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ABSTRACT. - We look for homoclinic solutions for a class of second 
order autonomous Hamiltonian systems in R2 with a potential V having a 
strict global maximum at the origin and a finite set S c R2 of singularities, 
namely V(z) --) -cc as dist(z, S) -+ 0. We prove that if V satisfies a 
suitable geometrical property then for any Ic E N the system admits a 
homoclinic orbit turning IC times around a singularity < E S. 0 Elsevier, 
Paris 
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R~SUMI?. - Nous cherchons des solutions homoclines pour une classe 
de systemes hamiltoniens autonomes du second ordre dans R2 definis par 
un potentiel V ayant un maximum global strict a l’origine et un ensemble 
fini S c R2 de singularites: V(z) -+ --00 quand dist(z, S) -+ 0. Nous 
montrons que si V verifie une certaine propriete geometrique, alors le 
systeme posdde une orbite homocline qui tourne Ic fois autour d’une 
singularite [ E S. 0 Elsevier, Paris 

A.M.S. Classijication: 58 E 05, 58 F 05. 

Annales de l’lnstht Hew-i Poincd - Analyse non Ii&ire 0294.1449 
Vol. 15/98/01/O Elsevier, Paris 

© 1998 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 1998 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 1998 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. INTRODUCTION 

In this work we deal with a class of autonomous second order Hamiltonian 
systems defined by a potential V having a strict maximum at the origin. 
We are interested in finding homoclinic orbits to the unstable equilibrium 
point :c = OI namely non zero solutions to 

2 = -V’(x:) 

x:(t) + 0 as 1; 4 fee 

1 

(1.1) 
i(t) -+ 0 as t -+ fco. 

This problem has been widely investigated using variational methods in 
several papers (see [ABJ, [BG], [B], [Cl, [J], [RT], [S], [T] for existence 
results and [ACZ], [Be], [RI, [T2] for multiplicity results). 

Here we consider the case of a potential with a unique strict global 
maximum at the origin. Note that if V is a smooth potential on R” in 
general we cannot expect the existence of homoclinic solutions, as for 
example in the case of a radially symmetric potential where the only 
solution to (1 .I) is x(t) = (I. 

In fact we assume V to be singular on a finite set S, i.e., V(x) -+ -cc as 
dist (2, S) + 0. As it will be clear in the following, this further assumption 
reflects in the variational formulation of the problem giving a non trivial 
topology to the sublevel sets of the Lagrangian functional associated to ( I. 1). 

Under these conditions the existence of a homoclinic solution has been 
proved in [T] and [RI. In particular in the case of planar systems a solution 
is obtained by a minimizing argument in the class of functions winding 
around a singularity < E S. Moreover, in [RJ, supposing an additional 
condition about the ratio between the cost to wind the singularity passing 
or not through the origin, the existence of a second homoclinic with a 
winding number sufficiently large is proved. 

Aim of this work is to find homoclinics with an arbitrary winding number 
for planar singular systems. We point out that looking for solutions winding 
the singularity more than once, a lack of compactness may occur. More 
precisely, according to the concentration-compactness principle [L], the 
Palais Smale sequences may exhibit a dichotomy behavior. We show that a 
suitable geometry of the stable and unstable manifolds near the equilibrium 
point together with the fact that V(x) - --;Ix/” as z --+ 0 permits to 
recover some compactness. As a consequence, the system admits infinitely 
many homoclinic orbits characterized by different winding numbers. 

We remark that under our assumptions, the condition given in [RI to 
obtain the second solution is always verified. 
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The geometrical property assumed in the present paper is satisfied for 
example by potentials with some discrete rotational symmetry (see theorem 
2.4) and by potentials given by the sum of a smooth radial term and a 
localized singular perturbation (see corollary 2.8). 

Let us remark that the interest of this result lies in the fact that very little 
is known about the multiplicity of homoclinic solutions for conservative 
systems; we mention here a recent work [BS] where infinitely many 
homoclinic orbits of multibump type are obtained for a different class 
of autonomous Hamiltonian systems. 

Finally we point out that the above considerations on compactness apply 
for multiplicity results also in different settings, as for instance, in the 
problem of heteroclinic solutions between strict global maxima (see [R2]). 

2. STATEMENT OF THE RESULTS AND FUNCTIONAL SETTING 

Let 5’ be a finite subset of R2 \ (0). Let us consider a potential 
V : R2 \ S + R satisfying: 

(VI) V E C1J(R2 \ S,R); 
(V2) V(x) < 0 for every n: E R2 \ (5’ U (0)); 
(V3) V(0) = 0 and V’(x) = --z + o( 1x1) as :I: + 0; 
(V4) V(x) --f --33 as dist (2, S) -+ 0 and there is a neighborhood iVs 
of S and a function U E C1(Ns \ S, R) such that \U(X)~ -+ cc as 
dist (x, S) -+ 0 and V(z) < -lU’(x)l” for every 3: E Ns \ 5’; 
(V5) there are l? > 0 and a function U, E C1 (R2 \ BR, R) such that 
lUm(x)l -+ 02 as 1~1 + cc and V(x) < -lull” for every :r: E R2\Bn, 
being BE = (2; E R2 : IzI < i?}. 

Remark 2.1. - The assumptions (V2) and (V3) imply that the origin 
is a strict global maximum point for the potential V and V(z) = 
-313~1~ + o( 1x1’) as 2 -+ 0. 

Remark 2.2. - The assumption (V4) corresponds to the strong force 
condition, introduced by Gordon in [G]. This condition governs the rate at 
which V(z) -+ --oo as dist (x, S) -+ 0. In particular (V4) is satisfied in 
the case V(x) = -(dist (x, S))- O1 in a neighborhood of S and Q 2 2. 

The assumption (V.5) is formally very similar to (V4) and concerns 
the behavior of the potential V at infinity. Precisely (V5) says that V(x) 
can go to 0 as 1x1 + co but not too fast. For example (V5) holds if 
V(x) 5 --a IX-~ for 1x1 large, being a > 0. 

Vol. 15, no I-1998 
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Let us introduce the open subset of H1 (R, R2) 

A = {U E H1(R;R2) : dist (u(t), S) > 0 V’t E R) 

and the action functional 

cp(u) = .I’( R $I2 - V(u)) dt 

defined for every u E A. It is known that cp E C’(h, R) and the critical 
points of ‘p in A, i.e., the functions u E A such that P’(U) = 0, are classical 
homoclinic solutions to (1 .I). We set K = { u E A : p’(u) = 0, 71, $ 0) 
and, for any c E R, K(c) = {u E K : (p(u) = c}. 

Since we deal with planar systems and since any u E A is a continuous 
function such that u(t) -+ 0 as t + icq any u E A describes a closed 
curve in R2. Hence, fixed [ E S we can associate an integer indt(u) 
giving the winding number of ‘u about <. We recall that if U, ‘u E A and 
IW - Ml < b(t) - II f or every t E R then indc(u) = ind<(v). For 
every k E Z we set 

Ak.(<) = { u E A : i+(u) = k: } 
~(0 = inf { (P(U) : ‘u E A,([) } 

We remark that ck (6) > 0 for any h E Z \ (0). Indeed given u E A with 
indc(u) # 0 there exist s,, < &, such that II(L(s~)~ = !$, lu(t,,)l = y 
and !$ < (u(t)1 5 T for every t E [s,. tu] = 1,. In particular 
&, ltildt > F. Then, since min IFI ) T<lzl<y -V(x) = m > 0, we get 

p(u) 2 $ j;, )ti[* dt+rn~lr,,( 2 !$h +nLJI,I > CL > 0 with r% a positive 
constant independent of U. We also “point out that A-,([) = {u- : u E 
Ak(<) } where u-(t) = u(--t). For the potential V is time independent, 
cp(u-) = p(u) for all u E A. Consequently ~(0 = c-k(<). Moreover we 
notice that ck(<) < Q.+~(<) for any k E,N. Indeed if ZL E A k+l(O then 
there is I = [tl, t2] c R such that u(tl) = u(t2) and indc(ulI) = 1. Then 
defining v(t) = u(t) for t 5 tl and w(t) = u(t - tl + tz) for t 2 tl, we 
get ~1 E h(l) and P(V) I P(U). 

We state a preliminary result, already discussed in [RI and [T], about 
the existence of a homoclinic orbit describing a simple curve around a 
singularity 6 E S. 

THEOREM 2.3. - Let V : R” \ S + R sati& (Vl)-(V5). Then for < E S 
(1.1) admits a homoclinic solution ~1 E A,(<) and cp(vl) = cl(<). 
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We remark that the existence of a homoclinic solution is given in [R] 
for a potential merely C1 with a periodic time dependence and in [T] for 
systems in RN. 

Here we are interested in finding a homoclinic orbit ‘uk: E hk([) for any 
Ic E Z \ {0}, being < E S fixed. 

We prove the existence of infinitely many solutions when the potential 
presents a discrete radial symmetry. 

THEOREM 2.4. - Let V : R2 \ S 4 R satisfy (VI)-(V5) and 

W6) V(Rx) = V( IC ) f or every x E R2 \ S, where R is the rotation around 
the origin of an angle 2n/m with m 2 5. 

Then, given < E S, the system (1.1) admits a sequence (II~)~~z\I~) of 
homoclinic orbits with vk E hk([) and cp(wk) = ck([). 

As we will see, the fact that ck (E) is a critical level is related to the 
existence of homoclinic solutions at the levels ci (<), . . . , c&i(<) which 
stay asymptotically inside a cone of width strictly less than 7r/2. 

In fact theorem 2.4 follows from this more general result. 

THEOREM 2.5. - Let V : R2 \ S + R satisfy (Vl)-(V5). If 
(hk-1) therearevf,vj E Aj([)fIK(cj(<)) (j = I,...,,+-1) (possibly 

w” = vj) such thatfor every pair (i,j) E (1,. . , k - l}” with i + j 5 k 

(2.6) 

then (1. I) admits a homoclinic solution vk E hl, ([) and (p(vk) = ck (<). 

Remark 2.7. - It is possible to prove that if u E K then there exists 
limt-+foo Iu~t~l * = xs (u). (This is essentially due to the fact that, thanks to 

(V3), I@) I - C exp( --It]) and &A& -+ 0 as t -+ &oo). In this 
way the condition (2.6) reduces to XL(u:) . z+(w;) > 0. 

Finally we give other examples of systems for which (hk-i) holds for 
any L E N. 

COROLLARY 2.8. - Let V : R2 \ S -+ R satisfy (Vl )-(V5) and one of 
the following conditions: either 
(V6)’ V(x) = Vo( 1x() + Ifs(x) where 

V, E @(R+,R); 
V, E C1>‘(R2 \ S, R) and Ifs(x) + -cc as dist (z, S) -+ 0 
supp V, C span+{xi, x2) for some xl, 52 E R2 with x1 . x2 > 0; 

Vol. 15, no I-1998. 
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or 

W6)” there are ~1, xz E R2 with XI ‘x2 > 0 such that E E span+{xr , x2} 
for some [ E S and V(p(z)) 2 V(x)for every x E R2 \ S. 

Then the system (1.1) admits a sequence (wk)kEZ\(0) of homoclinic 
solutions with ind~(vk) = k. 

(We denote span+{xl, 22) = {X1x1 + X2z2 : X1, X2 > 0 } and p the 
projection on its closure.) 

3. PROOFS 

we fix [ E s and we put Al, = A/&) and ck = c&). 
First we prove theorem 2.3. To begin we give some properties of the 

sequences (un) c A with cp(u,) bounded. 

LEMMA 3.1. - Given a sequence (u,) c A such that SUP(P(‘IL,) < oc 
it holds that 

(i) there is R > 0 such that ~~u,~~~~ 5 R; 
(ii) there is p > 0 such that jun(t) - (1 2 p for all t E R and n E N; 
(iii) (2~~) is bounded in H1(R,R2). 

Proof. - (i) By the contrary, assume that for some subsequence, denoted 
again (G), IIs 111~ -+ cc holds. Using the invariance under translation, 
without loss of generality we can assume that ((u,(IL~ = Iu~(O)I. Moreover 
since un(t) -+ 0 as t + +oo, there exists N E N such that for any n 2 N 
there is t, > 0 such that Iun(tn)l = R and Inn(t)1 > R for t E (O,t,), 
being I? given by (V5). Then (V5) yields 

But Ik&n(O))l + 30, while cp(u,) is bounded. Thus we get a 
contradiction. 

A similar argument can be followed to prove (ii). 
(iii) Fixed 6 > 0 and setting T, (6) = { t E R : lu,( t) I > 6 } we claim 

that there is T(6) > 0 such that meas T,(S) 5 5?(S) for all n E N; indeed 
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let p(S) = inf { jV(x)l : 15 - (1 2 p, 6 < 1x1 2 R) where R > 0 and 
p > 0 are given by (i) and (ii) respectively. Then 

Since cp(u,) is bounded and 0 < p(S) < co, also meas Z’,(S) is bounded 
uniformly with respect to n E N. Now we observe that, for (V2), 

and so (tin) is bounded in L 2. Now, let us take 6 E (0, ][I) such that 
~1x1’ 5 IV(x)] for 1x1 2 6. Then 

14 
I 

IV(un)l dt + R2 measT,(S) 
R\Tn (6) 

5 4cp(u,) + R2 T(S). 

where R > 0, T,(S) and T(S) are defined as above. Hence, using again the 
boundedness of cup we conclude that (Us) is bounded in L2 and thus 
in H1. 0 

Lemma 3.1 says in particular that any Palais Smale sequence for ‘p 
is bounded in H1 (R, R2). Then, since we are dealing with autonomous 
systems it is possible to characterize in a sharp way the PS sequences, 
as already done in [CZES] and [CZR] in the periodic case, with a 
concentration-compactness argument [L]. In particular it holds that any 
PS sequence (u,) admits a subsequence which is generated by a finite set 
of critical points wl, . . . , wl E A and definitively the winding number of 
its elements can be related to that one of wl, . . . , wwl. 

LEMMA 3.2. - Let (un) c A be a PS sequence for p at the level b > 0. 
Then there are 1 E N, ~1,. . . , wz E K, a subsequence of (Us), denoted 
again (uLn), and corresponding sequences (ti), . . . , (tt) C R such that, as 
n --+ OS, It;+’ - tj,l -+ +cm (j = 1 . . ,1 - 1) and 

(9 IIU, - (Wl(. - t;, + . .‘..+ wz(. - tk))ll --+ 0 
(ii) b = cp(wl) + . . . + cp(wz) 
(iii) indc(un) = ind<(wi) + . . . + indc(wl). 

Vol. 15, no I-1998. 
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Proof. - We refer to [CZR] to prove (i) and (ii). The property (iii) 
follows from the fact that, given ~1, r12 E A and a sequence It,/ --f 00 
then definitively ‘~1~ + Q(. - trL) E A and indE(~r + v2(. - trL)) = 
ind~(~r) + indc(‘us). Indeed, setting /-‘; = inf,,n [vi(t) - (1 and p = 
min{pr, pz}, we can find U< E A with compact support such that 
11% - UiJILn” < ip and ind6(ui) = indc(vi) follows. Now since It,, 1 --+ ‘oc 
we can take fi E N such that for n 2 fi, ~~~ and up(. - t,,) have 
disjoint supports and moreover Iwl(t) + ~~(1 - t,,) - El > $p. Hence 
1(,4(t) + w2(t - t,)) - (u1(t) + u2(t - tn))l < 174(t) + m(t - 6,) - (1 
for all t E R. Then ~1 + ‘uz(. - tn) E A and indc(rjr + 712(. - tlL)) = 

indc(ul +u*(. - trL)) = indE(ur) +ind6(uz(. - tn)) = ind<(r/r) +indc(r12). 
n 

With the above results we can prove the existence of a first solution 
w1 E AI at the level cl. 

Proof of theorem 2.3. - By lemma 3.1 (ii), the set A1 n {‘p < cl + l} 
is closed in H1 (R, R2). Then, for the Ekeland principle, there is a PS 
sequence (‘LL~) c A, at the level c r. Consequently, by lemma 3.2, we have 
u,, = 7ol(.-t~~)+...+lul(.-tl,)+y,,whereIEN,wl,...!’UilEKand 
II?/lL]( -+ 0. Now we exclude the case 1 > 1. Indeed, if 1 > 1, it must be 
indc(wj) = 0 for all j = 1, . . . ) 1. Otherwise, if lindc(,wj)] = m > 1 for 
some j then, by lemma 3.2 (ii), cl > (p(w3) > c, > cl, a contradiction. 
On the other hand the fact that irid, = 0 for all j = 1, . . . ) 1 is in 
contradiction with lemma 3.2 (iii). Consequently 1 = 1. Hence, by (ii) and 
(iii) of lemma 3.2, w1 is a critical point of cp such that cl = cp(*wr) and 
indc(wr) = 1. Thus the theorem is proved. 0 

We remark that theorem 2.3 can be proved in a different way as done in 
[R] just studying the minimizing sequences. Here we prove this result by 
using the characterization of PS sequences (lemma 3.2) which is basic in 
our argument to get multiple homoclinics. 

To prove theorems 2.4 and 2.5, firstly we will show that with the 
additional information given by the further assumption (hk-r), plllt satisfies 
the PS condition at the level ck, for Ic > 1. To get this, we have to compare 
the value ck with the sums ck, + . . + Ckl where k1 , . . : kr are arbitrary 
integers such that k-l + . + Icl = k. 

The first step is given by the following technical lemma. 

LEMMA 3.3. - For any tl E [y, 5) there is 6~ E (0, 111) such thatfor every 
6 E (O,&) there exists 7 = T(B, 6) 2 0 for which for any x-? :I:+ E R2 
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satisfying $fjj$ _ > cos 19, Ix- ( = (cc+) = 6 and denoting 

7~[z-, z+] = inf u E H1([-T, T]; R2), 

u(fT) = Zf, I~~(L=([-T,T]) L 60 

then lim infT-++m mT[x-,x+] > m~[z-,z+]. (For T = 0 and x- # z+ 
we agree that rnT[x-, x+] = +oo.) 

Proof. - To begin, for y > 0, IC-, IC+ E R2 let us introduce 

mT[y; x-,x+] = inf 
CJ 

T1 
-T z(lti12 + y2(u12) dt : 

u E H1([-T,T];R2), u(fT) = xlt 
> 

One can easily calculate the explicit expression given by: 

y 
mT[?;x-,x+] = 2 

)2+12 + 12-12 _ 2x *z+ 
tanh 2yT > sinh 2yT ’ 

In particular we get that limT-+00mT[Y;z--)z+] = $(]z+]” + 1~~1~) 
and if m _ > cost9 for some 0 E [0, ;), then there exists 5? = 
T(y; 0, ]IC- 1, IX+]) < +cc such that 

Let us fix E < M. We note that by (V3) there exists Se > 0 such 
that -i(l + E)~(x)~ 5 V(z) 5 -$(l - E)~]x]~ for all 1x1 5 60. Let 
us define y- = 1 - E, y+ = 1 + E. We have that for all T 2 0 
mT[y-;x-,x+] 5 mT[z-,z+] < mT[y+;~-,x+]. Then we have that 
WLT[X-,z+] - mp+[rr:-,z+] > mT[y-;z-,x+] - m~+[y+;~,z+] where - - 
T+ = T(r+;fl, lx-I, 1x+1) and 

Since we take IX- I = IX+] = 6 E (O,S,) and t < m we finally get 

$m~knmT[x-,%+I - mF+[z-,x+] > 0. 0 

Vol. 15. no I-1998. 
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In the next lemma we prove that the assumption on the geometry near the 
origin of the solutions with index smaller than k implies the PS condition 
for cp in RI, at level ck 

LEMMA 3.4. - If u1 E Akl and 212 E A]c~ satisfy 

liminf 212’s’ ’ w1(t> > 0 
;:;z b2(4I 1% WI 

then there is w E hh,+,+2 such that p(v) < cp(wl) + (~(~12). 

Proof. - Let 0 E [0, $) be defined by 

Let Se > 0 be given by lemma 3.3 and let S, t E R be such that 

d-5) . WI(t) > cos(jl 
b2(4l bl(~)l - 

for every s 5 s and t 2 t. Then, fixing 6 E (0, 6,) let SO E (--00, S] and 
to E [E, +co) be such that Ivl(to)l = 6, Iwl(t)( 5 6 for t 2 to, ~~2(.so)~ = 6, 
1212 (s) I 5 S for s < SO. Choosing any sequence T, -+ i-m, we set 

u,(t) = 
{ 

vl(t+Tn) fort < -1 
u2(t-T,) fort> 1 

and for ItI 5 1 we define un(t) as a linear function joining wI (T, - 1) 
at t = -1 with Q( 1 - T,) at t = 1. It is easy to check that 
cp(u,) + cp(wl) + (~(27~) as 7~ -+ co. Now let us set s, = SO + T,, 
t, = to - T,, IC- = wl(to) and II: + = 74~~). We see that u,(t,) = z-, 
u,(s,) = X+ and for n. E N sufficiently large s, - t, 2 2T, being 
T = F(6’,S) given by lemma 3.3 (in fact s, - t,, -+ +co). Moreover 
I~(t>l 5 6 for t E [in, s,]. Setting E,, = m={i,cp(u,) - cp(wl) - CP(WZ>> 
we can choose U, E H1([-T, T]; R2) such that IB, (t) 1 5 6 for any 
t E [-T, T], &(fT) = zi and 

Finally we put 

1 

un (t) for t < t, 
%(q = qt-t,-T) for t, 5 t 5 t, + 2T 

u,(t - tn - 2T + s,,) for t > t, + 2T. 

Annairs de l’lnstitut Hem-i Poincare’ Analyse non IinCaire 
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Then, for n E N large enough, V, E Akl+lcz and 

5 cp(wl) + 4~2) + 2 6, + m&-,x+1 - msn --t, Lx:-, x+1. 

Since e, + 0 and s, - t, -+ +cc, using lemma 3.3, we infer that for some 
n E N large enough cp(w,) < cp(vr) + (P(W). cl 

Remark 3.5. - Let us suppose that there is 21 E AI f~ K(Q) such that 
U(S) . u(t) > 0 for s < -T and t > T. Then the argument used in 
lemma 3.4 can be applied to construct u E H1([-Tl, TJ, R2) such that 
u(t) = w(t) for ItI 5 T 5 Tl, u(-Tl) = u(Tl), indc(u) = 1 and 
J:#i[2 - V(u))dt < p(u) = cr. The presence of this closed curve u is 
precisely the additional assumption made in [R] to get ck < kc1 for some 
k > 1 sufficiently large and hence the existence of a second homoclinic 
solution with winding number k. Actually in our case we get the result 
for k = 2. 

Finally we easily get the following compactness result. 

LEMMA 3.6. - If(hk-1) h&f& t/W2 ck < ck, + . . . + ck{ Whenever l > 1 

and ICI,.. . , kl E Z \ (0) verify ICI + . + 1 + kl = k. 

Proof. - Firstly note that if there exists j E (1, . . . , I} such that I kj 1 2 k 
we get immediately that ck 5 ck, < ckI + . . . + ckI. Therefore we can 
assumethat lkjl < kforanyj E {1,...,1} andinfactkj E {l,...,k-l}, 
since c, = c-, for any m E Z. 

Thenforeveryj = l,... , l we take wj E A$ according t0 the assumption 
(h&-r). Noting that I > 1, we can apply lemma 3.4 to the pair w1 and w2 
and we find V E AkI+kz such that p(w) < cp(vr) + (p(wp). Then we take 
sequences (tt ), . . . , (t;) c R such that Iti - tj,l + cc as n + cc for i # j. 
Defining U, = w(. - ti) + C’ 3,2 wj(. - ti), we get that for n E N large 
enough U, E Ak and ck 5 lim cp(U,) = cp(w)+~j>z cp(Wj) < ck, f.. ‘+ckl. 

0 

Then the multiplicity result plainly follows. 

Proof of theorem 2.5. - We argue as in the proof of theorem 2.3. By 
lemma 3.1 (ii) the set Ah rl {cp 5 ck + 1) is closed in H1(R, R2). 
Then, for the Ekeland principle, there is a PS sequence (2~~) c AI, 
at the level Ck. Consequently, for the lemma 3.2, we have U, = 
wl(.-tA)+. . .+w(.-tL)+y, where 1 E N, WI,. . . , ‘~1 E K, ]]yyn]] + 0 and 
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cp(u,) = cp(wl) + . + cp(wl). Calling J the set of indices j E (1,. . , I} 
such that ind,(wj) # 0, then cjEJ indc(wj) = k and, if I > 1, by 
lemma 3.2 (ii) J contains at least two elements. In this case we can 
apply lemma 3.6 and we get ck < cjEJ cp(wj) < xi,, cp(wj) = ck:, a 
contradiction. Hence I = 1 and the conclusion follows as in the proof of 
theorem 2.3. 0 

Proof of theorem 2.4. - By theorem 2.3, there is ‘u E Al([) n K(q(t)) 
for some < E S. Let R(v) be the unbounded component of R2 \ range (21). 
We claim that range (u’) c 0( ) v w h ere v’(t) = Rv(t) and R is the rotation 
matrix of an angle $ given by (V6). Otherwise there are at least two 
intervals I = (sl,tl) and J = (sz,tz) with -cc < si < t; < +cq such 
that the closure of {v(t) : t E J} U {w’(t) : t E I} defines a closed curve 
in R2 \ R(v) and s,( k/ti’j2 - V(u’)) dt > J,( $IGj” - V(v)) dt. We consider 
the function w E A defined by 

v(t - tl + t2 - s2 + sl) for t < tl - t2 + s2 
w(t) = R-‘v(t - tl + t2) for tl - t2 + s2 < t < tl 

v(t) for t 2 tl. 

We note that w is obtained substituting R-lvl~ to vi1 = R-lu’[~, up 
to reparametrizations of the time. By the definition of v’, &,,Ci[til” - 
V(v))dt > ~,(~jti’l” - V(v’))dt and it holds that w E Al(<) and 
p(w) < p(v), a contradiction. Then, for rn > 5, 

lim inf 4s) . v(t) 
y+,” 17J(s)I Iv(t)1 2 cos(2~lm) > 07 

that is (hl) holds. An analogous argument works to prove (hk) for k > 1. 
Then the conclusion follows by applying theorem 2.5. 0 

Proof of corollary 2.8. - Let vj E hj be a homoclinic orbit such that 
cp(vi) = cj(C>. BY remark 2.7, the condition (2.6) reduces to x; . xj’ > 0 
where Z* = lim 3 t+*m #. Proving that xf E span+{zl, x2} we get the 
thesis. Arguing by ContrAdiction, let us suppose that x; $Z span+{xl, x2}. 
Then there is T E R such that vj(t) $ span+{zl, x2} for any t 5 T. If 
(V6)’ holds, since V(x) = Vi( 1x1) for IC E R2 \ span+{xl,z2}, by the 
conservation of the angular momentum and of the energy we infer that 
q(t) = Ivj(t)Ix; f or any t E R, contrary to the fact that vJ E A. 
If (V6)” holds, then, setting Vj (t) = p(vj (t)), we get that ‘uj E Aj, 
cp($> = c.43 d an range vj c span+ {xl, x2}. Hence we get the thesis. 0 
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