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ABSTRACT. — A one to one correspondence is established between the
nondegenerate critical points of Q(z) in Q and single peaked solutions
of the problem

—EAutu=Q(z)u*! inQ
©>0inQ and u =0 on 90

where (2 is a bounded domain, 2 < p < (N + 2)/(N —2), € > 0, and
Q(z) € C(Q) N C?*(Q).

In particular, we establish the uniqueness of the least energy solution
when Q(z) attains its maximum in Q at only one nondegenerate critical
point in 2.
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74 D. CAO, E. S. NOUSSAIR AND S. YAN

RESUME. — On établit une correspondance biunivoque entre les points
critiques non-dégénérés de Q(x) en 2, et les solutions a un seul pic du
probléme

—Au+u=Q(z)u’"! dans Q
u > 0 dans 2 etu =10 surJf

ou 2 est un domaine borné, 2 < p < (N 4 2)/(N — 2),¢ > 0, et
Q(z) € C(Q) N C*N).
En particulier, nous démontrons 1'unicité de la solution de moindre

énergie lorsque ((z) achéve son maximum dans ) en un seul point
critique non-dégénéré.
© 1998 L'Association Publications de I'Institut Henri Poincar¢. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION
In this paper we consider the problem

—EAu+u=Q(z)u*"" inQ
@ > 0in and © =0 on 0Q (1.1)

where 2 is a bounded domain in R™, N > 3, with a smooth boundary
O, > 0 is a parameter, 2 < p < (N + 2)/(N ~2), and Q(z) €
C(9) N C?(Q) has nondegenerate critical points at al,....af € Q,

) . J
ie, D;Q(a') = 0 and det D?Q(a’) # 0, where D; = B and
)
20)(.
D20 = (2 Q) ci=1,...06k=1,....N; j=1,...,N.
Oxy0z; )

The case of degenerate critical points is also considered.

Problem (1.1) arises in various applications, such as chemo taxis,
population genetics, chemical reactor theory, etc. In applications, it is
important to locate the maximum points of solutions in €2, since these
may correspond to locations of higher chemical concentrations, certain
population, etc.

When Q(z) is a positive constant, problem (1.1) has been considered
by several authors. In these studies both the topology of {2 (see Benci and
Cerami [3]), and the geometry of €2, see [5], [6] play an important role in
the existence and multiplicity of solutions of (1.1). Recently, Ni and Wei
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 75

[9] and Wei [12], constructed solutions with “single-peak”, and the shape
and peak location of “least energy” solutions were studied. Specifically, let

1 2 2,9y L P
IE(u)zi/Q(e |Au +u)—1—)/§Qu+

where u, = max {u, 0}, for u € H}(Q). The well known Mountain-Pass
Lemma implies that

e = infrer maxp<i<y I(h(t))

is a positive critical value of I, i.e., cc = I.(u.) and u, is a solution of
(1.1), where T is the set of all continuous paths joining the origin and a
fixed e € H}(2) with € > 0 and I.(e) = 0. It can be shown, see [9], that
¢, is independent of the choice of e. A critical point u. corresponding to
¢, is called a least energy solution (or a Mountain pass solution).

For () a positive constant Ni and Wei {9] proved that . has at most one

local maximum and it is achieved at exactly one point p. € 2, u.(.+p.) — 0
in CL.(2 — p.\{0}), and d(p., ) — max,cqd(p,IN) as ¢ — 0.

DEFINITION. — We say that a function u defined on ) is single-peaked, if
u has only one local maximum point in €.

The aim of this paper is to show how the nondegenerate critical points of
(Q(z) play a dominant role (compared to the geometry and topology of €2 )
in the existence and the multiplicity of single peaked solutions. In particular,
we establish a one-to-one correspondence between the nondegenerate
critical points a’ of Q(x) in 2 and single peaked solutions.

It will then follow that if maxg Q(z) is attained at only one nondegenerate
critical point in {2, then problem (1.1) has, for sufficiently small €, a unique
least energy solution, regardless of the shape or the topology of €.

The case of degenerate critical points is more delicate. We establish the
existence of a single-peaked solution for each strict local maximum point
a of Q(x), and if a € 2, we show that the peak point p, of such a solution
converges, as ¢ — 0, to a. However the question of uniqueness of such
solutions is still open. That is, it is not known if there is one or more
single-peaked solutions whose peak points converges, as ¢ — 0, t0 a.

Our procedure is based on arguments similar to that used by Rey [11],
by A. Bahri, Y. Li and O. Rey [2], and a degree argument similar to
that used by L. Glangetas for a nonlinear elliptic problem involving the
critical exponent [8].

In Section 2 we introduce our notations and establish a result on the
profile of single-peaked solutions and the locations of their peaks. In
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76 D. CAOQ, E. S. NOUSSAIR AND S. YAN

Section 3 we establish the existence and uniqueness of single-peaked
solutions concentrating at any given nondegenerate critical point of Q.

__In Section 4 we consider the case when @ has local maximum points in
2. We are only able to establish the existence of single-peaked solutions
and study their profile.

2. NOTATIONS AND PRELIMINARY RESULTS
Let V be the unique positive solution of
AV +V =V inRY
Ve H'(RY)
It is well known that V' is radially symmetric about the origin, decreasing
and .
| l'im V(z)el x| = > 0.
Ti—oc
For a smooth bounded domain D C R, PpV is the unique solution of
—Au4u=VP"' inD
u=0 ondD (2.1)

It follows from the maximum principle that PpV (y) < V(y) forall y € D.
For v € H'(RY),y € RY, and ¢ > 0, let

Ve y(-) = v((- —y)/¢€) (2.2)
Let Pq,v denote the unique solution of
~Au+u= v inQ
v € Hi(2) (2.3)

Notice that, in our notation, Fo i = Fq.

Let
(u,v)e = 62/VU.VU+/U1},

llulle = (u, u)e,

for u,v € H}(Q). All integrals are Lebesgue integrals over {1 unless
otherwise stated.
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 77

For y,z € RY define

aPQ,e‘/;,y

Byl = (v € HY() : (Pa, Ve ) = {5
7

e=0,=1,...,N}

Q,={zeRY ez +yeQ}
Bo(zo) = {z € RN : |z — xo| < 7}

C will denote a positive constant.

PROPOSITION 2.1. — u, is a single peaked solution of (1.1) which satisfies
luclle = O(™/?) (2.4)

if and only if
e = e Po Ve o, + we (2.5)

for some a. € Rz, € Q, and w. € E. ;. , satisfying

e td(z.,00) — o (2.6)
”wflle = O(EN/2)a (27)
ae — (Q(z0)) VP72, (2.8)

as ¢ — 0, where ¢ = lim._,¢ x. = lim._,q pe, where p. is the peak of ..

Proof. — Let u. be a single-peaked solution satisfying (2.4). Let p. be
the point in {2 where u. achieves its maximum value on (2. Following the
same argument as in Ni and Wei [9], we have

e td(p.,90) — o0, as € — 0 (2.9)
Suppose py = lim._op. € Q. Let
Ve(y) = ueley +pe), Y € Qe

Then v, satisfies

—Ave + ve = Qey + p)vP™! in Q.
ve =0 on 99, ,_,
lol* < C (2.10)
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78 D. CAO, E. S. NOUSSAIR AND S. YAN

for some positive constant C, where the last inequality follows from (2.4).
Therefore

ve — v weakly in H'(RY),
ve — v in CE_(RY), (2.11)

loc

from standard regularity results for solutions of (2.10). In the above we
used v, to denote the extention of v. to RV which is identically zero
outside ;..

From (2.10) and (2.11) we have

~Av+v=Q(p)v*~! in RN
v >0
v € HYRY) (2.12)
Since v, is single-peaked, the set {r € Q., : v.(z) > §} has only one
connected component for any é > 0, the argument of Proposition 3.4 in [9]
may be employed to show that ( for any é§ > 0)

Hence

/ | w2 02 = /R Qey + pe,
RN N

and by taking the limit as ¢ — 0, we have

[iwer+v= [ amoe.
RN RN
which together with (2.11) yield

ve — v strongly in H'(RY).

Since v satisfies (2.12), the uniqueness of solution of (2.12) and the
definition of V implies that

v = (Qpo)) VDY
But it is easy to see from the definition of V that

IV —Pg, V]| — 0, as e — 0.
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Hence v. — (Q(po))~/?~2 P, .V — 0 strongly in H}(R"), and therefore
e N lue = (Q(po)) VP P V|2 — 0, (2.13)

as ¢ — 0. Using an argument similar to that used by A. Bahri and J.M.
Coron [1], we then have that u. can be uniquely written in the form

Ue = aepﬂ,evé,zé + we

for some a, € R,z. € Q, and w, € E, ., satisfying (2.7) and (2.8). It
remains to show that (2.6) holds. This can be shown by the same argument
as in Ni and Wei [9].

Now suppose that
Ue = aePQ,e‘/;,ze + we

is a positive solution of (1.1), where «., z., w. satisfy (2.6), (2.7) and (2.8).
We show next that u,. is a single-peaked solution of (1.1).

We proceed by contradiction. Suppose u, has two local maximum points
pl, p? in (2. We notice first that if z¢ = lim._¢ z., then for any fixed 6 > 0,

[ dvuprus [ Avupea
O\ Bs (o) Q\B%(asg)
:EN/ |Vve|2+vf
Q(,I(\B%(O)

-——eN/ | 7 ve|? + v?
RN\B%(O)

=o(1)eV, as €—0. (2.14)
We consider now the following two cases:
Case 1: etpl —p}| — o0 as € — 0.

In this case, we have
[ dvubre= [ gupepp @)
Br.(p}) Bgr(0)

where L .
Ve (y) = ueley + p;)
v} — v in Clzoc(lRN),
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80 D. CAO, E. S. NOUSSAIR AND S. YAN

as in the first part of the proof, with v satisfying

-Av+v = Q! inRY
v>0
v € H'(RY),

where p! = lim, pl. Thus
/ v ul? +u? > 0N (2.16)
Bre(p?)
for some positive constant C' > 0, and, similarly,
/ el ul* +ul > CeY (2.17)
Bre(p?

From (2.14), (2.15) (2.16) and (2.17), we see that

lim p! = lim p? =z
e—0 e—0

But
Hu) =5 [ @1 up +a - | @t
= [ o+ o) - Sa + o)}
- (% - %) N(Q(xO)AN o +0(1)>, (2.18)
and

I(u) > (% - %) {/Bm(pé) Qlwpst + /BRe(P?) Q(x)uf}

11
= (— - —){ Q(ey + p} )vP(ey + pl)
2 p Bg(0)
+ Q(ey +pf)vf(€y+pf)}
Br(0)

B (é h %)EN{QQ(%) /BR(O) v O(U}’

which contradicts (2.18), and hence case (1) is impossible

Case 2 : e Mpl —p}| —tl< o0, as€— 0
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 81

In this case we may establish a contradiction using a similar argument to
that in Ni and Takagi [10].

The fact that lim._,o p. = lim._, z. follows by similar argument as in
case (1).

PropPOSITION 2.2. — Let u, be a single peaked solution of (1.1) of the
form ue = a. Peq, Ve, + we, where o, w,, o satisfy (2.6), (2.7), (2.8),
and zo = lim. gz, € Q. Then Q(xo) = 0.

Proof. — Since u, satisfies (1.1), multiplication of the equation (1.1) by

ue . : .
51_1,_ and integration by parts yield
Yj

¢ duc 2nd —1/ P 7 Qy)d (2.19)
an a_p Quev y)ay. .

269

o
since on 9%, Ju = (Vu.n)n = (éﬁ)n Here n denotes the exterior unit
normal to 9. We estimate next the right hand side of (2.19):

0
[

0
= /[aePE,nVe,me(y) +we(y)]”8Qdy
Q Yi

=N / [ Po,, V(z) + welex + z.)]° 9 Qex + z)dz  (2.20)
Qo

&ri
. Ny 9@ .
Since wc(ex + z.) — 0 strongly in Hj(R ),a is bounded, and
T
ae — (Q(z0))~Y®~2), we deduce form (2.20) that
d 0
[y = Dagatvo). 22y

where oy = limO ae = (Q(20)) /P2, Now let ¢ € C°(RY) be such
that
p=1londfhe=0forze{yeQ:d(y,0) > §}

Then @u, satisfies the equation

—e*Alpue) = p(Q@)wl ™ —u) = €2V ¢. Vuc +ulp) = fo (2.22)
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2AN-1)
N-—-2

Since the embedding W'2(Q) — L
from (2.19) and (2.22) that

" (Ou\? ©(O(pu)\ 2 C
do = e <C B | < —
/aQ ( 8n) o /60 < an ) < Cllpuelliy @ = 62f

The last inequality follows from the Schauder’s inequality.

(082) is continuous, we deduce

fellZz o
(2.23)

Since u. is single peaked, we may use the argument of Ni and Wei
[9] to show that

wo(z) < Ce~(=®le=rd/e

for any a > 0, where C' = C(«) is a positive constant.

But z. — x¢ € 2,¢ — 0, and therefore for sufficiently small 6 > 0
we have

u () < Ce™™/¢ (2.24)

for some positive constants C, 7, and for all z € {y € Q : d(y, 9) < 6}.
Since @(z) = 0 for d(x,98) > 6, we have

C - :
;j”%ﬁ(Qui f—u) - EQUFAWHiQ(m —0 (2.25)

for any A > 0, as ¢ — 0 We estimate next the term f V.V u.. Multiply
(1.1) by ¢?u. and integrate by parts to obtain

€ / ¢’ V'ue|2+2/<ﬂuevw-\7ue+/<ﬁ2ﬁ = /Q(rr)wzu’;’; (2.26)

for any ¢ € C5°(RY). Set ¢ = 0 in Bs/2(7g); ¢ = 1 in Q\Bs(xo). Then
we have from (2.24) and (2.26) that

62/()02‘ valQ < Ce—‘l'/f

for some positive constants C, 7. Thus,

e A / |7 uefz — 0,
7/ Q\Bg (x0)

as ¢ — 0, for all A > 0. Hence

e v @ V7 wellL2 @) — O, (2.27)
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as ¢ — 0, for all A > 0. From (2.22), (2.23), (2.25) and (2.27) we obtain

6"4/
a0

as ¢ — 0, for all A > 0, and hence by (2.19), (2.21), and the hypotheses
on u., we have

du |
on

___>0’

ag 7 Q(x) VP 4+0(1) = N2 /(%%)ana — 0,

RN
as ¢ — 0. We conclude that
VQ(zo) =0
This completes the proof of Proposition 2.2.

ProposITION 2.3. — If u. is the least energy solution of (1.1) then

(6 Judl? = N {(A/Q3 ) +o(1)}

where Qn = max Q(x), and

A= / ye
RN
(v4) ue is single peaked and the peak p. — xgy, as ¢ — 0, where,
Qzo) = Qum
Proof. - Let i € () be a global maximum of Q(z) on Q. Choose x, — &
and ¢ 'd (z.,00) — oo (if Z € £, we may choose x. = &). Then,
2% = 2/ [ @y
”PQ eVe,x, 2
T (J QW) PV,
= vy v/
S Qey

— (N(1-2/p) A+o0(1)
[Q(x0)A + o(1)]?/7”

as € — 0, and (i) follows. To show (ii} we proceed by contradiction.
Assume u. has two local maximum points p!, p?. Then as in Proposition
2.1, we have two cases to consider:

)2/p

2/p
ey + azf)tPamyW}
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84 D. CAO, E. S. NOUSSAIR AND S. YAN

Case 1.
-1
e pl — p?| — o0, as € — 0.

In this case, we have

luel? > / (€7 uel® + u)
Bre(pl)

+/ (@] 7wl +12)
Bre(p?)

2
> / |7 0l + (07,
; Br(®)

where v}(y) = uc(ey +p), i=1,2, and v} — o' in CZ_
1" solves the problem
—Av +v = Q(p*)v?
v > 0,0 € HY(RY),

where p* = lim0 p.. Therefore, we have
€~

2 > eN(

(RY), where

A A
Q) | QD )
A
> EN (ﬁﬁ + 0(1))
M

This contradicts (i).

Case 2. € '|p. — p?| < ¢. We may argue as in Proposition 2.1 to show
that this is impossible. Hence u, is single peaked. To show that the peak
Pe — To, as € — 0, we first notice that if p, — 7 # z,, then

d?z [ @vul =< [ jgupee
Bre(pe) Br(0)

where v(y) = u.(ey + p), and v, — v in C2_(RY). Arguing as above,

loc
we may choose R large enough to obtain

A A
lJuelf? > GN(-—ZZ‘—_; + 0(1)) > e ('2—'—_2“ + 0(1))
(Q(2)) /(p—2) szé(p )
Contradicting (i).
Remark 2 .4. — The hypotesis that zy = lim.__,qz. € §2, in Proposition

0
2.2, is satisfied if we assume, for example, that €2 is convex and 3%1 < 0.

Q
This can be shown by an argument similar to that used in Gi(fas, Ni,
Nirenberg [7], using the moving planes method.

Annales de UInstitut Henri Poincaré - Analyse non linéaire



EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 85

3. EXISTENCE AND UNIQUENESS
IN THE NON-DEGENERATE CASE

In this section we assume zo € {2 is a nondegenerate critical point of
Q(z). The main results of this section are:

THEOREM 3.1. — If Q has k-nondegenerate critical points o', ..., a* in

Q, then the problem (1.1) has exactly k single peaked solutions of the form
ulg - aiPQ,e‘/e,wi + ’LUi,
i=1,....k where o} € R, z! € Qand w! € E, i, satisfy

— (Q(a?) =
wille = o(eN?),
as ¢ — 0.

THEOREM 3.2. — The problem (1.1) has, for small ¢, a unique least energy
solution of the form

Ue = aepe,Q‘/c,a:E + we,

a. € R,z. € Q and w. € E.._, provided that MaxgQ(x) is uniquely
attained at oy € §, and zo is a nondegenerate critical point of Q.
Furthermore, x. — xg.

Let u. be a single-peaked solution of (1.1) of the form

Ue = acPo Ve o, + we, (3.1)
ze € Q,we € E,,, and

ac — (Q(a))™V?

T, — a

HweHe = O(GN/Z)y (3.2)

as ¢ — 0, where a is a nondegenerate critical point of () in 2. We assume
for simplicity of notations that ¢ = 0. By changing the variables y = — ,

~ 0 - e
we see that %.(y) = uc(ey) is a solution of

- Au+u=Q(ey)u’"" inQ,
u>0 inQ, andu=0 ondA,, (3.3)
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where Q. = {y : ey € Q}, and Q has a nondegenerate critical point at
a = 0.

Now

Ue(y) = aPo Vy (y) + we(ey), (3.4)

T
where y. = —, and z. — 0 as ¢ — 0.
€

We shall use the notations { , ) and || || to denote the standard product
and the norm in H} (). Define

K= ([ 19ure) /([ o)

for u € H}()

Fey = {U € H&(Qf) H(Pa,Vy,v) =0,
OPq.V,
< e y,v>:0,j:1,.‘.,N};
dy;
Je(y,v) = K (Po,Vy +v), vEF,,.

We notice that 4, is a critical point of K, in H} ().

ProrosiTioN 3.3. —  There exist ¢ > 0,80 > 0, such that for
y € Bs(0), € € (0,¢),8 € (0, 8], there exists a unigue C' —map : y — vy,
from Bs(0) to F.,, such that

0Jc(y,vy) _
< o YT 0

for all w € F,,. Furthermore,
logll = O(€)

as ¢ — 0

Proof. — The argument is very similar to that used by A. Bahri and J.
Coron [1], and O. Rey {11]. We will be sketchy.
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Expand
Je(y,v) = Je(y,0) + fey(v) + Gy (v) + Re y(v), (3.5)
where
—_ ”PQeVy”2 Po V. p—1
e = Qe Pa v [, @b @0
_ ”PQsVy“2
Ge,y(v) - (fQE Q(E.’IJ)'PQ€V IP)Q/p
2 NPV 3 p2,2
L R R LA
”PQe Vy”2

o e Pa v, “’){ [ @ V)}]

and R, ,(v) satisfies

Rey(v) = O([lo|M=C))
— Min(2,p—1
R, ,(v) = O(||v|fM=Er=D)
Min(1,p-2
R, (v) = O(Jlo[MinCP=2))
fe.y is a continuous linear form over F. , equipped with the scalar product
(,) of Hy(f). Therefore 31f,, € F., such thatf, ,(v) = (f.,,v) for

all v € F,,. Furthermore, G, , is a continuous quadratic form over F, ,.
Moreover, there exists p > 0 such that for ¢ small enough

Gey(v) 2 pllvl)?, v e Fe, (3.8)

A proof of the above inequality was given in [4]. This implies the existence
of a unique symmetric and coercive operator A., from F,, onto itself,
such that

Gey (v) = <A€,yUa v)

for all v € F,,.
Using these notations, we have

aJ.
v Fe,y

(y,v) = fey +24cyv + Ré,y(”)

Vol. 15, n°® 1-1998.
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Using the implicit function theorem and arguing as in [11] we establish the
existence of a unique C'—map y — wv,, such that

aJ. .
<%(y,vy),w> =0 (3.9)
for all w € F.,, and

U%H < C“fe,y“ (3.10)

for some positive constant C. We estimate || fe ,|| next:

| [ eeoirvpo
Q.

[ @) - Qonipa il

=o(e [1Po..vrpi)

= O()]lo]. (3.11)

where we have used the identity
0= (Pa,Vy,v) = / \Po.Vy P~ 0,0 € F,
Q.

and the hypotheses on Q. From (3.6) and (3.11) we deduce that

Ifell = O(€%),

and the conclusion follows from (3.10).
From Proposition 3.3 we may define

Le(y) = Je(y,vy) = K(Pa,Vy + vy), (3.12)

for y € Bs, where é is small enough such that Proposition 3.3 holds.

Define
ME = {(y,U) 1Y€ Bé(o)a"-’ € Fe,y}

Remark 3.4. — (y,v) € M, is a critical point of J; if and only if y is a
critical point of L. in Bs and v = v,, where v, is given by Proposition
3.3. Furthermore, for small ¢, (y,v) € M, is a critical point of J. if and
only if u = Pq_V, + v is a critical point of K this may be proved as in
[11]. We further notice that

dL(y)

_gyi_ = (Ké(PflsV;/ + 'Uy)v

3.13
0y, 0y; > ( )
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LEMMA 3.5. — Let €g, 8 be as in Proposition 3.3 Then
deg (0,7 L., Bs(0)) = (—-1)",
where m is the number of negative eigenvalues of the matrix (D*Q(0). In

particular, \7L.(y) = 0 has a solution in Bs(0).

Proof. — We first approxiamate /L.. Let v,,y € Bs(0) be as in

Proposition 3.3. Let us write
N

Ovy 8PQ
=w; + a; PV, + 1—————, 3.14
7 0. Z oy, (3.14)
a9
i=1,..., N, where w; is the orthogonal projection of 8vy in Fey. The
Yi
following estimates are established in Appendix A:
a; = 0(e~*/¢), forsome £>0
75 = O(e%),
[lwi|| = O(e?), (3.15)
i,9 = 1,...,N. By (3.9) and (3.12) we have
(K{(Pa,Vy +vy),w) =0 (3.16)

for all w € F.,. Hence by (3.13) and (3.14) we have

8L.(y) N 8P,V, 8PV,
K!(Pa.V, Pa.V, e <7y
dy: < Afobyt o) ol +; Ty oy

<PQV+UyaQ!h%+a1PQeV+ZJ 17 7'.7813;] >
fn (€z)| P, Vy + vy |P)?/?

_ 2||Pa.Vy + vy
er Q(ex)|Po_ Vy + vy|P

x / Q(ex)|Po, Vy + v, P2 (Pa, Vy + vy)

N
X{algﬂ‘/’y"'alpﬂev + ’L]aPQ }
=1

Yi i= yj

2L+ 1,

From Appendix A, we have

<PQE‘/y, aPQeV;,/> — O(e—f/e)

0y;
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90 D. CAO, E. S. NOUSSAIR AND S. YAN

OP, V,
for some ¢ > 0. Thus (noting that (v,, aQ‘ £y = 0)
Yi
|I;| = O(e™"/¢) for some £ > 0,as€ — 0. (3.18)

We estimate I, next: We first notice that for some £ > 0,
|Pa, Vy () = V()] < Ce™/*
for all z € €).. This follows easily from the Maximum principle. We
further notice that
[1Pe. Vy + vy ” _ A+

(f Qea)[Pa,Vy +0,l7) T [QUO)A+o(1)]7*
This follows easily from the estimate on v, in proposition (3.3) and the
hypothesis on Q(z). Here A = ||V, ||2. We also have, by Proposition 3.3, that
9Pa. Vy

Ay

(3.19)

/Q (Po.Vy + vy [P "2(Pa,V, +,)
E OPa.V.
— P, p—2 e’y

/S:ZL I Q€Vy| 83}1

+ O (llo, "2EP=1) = o(e?),

) O0Pq V,
Fp-1) / (P, V2200
Q. 61/'

g1

an

—£

d
[ (@ex) = @elVy + 0,720, + 0) G+ O()
Q. Y

1

- / (Qlez + &) — Qey)
Q. +y

_ av /e
IV 4oy (z+ )PV + vy + 2) 5~ + O(e)
N
oV
=e D;Q(ey)y; VP~ o~
Qe—i—yj; ! )] 8:‘/1

€2 N 9 L0V 9
+5 [ D@y 5 o)

ik=1 vi

— eD,Q(ey) / A
RN

6:1:,»
= eBD;(ey) + o(€”),

ov
where B = [on yin_lﬁx

%

is independent of ¢, by symmetry.
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Hence
= A+o(l) BeD;()(e o(€? .
= A B o) (s0)
Thus B
VL= ——5——¢D; Qey) + o(€?) (3.21)

(Q(0))»*145
Since det D?Q(0) # 0, there is § > 0 such that

| v Q(ez)| > Coe (3.22)

for some ¢, > 0 and for all z € dB;s(0).
We see from (3.21), (3.22) that

Be
(Q(0))# 1 A2/p
= deg(0, VQ(z), Bs(0))
= sign det D*Q(0) = (=1)"

deg(0, 7 L, B5(0)) = deg(0, v Q(ey), Bs(0))

This completes the proof of Lemma 3.5.

PROPOSITION 3.6. — There exists €, 80 > 0 such that for 0 < € < ¢, 0 <
6 < bo, L. has a unique critical point in Bs(0).

Proof. — We argue as in Glangetas [8]. We have the following uniform
estimate for all z such that L .(z) = 0 :

2 1-2/p
8555(2 - % (3(0))% €*D;;Q(0) + o(e?) (3.23)

The proof of (3.23) is given in Appendix A. Hence any critical point of L,
is an isolated point, for € sufficiently small.

Now choose €y, 89 such that Lemma 3.5 holds. Then L. has, for any
0 < 6 < 6o, a finite number, say kg, of critical points in Bs(0) at
Z1,...,Zk,. On the other hand, (3.23) implies that

—2 N
det(iﬁ;ﬁg) = (; (é‘éé))’;/p) EZNdetDzQ(()) + 0(€2N)’

and hence

i (te(Z2)) = (o 228
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92 D. CAO, E. S. NOUSSAIR AND S. YAN

for all critical points z of L. in Bs(0). Using Proposition 3.3 and a
classical property of the degree, we have

(=1)" = deg(0, 7 L, B5(0)) = Xo:deg(O, V Le, Bs(x;)) = ko(—1)",

i=1

and therefore &k, = 1. This completes the proof of Proposition 3.6.

The proof of Theorem 3.1 will follow if we show that y. in (3.4) satisfies
ye — 0 as e — 0, since this implies that y. is a critical point of L. in
B; for € sufficiently small 0 < § < &.

LeMMA 3.7. — Let u. be a single-peaked solution of (1.1) of the form (3.1)
with o, ., w. satisfying (3.2), and a = lim.__ oz, is a nondegenerate
critical point of @ in §). Then

|z — a| = O(€?)

Proof. — From (2.19) we have

vVQ(ey + 'TE)laePQe,wgV(y) + we(ey + )P
Qe ,xe

=e V-2 / (%)2nda = O(¢?) (3.25)
9. .. on
Expand the left side of (3.25) to obtain

VQ(ey + z){e?|Pa, o VIP + o 7! Pa, o, VIP  we(ey + z.)}
Qe ,x,
+ O(flwellZe™) = O(e?),

and since [P, V(y)—V(y)| < Ce~7/< forall y € Q. . by the Maximum
principle, where C, T are positive constants, we have

/ VQey + ) {a?V? + a2 VP N, (ey + 52)}
Q

€, T¢

+ O(J|lwell2e™™) = O(e?). (3.26)
Since we € FE, .., we have

/ Vp_l(y)wE(ey + .’Ee) = <PQ,ere,z€awe>e =0
Qe,x. ‘
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Therefore
| v+ s)ve o+ o)
Q(,iL‘e
= [ 9@+ ) - 9@V eley + 2.)
Qeaze
= O(e)l|w6||e€—N/2 (3.27)

We estimate |lw.||? next:
We notice first that (z., 2-w.) is a critical point of J. defined by

je(.’L‘,LU) = K(PQ,E‘/e,a: + w)a
in E,,_, where f(e is given by
R = ([ @lval+a) /([ Q)
Q Q
By following the argument in Proposition 3.3 we obtain

”“‘)6”6 < Cllfe,we

where feyz is given by
1P, Vel

~(~::1: = - p) P, ererl:p—l
Fel) = s P Jy 2 Pactist

By estimating fme as in Proposition 3.3, we obtain
lwell2 = O(eM*?) (3.28)

We also have

VQ(ey + VP

Qe z.

= [ vQE)vr+ / [VQey + 2.) — TQz)V?

ez, Qe,xe

=vQ) [ V+e [ DV + 0
= vQ(z.) /

VP 4+ O(é?), (3.29)
RN

Vol. 15, n°® 1-1998.



94 D. CAO, E. S. NOUSSAIR AND S. YAN

where we used the fact that
D*Q(z)yV?(y) =0,
RN

by the radial symmetry of V.
Combining (3.25)-(3.29) we obtain

vQG) [ V7 =0@)
RN
But detD?Q(zq) # 0, and therefore we conlude that
|z — 2] = O(€?)

Proof of Theorem 3.1. — Let a be a non-degenerate critical point of Q).
We may assume that ¢ = 0. Now u. is a single-peaked solution of (1.1)
of the form

Ue = aePQ,e‘/e,ze + we (330)

with

o — (Q(0) 7/

e — 0

lwelle = O(EN/z)»
as € — 0,w,. € E, ., if and only if y. = % is a critical point of L.,
wﬁ(ey) e F
o

€Ye*

and v (y) =

By Lemma 3.7, y. — 0 as ¢ — 0, and therefore y. € Bs(0) for any
small é, provided ¢ is sufficiently small. Since L. has a unique critical point
in Bs(0), for small 6,(1.1) has a unique single-peaked solution of the form
(3.40), and Theorem (3.1) follows.

Proof of Theorem 3.2. — By Propositions 2.1, 2.3, u. is a least energy
solution, and is a single-peaked solution of the form

Ue = aef)e,ﬂ‘/e,:v€ + we,

where z. — 9, a. — (Q(x0))"V*=?  ||w|l. — 0, and w. € E. ..,
as ¢ — 0.

Since MaxsQ(x) is uniquely attained at x,, the conclusion follows from
Theorem 3.1.
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4. EXISTENCE IN THE DEGENERATE CASE

In this section we establish the existence of single-peaked solutions when
Q(z) has strict local maximum points in Q, which are not neccessarily
nondegenerate critical points, as required in sections 2 and 3. In fact, we
will only require that Q is Lipschitz continuous on  , and so it may have
no critical points in £2. The main result of this section is the following.

THEOREM 4.1. — Assume Q is Lipschitz continuous in . Let x5 € Q
be strict local maximum point of Q(z), that is, Q(zo) > Q(z) for
z € Bs(xzo) N Q\{zo} , for some 6§ > 0. Then (1.1) has a single peaked
solution of the form

U = acPeoVe o, + we, (4.1)
where
ac — (Q(zo) M ®, (4.2)
Te — Xo,
e_ld(xs,aﬂ) — 00,
lwell? = o(e™)
we €E, .

Furthermore,

A
I < & (s + o)

We will prove Theorem 4.1 when zy € 92 . The case zy € ) can be
discussed in a similar way.

An example will be given to show that, contrary to the case of
nondegenerate critical points in {2, a nondegenerate critical point on 9
doesn’t correspond to a single peaked solution of (1.1) with its peak
tending to o as ¢ — 0.

Let zg € 9 denote a point where @ has a strict local maximum.
Define

A = {:L‘ € QU By; d(z,09) > %eln E} (4.3)

where H is a large positive constant to be determined, and 6 is a fixed small
positive constant such that Q(zo) > Q(z) for all z € Bs(xo) U Q\{z0}.

Define
fw=( [ ervuvd)/( [ewmr)”
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96 D. CAO, E. S. NOUSSAIR AND S. YAN

for u € H}(S); let

je(x7w) = K((PQ,EVYE,.’E + w)7
w € Eg.
Consider the following minimization problem:

inf{J.(z,w);z € A, ||w|]? < 6", w € E. .} (4.4)

It is easy to show that the infimum in (4.4) is achieved, since 2 < p <
2N/(N — 2). We now state a proposition which is crucial in the proof
of Theorem 4.1.

ProposITION 4.2. — Let
M = {(z,w):z € A, w € E, and ||w||? < 6¢*}
Then for sufficiently small ¢ > 0,
u=PFP oV, +w

is a critical point of K. if (z,w) is a critical point of J. in M.
The proof is very similar to the proof given in [4], [11]. We omit it here.

To prove Theorem 4.1 it is enough to establish the existence of critical
points in M. We need the following estimates. First we introduce the
functions ¢, ,,%.p; as in [9]: For p € Q,y € Q. ,,, set z = ey + p,

pep(y) = V(y) = Po_,V(y)
Pep = —€lnpe ,(y) (4.5)

Lemma 4.3. — Assume 9 is of class C'. Let p. € §) satisfies
€/d(pe,0Q) — 0 as ¢ — 0. Then for any cy > 0 there is € such
that for € < €

1 ) .
S d(pe, 99) < e, (p) < cod(pe, O9) (46)

Proof. — The inequality 9. ,_(pe) < cod(pe, 0R2) is proved in Lemma 4.6
of [9]. We prove the other inequality.

Let p, € O be such that d(p.,9Q) = |p. — B.|. Let y. be a point on
the ray p.p, such that |y. — pc| = (1 + n)|p. — P.|, where n > 0 is small
enough so that B, ;. 5., N Q2 = {B,.}.
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Set ‘
ve(x) = (1 = n)(|pe — Pl — nlye — )

We now use Lemma 4.5 of [9] to obtain

Yep, > (1 =n)|z = pe| > |1 = n|lpe - D]
> (1= n)(|pe = Pe| = nlye — 2|) = ve(2) (4.7)

for sufficiently small e.
But simple calculations show that

—Ce

nlye — b
—Ce

n(1 +n)|p. — B.|

€Av, — | VP +1>

—n?(1-n)%+1>0

since €/|pe — p.| — 0, as ¢ — 0, by hypothesis. Hence by the Maximum
principal, we conclude that

Yep. (pE) > ’Ue(pf) = ( - W)(lps -P | - 77|ye “pEI)
(L=n)[1 =n(1+n)]lp — P
%d(pe,aﬂ)

This completes the proof of Lemma 4.3.

Lemma 4.4, — Let xo € 0N denote a point where () has a strict local
maximum. Let z. € {xq + tv : t < 0} be a point such that

1
|ze — zo| = €ln —,
€

where v is the unit outward normal to 0Q) at xg. Then

eN(1-2/p)

2 s /2 1 (/2

for some positive constant 7.

Proof. — The following estimates were established by Ni and Wei [9]:

”PE,QVE,ze 3 = EN”PQ(,z(V”z

—N(A- Yye~ Fezlz) 4 O(e—%we,ze(ze))) (4.8)
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/'Pf,Q‘/E,Zg P = €N/ |PQg,z<V|p
Q2

= N(A = 2ype” ¥ ) 4 g(em e Vor(2)))  (4.9)

But
| (@) - @ipav...r|
<C [ly=zollPeaV.l

=c/ﬁ ly — woll Pea Vs I
Bn1(z)

+C/' ly — zol|PoaVoor, I
Q\Be In L (Z )

1
< C(eln (—) + |z — 3700 / |PeaVe,s. P
€ B %-(Zé)

+ C/ |Pe,§2‘/e,ze {p
Q\Be ]“(%)(ZE)

1
< Creln(=)AeN + ceN/ %
€ RN\B, 1(0)

< CeV (Aeln (%) + ep>

= CeVo(¥?) (4.10)
Using (4.8), (4.9) and (4.10), we obtain

we z¢ (Ze “‘% €,2¢ (Ze
je(zeao) N(l—i) {A 2e - ( )+j._(jp w( )( ))}
{Q(:L.O) A 2,Ype 7 We,zc (Ze )
+o(e”* PV (o) 63/2)}2/p
N(1-2/p) g1-2/p
Q(xo)?/
X {1+2,-ye edef,e(z()_{_o(e 6'/)6 -;( s)+€3/2)} 411)

By Lemma 4.3, we have
e tVeze(2) < @3z 00) — o3 In(2) = (1/2
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Therefore,

eN(1-2/p)

1-2/p 1/2 1/2
S Q(.'L'())2/pA (1+27€ +O(€ ))7

jf(ze, 0)

which completes the proof of Lemma 4.4.

Proof of Theorem 4.1. — We first derive a lower bound for je(xe,we),
where

je(we,we) = inf{J(z,w) : 7 € A, ||| < 6", w € E, .}
we have

”PE,QVE,me + we”f = 6N”Pfh,zE V+ we(fy + $€)||2
= eV([|1Pa.. VI + llwe(ey + z)[|?)  (4.12)

/Q(y)|Pe,QVe,:ce + w€|p

= / Qley + 2| Pa.. V +w.(ey + 2.)P
Qe o,

=Ny / Qley + z)(|Pa, VI + plPa.. VP w.ley + 2.)
Qe,.te

-1 ,
+ 22D g, vyt +a)
£ loe(ey + 2@
= Qo) / (Pa. VP +p|Pa. VI w,(ey +z.)

+ 2D, vty +20)

+ flwe(ey + z) " + O(e)}

= Q) [ (P VP14 re
Qe z,

€, 2,

-1 J(Pa.. V)P 2wi(ey + o)
2 fQI (PQEM vyr

Ye,x (Te

+ O+ ) (ey + )|
+ O(e) + |lwe(ey + =) |[™in@3)} (4.13)

where ¢ is some positive constant.
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Combining (4.7) and (4.8) we obtain

IPo.... VII?
wi( [Pa,, VP
Jo.. (Pa., VI wley + )
-(p-1)
fQ |Po,, VP
+ O(E) + O(e_(%+0)%d.vwrg (IE))HWE(Gy + :1;6)“
+ O(|lwe(ey + zo)||™ "3}

llwe(ey + zo)|I?

J. Te,We = 1-3N z.)) 3P
( ) (Q(ze)) Po. VI

{1+

IPa.,., VIP
(o.... 1Po.. VIV
+0(e) + O B e ) o (ey + )|
+ Oflwe(ey + 2o)| ")}

> mN(Q(re)) {14 #llwe(ey + 2)II*

From the above inequatity, (4.12), and (4.13), we obtain

Jo@e,we)

> VA2 (Q(,)) TP AP 4 2yem Vs (T g p(em e (r)y

X {1+ p/lwe(ey + ze)||? + O(e) + O(e™GHeves CN) |y (ey + 2|
+ O(|lwe(ey + zo)[|™"#))} (4.14)

We are now ready to prove that z. € A, and ||we(ey + zc)|| — 0 as
e — 0.

Claim 1. |jw.(ey + z.)]] — 0 as e — 0.

In fact, since ||w.||? < 6eV, we have |lw.(ey + z.)||* < &. Therefore,
for small 6, we have

L+ p|lweley + 22 + O(e) + O(e~ 3+ e G |y (ey + )|
+ O(||we(ey + zo)|)™n@®
2 1+ p"lweley + zo)lfP + Ofe e 2 v ()

Thus, from Lemma 4.4, (4.14) and the fact that (e, w,) s a minimizer
of J., we get

N0 Qo)) AT (1 + " l(ey + 2| + o(1)
< js(meawe) S jf(zmo)
< eNO=2/P)(Q(34)) "2 AP (1 4 0(1))
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Therefore, ||lwe(ey + z.)|| — 0, as € — 0. In particular, if € > 0 is
small enough,

€N
lwell? = € lweey + zo)l* < 0.

Claim 2. z. € A, for small ¢ > 0.

We procedd by contradiction. Suppose x, € 0A, for all small €. There
are two clases to consider:

(1) z. € IBs(xp) U Q. Then
Qo) — 7 > Q(zc)
for some positive 7. From Lemma 4.4 and inequality (4.14), we have

NU2I(Qay) — 1) P A1 4 o(1))
je(-'lfey we) < je(zev 0)
N (QLr) P A1 4 o{1)

IA A

where o(1) — 0 as ¢ — 0. This is a contradiction.

(ii) Suppose for any ¢y, Hy > 0, there is 0 < € < ¢y, H > Hy, such
that x. satisfies

d(z.,00) = —;Teln(l/e)

But from claim 1 and (4.14) we have

Je(xe,we)
> N2/ (Q(x4)) Y P{AHP 4 Dye~ e (@) 4 0(6—%1/)5,“(15)}
x {1+ p"|lwe(ey + z)||* + O(e + e~ OH2)tbeic =)y}
> NU=2/2)(Q(30)) 7 {AV72/P 4 ye~ thes @)
x {1+ 0(e+ e—(1+2a)%w€,z((ze))}7

and from j((xe,we) < J(2,0), and Lemma 4.4, we then have
Al_z/p+76_%w€,xg(l'e)+O(6_%war((me))+o(6) S A1_2/p+2’yﬁl/2+0(61/2)

But C .
1/}6,& < Cod(ze,aﬂ) = ﬁofln ;
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by (4.6). Hence
6cu/H +O(ECO/H) < C€1/2

for some constant C' > 0. This is a contradiction if we choose
H > Hy = 2¢

From claims 1 and 2 we have that (z.,w,) is an interior point of M for
small ¢, and therefore a critical point of J in M. By Proposition 4.2 we
then have that u. = P, oV, ». + w. is a critical point of K., and Theorem
4, follows.

The following example shows that for a local minimum point of @,
a singie peaked solution, with its peak approaching the minimum point,
may not exist.

Example. — Let ) be the unit ball B;(0) in RY. Let p(z) € C2[0,00)
with ¢’ (0) = 0,¢(r) < 0,7 > 0, and ¢"(0) < 0. Thus ¢ attains its global
maximum at » = 0. Define Q(z) by

_JC—p(/(z: -2 +2d+ ... +2%) 2:>0
Q(x)—{Q(—il?lfsz,--l-,fEN) : " wiSO

where C is a positive constant large enough so that Q(z) > 1. Then Q(z)
is decreasing in the z,—direction.

Using the moving plane method in the z;—direction, as in [7], we see
that every positive solution u of

—Au+u=Q(x)ut, T€Q
u(z) =0 on 90

attains its maximum in the set {z; = 0} N B;(0). This shows that there
is no positive solution of the above problem with single peak near the
minimum point (1,0,0,...,0) of Q.

APPENDIX A

In this appendix, we provide some of the estimates used in sections 2,
3, and 4. We first state the following result, which is a direct consequence
of the maximum principle.
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LemMA A.l1. — There is a constant £ > 0 such that

IV, = Py Vol S ™5,

lai_ V=P, V)| <7
16:1:8; se s,

i,j = 1,...,N.
From Lemma A1l we obtain

103

LemMa A2. — There exists a constant £ > 0 such that the following

estimates hold:

(Pa.Va, Po,Vz) = / VPPV, = A+ o(e™?)
Q.

A= / ve
RN
< PQEVI,BPQSVQC> _ / Vmp_laPQEVI
6.’17i Q. 8I,‘

oV,
=/ VI o)
Q.

where

= 0(e™%)
< 0PV, 0P V,\ _ [ VP 1OP,V,
6:@- ’ 8.’1}]' o Q. 6111, (9$j
oV, av
= (p-1) / yr-2 0 OV o ooty
Ox; Oz

oV, 8V
8:1:1 8

— { O(e_g/s)’ i F# g
T A+OE ) i=j

=(p-1) [ vrl -+ 0(e™)
RN
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LeMMA A.3. — Let €, 80,0y, y € B5(0),0 < & < 8o, be as in Proposition
3.3. For 0 < € < ¢ set

N
Jduy dPq V,
o=+ Po Vy+ ) i
dy; ! ; 7 Oy;
i =1,...,N, where w; is the orthogonal projection of ?;;y on F, . Then
the following estimates hold:

oy = O(ef”‘), for some £ > 0,
vi; = O(€%),
[lwill = O(e*).

i,j=1,...,N,and 0 < ¢ < €.

ov,
Proof. — We first consider the scalar product in HY(Q.) of ——U—y with

J
M for j,£ =1,...,N:
oy,

J

g

Po V,,

N

9PV,
il Pa V. Fo, V) Z%j< (9(72;. yaPQ{Vu>
J=1 J

_ 6vy _ 6PQEVy _
= <8yl ,PQSVy> = —<vy, ayj =0

aPQV> l <apgv BPQV>
o P{V‘ <Y\ i 5 y’ 'y
<“ " Oy ;” dy; ' ow
8?Pq Vy>
—(wv '..___..‘__ = O (|lv
(o Syt ) = 0l

From (A1),(A2), (A3), and the estimate on |lvy|} in Proposition 3.3, we can
solve the above equations for «; and 7;; and show that

o = O(e_“)7 for some £ >0,
5 = O(llvy|l) = O()

To estimate ||w;|| we follow the argument in [8, Proposition 3.2)

DK (Pa.V, + vy){(wi,wi) + D*K.(Pa,Vy + vy)

dPq N aP,V, >
X <+ o PV, + YL w; )y =0 (A.4)
( y; et ; 7 By
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Direct calculations show

D*K.(u)(e, %)

2(p, ) _ 4(u, o
(fQE Q(ey)|ulp)?/? st Ey)lulp) +1/ Q(ey)|ulP uy
(A.5)
4{u, ulP=24 . up 2,
(o, Qew) IUI”) ”(/ Qley)lul T/’)(/ Q(ey)lul w)
CUHP=D [ e
uam@mw%lmmy”'¢¢
We have
Claim (1):

D> K (P, Vy + v,){wi,wi) 2 p'l|wi]|*

for some p’ > 0, uniformly for 0 < € < €, y € Bs(0), 0 < 6 < éy. In
fact, from w; € F, ,,

. 2 |Po.V, + o2
wil|” — -1
(fﬂe Q(ey)| P Vy + Uylp)z/p {” | ((p )fQ Q(ey)|Pa. Vy + vy|?

X (/ Qey)| PV, + vy|p_2wi2)} > P”%‘HQ
Q.

But
(Pa,Vy + vy, wi) = (vy, wi) = o(1)||wil|

/ Q(G?JHPQE Vy + Uylp_2(PQe Vy + 'Uy)‘*’i
Q.
=LQ@W&W”M+MWMI

= | (@) = QeNIPa v + oD
= o1l

Claim (1) follows by putting the above estimates into (AS5)
Claim (2):

OPq V.,
mKﬂhn+%K<%4w§:0wmm1
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In fact,
PV, \ _
< 637,j i =0
<PS2& Vy + vvai) = <Uy7wi>
= O([lvg I lwill
= O(e")|jwill
0Fq. V, 9Fq, V, —t/e .
<P95Vy + vy, TJ> = <P95Vy, —8—1/—y> =0 ") (A6)
0P, )
Qey)| P, Vy + vy["~2(Po, Vi, + vy) Q} =0(?) (A7)
Q. Y
/ Q(ey)| Pe, Vy + "’y'II_Q(:PQ( Vy +vy)wi (A.8)
Q.

= Ol + Q(O) / (P, Vy + 0y 2(Pa, Vi, + 0, ),
Q.

= Ol + Q) [ 1oVl i+ Oy Dl
G
' PV,
/ Qley)| o, Vy + 'U'.11|p_2‘#wi
Q. dy;
LV, "
= | QenlVy i o s

o
= Q) [ IV, + Pt + O]

el
:FQ(@/& S+ B+ 0(E) ]

where

R=Q0) [ (V40,72 - v Gt

k4

oV,
| v el ity <
Q. dy;

Rl <cC
/ VU ?;:; min(p—2, 2))|UJ | 1fp >3
Q.
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0V,
Al

<C for2<p<3,
Ay;

Since

|R] < Cllvy llllwill = O(e*) i,

" P V.
J R A e e (4.9)
Q. ‘ 3yi

= O(e?) il
Claim (2) follows from (A.5), (A.6), (A.7), (A.8) and (A.9).
From (A.4), claims (1) and (2), and the estimate on «;, we obtain
pllwill? = O(e*)||wil
Thus
lwill = O(*)
This completes the proof of Lemma A3.
LemMa A4, — There is €g,00 > 0 such that

PL(z) 2 A
dz0z; — p(Q0))2/r

¢?Di;Q(0) + o(¢?)

for 0 < e < ¢, 0 < 86 < b

Proof. — Arguing as in Glagetas [7], we get

0?L(x) 8Pq.V,
—— = D’K (PoV, + v, — t o Po Ve
s (PoVa+w )< oz, +a;Po V,
N N
0Pq V, 0Pq V, 0PV,
+ z Yje 9z, ' O + Z Yie o,
(=1 £=1
0P V. N AP,V
+D2K€(P95Vm+v$)<w]—, 5; +Z'7ik‘“‘a%f“’>
K k=1 -t

From Claim (2) in Lemma A3, we have
Iy = O(*)|lwill = O(*)

Now we estimate I5:

Vol. 15, n® 1-1998.
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I; consists of terms of the form

dPq V. OP,
I(e) = D*K.(Po,V, +vﬁ< 5;4, z; >
J 7

Set L(u) = [[ul]?/(fo,, Qewlul?)
Since Pq V. + v, is a critical point of K, we have

82
P V:L' T T‘__P V:r — ve P, V.T
< o Ve + v G0, o > le( Pa,

2
Fun) [ Qe Vi 2PV ) e =004
From the estimates in (A2), (A6), (A7), and from (AS), we see that
I(e) = 2 {<8P96Vx 8PQ€VI>
U{L Q(ey)|Pa, Vo + vs [P]?/? oz; ' Om;

—(p~1) le(Po, Vo + vz)

_, 0P V, 0PV,
P. p—2 e’ ¢
< [ Qenipa v+ TR T }

e 2 c = .
O e Pa Vi T O O (A2

Form (A.11), we have
OPa V, 0Pq V.
J(e) = < @7 T >

a$i ' 8117)'
0?Py.V,
Po Vi + ve, 57—
+< Q Ve + Ve 7,07, >

L(PaVa+ 'm{(p [ QP ol

8PQ V dPQ p— 18 PQeVa:
Ox; 3 / Qey)lPa Va + vz 0r; 0
(A.13)

We also have
OPq V, 0FPu. V, 32Py V,
< oV 9 > + < PV Q. >

or, ' O, 0 B0

(00 2

= S Ve V) 4 0L = 07,
() o 2 o
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Combining the above estimates and Lemma Al, we easily obtain

82
Jle) = < *7 Ox; 6x1>

oV, oV,
_ p—2
- 1(V, +vz){ 1 / Qey)| Ve + vl e oz,
92V
# [ @@Vt v o) ()
But
oV, 9V,
p-2Z 'z
/RN ‘VT + le 61‘1’ 8:17j
oV, 0V, oV, 9V,
— p—27"% * _ yp-3_'=2 T 2
(A.15)
9%V, 0%V,
Va: a:p—l o= Vp_l -
/RNl T | 83;1-8% /RN £ 31171'85171‘
ro-n [ ver e o) (A.16)
b RN T 8sci8.1:]- Vs Ua ’
Thus
oV, dV, 8%V,
-1 Ve RPT 2 v, L7t x
(p )/RN | v l aiL'i 8.73]' AN l v I Bzviaccj
1 o2ve a2ve-1
S £ N O 4
p Jry Oz;0z; + ry 01,0 ve +O(€)
82V” 1
- /RN i e T O (A.17)
Therefore

0%V, oV, vV,
T — - ls Vw T 0 -1 Vm © p-2 - -
<'U 8128x3> ( T )Q( ){(p )/RN | tv | Bzi an

9%V,
V. . p=1_—~ "%
+ AN I +v I (%iamj }

- aZVp ! A+ 0(54) 82V$p—1
- / * Oz Bm] ~ Q(0)A + O(e2) Q(0) v 91,02, v + O(e?)
=0l )/ axi;)xj vs + O(e") = O(c*) (A4.18)
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ov, v,

-1 p—2- 7%

(b-1) / - Q. + G S
oV,
Oz;0x;

+ [ (@) - ooV, + vl

p—1 8V oV,
= D;.Q(0 Ve p=?
2 /R ”ZO 7 Q0)yeyn|Ve + va] z: 0z,

Lo D3.Q(0 Ve p1 OV 2
+ 3¢ RN“Z B QO)ee| Ve + 0. 5+ of)
1 (3

p—1 v, av,
- § ' DRQOm VP
7 /R 2 7 Q(0)yeyn 3a; 9z,

*1/ Z D20 VI 2V 4 o)
2 Jar o e 9r.0x;

2 k=1

oV, oV, 82V,
= 2D2 0 / ) { e\ 2 2 L p-l & 2
€ Dj;Q(0) L P (p -1V Oz, Oz, * dz,0; +ole)

1 o*VPr
= ]—962Di2jQ(0)/R ylyja 95, —I—o(e)

1 2
= 2e2P2.0(0 VP z
pe UQ( )81'1(9.73] /R!N YilYiVe +0(€)

1, 9?
— 222

pE * Q(O)B 2,0

1

—€2D2 0)/ VP + ofe (A.19)
Comblnmg (A.14), (A.18), and (A.19), we obtain
1
J(e) = Z—jeszjQ(O)/ VP + 0(62) (A.20)
RN

/ N(yi )y +2)V7 + ofe)

Hence
2 A

(Q0)A]*/7 +0(1) p

I(e) = € DQ(0) + o)

Therefore,

%L 2 A%
axia(mi) = SoopEr© DadO+ ol€?),

8*Le(x) 2 A\ 2N 2 2N
det(axiaxj> (p IQ(O)P“’) det (D?Q(0)) + o(*™)

This completes the proof of Lemma A4.
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