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74 D. CAO, E. S. NOUSSAIR AND S. YAN 

R&XJM& - On etablit une correspondance biunivoque entre les points 
critiques non-dCg6nCres de Q(z) en R, et les solutions a un seul pit du 
probleme 

- ?‘Au + u = Q(x)u”-’ dans 62 
u > 0 dans R et ‘u. = 0 sur X2 

ou R est UXJ domaine borne, 2 < p < (N + 2)/(N - 2), E > 0, et 
Q(x) E C(R) n C”(n). 

En particulier, nous demontrons l’unicite de la solution de moindre 
Cnergie lorsque Q(X) acheve son maximum dam 2 en un seul point 
critique non-degCnCr6. 0 Elsevier, Paris 

1. INTRODUCTION 

In this paper we consider the problem 

- t2Au + u = Q(z)~&‘-~ in R 
u > 0 in 62 and u = 0 on 82 (1.1) 

where R is a bounded domain in R”, N 2 3, with a smooth boundary 
dR,t > 0 is a parameter, 2 < y < (N -k 2)/(N - 2), and Q(X) E 
C(o) n C’(Q) h as nondegenerate critical points at <hl, . . . . .a E 62, 

i.e., DjQ(ai) = 0 and det D2Q(ai) # 0. where Dj = & and / . 

D2Q@) = s 
. ‘J 

( > 
, i = l,..., !,k = 1, . . . . N: j = l,... ;N. 

k J N x N 
The case of degenerate critical points is also considered. 

Problem (1.1) arises in various applications, such as chemo taxis, 
population genetics, chemical reactor theory, etc. In applications, it is 
important to locate the maximum points of solutions in R, since these 
may correspond to locations of higher chemical concentrations, certain 
population, etc. 

When Q(z) is a positive constant, problem (1 .l) has been considered 
by several authors. In these studies both the topology of fl (see Benci and 
Cerami [3]), and the geometry of 62, see [5], [6] play an important role in 
the existence and multiplicity of solutions of (1.1). Recently, Ni and Wei 
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EXISTENCEANDUNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 75 

[9] and Wei [12], constructed solutions with “single-peak”, and the shape 
and peak location of “least energy” solutions were studied. Specifically, let 

where U+ = max {u, 0}, for u E H,j (0). The well known Mountain-Pass 
Lemma implies that 

c, = i&r max0<t<l &(h(t)) -- 

is a positive critical value of I,, i.e., c, = rt(u,) and u, is a solution of 
(l.l), where I? is the set of all continuous paths joining the origin and a 
fixed e E Hi(O) with e 2 0 and I,(e) = 0. It can be shown, see [9], that 
c, is independent of the choice of e. A critical point uL, corresponding to 
c, is called a least energy solution (or a Mountain pass solution). 

For Q a positive constant Ni and Wei [9] proved that U, has at most one 
local maximum and it is achieved at exactly one point p, E R, u,( .+pc) -+ 0 
in C,&(R - y,\(O)), and d(pe, X2) - rnaxpEn d(p,i)fi) as E ---+ 0. 

DEFINITION. - We say that a function u defined on fi is single-peaked, if 
u has only one local maximum point in 2. 

The aim of this paper is to show how the nondegenerate critical points of 
Q(X) play a dominant role (compared to the geometry and topology of 0 ) 
in the existence and the multiplicity of single peaked solutions. In particular, 
we establish a one-to-one correspondence between the nondegenerate 
critical points uz of Q( z in R and single peaked solutions. .) 

It will then follow that if maxs Q(z) is attained at only one nondegenerate 
critical point in fl, then problem (1.1) has, for sufficiently small 6, a unique 
least energy solution, regardless of the shape or the topology of R. 

The case of degenerate critical points is more delicate. We establish the 
existence of a single-peaked solution for each strict local maximum point 
a of Q(X), and if a E R, we show that the peak point pF of such a solution 
converges, as t -+ 0, to a. However the question of uniqueness of such 
solutions is still open. That is, it is not known if there is one or more 
single-peaked solutions whose peak points converges, as E --+ 0, to a,. 

Our procedure is based on arguments similar to that used by Rey [l I], 
by A. Bahri, Y. Li and 0. Rey [2], and a degree argument similar to 
that used by L. Glangetas for a nonlinear elliptic problem involving the 
critical exponent [8]. 

In Section 2 we introduce our notations and establish a result on the 
profile of single-peaked solutions and the locations of their peaks. In 
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Section 3 we establish the existence and uniqueness of single-peaked 
solutions concentrating at any given nondegenerate critical point of Q. 

In Section 4 we consider the case when Q has local maximum points in 
2. We are only able to establish the existence of single-peaked solutions 
and study their profile. 

2. NOTATIONS AND PRELIMINARY RESULTS 

Let V be the unique positive solution of 

-AV + V = VP-’ in RN 

v E H’(WN) 

It is well known that V is radially symmetric about the origin, decreasing 
and 

For a smooth bounded domain D C RN, PDT/ is the unique solution of 

-AU + u = VP-’ inD 
u=O ondD (2.1) 

It follows from the maximum principle that PDV( y) < V(y) for all y E D. 
For w E H1(WN),y E RN, and E > 0, let 

%J.) = 4(. - Y)If) (2.2) 

Let PG,+v denote the unique solution of 

- E’AU + u = IV/~-~ in R 
w E I@) (2.3) 

Notice that, in our notation, PQ,~ E PQ. 
Let 

(u, w)t = 2 /’ vu. 77 v + / uw, 

11u11: = (w4e, 

for U, ‘u E Ht (a). All integrals are Lebesgue integrals over fl unless 
otherwise stated. 
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For 9,~ E RN define 

Et,y(R) = {w E H;(R) : (P*,E~,Y)21), = (ap;;v’;y,“)E = 0,j = 1,. . . , N} 
3 

a,,, = {x E RN : EX + y E 0) 

l&(x0) = {x E RN : Ix-x01 < ?-} 

C will denote a positive constant. 

PROPOSITION 2.1. - u, is a single peaked solution of (1.1) which satisjies 

ll%lle = wN’2) (2.4) 

if and only if 

u, = dk?,tvE,Z~ + we (2.5) 

for some & E R, X, E R, and w, E E,>,C, satisfying 

c-‘d(x,,alR) - 00 (2.6) 

llwlle = O(fN’2), (2.7) 

a, - (Q(x~))-~‘(~-‘), (2.8) 

as E - 0, where x0 = lime-+0 x, = limt_+o p,, where p, is the peak of u,. 

ProoJ: - Let all, be a single-peaked solution satisfying (2.4). Let p, be 
the point in R where U, achieves its maximum value on fi. Following the 
same argument as in Ni and Wei [9], we have 

~-ld(Pe, dfq -00, ase--+0 (2.9) 

Suppose po = lim,,op, E II. Let 

Then v, satisfies 

--Au, + w, = Q(cy + p,)wf-’ in Q2,,pG 

V, = 0 on 8&,Pr, 

11412 5 c (2.10) 

Vol. 15, no 1-1998. 



78 D. CAO, E. S. NOUSSAIR AND S. YAN 

for some positive constant C, where the last inequality follows from (2.4). 
Therefore 

w, - w weakly in H’(P), 
71, - v in C,“,,(P), (2.11) 

from standard regularity results for solutions of (2.10). In the above we 
used V, to denote the extention of ZI, to RN which is identically zero 
outside 02E,P,. 

From (2.10) and (2.11) we have 

-Au + w = p-1 Q(p,,)v in RN 
v>o 
v E H’(RN) (2.12) 

Since v, is single-peaked, the set {X E &,, : V,(X) > 6) has only one 
connected component for any 6 > 0, the argument of Proposition 3.4 in [9] 
may be employed to show that ( for any 6 > 0) 

q(y) 5 Ce-(l-s)‘y’, y E a2,,p< 

and by taking the limit as e --+ 0, we have 

s 
RN 1 y7 WI2 + w2 = 

s 
Q(Po)v~, 

RN 

which together with (2.11) yield 

vF --+ v strongly in H1(WN). 

Since w satisfies (2.12), the uniqueness of solution of (2.12) and the 
definition of V implies that 

%, = (Q(po)) --l/(P-*)V 

But it is easy to see from the definition of V that 

IV - eL,P<vII --+ 0, as 6 - 0. 
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Hence V, - (Q(~o))-~‘(P-~)F&V + 0 strongly in Ht (RpN), and therefore 

~-~Ilu, - (Q(p~))-~‘(~-~)~o,tVl~~ - 0, (2.13) 

as E - 0. Using an argument similar to that used by A. Bahri and J.M. 
Coron [l], we then have that u, can be uniquely written in the form 

UC = ~t&l,EK,Z. + we 

for some o, E R, X, E R, and w, E E,,,<, satisfying (2.7) and (2.8). It 
remains to show that (2.6) holds. This can be shown by the same argument 
as in Ni and Wei [9]. 

Now suppose that 

is a positive solution of (l.l), where Q,, x,, w, satisfy (2.6), (2.7) and (2.8). 
We show next that u, is a single-peaked solution of (1.1). 

We proceed by contradiction. Suppose u, has two local maximum points 
~2, p: in 0. We notice first that if ICO = lim,-+c z,, then for any fixed S > 0, 

=t N 

I 
I v %I2 + u,” 

@‘\Q (0) 

= o(l)eN, as c ---+ 0. 

We consider now the following two cases: 

Case 1: ~-llp,l -pzI --+ 00 as t: ---+ 0. 

In this case, we have 

I 
E21 v u,12 + u; = EN 

BRA (P:) I B 
R 
(o) I v 4” + 1412> 

where 
d(Y) = ‘LLdfY + P,‘) 

?I,’ - v in G,(RN), 

Vol. 15. no l-1998. 
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as in the first part of the proof, with ZI satisfying 

-A-u + 21 = Q(j-~(~))w”-~ in RN 
v>o 
‘u E H’(WN), 

where p1 = lim p,‘. Thus 
C----+0 

.! 
B (pl)f21V%12+~? 2 CEN 

Rr L 
for some positive constant C > 0; and, similarly, 

J’ 
B (p2)f21v~./2+~: LCtN 

Rr c 
From (2.14), (2.15) (2.16) and (2.17), we see that 

lim p,’ = 
e-0 

lim pp = Zo E--t0 

But 

and 

which contradicts (2.18), and hence case (1) is impossible 

Case 2 : ~-~/pi -p,2/ - .! < cm, as E - 0 

(2.16) 

(2.17) 

Annales de I’fnstitut Henri PoincarL Analyse non 1inCaire 
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In this case we may establish a contradiction using a similar argument to 
that in Ni and Takagi [lo]. 

The fact that lim,,cp, = limE+c x, follows by similar argument as in 
case (1). 

PROPOSITION 2.2. - Let u, be a single peaked solution of (1.1) of the 
form u, = ~1, PE,n, V& + w,, where xc, ~,,a, satisfy (2.6), (2.7), (2.8), 
and xc = lim,,ax, E R. Then 0&(x0) = 0. 

Proofi - Since u, satisfies (l.l), multiplication of the equation (1.1) by 
8% - and integration by parts yield 
dYj 

;J,, (z)2ndo= ;lu;oQ(y)dy. (2.19) 

au 
since on 80, vu = (~u.n)n = (-)n. Here n denotes the exterior unit 
normal to 80. We estimate next &?right hand side of (2.19): 

s 
UtYYPdY 

dYi 

= JG,nK,,,(Y) + WdY)lPg$Y 
J 2 

=t N 

s 
bd+L& V(x) + zu,(tx + q)l”&Q(tx + x,)dx (2.20) 

R L>TC 

Since w,(ex + 2,) aQ . - 0 strongly in HA (W”), z is bounded, and 

a, - (Q(x~))-~/(P-~), we deduce form (2.20) that ’ 

.I uP(y)aQ(y) E -&" = E NaQ Gus + o(l), (2.21) 
z 

where a0 = l~oa, = (Q(xo))-~‘(~-~). Now let cp E Cr(WN) be such 
that 

cp=10ndil;cpz OforxE{yE~td((y,dR)>S} 

Then (pu, satisfies the equation 

-t2A(~u,) = ~(Q(x)u:-~ - ue) - ~~(2 v cp. vu, + u,Acp) 3 ft (2.22) 
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Since the embedding W1a2( R) --+ Lw (XI) is continuous, we deduce 
from (2.19) and (2.22) that 

(2.23) 
The last inequality follows from the Schauder’s inequality. 

Since U, is single peaked, we may use the argument of Ni and Wei 
[9J to show that 

for any (Y > 0, where C = C(o) is a positive constant. 
But X, - :~a E R, t - 0, and therefore for sufficiently small S > 0 

we have 

‘U,(Z) 5 ce-“’ (2.24) 

for some positive constants C! r, and for all II: E {y E R : d(y, &!) < 0). 
Since cp(z) = 0 for d(:r, 82) > 6, we have 

for any A > 0, as t - 0 We estimate next the term J’ v(p. VU,. Multiply 
(I .I) by (p2u, and integrate by parts to obtain 

f2 * 
.! 

(P21v42+2 (PUty7Y.C7uF+ 
.! 

/ y2uf = J’ Q(:x)y2u;: (2.26) 

for any cp E Cr(R”). Set cp G 0 in B~/~(za);cp zz 1 in d2\B,(za). Then 
we have from (2.24) and (2.26) that 

t2 
s 

y21 v &I2 < ce-‘1’ 

for some positive constants C, r. Thus, 

& -A 
I . n,,,,,,, ’ v 7LJ2 - O, 

as t - 0, for all A > 0. Hence 
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as c - 0, for all A > 0. From (2.22), (2.23), (2.25) and (2.27) we obtain 

ECA s l-l 
8% 2 -o 3 m an 

as E - 0, for all A > 0, and hence by (2.19), (2.21), and the hypotheses 
on ut, we have 

ao v Q(xo) s V" + o( 1) = dN-*) RN s ($*rdo - 0, 
as t -+ 0. We conclude that 

o&(~o) = 0 
This completes the proof of Proposition 2.2. 

PROPOSITION 2.3. - If u, is the least energy solution of (1.1) then 

where Qtif = maxzEn&( and 

(ii) uu, is single peaked and the peak p, --+ ~0, as t ---+ 0, where, Qbo) = QM 
Proo$ - Let 2 E n be a global maximum of Q(Z) on a. Choose 2, + :i: 

and E-‘d (x,, 80) --+ cc (if .? E fl, we may choose X, = ?). Then, 

I141~-2’p = IMf/( / Q(Y)u:)~‘~’ 

(I > 
2/P =E N(1--2’qlP~~,yv~~2/ Q(~Y + 4I~m,VI” 

’ %>Y 

= pY--2/P) A + o(1) 

[Q(xo)A + o(l)]“lp ’ 

as e ---+ 0, and (i) follows. To show (ii) we proceed by contradiction. 
Assume U, has two local maximum points pi,pz. Then as in Proposition 
2.1, we have two cases to consider: 

Vol. 15, no l-1998. 
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Case 1. 
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OP$ -PZI ---+ 00, as 6 -+ 0. 

In this case, we have 

where v:(y) = U,(EY + pi), 
vi solves the problem 

% = 1,2, and wf ---f vi in Cz,(RN), where 

-Av + 2, = Q(pi)wP 
v > 0,w E H1(WN), 

where pz = lim pt. Therefore, we have 
e-0 

A 
A 

Q@l)& + (Q(p”))‘%-2’ + O(l) > 

> EN 
Q 

+ 00) 
M > 

This contradicts (i). 
Case 2. e-l (p, - p,2( 5 e. We may argue as in Proposition 2.1 to show 

that this is impossible. Hence U, is single peaked. To show that the peak 
p, -+ 20, as E --+ 0, we first notice that if p, -+ 2 # x0, then 

llUrlli->~,,.(i.)(~21~2(112+il:)=iNS )v%)2+u,2, t BR(O) 
where w,(y) = u,(E~ + p,), and V, --+ ‘u in Cic(WN), Arguing as above, 
we may choose R large enough to obtain 

IluEllf 2 EN ((Q(,&-2’ 2;-2) + 41) 
QM 

Contradicting (i). 

Remark 2.4, - The hypotesis that x0 = lim,,o x, E R, in Proposition 

2.2, is satisfied if we assume, for example, that R is convex and 3 / 
This can be shown by an argument similar to that used in’& 

< 0. 
8 &, Ni, 

Nirenberg [7], using the moving planes method. 
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3. EXISTENCE AND UNIQUENESS 
IN THE NON-DEGENERATE CASE 

In this section we assume x0 E R is a nondegenerate critical point of 
Q(x). The main results of this section are: 

THEOREM 3.1. - Zf Q has k-nondegenerate critical points al,. . . , aa in 
fI, then the problem (1.1) has exactly k single peaked solutions of the form 

i = l,..., k, where C$ E R+,z”; E R and wt E E,,,,, satisfy 

a”, mm.,+ (Q(a7)--l/(P--P) 

x”, - a’ 

as c - 0. 

THEOREM 3.2. - The problem (1.1) has, for small E, a unique least energy 
solution of the form 

Q, E R, x, E R and w, E EC,,<, provided that MaxzQ(x) is uniquely 
attained at x0 E 0, and x0 is a nondegenerate critical point of Q. 
Furthermore, x, ---+ x0. 

Let u, be a single-peaked solution of (1.1) of the form 

UC = d%,&Z< + we, 
2, E f&w, E J%,,~, and 
cxE - (Q(a))-“(p-2) 

2, - a 

IlwEllt = o(EN’2), 

(3.1) 

(3.2) 

as E --+ 0, where a is a nondegenerate critical point of Q in C?. We assume 
for simplicity of notations that a = 0. By changing the variables y = : , 
we see that U,(y) = u, (cy) is a solution of 

- Au + u = Q(ey)~~-l in C& 
u>O in& and u = 0 on do,, (3.3) 
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where at, = {g : q E 0}, and & has a nondegenerate critical point at 
a = 0. 

Now 

where y, = 5, and x, ---+ 0 as 6 --+ 0. 
E 

We shall use the notations ( , ) and 11 11 to denote the standard product 
and the norm in Hi (R,). Define 

K(u) = (1 I v 4” + R L u2)/(le Q(~Y)~IP)~‘~ 

for u E H,” (&) 

FE,Y = 
1 

2r E If&) : (Pn,VY,v) = 0, 

(Egb) =0,j=1,..., N}: 

Je(y,4 = K(&&, + u>, 21 E Fqy. 

We notice that GL, is a critical point of K, in Hi (0,). 

~OPOSITION 3.3. - There exist to > 0, So > 0, such that for 
y E B&(O), E E (0, ~01, S E (0, So], there exists a unique Cl-map : y it vY, 
from Bh(0) to FE,Y, such that 

( i3J,(Y>%),w 
dv > 

= o 

for all w E FE,y. Furthermore, 

ll%ll = Ok21 

as E - 0 

Proo$ - The argument is very similar to that used by A. Bahri and J. 
Coron [l], and 0. Rey [l 11. We wiI1 be sketchy. 
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Expand 

JE(Y> w> = J~(Y, 0) + ft,,(d + Ge,y(4 + Rc,Y(w), (3.5) 

where 

ll%vyl12 
fE'yb) = -(s,. Q(Ez)~P~,VJ$+~ R, J 

Q(41Pn,VyIp-1~ (3.6) 

IIpdu” 
GE,yb) = (J,, Q(~~)JPo,VyIP)2/~ 

and R,,,(v) satisfies 

RE,y(w) = O(~IWII~'"(~~~)) 
R:,,(w) = O(IIVI(~'"(~,P-~)) 
R:,y(w) = O(IIWI(~'"('J~-~)) 

f l ,y is a continuous linear form over FE,y equipped with the scalar product 
(,) of Hi(&). Therefore 31f,,, E FE,Y such thatfC,,(w) = (fe,,,v) for 
all w E FE,y. Furthermore, G,,, is a continuous quadratic form over FE,y. 
Moreover, there exists p > 0 such that for E small enough 

G,&) L PII~I~, 21 E Fw (3.8) 

A proof of the above inequality was given in [4]. This implies the existence 
of a unique symmetric and coercive operator A,,, from FE,y onto itself, 
such that 

for all w E FE,y. 
Using these notations, we have 

Vol. 15, II” 1.1998. 
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Using the implicit function theorem and arguing as in [ 1 I] we establish the 
existence of a unique Cl-map y ---+ uy, such that 

for all w E FE,y: and 

II%11 L wfwll (3.10) 

for some positive constant C. We estimate ]]fE,,]l next: 

IJ R Q(=W=O,V~I~-~~ I IJ = (Qk4 - Q(OWd%Ip-l~ t 
=o E2 

(J’ I~%,Vlp-114 > 
= 0k2)1141~ (3.11) 

where we have used the identity 

0 = (P~,V,,W) = s I&2, v, IP% 21 E Fe,y, R c 
and the hypotheses on Q. From (3.6) and (3.11) we deduce that 

Ilfwll = 0 (E2>, 
and the conclusion follows from (3.10). 

From Proposition 3.3 we may define 

L(Y) = J,(Y, %A = K,(Pdy + %A, (3.12) 

for y E I?&, where S is small enough such that Proposition 3.3 holds. 
Define 

Remark 3.4. - (y, w) E ME is a critical point of J, if and only if y is a 
critical point of L, in Bb and v = wy, where wy is given by Proposition 
3.3. Furthermore, for small E, (y, w) E A!& is a critical point of J, if and 
only if u = Pfl,Vy + w is a critical point of K, this may be proved as in 
[ 111. We further notice that 

y = (K;(P&, + wy), v + 2) 
2 2 2 

(3.13) 

Annules de l’lnstitut Henri Poincarc! - Analyse non h&ire 
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LEMMA 3.5. - Let co, So be as in Proposition 3.3 Then 

deg (0, v-L, h(O)) = C-l)“, 

where n is the number of negative eigenvalues of the matrix (PQ(0). In 
particular, vL,(y) = 0 has a solution in B6(0). 

Proofi - We first approxiamate v L,. Let vY, J/ E Bg (0) be as in 
Proposition 3.3. Let us write 

aw N 
apa vy 

L=Wi+QiPO,Vy+Cyij- 
dYi aYi ’ 

(3.14) 
j=l 

i = l,..., IV, where wi is the orthogonal projection of 3 in FE,y. The 
ayi 

following estimates are established in Appendix A: 

a; = 0(,-q, for some e > 0 

“iij = O(E2), 
IIWII = Ok2), 

i,j = l,..., N. By (3.9) and (3.12) we have 

(K(Pn,v, + ‘uy), 4 = 0 

for all w E FE,Y. Hence by (3.13) and (3.14) we have 

(3.15) 

(3.16) 

a= ah v, ah v, 
ayi ( 

JaPc2,Vy + W,),~iP~,vy + &$- + L 
j=l aYi ) 

2 (PO, V, + WY, a2&vy + &PC?, vy + CEl Yii a?~jvy ) 
= 

(J,, Q(=)IPdy + WYI~)~” 

WC&/ + %112 - 
.fo, QbW’n, v, + dp 

X 
J Q(4lPr~v~ + ~ylp-2(Po,Vy + %,I 
0, 

From Appendix A, we have 

( 

p v apd4 
a y>- 

aYi > 

= o(,+) 
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al?2 vy for some e > 0. Thus (noting that (vy , ( ayi ) = O) 

II1 1 = O(e-“‘) for some ! > 0, as E ---+ 0. (3.18) 

We estimate 1, next: We first notice that for some C > 0, 

IP,Jgz) - V&)~ < ce-“’ 

for all z E R,. This follows easily from the Maximum principle. We 
further notice that 

IIPOL + %112 A + o(l) 
(JQ(~x)lPfi,I/y + u~IP)%+~ = [Q(O)A + o(l>]t+’ 

(3.19) 

This follows easily from the estimate on wY in proposition (3.3) and the 
hypothesis on Q(z). Here A = [lV,ll”. We also have, by Proposition 3.3, that 

+ 0 (llwyllmin(2~p-1)) = O(2), 

and 

J 0, 
(&(a$ - Q(cy))lV, + uJ~-~(V~ + uY)z + O(8) 

z 

= J R r +y(Qk~ + “Y) - Q~Y/)) 

IV + Wy(Z + y)l"-'(V + wy(y + z))$ + o(c-p") N =E /'c f&+y j=l U,Q(rg)y,Vp-‘$ z 
+; N 

Jc Dj2,Q(cy)yjykVp-’ E 
ay, 

+ O(E2) 
‘,+y j,k=l 

= &Q(EY) J RN YY+g + o(c2) z 
= dIDi + O(E2), 

av 
where B = JRN yiVP-lz is independent of i, by symmetry. 

z 
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Hence 

Thus 

12 = 
A + o(l) 

(&@)A + o(l))?+’ 
BdliQ(~y) + O(E2) (3.20) 

VL = 
B 

(Q(O)):+‘A: 
E Di Q(EY) + 4~~) (3.21) 

Since det D2Q(0) # 0, there is S > 0 such that 

(3.22) 

for some c, > 0 and for all z E dBG (0). 

We see from (3.21), (3.22) that 

d&O, VL &CO)) = d&O, BE 
(Q(0))%+lA2/p 

v Q(EY), &CO)) 

= ded0,vQ(~),&d0)) 
= sign det D2Q(0) = (-1)” 

This completes the proof of Lemma 3.5. 

PROPOSITION 3.4. - There exists ~0, 80 > 0 such that for 0 < E 5 ~0, 0 < 
6 < So, L, has a unique critical point in Bb(O). 

Proofi - We argue as in Glangetas [8]. We have the following uniform 
estimate for all z such that vL, (x) = 0 : 

a2-qxL1> 2 AI-~/P -=- 
dX$Xj P (Q(W”‘p 

c2DijQ(0) + o(c”) (3.23) 

The proof of (3.23) is given in Appendix A. Hence any critical point of L, 
is an isolated point, for E sufficiently small. 

Now choose ~0, SO such that Lemma 3.5 holds. Then L, has, for any 
0 < S < So, a finite number, say ko, of critical points in Bh(O) at 
X1,...,Xko. On the other hand, (3.23) implies that 

det (z) = (f (lALF,p) Ne2”detD2Q(0) + o(e2N), 

and hence 

sign (det (3)) = (--I)~ (3.24) 
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for all critical points z of L, in B&(O). Using Proposition 3.3 and a 
classical property of the degree, we have 

(-I)” = deg(O, VL,, Bs(0)) = 2&&O, OL,, &(xi)) = ko(-1)“. 
i=l 

and therefore k. = 1. This completes the proof of Proposition 3.6. 
The proof of Theorem 3.1 will follow if we show that ys in (3.4) satisfies 

yE --+ 0 as E ----+ 0, since this implies that ye is a critical point of L, in 
I36 for E sufficiently small 0 < S < So. 

LEMMA 3.7. - Let u, be a single-peaked solution of (1.1) of the form (3.1) 
with (Y,, z,, w, satisfying (3.2), and a = lime-o x, is a nondegenerate 
critical point of Q in 0. Then 

lx, - a( = O(E’) 

Proof - From (2.19) we have 

=E 
-(N-2) (3.25) 

Expand the left side of (3.25) to obtain 

J R,,z VQ~Y + ~tH4V’nr,z,vlp + ~~-lIp~~,,~vIp-lw,(~y + x,)} 

+ o(llw.llft-“) = O(E2), 

and since [I’o,,,, V(y) - V(y)1 5 Ce-‘1’ for all y E R,,,c by the Maximum 
principle, where C, T are positive constants, we have 

s aQ(ty + xC){afVP + c~$‘-~V~-‘w,(~y + xc,)} 
cl 

= O(E2). (3.26) 

Since w, E E,+, we have 

.I vp-l(Y)w&Y + 4 = (%K,z,, we), = 0 
a ,x, 
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Therefore 

= I (~Q(EY + 2,) - vQ(~)V~-~~~Y + 2,) 
0, >%. 

= O(E)llW,ll,e2 (3.27) 

We estimate llwEl13 next: 
We notice first that (z,, -&q) is a critical point of j, defined by 

JEb, 4 = ~m,,v,,, + 4, 

in E,>,<, where I?, is given by 

tie(u) = (1 c21 v u12 + u2,/(l Q(YY)W)~‘~ 
R 

By following the argument in Proposition 3.3 we obtain 

lb4 I mLz:, IL 

where jC+ is given by 

llp4&119 
fw(w) = -(& Q(~)lP~,&+.lp)~+’ R I 

&(W~,&,l~-~w 

By estimating fC,zc, as in Proposition 3.3, we obtain 

II419 = O(cN+2) 

We also have 

(3.28) 

I VQ(EY + dvp ~2,,2 
< 

= 
I oQ(4Vp + [vQ(q/ + ~1 - oQC4lV” ~2,,z L I 

n,,~ 
r 

= vQ(xE) lN VP + t lx D2Q(4~Vp + Ok2) 

= vQ(z:E) s,N VP + ok2)> (3.29) 
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where we used the fact that 

.I ~“Q(xAYV~(Y) = 0, 
RN 

by the radial symmetry of V. 
Combining (3.25)-(3.29) we obtain 

yyQ(xe) iN VP = ok2) 

But detD2Q(zo) # 0, and therefore we conlude that 

Ix, - 201 = O(E2) 

Proof of Theorem 3 .1 . - Let a be a non-degenerate critical point of Q. 
We may assume that a = 0. Now uI, is a single-peaked solution of (1.1) 
of the form 

(3.30) 

with 
a, - (Q(O))-“‘“-“’ 
2, - 0 

llwelle = oV2), 

as E - 0, we E J%,,~, if and only if yE = 3 is a critical point of L,, 
E 

and G(Y) = (Y, 
4fY) E F 

fly.. 

By Lemma 3.7, yc - 0 as e - 0, and therefore ye E I&(O) for any 
small S, provided E is sufficiently small. Since L, has a unique critical point 
in B6 (0)) for small S,( 1.1) has a unique single-peaked solution of the form 
(3.40), and Theorem (3.1) follows. 

Proof of Theorem 3.2. - By Propositions 2.1, 2.3, u, is a least energy 
solution, and is a single-peaked solution of the form 

where x, - x0, aE - (Q(x~))-~/(~-‘), IIwelle - 0, and ww, E EC,,*> 
as E ---+ 0. 

Since Max&( ) x is uniquely attained at ~0, the conclusion follows from 
Theorem 3.1. 
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4. EXISTENCE IN THE DEGENERATE CASE 

In this section we establish the existence of single-peaked solutions when 
Q(x) has strict local maximum points in ai, which are not neccessarily 
nondegenerate critical points, as required in sections 2 and 3. In fact, we 
will only require that Q is Lipschitz continuous on 2 , and so it may have 
no critical points in R. The main result of this section is the following. 

THEOREM 4.1. - Assume Q is Lipschitz continuous in a. Let x0 E 2 
be strict Zocal maximum point of Q(x), that is, Q(xg) > Q(x) for 
x E &(x0) i-l fl\{xo) 2 f or some 6 > 0. Then (1.1) has a single peaked 
solution of the form 

where 

Furthermore, 

UL, = ff,p,,nV,,zc + we, 

ct, - (Q(x~)-“(~-~), 

x, - x0, 
e-‘d(x,, aa) - co, 

ll4lf = OkN) 
we E E,,,< 

(4.1) 

(4.2) 

lbEtl’ ’ EN ( (Q(xo);2,“-2’ 
+0(1) . 

> 
We will prove Theorem 4.1 when 20 E dR . The case xc E R can be 

discussed in a similar way. 
An example will be given to show that, contrary to the case of 

nondegenerate critical points in C& a nondegenerate critical point on 6’0 
doesn’t correspond to a single peaked solution of (1.1) with its peak 
tending to z. as E - 0. 

Let ~0 E 80 denote a point where Q has a strict local maximum. 
Define 

A, = 
1 

x E Ru&j;d(z,XI) > +F 
1 

(4.3) 

where H is a large positive constant to be determined, and 6 is a fixed small 
positive constant such that &(x0) > Q(Z) for all z E B&(20) U fl\{~o}. 

Define 

kc(u) = (s nE21 B u12 + u2)/( ~Qb~l~lp)2’p 
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for u E Hi(R); let 

Consider the following minimization problem: 

inf{CIF(x, w);z E &, ]]w]lf L beN, w E E,,,} (4.4) 

It is easy to show that the infimum in (4.4) is achieved, since 2 < p < 
2N/(N - 2). w e now state a proposition which is crucial in the proof 
of Theorem 4.1. 

PROPOSITION 4.2. - Let 

M = {(x,w) : :c E AE>w E E,,,, and llwll~ 2 6~~) 

Then for sufJiciently small E > 0, 

u = pF,RK,S + w 

is a critical point of K, if ( 2, w) is a critical point of J, in M. 

The proof is very similar to the proof given in [4], [ 111. We omit it here. 
To prove Theorem 4.1 it is enough to establish the existence of critical 

points in M. We need the following estimates. First we introduce the 
functions pkp, &,g as in [9]: For p E R,y E Q2F,P, set z = cy +p, 

CpdY) = V(Y) - P&Y(Y) 

lije,p = -fin (P~,~,(Y) (4.5) 

LEMMA 4.3. - Assume dR is of class Cl. Let p, E R satisfies 
E/d(p,, 80) - 0 as F + 0. Then for any co > 0 there is ~0 such 
that for E < to 

$G,W L &,p,(~e) < cod(p,,dfl) (4.6) 

Proof - The inequality $J~,~, (p,) 2 cod(p,, 80) is proved in Lemma 4.6 
of [9]. We prove the other inequality. 

Let p, E dR be such that d(p,, aa) = Ipt - j5,, 1. Let yF be a point on 
the ray p,p, such that IyE - p,l = (1 + 7)/p, - p,(, where 7 > 0 is small 
enough so that B,,(,E-i;E) II n = {p,}. 
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Set 
%(X) = (1 - 71)(IPe -Pi- rllYF - 4) 

We now use Lemma 4.5 of [9] to obtain 

yil.c,p* 2 (1 - rl)lx - Pcl 2 11 - VIIPC -P,I 
> (1 - rl)(lPe 3% - rllYyE - 4) = 44 (4.7) 

for sufficiently small E. 
But simple calculations show that 

~A’u, - 1 ~7 v,12 + 1 > 
-CE 

rllYe -RI - 
q2(1 - # + 1 

-Ct 

= 77(1+71)bc -P,l - 
q2(1 - r1)2 + 1 > 0 

since C/ Ip, - ?>, I + 0, as E --+ 0, by hypothesis. Hence by the Maximum 
principal, we conclude that 

dkPh) L 4Pc) = (1 - d(lPe - P,I - VlYc - Pcl) 
= (1 - rl)P - 41 + rl)llPE -PA 

> ; d(Pc, 80) 

This completes the proof of Lemma 4.3. 

LEMMA 4.4. - Let ~0 E dR denote a point where Q has a strict local 
maximum. Let 2, E (20 + tv : t < 0) be a point such that 

1 
12, - 201 = 6ln -, 

E 

where v is the unit outward normal to dR at x0. Then 

J&,0> I 

$Y--al~) 

(Q(xo)A)~‘~ 
{A + 27~~‘~ + o(&~)} 

for some positive constant y. 

Prooj - The following estimates were established by Ni and Wei [9]: 

II%x,& Ilf = EN IRL,z, VII2 
= EN(A _ 2ye-$+‘.+.(“‘) + o(e-~tiL.~~&.))) (4.8) 
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But 

IJ (Q(Y) - Q(~o>>KnK,z, I’ 

I c J’ IY - XOllP,,&,Z~ IP 

=C 
< 

+C 
< 

5 CIt ln(i)At” + CcN J VP 
RN\B,, ~(0) 

’ 5 C&“(Al-In (5) +F) 

= CENO( E3’2) (4.10) 

Using (4.8), (4.9) and (4.10), we obtain 

&(z,,O) = E 
N(l-;) {A - ‘Q-h&~) + o(e-;‘h&))} 

{ 
{Q(xo)(A - 2-w-T %.&)) 

+o(e-9kze (~1 + ,3/2))2h 
1 

&“(1--2/~)~1--2/~ 
= 

Q(xo)~‘P 
x { 1 + ‘~~~-;i.,z, (z<) + ,(,-%z, (zc) + E3/2)} ~4.~~1 

By Lemma 4.3, we have 
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Therefore, 

p(1--2/P) 

Jd49 5 Q(5.)2,P A1-2’p(l + 27~“~ + c@/“)), 

which completes the proof of Lemma 4.4. 

Proof of Theorem 4.1. - We first derive a lower bound for c?, (xc, q), 
where 

we have 

=QE 
N 

J 
Q(EY -I- GN’o,,,, I’ + W&Y + 41’ R 

6.I. 
= c”{ 

J 
Q(EY + ~)(IPs-ie,,< VIP + ~lf’n,,,, VIp%k~ + X:E) R 

c,Ic. 

+PW) 
W-L,,, v)p-2w,“(Ey + G)) 

+ llWc%Y + 2,),lmin(p,3)) 

= ~“QW{ 
J 

(WI,,,, VIP + oh,,,, VIp-~+y + 4 
+ P(P - 1) 

(P%,, v)p-2w&/ + G)) 

+ I,“& + 5,)llmin(p~3) + O(E)} 

= ~NQ(4 
J 

P(P - 1) S(P%,,< 
(Pa,,,, VP{1 + 2 

v)p-2w,2(Ey + Z,) 

n t.z. s,,,ze PL, VP 

+ O(e-(3+“)I’.‘:(‘f’)liw,(Ey + &)ll 

f O(E) + IJw,(q/ -t- &)pn(p,3)} (4.13) 

where o is some positive constant. 
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Combining (4.7) and (4.8) we obtain 

&(x~,w~) = d-:‘“(Q(xF))-2/” IIp%z, VII2 
sn,,z< l%,c VIP 

p + II4fY + dl12 
llP% ,SI VII2 

+ (qE) + o(e-(3+“)fk~ f(“f9114~Y + 411 
+ O(llw,(ty + x,)lyLin(PJ)} 

> E(1-3N(Q(2,))--2/P (s 
- 

liT;;zc ‘II2 (1 + P’ll4Y + G)l12 
%,z, <,s* vlp)2’p 

+ (qE) + q-(;+“)flDe.r+ (zf))IIW,(fY + &)I1 
+ O(IIL&(ty + x,)))mirl(pq} 

From the above inequatity, (4.12), and (4.13), we obtain 

> E~(~-~IP)(Q(~,))-~/P{A~-~/P + 2ye-f;‘..ze (z.) + o(e-~&,z<(~<)~ 
x (1 + p’llw,(fy + &)[I2 + O(t) + 0(,-(3+u)f~~.~~(~.))ll,t(,y + x,)/l 
+ O( ((L&y + 2,) ((min(p*3))) (4.14) 

We are now ready to prove that Z, E A,, and IIwB(~y + x,)11 - 0 as 
E - 0. 

Claim 1. IIwc(~y + xc)11 ---+ 0 as E -+ 0. 
In fact, since l[~Jlf < SP, we have I[w,(E~ + ZE,)II~ < 6. Therefore, 

for small 6, we have 

1 + /#d&y + x,)(12 + O(t) + O(e-(~+“)~Y’~,s’(2,))IIW~(ty + x,)11 
+ O( IIw,(ey + x,)ll)min(P,3) 
> 1 + /((Wt(Ey + x,)((2 + O(E + e-(l+2c)fv- (q 

Thus, from Lemma 4.4, (4.14) and the fact that (z~,w~) is a minimizer 
of j;, we get 

tN(1-2’J’)(Q(~0))-2’PA1P2’P(1 + p”llw&y + x,)l12 + o(l)) 

5 &(w4) L &(%O) 
< E~(~-~/~)(Q(~~))-~‘~A~-~‘~(~ + o(l)) - 
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Therefore, IIwe(ey + x,)1\ - 0, as E --+ 0. In particular, if E > 0 is 
small enough, 

IlkJEll: = 2$J,(q/ + x,)l12 < $6. 

Claim 2. 2, E A, for small t > 0. 
We procedd by contradiction. Suppose x, E dA, for all small E. There 

are two clases to consider: 
(i) 5, E dBb(xa) U R. Then 

I - 7 > Q(xt) 

for some positive r. From Lemma 4.4 and inequality (4.14), we have 

~~(~-~‘p)(Q(x~) - ~)-~h-~‘“(l + o(l)) 

I L(w4) 2 &(Q) 

< ~~(~-~~~)(&(x~))-~‘~A~-~‘~(l + o(l)) - 

where o(l) - 0 as E - 0. This is a contradiction. 
(ii) Suppose for any to, HO > 0, there is 0 < t < to, H > HO, such 

that x, satisfies 

d(x,, 130) = $eln(l/c) 

But from claim 1 and (4.14) we have 

> ~N(1-2/P)(Q(xO))-2/P{A1--2/P + 2ye-$d’d”.<) + o(,-~?k&<)} 

x (1 + p”lIC.&(Ey + 2,)112 + O(f + e--(l+2+J+(y} 

> t’““-2/P’(Q(Jo))~{Al-2/P + ye-;d’,,&,)} 
- 

x (1 + O(c + e-(l+2u)~~“,“~(“‘))}, 

and from j,(.z:, , w,) 5 J,(z,, 0)) and Lemma 4.4, we then have 

But 
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by (4.6). Hence 
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ECJH + O(PIH) 5 CP 

for some constant C > 0. This is a contradiction if we choose 
H > f&J = 2c(j 

From claims 1 and 2 we have that (z,, w,) is an interior point of M for 
small E, and therefore a critical point of j in M. By Proposition 4.2 we 
then have that u, = Pc,~Vc,., + w, is a critical point of K,, and Theorem 
4. follows. 

The following example shows that for a local minimum point of Q, 
a single peaked solution, with its peak approaching the minimum point, 
may not exist. 

Example. - Let R be the unit ball Bl(0) in RN. Let (p(z) E Ci[O, co) 
with q’(O) = 0, (p’(r) < 0; T > 0, and v”(O) < 0. Thus cp attains its global 
maximum at T = 0. Define Q(z) by 

where C is a positive constant large enough so that Q(z) > 1. Then Q(X) 
is decreasing in the xl-direction. 

Using the moving plane method in the zi-direction, as in [7], we see 
that every positive solution u of 

-c2Au + u = Q(x)u"-', 11: E R 
u(z) = 0 on dR 

attains its maximum in the set {X i = 0) n Bi(0). This shows that there 
is no positive solution of the above problem with single peak near the 
minimum point (1,O; 0,. . , 0) of Q. 

APPENDIX A 

In this appendix, we provide some of the estimates used in sections 2, 
3, and 4. We first state the following result, which is a direct consequence 
of the maximum principle. 
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LEMMA A.1. - There is a constant .! > 0 such that 

i,j = 1,“‘) N. 
From Lemma Al we obtain 

LEMMA A2. - There exists a constant C > 0 such that the following 
estimates hold: 

(p~,K,pa,V~) = 
J 

Vz-‘Po,V, = A + o(e-S) C-4.1) 
0, 

where 

(A.21 

( 
aRl<v, * = > J avp-l ap, v zs 

dXi ’ dXj Qt, 8Xi dXj 

= (P- 1) J fL 

VP-2 !g 2 + +-+) 

2 3 

= (P- 1) J Q, ~~-22 2 + O(e-eie) 
=(p-1) : 

3 
J 

= O(eeel:e, 

VP-l s g + O(e-“1’) 

’ 
3 

1 
i#j 

A + O(eeelC) i = j 

(A.3) 
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LEMMA A.3. - Let Q,,S~,V~,~ E Bs(O)~O < 6 < 60, be as in Proposition 
3.3. For 0 < F < to set 

i = l,..., N, where w; is the orthogonal projection of $$ on FC,Y. Then 
the following estimates hold: 

(pi = O(e-“‘): for some di > 0: 
yi3 = O(E’); 

IIw;II = O(f2), 

i,j = 1; . . . . N, and 0 < F < ~0. 
‘ 

Proo$ - We first consider the scalar product in Hi(%) of cJv, with 
iJYi 

p v dPD<Vy 
a, Y’ (yYj for.j,Il = l,.... N : 

From (Al),(A2), (A3), and the estimate on \jvy\\ in Proposition 3.3, we Can 
solve the above equations for <xi and y;j and show that 

ai = O(eCfE), for some ! > 0, 

Yij = o(ll~yll> = W) 

To estimate (Iwi(( we follow the argument in [S, Proposition 3.21: 

D2KF(hJY + V,)(Wi,Wi) + D”K,(PQVy + vy) 

X =o (-4.4) 
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Direct calculations show 

D2K(U)(% $1 
2((P> Ici) 4(7&P) ’ 

= (j,, Q(~y)lulP)~/P - Jo, Q(E~)IuIP):+~ R, Q(Ey)‘U’P-2U’ J 
(A.5) 

4(7b 7/d - (1 Q(~y)luiyzu$) (1 
(J,, Q(~Y)IuI~)~+~ ~6 t Q(i~)l’il~-~‘~v) 

211412(P - 1) - 
CJ,, Q(~Y) b-4”) :+l J Qk~Y)l~l*-~vlL 

CL 
We have 

Claim (1): 

for some p’ > 0, uniformly for 0 < t < Ed, y E B6 (0), 0 < S < 60. In 
fact, from w; E Fc,y, and the estimate of llvY 11, we have 

II~d4 + %112 
(‘- l)Jo< Q(~‘y)l%Vy +dp 

X (I Q(EY) I&, Vy + vy I”-“w,” >> 2 Pllwil12 
0, 

But 
p%yy + ,$+Ji) = (WY+%) = O(l)llWill 

J Q(~Y)IJ’c& + ~,Ip-"(~~,Vy + ,QJ; Q, 
=I Qk~WnJyl~-~~i + o(l)llw;ll R < 

=.I (Q(~Y/) - Q(4P’d,Ip--lwi + 4l)llwill 
= o& 

Claim (I) follows by putting the above estimates into (A5) 
Claim (2): 

D2K,(Ps2, v, + w,) (F>Wi) = O(E2)11W;ll 
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In fact, 

J Q(EY)IPQ, KJ + u,/“-“(P& + ,uy)y = O(c2) (A.7) 
61, . I 

I. n Qk~)h< 5 + ?~,l”-“(&I, r/;, + @J; (A.81 

= W~)IIWII + ~(0) 1 pfi,v; + u,y-y~n, y, + T+,)u; 

= O(~2)ll~ill + Q(0) i’ I p&l”-l~i + O(lj~U,Il)~IW~,ll . II, 
= o(~2)11wll 

J R r Q(FY)P%, KJ + ,Q[~-~~LJ; . I 

where 

= &Q(O) I’ zu; + R + o(~~)I(w~IJ, . Q< 

R = Q(O), 
/< 
R (IV, + TJ~)~-’ - V+& 

? 

IRI 2 C J iW 
V~~“I~lIv,IIw~l 

** ayi 
if p < 3 

J if p > 3 R 
e 
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dV 
Since Vze3--J 5 C for 2 < p < 3, I I dYi 

14 5 wJ?4llll4l = 0(~*I141~ 

.I Q(cy)lPo,Vy + ~ylp-2 
Q, 

(A.9) 

Claim (2) follows from (AS), (A.6), (A.7), (A.8) and (A.9). 
From (A.4), claims (1) and (2), and the estimate on o;, we obtain 

P’ll~il12 = o(~2)llwill 
Thus 

IlWiII = Ok2> 

This completes the proof of Lemma A3. 

LEMMA A4. - There is co,60 > 0 such that 

$L,(z) 2 Al-z/” 

~ = 1, (Q(o))*/p axiaxj 
e21&Q(0) + o(F*) 

for 0 < t 5 60, 0 < 6 5 SO. 

Prooj: - Arguing as in Glagetas [7], we get 

e Is + I, (A.lO) 

From Claim (2) in Lemma A3, we have 

I, = O(E2)llW;ll = O(2) 

Now we estimate I,: 
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I3 consists of terms of the form 

I(E) = D2K(PR,C + %> 
ap, v, ap, v, 
e’ +- 

J z > 

Set G(u) = IM”/(J,, Q(~~)bl”) 
Since PQ, V, + V, is a critical point of K,, we have 

( 
PQ,K + vv,, &Fr,.li, 

> 
- L(PcLK 

3 

+vzc) 
s 

Q(EY)IPo,V, + ~zl~-~(P~,Yr + ,:,,;:;r; = O(A.ll) 
a, 2 J 

From the estimates in (A2), (A6), (A7), and from (A5), we see that 

I(‘) = [J,, Q(ry)~P&r + v,I~]~‘~ N 
apcle K aRlc K 

dZj ’ ax; > 

- (p - 1) L(Pn,K + VT) 

+ ‘k4) ’ [J,, Q(EY) [PO: V, + v, ,&712/p 4’) + ‘(“) (A’12) 

Form (A.1 l), we have 

We also have 
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Combining the above estimates and Lemma Al, we easily obtain 

J(E) = (G$$$) 

(A.14) 

But 

J RN 
(A.15) 

(A.16) 

Thus 

(P- 1) 

1 
J 

d2VP 
;+ 

J 

@VP-l 
=I- 

p RN ax;axj 
-w, + O(E4) 

RN ax;axj 

J 

@VP-l 
= Lw, + O(E4) 

RN dxidxj 

Therefore 

(A.17) 

a2vp-1 
= J A + O(t”) 

RN wzd - Q(O)A + O(e2) dxidxj Q(O) .l,- xwz + Ok4) 
2 J = O(E2) J a2vp-1 T&--p + O(f4) = O(f") (A.18) 

z 3 
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But 

(P- 1) 
s RN 

(Q(~Y> - Q(O))lK + d-‘~~ 
t J 

+ J RN (Q(EY) - QUWIK + uz I’-‘& 3 

+ O(E2) 

= $~D?,Q(o) 
J’ RN yiy’ 

s + o(c2) 
a 3 

YiYjV,p + O(E2) 

s 
VP + O(E2) 

RN 
Combining (A.14), (A.IS), and (A.19), we obtain 

J(c) = b2DfjQ(0)l VP + o(E’) 
P RN 

(A.19) 

(A.20) 

Hence 
I(E) = 

[Q(O)A]zp + o(l) 
A 
;t’D,Z,Q(O)+ o(c2) 

Therefore, 
d2-L (x) 2 Al-% 
-=-- 
dXg3Xj P IQ(0)12’p 

c2DfjQ(0) + o(e2), 

det (s) = (g ,$~j~$JN~2N det (D2Q(0)) + o(F~~) 

This completes the proof of Lemma A4. 
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