unstable critical point). Next, we prove that cya is smooth on (0, I] and 
lim o. (r) = 0. Finally, we prove the regularity of F,, through the origin 
~???“: to this end, we need a sharp analysis of the asymptotic behavior of 
solutions of the Euler-Lagrange equation associated to the functional (2.2). 

The proof of Theorem 1 is divided into 9 steps. The first seven steps 
lead us to the proof of part (ii), while the last two steps prove part (i). 

STEP 1. - There exists a map cyo E X0 which minimises Jp on X0 and 
satisfies 

1 

(2.3) 
./[ 

m - 1 
9 

~5.; h2 (00) + T2 sin2 a0 
0 1 

h2(ao)d”0~+<sinaocosao 
m - 1 

(b2-1)&i+,- P-‘dr=O, 

(For 5 E C? ([O, l]), (2.3) is the weak Euler-Lagrange equation 

associated to (2.2). We will need (2.3) for C ~2 in Step 3 below) 

ProojI - We observe that Jp (a) < cc for all CLI E X. Moreover, the 
functional Jp is lower semi-continuous. We set c = Inf (1; b2). For all 
a E X0, we have 

(2.4) Jp (CY) 2 c” 
.I’ 

’ J&lP r--l &. = c” 

> !lk ll:l,p _ c!L!!cz 1. 

p { lJ4” - I’ blPf’--l dr} 

P P m 

Anna/es dc I’lnstitut Henri Poincare! Analyse non h&ire 
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It follows that the functional Jp is coercive on X0. Then, there exists a 
map QO E X0 which minimises Jp over Xa. Set X1 = {o E X : (Y (1) = 
7r/2}: we will prove that a0 is a critical point of Jp on Xi. For any 
Q E X1, define QI* E X0 by 

if (1: (r) > 7r/2, 
if 0 5 ck (r) < 7r/2, 
if a(r) < 0. 

Let 

m-1 1 
P/2 

Fp (r; a, ci) = A? h2 (a) + -p-- sin2 (o) = (At* h2 (a) + F (r, Q)]~‘~ 

Also, let 

G, (T, Q, ci) = [ci” h2 (a*) + G (T, cx)]Pi2 for all cx E X1, 

where G (T, a) = F (r, a*), 

and 

J, (a) = 1 
.I 

1 

G, (r, CY (r), ci (r)) Fe1 dr, where Q E X1. 
P 0 

For all Q: E X1 and 1” E [0, 11, we get F (r, a’) = G (r, a) = G (r, a*). It 
follows that, for all a E Xi, Jp (a*) = J,* (a*) < Ji (n) which implies 

Inf {Jp (a) : (Y E X0) = Inf {J,* (a) : a E Xl} = CO. 

Now, let (oi} be a minimizing sequence in Xi for Ji: by passing to {of} if 
necessary, we can suppose that CQ E X0. Since J; (~i) + co and cr; E X0, 
the inequality (2.4) shows that {oi} is bounded in Xi. Therefore, there 
exists a subsequence which converges weakly in Xi to some o. E X0. The 
semi-continuity of Ji yields Jl ((~a) = CO; then aa is a critical point of JJ 
in X1. To prove (2.3), a short computation leads us to the Hardy inequality 

for all < Ei 

It follows that 

(2.6) ’ rmwl dr < 00. 

Vol. 15, no l-1998. 
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Next, for X E (- 1, 1) we get 

-%(T ao+tA<, b,+tXt)dtdr 

where 

if x > 7r/2, 

G, CT, 2, Y) = 1 P/2 

if 0 5 x 5 7r/2, 

if x<O. 

Finally, by using the fact that < satisfies (2.6) and the Holder inequality, 
we can easily see that 

is dominated independently of X by a function in L1 ([0, 11). By the 
Lebesgues dominated convergence Theorem, we have 

Frno 
J, (~0 + XC) - J; (a01 

x 
i)G, 

2 (r, ao, cio) (+ K (r: ao, by,) < P-l dr. 

And, since cro E X0, we conclude that a0 satisfies (2.3). This completes 
the proof of Step 1. 

Ann&s de I’lnstitut Hem Poincr& Analyse non lintaire 
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STEP 2. - If b2 < 4 a then a0 # a,/~. 

Pro@. - First, we calculate the second variation, 

Q(O=$J,(;+t6) 1 for <A 
t=o 

We note that 

Jp(~+tc)=~I’Fp(r,~+tc.ti)rm-l~r 

where 

Fp y;+t[,tt 
> [ 

= t2i2k2(tC)+=$ 1 
P/2 

cos2 (t 5) 

and k2 (t<) = b2 cos2 (t <) + sin2 (t <). 

If t is sufficiently close to 0, there exists E > 0 such that cos2 (t <) > 
cos2 E > 0. Thus we get Fp (T, 5 + t <, t C) # 0. Next, we can easily see 
that ]rm-’ -$ Fph ; +tC, ti,I is dominated independently of t by a 
function in L1 ([0, 11). By the Lebesgues dominated convergence Theorem, 
we have 

Q (C) z (m - 1): 1’ [b2 j2 (r) - 7 c2 (r)] rm-p+l dr. 

0 

In order to end Step 2, it is enough to find a function < ~2 such that C < 0 

and Q (<) < 0 if b2 < 4 C~~P~2. Indeed, the fact that ctr12 is a critical point 
of Jp togeher with Q (0 < 0, imply that 

Jp (a,/2 + t 0 < Jp @x/2), 

provided that t > 0 is sufficiently small. It follows that the map Q,/~ is not 
the minimum of Jp over X0, that is a0 # cv,j2. To define <, let 

u= (m-d2 m-l+E -- 
4 b2 ’ 

where E is small enough as to have u < 0. 

Then we set 

(2.7) c(r) = ry sin(J-vLogr) if r. 2 T 5 1 

and c(r)=0 if 0 5 T 5 TO, TO = exp(-+r/J-v) < 1. 

Vol. 15, no 1-1998. 



34 A. FARDOUN 

A direct computation shows that Q (<) < 0, so the proof of Step 2 is 
complete. 

STEP 3. - a0 E C” ((0: 11). 
Proof. - On any compact set [a, 11 (a > 0), a0 E Gp ([a, 11). It follows 

from the Sobolev embedding Theorem that a0 is continuous on [a, 11, then 
on (0, 11. Next, we set 

r = {r > 0 : Q(j (r-) = O}. 

We first suppose that I = 0: then aa (r) > 0 for all T E (0, 11. 
To simplify the notations, we set 

3 
p-2 

rn - 1 2 
bl (XC; p; V) = q2 h2 (p) + 52 sin2 P h2 (p) T$‘“-~ 

and 

I 
E$ 

b (2; ,u; 7) = 
rn - 1 

(p) + ---p- sin2 p 

x sin p cos p 
m - 1 

- 1) r12 + - 
> 

x W-1 

x2 

We know that a0 satisfies (2.3) 

J 
1 

bl (q a0 (z); d”o (x)) i (CE) + b (IC: QO (x); cio (x)) 5 (x) dz = 0 
0 

forall 5 EA 

Now, there exists N, > 0 such that QO (r) > N, for all r E [a, 11. 
Next, for all n E R, h 2 N, and x E [a, l], a short computation 
tell us that the functions bl and b satisfy the conditions (3.1), (3.2), 
(5.7) of Theorem 5.2 in [12]. Then a0 E H;i”d ((a, 1)) for all a > 0. It 
follows from the Sobolev embedding Theorem that a0 E C1 (( 0, 1)). Now 
we will prove that ~0 E C’ ((0, 11). To this end, we set T = et and 
A(t) = a0 (e”) (t E (- co, 01). We calculate the Euler-Lagrange equation 

Annales de I’lnstitut Hmri P&m& - Analyse non h&ire 
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associated to (2.2) in terms of A(t) and we get 

(2.8) ;I = /i - (m - 1) A 
[h’ (A) A2 + (m - 1) sin’ (A)] 

[(p - 1) h2 (A) A2 + (m - 1) sin2 (A)] 

+ (P - 2) cm - 1) sinAA[sinA-AcosA] 
[(p - 1) h2 (A) A2 + (m - 1) sin2 (A)] 

’ (m - l) 

sin A cos A [h2 (A) A2 + (m - 1) sin2 (A)] 
h2 (A) [(p - 1) h2 (A) A2 + (m - I) sin2 (A)] 

- cb2 - ‘> 
sin A cos A 

h2 (A) A’ 

where 

h2 (A) = b2 sin2 (A) + cos2 (A). 
Let H (A; A) be the right hand side of (2.8). For all a < 0, a short 

computation tells us that H (A; A) E L1 ((a, 0)). For all t < 0, we have 
the following equality 

(2.9) s t A(t) = H (A(u); A(u))du+A(tl), wheretl < Oisafixedconstant. 

By pas&g to the limit when t 4 0 in (2.9), we find that lim A (t) 
exists and is finited. Thus the map a0 E C1 ((0, 11). Finally, k$e the 
function A E C1 ((- 00, 0]) and is a solution of (2.8), we conclude that 
A E C” ((-W, 0]) and so cyo E C” ((0, 11). Now, suppose r # 0 and 
let TO = sup l? (TO < 1 because CKO (1) = T). An argument similar to 
the previous case shows that the map a0 E C” ((ro, 11). Since a0 is the 
minimum of Jp over X0, it follows that a0 (r) = 0 for all T 5 T-~. Since 
t l& A (t> exists and is finited, we conclude that b. (r$) exists and 

is finited. Now we will prove that b. (r,‘) = 0. Because the map a0 is 
solution of (2.3), we can choose a test function (‘ E CT ([0, I]) such that 

supp < c [To - E; To + E] and c b-0) # 0 
(where E > 0 is close to 0). 

After an integration by parts, we find that (2.3) is equivalent to 

Vol. 15, Ilo I-1998 
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where Fp (T, 2, y) = [h2 (x) y2 + 9 sin2 x;]P/~. 
We observe that the integrand vanishes because no E C” ((~a, 11) and 

so aa is a strong solution on (T 0, l]. It follows that (2.10) reduces to 

4-2 (TO, ao (TO), bo (TO)) <(TO) 60 (6, h2 (ao (TO)) 6T-l = 0, 

and then iuo (r,‘) = 0. Now, we let t tend to Log T-~ in (2.8) and we note that 

A(‘“) (Log Q) = 0 for all r2. > 0. 

Next, there exist two constants Ci, Ca > 0 such that any solution 2 of 
(2.8) satisfies the following inequality 

(2.11) lZ\ L Cllil + c2 p-1. 

Since the function A(t) is a solution of (2.8) for t E (Logra, 0] and 
A E 0 on (-cc, Logro], we deduce that A satisfies (2.11) on W. By 
the unique continuation principle, it follows that A = 0 on R. This fact 
contradicts A (0) = 7r/2. (Because the function H (A; A) is not of class 
C1 in a neighborhood of (0, 0), it seemed to us preferable to use the unique 
continuation principle rather than the Cauchy uniqueness Theorem.) 

STEP 4. - cio (T) > 0 for all r E (0, l] and liio cxo (T) = 0. 

Proof. - (We develop ideas of [6].) Set 

K(t) = e-2t [h2 (A) A2 + (m - 1) sin2 (A)]. 

The differential equation (2.8) becomes equivalent to 

(2.12) li + A 

C 

sin A cos A 
= cm- ‘> ,$(A) . 

According to Step 3, the solution A (t) = CYO (e”) satisfies 

0 < A(t) 2 % for all t E (-co, 0] and A(0) = I. 

We first prove that the zeroes of A are isolated. We note that A (0) # 0; 
for otherwise A E % by the Cauchy uniqueness Theorem. Let to < 0 be such 
that A (to) = 0. Then A (to) # 0 and A (to) # f (for otherwise A = 5); 
we deduce by (2.8) that A (to) # 0. Then there exists a neighborhood J 
of to which contains no more zeroes of A. 
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Now we prove that A (t) > 0 (which of course implies & (r) > 0). We 
argue by contradiction: let i < 0 be the first point such that A (2) = 0; 
set I = (t, 0] and 

(2.13) PA = 2 
C 

’ - 2 ’ + + (m - 2) + 2 z + 

QA = 2 (m - 1) siL2:iTAA. 

Since A is a solution of (2.12), we have PA E QA on I. We consider 
the following first order linear differential equation 

(2.14) y'(t) + PA(~) T/Y(~) = QA (t). 

The constant function y = 1 is a solution of (2.14) and we note that 

(2.15) 

1 5 y(t) = 1 -J,“’ QA(~) (exp-j$ P~(r)dr)du ?< t 

exp - J,‘” PA (u) du 
0, 

t <o. 

Let T < t be the first point (if it exists) such that A (T) = 0. Thus (2.15) 
holds on (T, if). D irect integration of (2.15) gives 

1 = N(t) 
D (t) 

for all t E (T, t), 

where 

N(t) =l - 
2(m-1) 

h2 (A (to)) A2 (to) Kp-2 (to) e2 (m-2) to 
to 

A(r) e 2 (m-2) T Kpp2 (T) sin A (r) cos A (r) dr? X 

and 

D(t) = 
A2 (t) Kpp2.(t) e2cmm21t h2 (A (t)) 

h2 (A (to)) A2 (to) Kpp2 (to) e2 (m-2) to 
(to E (T, t),. 

For all t E (T, t), we have 

(2.16) N(t) > 0 

Vol. 15, no I-1998. 
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and 

(2.17) t?(t) # 0 because A(t) # 0. 

We claim that T = -co. For otherwise, since D (T) = D (t) = 0 we would 
get N (T) = N (x) = 0. Then (2.16) implies that N must have a maximum 
on (T, t), a fact which contradicts (2.17). Moreover, since 0 < A (t) 2 5 
there exists t” E ( -CCJ, 2) such that A (t”) is close to 0. So D (t”) and then 
N (t”) would be arbitrarly close to 0. If follows from N (t) = 0 and (2.16) 
that N has a local maximum on (-00, t), which again contradicts (2.17). 
Then A (t) # 0 f or all ii E (-03, O]. We conclude then that A (t) > 0 
because 0 < A (t) 5 : and A (0) = 5. Finally, ,li~~ A (t) exists and is 

finited. Now, there exists a sequence t,, + -cc such that A (tn) -+ 0 and 
A (tn) --+ 0. By passing to the limit in (2.8), we get lim 

t&+-cc A (t) = 0. This 
achieves the proof of Step 4. 

STEP. 5 - If b2 < 4 c7r:pi,, then & (0) exists and is positive. 

Proof. - The qualitative study of the autonomous equation (2.8) is 
simplified by the observation that the following function 

VP (A) = k(A)+ {(p - 1) h2 (A) A2 - (m - I) sin’ (A)} 

where k (A) = h2 (A) A” + (WL - 1) sin’ (A)? 

is a Lyapunov function (see [13]) associated to (2.8). Indeed, if A is a 
solution of (2.8), we have 

(2.18) f (V, (A (t))) = k (A (tf+ {p(p - m) h2 (A(t)) A2 (t)} < 0 

for all t E (-cm, 01. 

For future use, we note that (2.18) is equivalent to 

(2.19) &x‘we (m-q zz (p - m) e (Trl--p)t k (A (t))” 5 0. 

From 

Ep (F,,) = ,‘vol (,!Y1) /’ e(7”-p)t k (A (t)): dt < CXI; 
-cc 
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it follows that limInfe(“-P) t k (A (t)) f = 0. Next, by using (2.19), we have f---m 

(2.20) Ep (F,,) = (m ! p)p vol(S”-‘) [-(p - 1) b2 A2 (0) + (m - l)] 

x [b’ A2 (0) + (m - l)]e. 

and 

(2.2 1) v, (A(t)) < 0 for all t E (--00, 01. 

From the Lyapunov functions theory (see [13]) and (2.21), we get A (t) + 0 
when t --f -CG. Next, it is convenient to set 

&. = Ah(A) 
sin A ’ 

Then equation (2.8) becomes equivalent to 
(2.22) 

6 = - (p- 1) [b:” + (m - I)] 
[(p - 1) @ + (nl - l)] 

x {(G-1)(L’+S)-(1-Z) (62-Z)) 

For future use, we note that (2.21) implies 

(2.23) e”(t)- 5 <o 
> 

for all t E (-w, 01, 

which in turn yields 

(2.24) 
cos (A (t)) 

h (A (t ) ) >( 
zzr 0. 

First, we prove that ,Jrr, 6 (t) = 1. For this purpose, we compare 
solutions of (2.22) with solutions of the following differential equation 

(2.25) C? = -(p - 1) [G” + (m - l)] 
[(p - 1) G2 + (m - l)] 

((6-l) (b+=J}. 

Thus we need to investigate the qualitative behavior of solutions to 
(2.25). This equation has two constant solutions 6, E 1 and Ck2 z -s. 
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Let G, be a nonconstant solution of (2.25). As for nonconstant solutions, 
there are two possible cases: 

1) There exists t E I3 such that G, (t) > 1. Then, we get G, (t) > 1 for 
all t E 9. For otherwise, there would exist to such that G, (to) = 1 
and so G,. E 1 (by the Cauchy uniqueness Theorem). The function 
V(&,.) = (6, - 1) is a Lyapunov function associated to (2.25) because 
& V (G:, (t)) = G,, (t) < 0 for all t E W. It follows that ,lii~ G,. (t) = 

+ce and t lu+n~ G,.(t) = 1. 

2) There exists t E R such that G,. (2) < 1. Then, we get 

711 - 1 

P-l 
< G, (t) < 1 for all t E R (by the Cauchy uniqueness Theorem) 

Next, because of (2.25), it follows that G, (t) > 0 for all t E R and so 
G,. is increasing; then t lipm G:, (t) exists. Moreover, for any E > 0 and 

C < 0, there exists ti T C such that G, (ti) < E (that is, there exists a 
sequence t,, -+ -cc such that G,. (tn) + 0). For otherwise, we have 
(2.26) there exist two constants Al > 0 and T < 0 such that G, (t) > Al 

for all t < T. 

If t < 0, we can write 

t (2.27) 6,. (t) = 
I 

” G,. (u) du + 6,. (T) 
.T 

From (2.26) and (2.27), it follows that lim G, (t) = --co. This t+-c-z 
contradicts the fact that the function G,. is bounded. Now, using (2.25) 
and since G:, is increasing we get ,Jma G:,. (t) = - 2. Similarly, we get 

t liym G, (t) = 1. Now we use these qualitative facts about (2.25) to show 

that ,limm G (t) = 1. We argue by contradiction: then there exist E > 0 
and a sequence t, -+ --00 such that either 

(2.28) (2 (tn) 2 1 + E, 

or 
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If (2.28) is satisfied, then by (2.24) we can take t, < 0 large enough 
such that 

(I- G) (a - 5) iscloset 

So 6’ would be approximated in a compact set by a solution G:, of (2.25) 
which satisfies G, (tn) 2 1 + E. By l), we have ,>rr, d,. (t) = +co, so 

there would exist t’ such that G (t’) is arbitrarly large. This contradicts 
the fact that G is bounded. Similarly, using 2) we find that (2.29) is not 
possible, so ,lir_n, G(t) = 1. 

Now, we need to prove that G (t) < 1 for all t E (-co, 01. To this end, 
we note that G(0) < 0 because i(O) < 0 (by (2.8)). And using (2.23) 
we get the following 

(2.30) 

>( 
G2 (t) - 5 

> 
> 0 for all t E (--00, 01. 

Next, we have to consider the following two possibilities: 
1) suppose G (0) < 1: if there exists t’ < 0 such that G (t’) g 1, using 

lim G (t) = 1, we find that there exists t” < 0 such that G (t”) 2 1 t+-c.2 
and G (t”) = 0. Then, simple inspection of (2.30) and (2.22) leads us to 
a contradiction; 

2) suppose 6’ (0) 2 1: then, since G (0) < 0 and lim 
t--+-m 

G (t) = 1, there 

exists t’ < 0 such that G (t’) > 1 and 6’ (t’) = 0. This fact contradicts 
(2.22) and (2.30). 

By way of summary, the function 6’ satisfies G (t) < 1 for all 
t E (--ix), 01. 

Next, we prove that there exist two constants Ci, C2 > 0 such that 

(2.3 1) 1 - C1eCzt 5 G(t) < 1 forall t E (-co, 01. 

Coming back to cyo (T), (2.31) takes the form 

(2.32) 
1 - Cl rcz < 60 (r> h (~0 (r)) < f 

r - sin (CQ (r)) - 7” 
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To prove (2.31), write C(t) = 1 -y(t) with y(t) > 0 and ,&ii y(t) = 0. 
Then equation (2.22) becomes equivalent to 

(2.33) y’ (t) + Cl (t) y (t) = c2 (t) 1 - 
cos A (t) 

> w(t)) ! 

where 

Cl (t) = (P - 1) 
Kl - Y W>” + cm - VI 

( 
m-l 

[(P-l)(l-y(t))2+(m-l)] 1-r(t)+ p-l > ’ 

and 

C2 (t) = - [(p - l) (l - -Y@))” - CUL - l)l [(l - y(t))” + (rrL - 1)) 
Ku - 1) (1 - Y (t>)” + cm - 111 

We note that ,<nk cl (t) = rn. Moreover, there exist two constants M, 

N > 0 such that 

M 5 c2 (t) < N for all t E (-00, O]. 

Next, Taylor’s expansion centered at A (--a) = 0 shows that there 
exists a function g such that 

(1-s) =y+A2g(A) and lilflocg(A(t))=O. 

Thus there exist T < 0, two constants Ki, K2 > 0 and a function 
cQ such that 

K1 < c3 (t) < K2 for all t 5 T, 

and y is a solution of the following differential equation 

(2.34) y’ (t) + cl (t) y (t) = c3 (t) A2 (t). 

Since ,<lim A(tj LQ.9 = lim i: (t) = 
t--m 1, it follows that for any E > 0 there 

exists Tl 5 T such that 

(2.35) A (t) A > 1--E forall t<Tl. 

Integrating (2.35) between Tl and t, we find that there exist T2 << 0 and 
a constant C > 0 such that the function A satisfies 

(2.36) O<A(t)<Ce (leEJt for all t < T2. 

Ann&~ de l’lnstimr HCWY Pobrcar6 Analyse non tin&ire 



ON EQUIVARIANT p-HARMONIC MAPS 43 

From (2.34) and (2.36), it follows that there exist T3 < 0, a constant 
KS > 0 and a function c4 such that 

(2.37) 0 < c4 (t) 5 KS for all t 2 Ts, 

and y is a solution of the following differential equation 

(2.38) Y’ (t) + Cl (t) Y (t) = c4 (q 2. 

An explicit computation gives 

Taking T3 sufficiently large and using the fact that ,limW cl (t) = m and 
(2.37), it follows that there exist two constants Ci, C2 > 0 such that (2.31) 
is satisfied for all t 5 T3. Next, it is easy to show that (2.31) is satisfied for 
all t E (-co, 0] provided Cl is large enough. Finally, using (2.32) we will 
prove that dla (0) exists and is positive. For this purpose, it is convenient 
to write down the primitives I(r) of the function sine. bo h (%I Set 

cot‘!? Qo (r) f(r) = b +pz?jm; p = k-i, p = $ [b2-11. 
Then, for all 0 < T 5 1, we have: 
If b2 < 1, 

(2.39) 
w =Log 

sin ~0 (r) 
bcos CYO (r) + h (a0 (r)) > 

+ JT-cLog fZ(79+v3-fi 

> f2(4+v3+J-ll . 

If b2 = 1, 

(2.40) I (r) = Log 

If b2 > 1, 

(2.41) 

T (r) = Log 520s 
sin a0 (r) 

a!0 (r) + h (Qo (r)) > 
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Now, we choose 0 < E < 1 and we write 
d(T) = sin 00 (r) U (r) w ere h U is a positive continuous function 

on [0, E]. We integrate (2.32) between E and r, and by passing to the 
exponential, we obtain the following inequality 

(2.42) 
sin a0 (E) < U(r) sin a0 (r) < sin a0 (E) ,g Ecl 

& - U(E) r - E 

Let us fix E = c0 < 1. Since U is a positive continuous function on 
[0, EO], U is bounded on this compact set. Then there exist two constants 
MI, MZ > 0 such that 

(2.43) O<Ml< 
sin ~0 (r) 

5 Mz for all 0 5 r’ 2 Ed. 
r 

Now, suppose that lirn 
r-0 

F does not exist: By (2.43) it follows 
that there exist two sequences (R;) and (Ti) tending to 0 as 1: -+ +CG 
and two real numbers 1r, la > 0 (1r # 12) such that sin “i (%I --+ 1r and 
sin “Gz (T’) -+ la. Next, from (2.42) we get, the following inequality 

(2.44) 

Since U is continuous on [0, co], U (0) > 0 and w is bounded, 
we conclude that when i + +CC the left hand side of (2.44) tends to 
U (0) 111 - 121 while the right hand side tends to 0 when E ---f 0. This is 
a contradiction and so 

lim sin a0 (r) 

r--*0 r 
= &o (0) exists and is positive by (2.43). 

STEP 6. - F,, is a weakly p-harmonic map. 
Prooj - A short computation gives the following equality 

(2.45) div [(IdF,, lp-’ dF,,,).$] =(div (IdF,, jp-’ dF,,), 4) 

+ (IdF,o lp-’ dF,x, > Q) 

for all c#~ E C,” (B”‘, lkY+l). 
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Set B,” = {x E W” : 1x1 5 c} : F,, is a weakly p-harmonic map if 
F,, satisfies (0.5) or equivalently 

(2.46) 

lim 
e-0 J 

IdFa, lp-2 {d&o & + 4.A (Fe,) (dF,, , dF,,)} dx = o 
B”-B? 

for all 4 E CF (II”, R”+l) 

Now, we observe that 

(2.47) -div (IdF,, lpp2 dF,,) + IdF,, lpw2A (F,,) (dF,, , dF,,) = o 

011 II”” - BP) 

because a0 is smooth on [E, l] and then satisfies strongly the Euler- 
Lagrange equation associated to (2.2), that is (2.47). From (2.45) and 
(2.47), it follows that (2.46) becomes equivalent to 

(2.48) lim 
J ~‘0 B~-B: div [Wao lpe2 dF,,)$] dz = o 

for all 4 E Cr (B”; R”+l). 

Let v be the unit normal to SrnP1. Using the Stokes Theorem and the 
fact that $ is compactly supported, we see that the left hand side of (2.48) 
is equal to 

lim 
J E-o 3 (B”“-BP) 

IdF,,, Ip-2(dFa,q5, v)dx 

Now let M = sup (4 (z) : z E B”}. We obtain the following inequality 

IS IdFa, (p-2 (dF,,+, u) do, 5 i’u I J IdF,, lp--l d0, 
a(B:“) 8 (B:“) 

[ 

p--l 

= M fi2 (&) h2 (a (&)) + 9 sin2 Q: (c) 1 em-l vol (S:-l). 

The right hand side tends to 0 when E tends to 0, thus (2.48) is satisfied. 
This completes the proof of Step 6. 
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STEP 7. - We are now in the right position to proceed to the proof of part 
(ii) of Theorem 1. The map FcyD is of class C’ on B” because 6~0 (0) exists. 
Moreover ]dF,,, 1 > 0 on B’” because of Steps 4 and 5. Therefore, using 
Lemma 2.1 of [3], we conclude that Fe0 is of class C” on B’“. Finally, 
suppose that there exist two maps F,, and F,, which satisfy (1.2). Set 
Al (t) = al (et) and AZ (t) = cy2 (e”). Their p-energy calculated in (2.20) 
is an increasing function of the variable A2 (0). Then F,,, and F,,? satisfy 
(1.2) if Al (0) = A2 (0) = $ and A, (0) = A2 (0) > 0. Since Al and A2 
are solutions of (2.8) we use the Cauchy uniqueness Theorem to conclude 
that AI = A2 and then F,,, = F,,,. Therefore the proof qf part (ii) of 
Theorem 1 is complete. 

Now we prove part (i) of Theorem 1. For this purpose, we need the 
following two steps. 

STEP 8. - [f F, # u* is an equivariant weakly p-harmonic map such 
that F, z U* on dB”“, then & (r) > 0 on (0, I], Q (0) = 0 and 
F,, E C” (Bm. ET(b)). 

Proof - Since F,, is weakly p-harmonic, then it satisfies (0.5). Now, we 
want to prove that a satisfies (2.3). To this end, let II: = (0, r-) be the polar 
coordinates in B” and consider in (0.5) the following type of test-functions 

4 : B”” ~ Rm+l 

(0, r> + ((4 cp(4) where cp E CF ([0, 11: W). 

We deduce that o is a weak solution of the following equation 

(2.49) 

fr iy sin cx Fr--2 (T, a:, &) rrrLP1] = 
K(r, N, ci) 

hs2 (a) 
COSQ! FP-2 (r., (Y, iu) ?‘--l; 

where z (T, CK, &) = tE2 + $$ sin’ (a). Similarly, if we consider in (0.5) 
the following type of test-functions 

($ : B”” i Iwrn+l 

(0: 7’) + vw9,0) where cp E CT ([0, 11, R). 

we find that CL is a weak solution of 

(2.50) f [ci cos Q: F&2 (r, (1, h) T~‘~-‘] 

rn - 1 T, a, ci) XII - - 
r-2 

b2 K( 
h2 (a) 1 sin a FP-2 (T, a, &) rm-‘. 
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Multiply (2.49) by b2 sin Q: and (2.50) by cos Q, then sum these two 
expressions. The result is that Q: is a weak solution of the Euler-Lagrange 
associated to (2.2). Now, by using (2.5) and by density, we prove that Q 
satisfies equation (2.3). We now study the qualitative behavior of Q. For all 
compact sets [u, l] (u > 0), (v E H1?” ([a, 11). By the Sobolev embedding 
Theorem, it follows that QI is a continuous function on [a, l] and then on 
(0, 11. From equation (2.49), it follows that the function defined on [0, I] by 

r -+ & (r) sin Q (r) F,-2 (T, a (T), & (r)) 7m-’ 

belongs to H1>’ ([0, 11). So, by the Sobolev embedding Theorem there 
exists a continuous function f on [0, l] which satisfies 

(2.51) f(s) = ci! (s) sin Q(S) F,-z (s, a(s), 6. (s)) s”‘-~ ax. on [0, 11. 

Moreover, integrating (2.49) between s and t we get 

(2.52) f (s) - f (t) = - 
s 

t K(r,a,ci) 

h* (a) 
cos ~1: Fp-2 (r, a, (jl) C’-’ dr 

s 
for all O_<s<t_<l. 

Now, by means of a study of the zeroes of the function f, we analyse 
the behavior of the function Q. Suppose that there exists so E (0, l] such 
that f (SO) = 0. If follows by (2.51) and (2.52) that a is nonincreasing on 
(0, so] and is increasing on [so, 11. The function QI being continuous on 
(0, 11, we can consider the following cases: cr (SO) = 0 or cy (so) # 0. If 
LY (SO) # 0, then Q (s) # 0 for all s E (0, l]. Since cy is a solution of (2.3), 
different from aXj2, then by Steps 3 and 4 iu (s) > 0 for all s E (0, 11. 
This contradicts the fact that the function CY is nonincreasing on (0, so], so 
(II (SO) = 0. In this case: we set, 

b’ = Sup {s > so such that Q E 0 on [so, s]} (so 5 b’ < 1). 

a is a positive function on (b’, 11. An argument similar to Steps 3 and 4 
above shows that Q E Cm ((b’, 11) and is increasing on (b’, 11. Set 

u’ = Inf {s 5 so such that cy s 0 on [s, so]} (0 < a’ 5 so). 

Suppose that a’ # 0: according to the definition of a’ and since the 
function Q is nonincreasing on (0, a’), the function (I has no zero on (0, a’). 
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Now, an argument analogous to Step 3 above shows that a E C” ((0, a’)). 
Next, it is convenient to set A (t) = a (et), t E (-co, Log a’). Since the 
function A is a solution of (2.8) on (-ce, Log a’), as in Step 4 one shows 
that A(t) < 0 for all t E (-co, Loga’). Since A is a solution of (2.14) 
and has no zero on (-x, Log u’) we get 

N (t) = D (t) for all t E (-no, Log a’) 

Now, we set 

w(t) = A2 (t) Kpe2 (t) e2(nL-2)t h2 (A(t)), 

and use the explicit expressions of N and D. Thus we find that 

(2.53) w(t) =h2 (A (to)) A2 (to) K”-2 (to) e2(“L-2)t0 - 2 (m - 1) 

/’ 

to 
X A (r) e 2 (‘r’-2) ” Kpp2 (r) sin A cm A dr 

* t 
for all 1; < to (for some to < Log a’). 

It follows from (2.53) that w is a positive, nonincreasing function. So, 
,&I~ w(t) = 1 exists (0 < 1 5 +co). Now, we prove the following 

assertion: 0 < 1 < +cc is not possible, so u’ = 0. For otherwise, from 
0 < 1 5 +oo, it follows that there exist C < 0 and C’ > 0 such 
that w (t) 2 C’ > 0 for all t 5 C. Then, since A is a nonincreasing 
function and 0 < A (t) 5 7r/2 for all t < Log a’, it follows by (2.8) that 
,lirr, A(t) = 7r/2 so ,lirr, sin A (t) = 1. Then there exist Ca > 0 and 

To < 0 such that A satisfies the inequality 

(2.54) A2 (t) [l + A2 (t)]“-” > Ca e2(p--m)t for all t < TO. 

Now, we prove that there exist two constants B < 0 and ,# > 0 such that 
we have the inequality 

(2.55) A(t) 2 C&e -@ for all t 2 B. 

For otherwise for all B < 0 and /? > 0, there exists tl 5 B such that 

A (tI) < CO eCPtl. 

From this inequality, it follows that 

A2 (tl) [l + A2 (tl)lp-” < Ci e-‘@l [C,” eP2@l + llpe2. 
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Next, take ,8 = fi and B < 0 large enough as to have 

1 < c,2 e--2 fit, and 

Then we get 

A2 (t1) [l + A2 (ti)]“-” < c, e2(p--m)tl. 

This contradicts (2.54). Now, if we integrate (2.55) between B and t, 
we get A(t) 5 A (B) - y [ePat - e-no] so ,lima A (t) = --o;, which is 

a contradiction. Then the function QI vanishes on [0, b’], and is increasing 
and smooth on (b’, 11. An analogous proof to the one given at the end of 
Step 3 shows that Q E 0. This contradicts the fact that LL: (1) = 7r/2. Next, 
the function f has no zero on (0, 11. And since f is a continuous function, 
then f has a constant sign on (0, 11. If f is negative, then the function 
0: is nonincreasing on (0, 11. This contradicts the fact that a (1) = 7r/2 
and F, # u*. Finally, the function f is positive so a! is increasing on 
(0, 11. The above study shows that Q has no zero on (0, I]. An argument 
similar to Steps 3, 4, 5 shows that Ct (r) > 0 on [0, 11, o(0) = 0 and 
F, E C” (B’“, El;” (b)), so ending Step 8. 

Remark 4. - Since the function A is a solution of (2.8) on (-o=, 01, 
a similar proof to that of Step 8 shows that ,I& zll (t) = 0, so that 
lim f (7-) = 0. 
r-0 

STEP 9. - (A priori estimates) 

(A) If F, is a weakly p-harmonic map and F, E u* on dB”, then 
Ep (Fe) L Ep (u*). 

(B) Zf F, = u* on dB” and if b2 > 4 e then, we get the following 
inequality: 

(2.56) Ep (F<v) - EP (u*) 2 ; (m - p)q vol (s”-l) 

C p-4 m-1 f 
> CJ’ 

1 f 
x (m-d2 0 15~ (sin o)” PWP+l dr 

I 
. 

In particular, EP (Fe) > EP (u*) and equality holds if and only if F, 3 u*. 
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Proo$ - (A) Since (or is a strong solution of the Euler-Lagrange equation 
associated to (2.2) (by Step S), 0: satisfies the equation 

(2.57) f [ci h2 (a) Fp--2 (T, a, ci) r,nL-l] 

711 - 1 
= 2 (b2 - 1) + T2 1 cosa sin Q Fpe2 (r-, o, ix) rnL--l. 

We note that 

f [ci h2 ((2) cotg N Fp-2 (r, a, cjl) r-] 

= cotga $ [d! h2 (a) Fp-2 (T, a, ci) ?-‘I 

2 h2 (a) - 
sin2 Q 

FI-2 (‘r, a, &) ?-l. 

Multiplying (2.57) by cotg cy, we get the following equation 
(2.58) 

Fp (T, ct, 6) T-l = 
m - 1 ku2 b2 + - - 

r-2 ‘fit: ‘,“’ 
I 

Fp-2 (T, a. &) ,r”‘-’ 

Set 

g (7.) = ti (r) h2 (a(r)) Fp-2 (T. a (7.), ci (T)) T-l. 
By remark 4, we have: lima f (T) = lili; g(r) = 0. By (2.57) the 

function g satisfies the following inequality 

(2.59) 
7-n - 1 b2(S)(b2+l)+-g- 1 sin cv (s) Fpe2 (s, a(s), b(s)) sTrrpl 

for all s E [O: 1 1 . 

Since the left hand side of (2.59) is in 
between 0 and I-, we find 

L1( [0, l]), integrating (2.59) 

fr r 
0 5 g (r) < sin ~2 (T) 

1 L 

rn - 1 
ci2 (s) (b2 + 1) + - 

0 S2 1 
x Fpe2 (s, IY (s), ci (s)) sTn-’ ds, 
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because a is an increasing function. So lim _Yt’) = p.+O sm (Y(r) 
lim CJ (r) cotg a (r) = 0. Next, integrating (2.58) between 0 and 1 we get 
l--+0 

(2.60) 

EP (FoL) 5 1 vol (Sm--l 
)S 

l m-l 

P 0 
T2 FPe2 (T, a (r), tx (r)) rm-’ dr. 

Young’s inequality gives 

9 FP-2 ( r, n (r), ci (r)) rm-’ 

< 2 (7-n - 1)f 
r m-1 - 

P 7-p 
+P-2 - FP (r, ct (r), ci (r)) P-l. 

P 
Finally, by using this inequality in (2.60), we get EP (F,) 5 EP (u*). 

As for assertion (B), set J (cy) = &r F2 (T, cv (T), 6 (r)) rnL-p+’ dr. First, 
we get easily the inequality 

.I 
1 

J(a) 2 b2 ci2 (r) sin’ (cv (r)) rrnhp+l dr 

+ 2 - (rn - 1) .I” cos2 (a! (7.)) r’--p-l dr. 
0 

Next, an integration by parts gives 

J 
1 2 l 

cos2(a (r)) rm--p-ldr = - 
.I 

& (r) sin Q (r) cos Q (r) rrnpP dr. 
0 7-p o 

Using the inequality, ab 2 $ + $ it follows that 

s 

1 

cos2 (a (r)) rrnwP-’ dr 5 Lx2 (r) sin2 (a (r)) r7’L--P+1 dr. 
0 

Then the function J satisfies the following inequality 

(2.61) 
1 

J(a) > b2 - 4 (rIi)2 
>S 

‘m - 1 
o ci2 (r) sin2 (ck (r)) r”--l-‘+’ dr -I- m _ p. 

Now, by the Holder inequality we get 

(2.62) pJ&) > J(c@(m-p)? 

So, suppose that b2 2 4 cz:P\2. - Then (B) follows from (2.61) and (2.62). 
Part (i) of Theorem 1 is an immediate consequence of (A) and (B). 
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Remark 5. - Step 2 shows that ‘u.* is an unstable critical point if 
b2<4f=& On the other hand, it follows from Theorem 1 (i) that 
if b2 2 4 fir u* is the minimum over the class of equivariant maps F, 

such that F, E u* on dB”“. However, if b2 > 4 e we proved that 
IL* is a strictly stable map. 

Proof of Theorem 2. - The proof of Theorem 2 follows from the ideas 
of l-7 above. The only relevant difference concerns Step 5 and moreover, 
Step 2 is unnecessary. Let us then show how to modify Step 5 in this 
context. 

Suppose p = m. Set 7’ = eL and A(t) = a0 (e’) (t E (--00, 01). Thus 

(2.62) EP (FcyO) = ; vol (Sm-1) I” k (A (t))” dt. 
. -,a2 

The Hamiltonian 

H = j vol (SnLP1) k (A)? (p - 1) {-h2 (A) A2 + sin’ (A)} 

associated to the functional (2.62) is constant on each solution A because 
the integral (2.62) does not depend explicitly of t. This Hamiltonian is 
identically equal to zero, so A is different from the constant map equal 
to 7r/2. Then .F,” # u*. From Steps 3 and 4, A does not vanish on 
(-co, 0] and A(t) > 0 on (- cxj, 01, and A is a solution of the following 
differential equation 

(2.63) ww 1, -zz 
sin A 

From (2.63), it follows that the map a0 is a solution of the following 
differential equation 

(2.64) h (QO Cr.)) ho Cr.1 1 - 
sin (a0 (7-)) = 7- 

for all r E (0, 11. 

In Step 5, we calculated the primitive of the left hand side of (2.64) 
and wrote it in the form el(l.) = sin ~0 (r) U (r.) where U is a positive 
continuous function on [0, E] where 0 < E < 1. We integrate (2.64) and 
pass to the exponential to obtain 

sin (~0 (7-) C =- 
u (r) 

where C is a positive constant. 
r 
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Since a0 (0) = 0, by letting T- go to 0, we find that 60 (0) exists and 
is positive. 

Now, suppose p > m. First, we note that FcO # U* because 
EP (u*) = +cc. As for Step 5, the Lyapunov function associated to (2.8) is 

VP (A) = k (A)e {(p - 1) h2 (A) A2 - (rn - 1) sin2 (A)}, 

and is increasing on solutions. 
Now, since VP (A (t)) > 0 for all t E (--00, 01, it follows from the theory 

of Lyapunov functions that ,&mm A (t) = 0 or +eo. We want to prove 
that this limit is equal to 0. For this purpose, we use a method similar 
to Step 8 and find that 

,Jlim ‘w (t) = ,)lik A” (t) IF2 (t) e2(m-2)t hd2 (A (t)) = 0 

~0 linl A2(Pe1) (t) e2CTra-P)t = 0. 
t--cc 

Since p > m, it follows that Jilik A(t) = 0. Next, in order to prove 
Step 5, we set, as in the case p < m, 

6 = WA) 
sin A ’ 

so & is a solution of (2.22). But the assertion (2.24) is not necessarily 
satisfied because VP (A (t)) > 0 so G2 (t) > 2 for all t E (-co, 01. 
However, Taylor’s expansion centered at A (-co) = 0 shows that there 
exists a function g such that 

(1-G) =y+A2g(A) and li?mg(A(t))=O. 

From this equality, it follows that (2.24) is satisfied. Now, we want to 
prove that 

lim 6 (t) = 1 and 
t--m 

b(t) > 1 for all t E (-co, 01. 

To this end, we note that G (0) > 0 because A (0) > 0 (by (2.8)). Since 
&‘:” (t) > 5, for all t E (-cc, 0] we get the inequality 

(2.65) - l-c~(k”,i~i)) (dz(t)-5) < 0 forall t E (-co, 01. 

Consider the following two possibilities: G(O) 2 1 or e(O) > 1. 
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If k (0) 2 1, we claim that, 

(2.66) G(t) > 0 for all t E (-cx), 01. 

For otherwise, let t’ be the first point where t’ < 0 and C? (t’) = 0. So, 
6 (t’) < 1 (because G (0) > 0) and a simple inspection of (2.22) and (2.65) 
shows that this is not possible. Finally, the function & is increasing and then 

lim &’ (t) exists and is finited because C? is bounded below by 
ti-cc J- 

3. 

From (2.22), this limit is equal to I or -s; then lim 6 (t) = 1. It t--cc 
follows that there exists t” E ( -ZG, 0) such that G (t”) = 0 and then we 
contradict (2.66). Therefore, we must have & (0) > 1. In this case, we 
consider the following two possibilities: 

1) suppose that G (t) > 0 for all t E (-cc, 0). A study similar to the 
previous one gives lim &‘((t) = 1 and C?(t) > 1 for all t E (-CC, 01; 

ti-CL 

2) let t’ < 0 be the first point such that C? (t’) = 0. Now, we study the 
behavior of &’ in a neighborhood of a point u < 0 such that C?(U) = 0. 
A short computation gives 

G (IL) =(p - 1) 
b2 sin A (u) A (IL) 

h” (A) (u) 

[b:” (u) + (m - l)] 
( 

m - 1 

x [(P-l)G2(U,)+(m,-l)] &:“&)- p-l >O. > 

A simple study of C? shows that there exists E > 0 such that 

(2.67) 6 is increasiay on [IL, IL + E] and G is n,onincreasing 071 [u - E. u]. 

We claim that & (t) > 1 for all 1: E (-cc, 01. For otherwise, let t” < 0 
be the first point such that C? (t”) = 1. If t” < t’, then there would exist 
ta such that t” < to < t’ and & (to) = 0. The function 6 is increasing 
on [t”) to] and nonincreasing on [to, t’]. This contradicts (2.67). If t” > f’, 
then C? (t’) < 1 and a simple inspection of (2.22) shows that this is not 
possible because &‘(t’) = 0. Moreover, we have G(t) < 0 for all t < t’ 
(for otherwise, we would contradict (2.67)) so ,<mr &’ (t) exists and is not 
finited (for otherwise, by (2.22), this limit would be equal to 1, a fact which 
is not possible because there would exist T < t’ such that C!? (T) = 0). 
Now, we write equation (2.22) in the following form 

(2.68) (2 (t) = cpl (t) (2” (t) + cpz (t), 
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where 

and 

(Pl (t) = - b - 1) 
[ti:” (t) + (m - l)] 

KP - 1) b2 (t) + cm - 111 

x {Cl- &I b+ (,“l&)~ 
and ,:ym (~1 (t) = -1, 

(P2 (t) ‘(P - 1) 
[62 (t) + (m - l)] 

KP - 1) G2 (t> + (m - 1)l 
X 

( 
1 _ cm (A (t)) 

h (A (t)) >( 
6” (t) - 5 

> 
and cp2 (t) = o (6:“). 

From (2.68), it follows that there exists T < 0 such that 

(2.69) 
G(u) 1 
i220<-2 forallu.<T. 

Integrating (2.69) between T and t (t 5 T), we get 

d- -=c +t-(T-2&(T))]. 
G(t) - 2 

Set C = (T - 26(T)) < T, so that tliE+ G (t) = +oo. This leads 

us to a contradiction because. the function2 is continuous on (-00, 01. 
Finally, ,limm G (t) = 1 and G(t) > 1 for all t E (-00, 01. Next, we write 

G (t) = 1+ y (t) with y (t) > 0 and ,li-nn y (t) = 0. Similarly to the proof 
of Step 5, we show that there exist two constants Ci, Ca > 0 such that 

15 G(t) 5 l+Cieczt forall tE (-co, 01. 

We conclude as in Step 5 that iya (0) exists and is positive. This achieves 
the proof of Theorem 2. 0 

Proof Proposition 1. - If the map F, is a solution of Dir (p; m), then 
the study of the Lyapunov function VP (A) shows that 

0 < A(t) < x for all t E R and t li=b, A(t) = 7r/2, t liym A(t) = 0. -+ -3 

Vol. 15, no l-1998 



56 A. FARDOUN 

Set Y = A and X = A - 7r/2. Since A is a solution of (2.8) Taylor’s 
expansion centered at the point X = 0, Y = 0 shows that (2.8) becomes 

A=Y 

y=-y X+(p-m)Y+o(lLs-). 

From the study of the eigenvalues of the matrix associated to the linear 
part and from the general theory of perturbed linear systems (see [9]), it 
follows that: if b2 < 4 a, then the eigenvalues are complex with 
negative real part, and so the point (0, 0) is a focus; by contrast if 
b2 > 4 (zrP\2 then the eigenvalues are real and negative, and so the 
point (0, 0) is an improper node (if b2 = 4 &, there is a double 
eigenvalue and the point (0, 0) is a proper node). 

Case (i): suppose that Dir (p, m) admits a solution F, for p > 7r/2. Then, 
A (t) = (L (et) is a solution of (2.8) with A (0) = p and ,JI_n, A (t) = 0. 

Let t’ be the first point such that A (t’) = 7r/2 and set B (t) = A (t + t’), 
a1 (r) = B (Logr). It follows that Fal is a solution of Dir (7r/2? m). This 
contradicts part (i) of Theorem 1. 

Now, suppose 0 < p < n/2. A similar study to Theorem 1 shows 
that Dir (p, m) admits a solution F, (a minimises Jp over {a E X : 0 5 
a(r) I P; Q (1) = ~1). M oreover, the function o is increasing on [0, -i-cc). 

Case (ii): let F,, be the solution of Dir (~/a, m) which satisfies (1.2) 
and set A0 (t) = a0 (et), t E R. Let F, be another solution of Dir (p: m) 
and A(t) = 0: (et) ( we can suppose that t = 0 is the first point such that 
A (0) = n/2). Set M = sup {A(t), t E R} (7r/2 < M < n). Let t” such 
that A (t”) = M. Since F,, satisfies (1.2) it follows from (2.20) and the 
fact that the Lyapunov function is nonincreasing that 

(2.70) Vp (A (t”)) < VP (A (0)) < VP (Ao (0)) < 0. 

On the other hand, from A (t”) = 0 and (2.70), we deduce 

-(m - 1): sinP M < V, (A0 (0)) < 0. 

Then M cannot be close to K, a fact which implies the existence of 
the required 0. 0 

Proof of Pr-oposition 2. - Let F, be the solution of Dir (VT/~: m) which 
satisfies (1.2) and set A (t) = a (et). 

(i) From the equality 

h2 (A) A2 = sin2 (A), 
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it follows that A (t) > 0 and 0 < A (t) < rr for all t E R (for otherwise, 
there would exist t’ > 0 such that A (t’) = 0 and so A (t’) = 7r. Next, 
replacing A by A - 7r, it is easy to check that our solution satisfy the unique 
continuation principle, so A = 7r). Then, t limm A (t) = L < 7r and since 

there exists a sequence t, -+ +cc such thz A (tn) + 0 and A (tn) + L, 
it follows from the previous equality that L = T. 

(ii) From the inequality V, (A (t)) > 0 for all t E R, we deduce that 
A (t) > 0 for all t E R (the proof is similar to the case (i)). Now, suppose 
that t limm A(t) = L < $00: then there exists a sequence t, -+ +co 

such mat A (tn) -+ 0 and A (tn) + L. This contradicts the fact that 
V, (A) is an increasing function and lim V, (A (t)) = 0. It follows that t--cc 
tlima A(t) = +co. 0 
+ 

Proof of Theorem 3. - The proof of Theorem 3 is based on the Karcher- 
Wood identity (see [lo]), for a l-form w on B” with values in u* TN and 
which is not necessarily harmonic. Keeping notation as in [lo], we let V be 
a vector field of class C1 defined on B”, iftang its tangential component 
on ,‘P-‘, v the unit normal vector. The relevant identity is 

(2.71) J (V, II) /WI2 - 2 J (V, v)I w-y 
p-1 sv?-1 

-2 
s 

(wpw ) w,) + 2 
s 

(WY w) 
B”’ B’” 

ZZ .I’ lwj2 div (V) + 2 
J’ 

((W,, w) + 2 
B”’ B” .I (WV, SW), 

B’” 

where div denotes the divergence. 

The p-tension of u is the field rP (u) given by 

(2.72) rp (u) = Idlq2 r2 (u) + du (grad Idulpw2), 

where grad is the gradient and 7-2 (u) is the usual tension field of U. The 
map u is p-harmonic if and only if rP (u) = 0. (By the Nash Theorem, 
the target manifold N can be isometrically embedded in Rn+k, where n is 
the dimension of N; let A be the second fundamental form of N in Wn+lc, 
then (0.3) is equivalent to rP (u) = 0.) 
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Now, we take w = l&I+ du and V = 7’ $ (where T, d are the polar 
coordinates on B”). From (2.71) and (2.72), we get the following equality 

2 

d0. 

Next, since p < m, the proof of Theorem 3 is an immediate 
consequence of (2.73) and the following equality: ldu&,-l = [ldulSnI-l )* + 

Idu (&>I:& 0 

3. p-HARMONIC MAPS BETWEEN SPHERES AND ELLIPSOIDS 

In this section, we establish sufficient conditions for the existence of a 
p-harmonic map between spheres or ellipsoids. For a, b > 0 and m, q 1 1, 
we introduce the ellipsoids 

Q m+q+l (q 0) = { (2, y) g p+l x ggg+l : !g + Jg = I}. 

We parametrize the points of Qrn+q+r (a, b) by 

(3.1) (u sin s.2, b cos 5i.y) 

where 

z E S”’ : y E sq and 0 < s 5 r/a. 

The Riemannian metric on Q7”+Yf1 (a, b) induced from its embedding in 
Wm+g+* is 

(3.2) 

where 

g = a2 sin* s gm + b* cos* sgq + h2 (s) ds2; 

h* (s) = a2 cos* s + b* sin* s and gn denotes the standard metric of S”. 

A map u : S” --i S’ is an eigenmap with eigenvalue A,, if u is 
harmonic and ldul’ = A,. It is well known that the components of u 
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(considered as a map in RT+l ) are the restrictions to S” of (r + 1)-harmonic 
homogeous polynomial of a common degree k; so its associated eigenvalue 
is A, = k (k + m - 1). Examples are the Hopf map h : S3 + S* 
with eigenvalue X = 8, the identity map IdsP : Sq -+ 5’4 and the map 
uk : sl --t Sl (@ -i eike, k E Z) (see [6] for a more complete list of 
examples). Let (Y : [0, 7r/2] -+ [0, 7r/2] b e a smooth function satisfying 
the boundary conditions 

(3.3) Q (0) = 0, Q (7r/2) = 7r/2. 

For given a, b, c, d > 0, the equivariant a-join of two eigenmaps 
u : S” --+ S’ and v : Sq + S” is the map 

F, = u * v : Qm+q+l (a, b) + Qr+s+l (c, d) 

given by 

(3.4) (u sin S’IC, b cos s.y) + (c sin o(s).u(z), dcosa(s)ev(y)). 

Our main result in this context is the following Theorem 

THEOREM 4. - Suppose p > 2. Let u : 5’” i S’ and v : SQ + S” be two 
eigenmaps with eigenvalues A, and A, respectively. If one of the following 
hypotheses (Hi) (i = 1, 2) hold 

(Hl) c(q-p+l) < 2dJX, and d(m-p+ 1) < 2cJx,; 

or 

032) m<q,p<m+l,aZb,c(q-p+1)<2dJX, 

and AU$(q-1’+1)>x,%(7r1-~) 

then there exists an equivariant p-harmonic a-join F, = u * v : 
Qm+q+’ (a, b) -+ Q’+‘+l (c, d). 

Remark 6. - The hypotheses (Hr) and (Hz) are independent. Indeed, if 
a = b = c = d = 1, p = 2, q = 3, m = 2, A, = 2 and A, = 8 (for 
example, take v equal to the Hopf map h : S3 -+ S* and u = Idsa) then 
(H,) is satisfied but (Hz) does not hold. By contrast, if m = 7, A, = 55, 
q = 7, A, = 7, a = b = 1, 2 = % and p = 2 (for instance, this 
situation occurs when u : S7 -+ S7 is the gradient of Cartan’s harmonic 
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eiconal of polynomial degree k = 6 (see [6]) and II = Ids?) then (HZ) is 
satisfied but (HI) does not hold. 

By using the different eigenmaps, we can deduce from Theorem 4 the 
existence of new p-harmonic maps. For instance, if we take the join of uk 
and Idsq and a = b = c = d = 1 in Theorem 4, we get the following 
result which generalize the results of Smith [ 161 @ = 2) and Xu and 
Yang [17] 0, = q + 2). 

COROLLARY. - Suppose q 2 1. Zf p 2 2 and p > (fi - l)‘, then there 
exists a p-harmonic a-join uk * Idsq : Sqf2 -+ ,!Pf2. 

(This p-harmonic map represents the element k E nqf2 (Sq+2) = Z.) 

Proof of Theorem 4. - The p-energy of the a-join F, is equal to 

l.3, (F<y) = am bq vol (S”) vol(9) JP (a), 

where 

+ A, c2 sin2 o + A, d2 cos2 Q: ‘I2 
a2 sin2 s b2 co52 s 1 h(s)v ds, 

with 

v = sinm s cosq s and k2(a) = c2 cos2 Q + d2 sin2 Q. 

Similarly to Theorem 1, it is convenient to introduce the following 
function spaces 

Y = 
C 

Q E If’>” ([0,7r/2]; W) : llallp = /-=‘2[,b,p+,c$‘] h(s) vds < oc 
0 

Yo = {a E Y:O 5 a(s) < 7r/2} k=iP([O, 7421; W). 

We denote by or/z (respectively ao) the constant critical point o E 7r/2 
(respectively a E 0). Theorem 3 is obtained essentially by the minimisation 
of the functional Jp (cy) on Yo. We prove that if one of the hypotheses (Hi) 
(; = 1, 2) is satisfied, the the minimum 5 is different from o,lz and ~0. 
(Indeed, if (H r is satisfied then o,j2 and a0 are unstable critical points. ) 
If (Hz) is satisfied, then Jp (Q,,z) 2 Jp (aa) and (~0 is an unstable critical 
point.) Next, we prove that Cw is smooth on (0, 7r/2) and Jlo 5 (s) = 0, 

lim 
S-VT /2 

E (s) = 7r/2. Finally, we prove the regularity of Fz: for this purpose, 
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we need to study the existence of the first order derivative of 5 at the points 
0 and r/2. The proof of Theorem 4 is divided into 7 steps. 

STEP 1. - There exists a map 5 E Yo which minimises Jp on Yo and 
satisfies 

s r/2 
(3.6) 

-2 
F’-2 (s, a, a) 

lc2 (a) . . 
___ 

k (5) ii (E) &2 

0 h2 (s) (y5 + h2 (4 

+ cos E sin 5 
x, c2 A, d2 - 

a2 sin2 s b2 cos2 s 

for all < Eh, 

where 

-I Fp (s, a’, a) = 
.2 k2 (G) 

8 - 
h2 (s) + AU 

. 

ProoJ: - The proof of this step is similar to the proof of Step 1 of 
Theorem 1 and so we omit it. 

STEP 2. - Suppose p 2 2. If one of the hypotheses (H;) (i = 1, 2) is 
satisfied then 5 # ~3~12 and 5 # ao. 

Proo$ - First, we note that if p > q + 1 (respectively p 2 m + 1) then 
Jp ((Ye) = +cc (respectively Jp ( a,lz) = +w). Therefore, we may restrict 
attention to the case that p < q + 1 and p < rn + 1. 

Now, suppose that (HI) is satisfied. If we prove that a0 and (*iTi are 
unstable critical points then G # QI,/Z and E # ~110. For this purpose, let 
C(s) = sinn s cos+ s where n > 0 is to be taken sufficiently large and 
T E (0, 9) is to be determined. Set 

(3.7) CM (s) = 5(s) if C(s) < Ad and <I\I (s) = M otherwise. 

(CM $!i, so (3.6) is not necessarily satisfied for variations of the form (3.7).) 
We study 

1 

.I 

n/2 
Jp (~0 + t CM) = .Jp (t cfil) = - 

P 0 
4 (5 th (s), t CM (s)) h (s) v ds, 
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as a function of t. A short computation shows that 

d 
h (s) v - Fp (.s t Cnr (s), t 6r (3)) 

dt 

and h (3) v $ Fp (s, t h (s), t & (s)) 1 

are dominated independently of t by functions in L1 ([0, r/2]). It follows 
by the Lebesgues dominated convergence Theorem that 

Q (CM) = $ Jp (tb&=o 

Now, a short computation shows that if c (q - p + 1) < 2 da, and if 
T tends to v then Q (0 tends to --00. By the monotone convergence 
Theorem, we get Ml;, Q (5~) = Q (0 and so we take it4 large enough 

to insure that Q (5~) < 0. Finally, for t positive and close to 0, t chl E Yo; 
and we obtain .JP (ao) > Jp (t CM). S o, QO is an unstable critical point. 
Similarly, we prove that if d (m - p + 1) < 2 c 6, then aai2 is an 
unstable critical point. Now, suppose that (Hz) is satisfied. As it has been 
shown in the previous case, (x0 is an unstable critical point. Now, it suffices 
to prove that Jp (cxTi2) 2 .Jp (no) . m order to conclude that 8 is different 
from CX,/~ and ‘~0. Towards this end, set f (s) = sin2 s cos*-P s. Thanks 
to Holder’s inequality, we get 

J 

xl* 

(1 

r/2 VP 

(3.8) f(s)h(s)vds 2 siCP sh(s)vds o 
. 0 > 

r/* p--z 
P 

X (I cos-p sh(s)vds . 
0 > 
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Next, an integration by parts gives 

s r/2 .I r/2 o f(s)h(s)vds= sinmm2 s COS~-~+~ s h (s) ds 
0 

= q-p+1 
.I 

xl2 

m-l 0 
cos-p sh(s)vds 

a2 - b2 
+- 

.I 

r/2 sinm s cosQ-p+2 
’ ds. 

m-l 0 h (s) 

From this equality and from (3.8), it follows, since a 2 b, that 

.I */2 
sineP 

0 
sh(s)vds 2 (q;“;1)p’2 f2 cos-p sh(s)vds. 

Finally, if X, $ (q - P + 1) 2 X, $ (m - 1) we get the inequality 

(3.9) Jp (Q,/z) - Jp (~0) 2 ; 
K 

.I 
x/2 

X COS-~ sh (s) v ds 2 0. 
0 

This completes the proof of Step 2. 

STEP 3. - Z E Cm ((0, 7r/2)). M oreover &T(s) > 0 for all s E (0, 7r/2) 
and E satisfies the boundary conditions (3.3). 

ProoJ: - A straightforward modification of the arguments used in the 
proof of Theorem 1 permit us to show that ?Z E C1 ((0, r/2)). Now, since 
F2 (s, Z(s), k(s)) > 0 for all s E (0, 7r/2) and 7% satisfies strongly the 
Euler-Lagrange equation associated to (3.5) on (0, 7~/2), that is 

(3.10) &talc2 (5) $ 
A, c2 

- 
a2 sin2 s 

+ 
A, d2 

b2 cos2 s 
sinh cos 3h2 (s) 

-tk2(E)& 

-d2 sin h cos?? (c2 - d’) + 

It follows by simple inspection of (3.10) that E E C” ((0, 7r/2)). 
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Now, we will suppose for simplicity that a = b = 1 (the general case 
is similar). To prove that G(s) > 0 for all s E (0, 7r/2), we proceed 
similarly to [17]. Set s = Arctg(et) and A(t) = ~(Arctg(e~)). Then 
(3.10) becomes equivalent to the following differential equation 

(3.11);i+A + ““-“2-q-2 s 

+p-2 Ei 
(d2 - c2) A sin A cos A 

2 i?+ k2(A) 

sin A cos A X u c2 eet X d2et = -L 
k2 (4 et + ept et+ ect ’ 

tER 

where 

K (t) =k2 (A(t)) A2 (t) + sin2 A(t) ~~~~~~t 

X d2et 
+ cos2 A(t) L. 

et + emt 

Now, an analogous proof to that of [ 171 shows that A (t) > 0 on W. 
Finally, ,limt A(t) and ,liim A (t) exist and are finited. Since there 

exist two sequences t, -+ -co and t, -+ +oc such that 2 (tn) -+ 0 and 
A (tn) -+ 0, by passing to the limit in (3.1 l), we get that ,limm A (t) = 0 

and t li+“m A (t) = 7r/2. This completes the proof of Step 3. -+ 

STEP 4. - ,Jlim A (t) = 0. 

Prooj - We rewrite the equation (3.11) as 

(3.12) ii = H(t, A, A). 

A simple inspection of the explicit expression of H (t, A, A) shows that 
there exist three constants Cl, C2, Cs > 0 such that 

IAl < Cl + c, IAl + c3 AZ. 

Set 

and note that 

cp (3) = Cl - c2 s + c, 52, 

J 
0 q(s) 2 0 on(--oo, 01, --.f- ds = --co and \A/ I q(-A). 

-cc cp (4 
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Since ,&r~~ A(t) = 0, we see that for any E > 0 there exists T, << 0 
such that 0 2 A (t) 5 E for all t 2 T,. Now, suppose that the hypotheses 
“,Jma A (t) = 0” is not satisfied: then there exist a nonincreasing sequence 

t, and 1 > 0 and a natural integer N such that A (tn) > 1 for all n 2 N. Set 

T)(t) = 1% -&ds (t < 0). 
Then it is easy to check that there exists M < E such that $ (1M) = -2 E. 

Moreover, we take E close to 0 such that ]M] < 1. Next, fix n such that 
tz 7L < t, < T,. If we prove that A (t) < ]M] on [tzn, ?I;], then we would 
contradict the fact that A (&) > 1. Since the function A is continuous on 
[tan, T,], then its maximum is achieved at a point Tl of this compact set. 
If A (Tl) 5 & < ]2M], this leads us to a contradiction. For otherwise, we 
claim that there exists t1 < T, such that 

(3.13) 

But we have 

forall t 5 T,. 

We integrate this inequality between t and T, and let t tend to -co we 
get: ,Jma A (t) = - 00. This is not possible. Now, it follows from (3.13) 

that there exists t’ < T,, such that A (t’) = fi (we will suppose that t’ is 
the first point having this property such that r? < Tl). From the definition 
of t’, we have the following inequality 

(3.14) A (t’) 5 A(t) 5 A (Tl) for all t E (t’, Tl). 

Thanks to the inequality & I A and to (3.14), we get 

(3.15) II *I A(t)&(t) t’ ‘p (-A (t)) dt’ < 2E. 
Finally, using that ] S,T’ -$@$$ dtl = - Jc,“$ & ds and (3.15) 

and since 1c, is an increasing function, it follows that A (T,) < ]M]. This 
completes the proof of Step 4. 

STEP 5. - If X, = m (respectively X, = q) then k(O) (respectively 
& (n/2)) exists and is positive. 
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If X, > m (respectively X,, > q) then i% (0) (respectively & (7r/2)) exists 
and is equal to 0. 

Proo$ - We shall prove the results stated at the point 0. By symmetry, 
we get the same results at the point 7r/2. A simple inspection of the explicit 
expression of H(t, A, A) shows that when t tends to -03, H (t, A, A) 
tends uniformely to E (A, A), where 

R(A, /i) = 
k* (A) A2 + sin’ A X, c2 

(p - 1) k2 (A) A2 + sin2 A X,, c2 

X 
{ 

sin A cos A X, c2 

k2 (A) 
+(p-m-1)A 

- (d2 - c”) 
A2 sin A cos A 

k2 (4 

- (P - 2) 4, c2 
A2 sin A cos A 

(p - 1) k”.(A) A2 + sin2 A A,, c2 ’ 

Then, the solution A satisfies 

(3.16) A = H(A, A) + 41 (t), where ,Jlim $t (t) = 0. 

Similarly to Step 5 of Theorem 1, set 

($ = MA) 
sin. 

Then equation (3.16) becomes equivalent to 
(3.17) 

G = _ k2 
(P - 1) ; - (P - m - 1) G - Au c 

> 

((P - 1) (2:” - L c”) + $1 (t) 

Taylor’s expansion centered at A (-oo) = 0 shows that there exists a 
function g such that 

(3.18) 
(i-e) =g+A2g(A) and ,<Fmg(A(t))=O. 
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From (3.18) and ,:l& A(t) = 0, we get 

67 

(3.19) 
cos (A (t)) 

k (A 0)) 
((p - 1) k2 (t) - A, c”) = 0. 

From (3.19), it follows that (I? is a solution of the following differential 
equation: 

(3.20) 

(j = _ [G” + A, c”] G2 
L(P-1)~2+X,c21 (P-l)y+-m-l)G-Xuc 

where lim 42 (t) = 0. t--*-cc 

First, we study the asymptotic 
compare solutions of (3.20) with 
equation 

(3.21) C? = - 
[@ + A, c”] 

[(p - 1) 62 + A, c”] 

behavior of &:. For this purpose, we 
solutions of the following differential 

1 6:” 
(P-l)c-(p-m-l)C-X,c . 

1 

Thus, we need to investigate the qualitative behavior of solutions to 
(3.21). This equation has two constant solutions &‘:, E -X1 < 0 and 
C$ E X2 > 0 (if A, = m then X2 = c, and if A, > rr& then 
Aa > c). Let &:, be a nonconstant solution of (3.21). Then a study 
similar to one which we performed for the differential equation (2.25) 
shows the following statement: if there exists tr such that c$‘:, (tr) > X2 
(respectively (I?:, (tl) < X2), then &:, (t) > X2 for all t E R, moreover ti, is 
a nonincreasing function and lim d, (t) = fee t--t--w lim G:, (t) = X2 t-++w 
(respectively --Xl < ,&‘, (t) < Aa, G, is an increasing function and 

lim C?:,(t) = -At, t--cc lim 6,. (t) = A,). Now we use these qualitative 
t--*+02 

facts about to (3.21) in order to show that ,zlr, C?(t) = X2. We argue 
by contradiction: then there exist E > 0 and a sequence t, --f -CC such 
that either 

(3.22) e (tn) 2 x2 + E, 

or 

(3.23) (2 (tn) I x2 - E. 
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First, suppose that (3.22) is not satisfied. We claim that 6’ is unbounded 
on (-00, 01. For otherwise, there would exist A4 > 0 such that 6 (t) 5 M 
for all t E (-00, 01. Let B < 0. If C:, is a solution of (3.21) with 
c2, (B) > x2 + E > x 2, then it follows, from the previous study of the 
solutions of (3.21), that 

6’:, (t) > X2 for all Bo < B and t E [Bo, B]. 

C:, is a nonincreasing function, so 

k:, (t) 2 k:, (B) 2 X2 + E for all t E [Bo, I?]; 

Now, a simple inspection of (3.21) shows that there exists C, > 0 such that 

G, (t) 5 -C, for all t E [Bo, B]. 

We integrate this inequality between B and Bu, and we get 

~:s(Bo)-~:,(B)>C,(B-B,)~~+l 
(in particular, we fix Be = B - F). 

Next, we take B = t, and C:, (B\ = C (B) > X2 + E and we take n 
sufficiently large such that ]CS (t) - 6 (t)l < l/2 (this is possible because 
lim $2 (t) = 0). Then we get C (Bo) > M + l/2. This leads us to a t+-cc 

contradiction. 
Next, we claim that ,Jlim 6’ (t) = +cc. For otherwise, there would exist 

a sequence t, + -cc where C (tn) = 0 and ,,l1=, C (tn) = +cc. If we 
take t = t, in (3.20), a simple inspection shows that it is not possible. 
Now, we write (3.20) as 

(3.24) 
[b2+X, c”] 

-_ 

[(p- 1)C2+X,c”] 

From ,21-n, C(t) = +cc and (3.24), it follows that for any E > 0 there 
exists T, < 0 such that the following inequality is satisfied 

(3.25) forall t < T,. 

For a fixed E (E < i), integrating (3.25) between T, and t, we obtain 
the inequality 

(t - C) where C = T, - 
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Then lili+ C(t) = fee. This leads us to a contradiction because 6 is 

a continuous function on R. Now, suppose that (3.23) is satisfied. We fix 
B < 0 and I?,, = B - 2 < O(C, = X1 E) and a solution 6, of (3.21) 
which satisfies C:, (B) 5 Xs - E < X2. From the study of the solutions 
of (3.21), it follows that 

C:, (t) < X2 for all t E [Ba, B]. 

C, is an increasing function, so 

C:, (t) 5 C:, (B) < X2 - E for all t E [Ba, B]. 

Then, a simple inspection of (3.21) shows that 

G, (t) > C, for all t E [Ba, B]. 

We integrate this inequality between B and Ba, so we get C:, (I$) 5 
C:, (B) + C, (Ba - B) 5 --E. Finally, we take B = t, and C:, (B) = G (B) 
and we take n sufficiently large such that I&‘:, (t) - C (t) ] < % for all 
t E [BO, B]. Then, we get 6 ( BO) < - 5. This contradicts the fact that 
the solution 6 is positive. 

Finally, if X, > m we have 

lim 6 (t) = lim 
t-+-co t-+-a 

so 
A(t) x2 

&% A (t) 
-=T>l. 

A short calculation gives 
w lim eet A (t) = lim - t-+-cc s+o .$ 

=&(O) = 0. 

And, if X, = m, an argument similar to that of Step 5 of Theorem 1 
shows that k(O) exists and is positive. 

STEP 6. - Fz is a weakly p-harmonic map. 

ProoJ - Set S’i be the manifold parametrized by 

(asins.x,bcoss.y) where XEY, ygSq and O<S<E. 

Similarly, let 57: be the manifold parametrized by 

(a sin s. x, b cos say) wherex E S”, y E Sq and 7r/2--E 5 s 5 7r/2. 
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Let dw, be the volume element of the metic g. Then & is a weakly 
p-harmonic map if it satisfies, 

(3.26) 
J 

Q”+g+’ (~ b) IdFztp-2 {d&d4 + 4.A (E) (dE, d&d) dv, 

= lim 
E-+0 s 

JdFz-)p-2 
Q”“+4+1 (a, b)-SE--S; 

x{dFzd+ + $.A (Fz) (dFz, d&)) dv, = 0 

for all 4 E C” ( Qm+q+’ (a, b), Ws+r+2). 

Next, similarly to the equality (2.45) we get, 
(3.27) 

div [(jdF$-2 dFz).$] = (div (IdFElpV2 dFz), 4) + (JdFz(p-2 dFc, dqb) 

for all 4 E C” (Qm+q+l (a, b), W+‘+‘). 

Moreover, we have the following equality 

(3.28) -div ( IdFzlpM2 dFz) + IdFzlpV2A (FE) (dFz, dF=) = 0 

on Q m+q+l (a, b) - s, - s;, 

because E is smooth on [E, 7r/2 - e], so z is a strong solution of the 
Euler-Lagrange equation associated to (3.5), that is (3.28). From (3.27) and 
(3.28), it follows that (3.26) is equivalent to 

(3.29) lim 
E’O s 

div [( IdFzJpp2 dFz) . $1 dv, = 0 
Qm+qtl (a, b)-SE-S; 

for all $ E C” (Qsn+q+l (a, b), Rs+r+2). 

Let ~1 (respectively v2) be the unit normal to aSi (respectively to 8s:) 
and dO,l (respectively de:) be the volume element of the metric of aSi 
(respectively of as,“). Using the Stokes Theorem, the left hand side of 
(3.29) is equal to 

!%I s ldFzIP-2 (dF=. q5, VI) dti;+!s 
J 

IdFzlp-2 (dFz. 4, ~2) do:, 
as; as; 
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Now, let M = sup (4 (x) : z E Qrn+q+’ (a, b)}, we get the following 
inequalities 

IdFzlp-’ (dF=. 4, ~1) de; I M 
I s 

IdFzIP-l de: 
as; 

-L 
= Fp-1 (E, a, cr)urn bq vol (S-) vol (S*) v (E) M 

and 

IdFzlp-’ (dFz. 4, v~) d@,z 5 M 
I s 

IdFzlp-’ dfl,2 
E 

If we let tend 5 to 0, the right hand side tends to 0; it follows that (3.29) 
is satisfied. This completes the proof of Step 6. 

STEP 7. - (Conch&on of Theorem 4). - Using Step 5, it is easy to check 
that the map Fz is of class C1 on Qm+q+’ (a, b) and since IdFzl > 0 
we conclude, thank to Lemma 2.1 of [3], that Fs;- is of class C” on 

Q m+q+l (a, b). 0 
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