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ABSTRACT. - We study the Hamiltonian system (HS) 2 = JH’ (x) where 
H E C2 (RzN, R) satisfies H (0) = 0, H’ (0) = 0 and the quadratic 
form Q(X) = $ (H” (0) 5, X) is non-degenerate. We fix rc > 0 and 
assume that lF42N g E GE F decomposes into linear subspaces E and F 
which are invariant under the flow associated to the linearized system 
(LHS) :C = JH” (0) z and such that each solution of (LHS) in E is ro- 
periodic whereas no solution of (LHS) in F - 0 is rc-periodic. We write 
(T (ro) = CT& (v-~) for the signature of the quadratic form Q restricted to 
E. If (T (ro) # 0 then there exist periodic solutions of (HS) arbitrarily 
close to 0. More precisely we show, either there exists a sequence x1, --f 0 
of rk-periodic orbits on the energy level H-l (0) with rk + 70; or for 
each X close to 0 with Xa (r,,) > 0 the energy level H-l (A) contains 
at least i[cr (ro)l distinct periodic orbits of (HS) near 0 with periods near 
ro. This generalizes a result of Weinstein and Moser who assumed Q 1 E 
to be positive definite. 

RI%JMI? - Nous considerons le systbme hamiltonien (HS) j: = JH’ (x) 
ou H E C2 (R 2N R) satisfait H (0) = 0, H’(0) = 0 et la forme 
quadratique Q (x) 2 3 (H” (0) Z, X) est non-dCgCnCrCe. Nous fixons r. > 0 
et supposons R 2N g E @ F est la somme des sous-espaces lineaires 
E, F qui sont invariants sous le flot associe au systeme lineaire (LHS) 
.i: = JH” (0) 2. En plus chaque solution de (LHS) dans E est ra-periodique 
lorsqu’aucune des solutions de (LHS) dans F - 0 soit ro-periodique. Soit 
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u (70) = 0~ (70) la signature de la forme quadratique C) restreint 5 F,. 
Si IT (70) # 0 il existe des solutions pkriodiques de (HS) arbitrairement 
p&s de 0. Plus prCcisCment nous dCmontrons que ou bien il existe une 
suite zk + 0 des solutions -rk-p&iodique au niveau NV’ (0) avcc T/, .- 7; / 

ou bien pour chaque X pr6s de 0 tel que Xrr (TV,) > 0 il existe LILI moinx 
i Ir (ro)l solutions pkriodiques au niveau H-’ (X) pr?s de 0 avec dc 
pCriodes p&s de 70. Ce r&hat gCnCralise un th6or&ne de Weinstein et 
Moser qui supposent que QIE est positif dCfini. 

1. INTRODUCTION 

We consider the Hamiltonian system 

where 

:i: (t) = JH (3. (i)) WS) 

H : R2lV -+ R is of class C”, H (0) = 0. H’ (0) = 0; 33” (0) is 
non-singular and J = ( :I i) is the usual symplectic matrix. Thus the 
origin is an equilibrium and we are interested in periodic solutions of 
(HS) in the neighborhood of the equilibrium. This is an old problem. It 
is well known that periodic orbits near 0 can only exist if the linearized 
Hamiltonian system 

:i (t) = JH” (0) z (t) (LHS) 

has non-trivial periodic solutions, that is, if JH” (0) has a pair of purely 
imaginary eigenvalues f% N, CY > 0. Simple examples show that this 
necessary condition is not sufficient. We fix a period ro = 2 X: T/N, k: E N, 
of the linear system and let E = E (~“0) be the space of periodic solutions 
of (LHS) which have (not necessarily minimal) period 70. Assume that E 
has a complement F which is invariant under the flow associated to (LHS). 
This means that all eigenvalues of JH” (0) which are integer multiples 
of 27r1:/~0 = Z a/h: are semisimple. The Lyapunov center theorem [LJ 
guarantees the existence of a two-dimensional surface containing the origin 
which is foliated by periodic orbits of (HS) provided dimE = 2. This 
non-resonance condition has been removed by Weinstein [Wl] who proved 
the following. 

THEOREM (Weinstein 1973). - If the quadrutic jbrm Q (:I:) = 
i (H” (0) x7 x) is positive dejinite then for each X > 0 small there exists 



A GENERALIZATION OFTHE WEINSTEIN-MOSERTHEOREMS 693 

at least N geometrically different periodic orbits of (HS) on the energy 
.w,@.ce H-l (A). 

Two solutions x1, .c2 are said to be geometrically different if their 
trajectories :I: 1 ( W). x2 ( W) are disjoint, that is, if they are not obtained 
from each other by time translation. Clearly H is a first integral of (HS). 
Therefore the solutions can be parametrized by the energy but they do not 
form smooth surfaces in general. In [M] Moser weakened the assumptions 
of both the Lyapunov center theorem and Weinstein’s theorem. 

THEOREM (Moser 1976). - rf Q/E is positive definite then for each X > 0 
small there exist at least i dim E geometrically different periodic orbits of 
(HS) on H-l (A) with periods near 70. 

In the case dim E = 2 the energy provides a smooth parametrization 
of the periodic orbits. Thus, Moser recovers the Lyapunov center theorem. 
If Q is positive definite then one can split R2N 21 E (~1) $ . . . $ E (T,.) 
into subspaces E (7,) such that each E (7;) consists of r,-periodic orbits 
of (LHS), and rlr . . . q. are rationally independent. Here we identify a 
periodic orbit :I: E E (ri) with 2: (0) E IR 2N Weinstein’s theorem follows . 
by applying Moser’s result to each of the E (pi). 

The goal of this paper is to prove the following result. 

THEOREM 1.1. - Let o (~“0) = a~ (70) be the signature of the quadratic 
form Q restricted to E = E (rCo). If o (TO) # 0 then one of the following 
statements hold. 

(i) There exists a sequence of rk-periodic orbits zk of (HS) which lie on 
the energy surface H-l (0) - (0) with zk -+ 0 and ‘rk. -+ 70 as k --+ 30. 

(ii) There exists X0 > 0 such that there are at least i lo (~0) 1 geometrically 
diflerent periodic solutions of (HS) on H-l (A) with periods near ro for 
0 < /XI 5 X0 and X . o (~00) > 0. These solutions converge towards 0 as 
x - 0. 

The lower bound +]a (TO)[ in (ii) is optimal. (Observe that 0 (70) is an 
even integer.) Moser’s theorem corresponds to the case (T (700) = dim E (TV). 
It is not difficult to see that (i) cannot occur in this case. Whereas the 
energy surface H-l (A) will in general not be compact any more if Q is 
not positive (or negative) definite, the intersection H-l (A) n E is compact 
if QIE is positive definite. This compactness plays an important role in 
Moser’s proof of his theorem. In order to prove Moser’s theorem one can 
also apply Weinstein’s method for bifurcation of non-degenerate periodic 
manifolds but again it is important that the manifold H-l (A) n E is 
compact; see [Wl, 21. 
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It is not difficult to see that u (rO) # 0 implies the existence of periodic 
orbits near the origin. In [CMY] Chow, Mallet-Paret and Yorke use the 
Fuller index in order to prove the existence of a connected branch of 
periodic solutions bifurcating from the origin if CT (TV) # 0. In the case 
10 (T~)[ = 2. Th eorem 1 .I follows easily from their result. But they do 
not obtain a multiplicity result as in 1.1 (ii) if 1~ (~a)] > 2. Neither do 
they obtain the direction of the bifurcating solutions, that is, whether the 
solutions lie on H-l (X) for X > 0 or X < 0. On the other hand the result 
of Chow et al. generalizes to ordinary differential equations with a first 
integral. It is not needed that these are Hamiltonian. In general it cannot be 
expected that the solutions obtained in 1.1 lie on connected branches which 
bifurcate from the origin. A detailed count of the number of bifurcating 
orbits parametrized by the period can be found in the paper [FR] by Fade11 
and Rabinowitz. However, their result does not even imply the existence 
of one periodic solution on every energy surface H-l (X) with 1x1 small 
and X . 0 (70) > 0. In addition they do not obtain the direction of the 
bifurcating solutions. It is interesting to observe that the periods of the 
bifurcating solutions may be less than 70 or bigger than 70. In other words, 
the direction of the bifurcating solutions with the period as parameter is 
not determined by the signature a (70). Our paper can be considered as a 
fixed energy analogue of the fixed period result of [FRI. As in [FR] we 
shall apply variational methods and Bore1 cohomology. In addition we use 
ideas from equivariant Conley index theory. It should be mentioned that 
one can also prove the result of Fade11 and Rabinowitz in a similar spirit. 
Such an approach can be found in a paper by Floer and Zehnder [FZ] and, 
for more general bifurcation problems, in [B2]. 

In a certain sense the non-triviality of the signature is a necesary and 
sufficient condition for the existence of periodic orbits of (HS) near 0 if 
one does not know anything about the higher order terms of H. Namely, 
if Q is a non-degenerate quadratic form on W2,v ” E $ F as above with 
ac3 (~~/n) = 0 for all n E N then there exists a polynomial function 
H (x) = Q (x) + o (]~~~~“) such that (HS) does not have any small periodic 
solutions with period near r. except 0. We shall prove this in $ 6. 

We conclude this introduction with a sketch of the proof of Theorem 1.1. 
The T-periodic solutions of (HS) correspond to l-periodic solutions of 

These in turn correspond to critical points of the action functional 

A(2) = ; .i’ (-Ji (t), z(t)) dt 
0 
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restricted to the hypersurface {Z E X : IFI (z) = X}. Here X = 
H1 (S1, R2N) consists of the absolutely continuous l-periodic functions 
z : R -+ R2N with k E L2 and 

T-l:x+[w: ‘FI (x) = J 
1 

H (x (t)) dt. 
0 

The period r appears as Lagrange multiplier in this approach. We perform 
a reduction of the equation 

A’ (x) = T 7-l’ (x) 

near (ro, 0) to a finite-dimensional variational problem and are left with 
the problem of finding critical points of a function 

Ao (w) = A (w + w (w)) 

restricted to the level set {‘u E V : 7%~ (v) = Fl (w + W (u) j = X}. Here 
V is the kernel of the linearization 

X 3 x H A” (0) z - 70 W’ (0) x E x* iz x 

and w : V > U (0) --f VI c X is defined on a neighborhood U (0) of 0 
in V. Thus V g E and one checks that A0 and tie are of class C1 and 
that 3-10” (0) exists. In fact: 

J 
1 

(T-lb’ (0) w, w) = (7-t’ (0) w (t), w (t)) dt. 
0 

This suffices to apply the Morse Lemma to tia near 0. After a change of 
coordinates x0 looks near 0 like the non-degenerate quadratic form 

q := QlV : v 3 w t-+ f (7-l” (0) 21, w) E w. 

Therefore the level surfaces IHO (X) look locally like the level surfaces of 
4. If 4 is positive definite (which is just the situation of Moser’s theorem) 
on can conclude the proof easily upon observing that the functionals A, IFI, 
hence Ao, x0 are invariant under the action of S1 = R/Z on X induced 
by the time shifts: 

s1 x x 3 (0, x) H (qj : t H x (t + 0)) E x. 

Moreover, ‘FI;’ (X) g q-l(X) ’ d’ff is 1 eomorphic to the unit sphere SV of 
V. And any Cl-functional SV .+ W which is invariant under the action of 
S1 has at least $ dim V = $ dim E S1-orbits of critical points. 

This elementary argument from S1-equivariant critical point theory does 
not work if q is indefinite. Instead we look at the local flow cpx on 
CA := 7-l;’ (A) h’ h w ic is essentially induced by the negative gradient of 
AalEx. Since A0 and 7& are only of class C1 the gradient vector field is 
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of class Co, so it may not be integrable and has to be replaced by a locally 
Lipschitz continuous gradient-like vector field which leaves CA invariant 
for all X and whose zero set is close to the set of critical points of dolEA. 
We are not able to apply standard minimax methods because the function 
do is only defined near 0. The level surface CA c Ii (0) can be chosen 
to be open manifolds or manifolds with boundary. In both cases it does 
not seem possible to detect critical values by looking at a change in the 
topology of the sublevel sets Ai; = (~1 E CA : do (11) < c}. However, one 
observes that the hypersurfaces CA change their topology as X passes 0. 
In fact, they undergo a surgery. If ‘2 rl,+ (respectively 2 71,~) is the maximal 
dimension of a subspace of V on which q is positive (respectively negative) 
definite then X+X is obtained from C-X upon replacing a handle of type 
B2,?+ x ‘32?1--1 by S277+--1 x B2rl-. It its this change in the topology of 
C,Z, near 0 which forces the existence of stationary orbits of cp near the 
origin. In order to analyze the influence of this change on the flow cp,!, we 
use methods from equivariant Conley index theory and Bore1 cohomology. 
If n,+ > 71r then as S1-spaces X+X has a richer cohomological structure 
than C-X. The difference ni - ,r- = ijg (-ro)j is a lower bound for the 
number of stationary S1-orbits of px on CJ, if X > 0 is small. 

The paper is organized as follows. In 5 2 we present a variational 
formulation of the problem and perform the finite-dimensional reduction. 
Then in # 3 we collect a number of more or less known results on the 
equivariant Conley index and how Bore1 cohomology can be used to analyze 
equivariant flows. In 0 4 we construct the locally Lipschitz continuous 
vector field and begin to study the induced local how. Finally in # 5 we 
put the pieces together and prove Theorem 1.1. The paper concludes with 
a number of remarks and related results in $ 6. 

2. VARIATIONAL FORMULATION 
AND FINITE-DIMENSIONAL REDUCTION 

The treatment of (HS) which we describe in this section is a generalization 
of the one in [MW], Chapter 6, where a proof of Moser’s theorem is given. 
We give a sketch which contains details whenever we deviate from [MW]. 
This is necessary in order to make the paper readable because our indefinite 
case is not treated in the literature the way we need it and requires a 
number of changes and additions. 

We first recall that the subspaces E, F C R”;” are symplectic subspaces, 
that is, the symplectic form w (x. :y) = (Jx, y) is nondegenerate if restricted 
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to E or F. After making a linear symplectic change of coordinates in R2” 
we may therefore assume that the quadratic part Q of H has the form 

Q (T;) = Q (2:~) + Q (ICF) where x = ZE + “CF E E @ F. 

Since each solution of (LHS) in E is periodic we may assume in addition 
that 

where x;E = (41, . . .> qn. pl, . . . i p,,) 

Here the (~k are integer multiples of 27r/ru. Now we make a change of 
variables and look at 

:i = r JH’ (cc). (HSh 

Clearly, 1 -periodic solutions of (HS)r correspond to r-periodic solutions of 
(HS). We want to find l-periodic solution of (HS)r for r near re and n: near 
0. Let X = H1 (S1, R2N) be the Sobolev space of l-periodic functions 
‘I’ : I / R + R2” which are absolutely continuous with square integrable 
derivative. This is a Hilbert space with the usual scalar product 

(II:, y) := (27, Y)L” + (a, ?j)L’ 

and associated norm 1/x112 = 11x11$ + 11211&. In the sequel we shall also use 
( . ) to denote the scalar product in R 2N. We define the action functional 

A :X-+R, A(x) :== f /’ (-.I? (t), 1: (t)) dt 
- .o 

and 

7-l (2;) := f 
I 

‘l ‘FI :X+R; H (cc (t)) dt. 
* 0 

It is well known (and not difficult to see) that A is a quadratic form of 
class C” and ‘H is of class C2 with derivatives 

dA (z) y = (A’ (x), y) = 1’ (-J?(t), y(t)) dt 
. 0 

I 

1 

d3-1 (x) y = (7-L’ (x), y) = (H’ (ix (t)), y (t)) dt 
-0 

and 

d2 7-l (0) (y. z) = (7-l” (0) y, 2) = /-’ (H” (0) y(t), z(t)) cit. 

Thus a critical point II: E 7fi1 (X) of Al’k”l (X) satisfies (HS), with 

r = (A’ (x), ‘FI’ (x))/llW (x)11” 

Vol. 13. no 6.1997. 
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appearing as Lagrange multiplier. 

Since the action functional is strongly indefinite it is easier to make 
a reduction to a finite-dimensional constrained variational problem first. 
Let l := A” (0) - r. 7-f” (0) and V := ker L c X. Then L : X + X 
is a Fredholm operator of index 0. The kernel consists of the l-periodic 
solutions of 

i (t) = T,, JH” (0) z (t) (LHS),, 

so V 2 E. The Hilbert space X decomposes into the orthogonal direct sum 
of V and the image W of L because L is self adjoint. At this point we 
also recall the action of S1 = R/Z on X given by translation. For :c E X 
and 0 E S1 we define x0 E X by setting 

28 (t) := n: (t + 0). 

Clearly the scalar product in X is invariant under this action, i.e. 
(58, Ye) = (.? I/)? and so are A and IFI : A(ze) = A (:r) and 
3-1(x8) = X((z). Th ere ore f L is equivariant, i.e. L (~0) = (Lxz)~, and 
V, W are invariant subspaces of X. Let P : X -+ X be the orthogonal 
projection onto V. We write :r = II + ru with ‘ri = P z, 111 = (I - P) :I:. 
Now (HS)r is equivalent to the system 

P (A’ (u + w) - T 7-l’ (II + w)) = 0, (2.1) 

(I - P) (A’ (71 + w) - 7 7-C (71 + w)) = 0. (2.2) 

By the implicit function theorem (2.2) can be solved for w in terms of 7, 
w near ‘u = 0, w = 0, r = 70 because L : W --+ W is an isomorphism. In 
a neighborhood U (rO: 0) in W x V (2.2) defines a Cl-map 

,w* : U(nJ;O)-w 

such that (2.2) is satisfied near (Q-O, 0, 0) E R x V x IV iff ru = UI* (7. w). 
One easily checks that 

‘ * 
tu* (i-; 0) = 0 for all 7 and $ (~-a, 0) = 0. (2.3) 

Moreover, w* is equivariant: ru* (r. vO) = (UI* (r. v))o. It remains to solve 
the bifurcation equation 

P (A’ (v + IU* (T: 71)) - T (IFt’ (u + WI* (7, 7,))) = 0. (2.4) 

In order to do this we look at the quadratic form q induced by x” (0) on V: 

4 (1)) = I’ ’ (H” (0) 11 (t), 71 (t)) dt = (H” (0) 7/ (0), w (0)). 
-0 

.4nnale.s de l’lnstltut Henri Poincur6 Analyse non lintaire 
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We decompose V as V+ $ V- such that q is positive definite on V+ 
and negative definite on V-. We write v = uf + V- according to this 
decomposition. Both subspaces can be chosen to be invariant under the 
action of S1 on V. This implies that dim V+ = 2 n,+ and dim V- = 2 n- 
are even integers because there are no fixed points of the action except 0. 
The signature of q on V is u (~00) = 2 (n+ - n-). 

Now we consider the inner product of equation (2.4) with r/+ - ‘u-. 
Observing that the image of L is orthogonal to V this yields the equation 

((A’ - 73-1’ - L) (U + W* (T, ‘U)), U+ - 71-j = 0 (2.3 

which is defined for (7, V) E U ( ro, 0) c Iw x V. We want to solve this 
for 7 in terms of %t near (Q, 0). To this end we set 

g (7. II) := 7 - To - 
((A’ - r. IFI’ - L) (u + w* (7; II)), II+ - v-) 

(3-t’ (u + w* (7, II)), ‘II+ - ?I-) 

for ‘0 # 0 and 

9 CT, ?I) :=7----o for II=O. 

As in the proof of Lemma 6.11 of [MW] one checks that g : U (70, V) + R 
is well defined and continuous. Moreover, 2 (r. ?I) exists for all 
(~3 u). E U(ro, 0) an is continuous with $$ (~0, V) = 1. In addition d . 
?$ (7, II) exists for 21 # 0 and is continuous. The implicit function theorem 
yields a continuous map 

r* : U(0) + R 

where U (0) c V is a neighborhood of 0 in V, with the following properties. 
The equation g (r, V) = 0 is satisfied near (~0, 0) iff r = r* (v). In 
particular, r* (0) = 70. The map r* is of class C’ in U(0) - (0). 

Observe that equation (2.5) is equivalent to g (T, V) = 0 for ‘u # 0. 
Therefore, setting w (v) := u/* (r (v), 7~) it remains to solve 

P (A’ (u + ti (TI)) - T* (/I) 7-t (u + w (u))) = 0. (2.6) 
This is defined for v E U (0) c V. The equivariance of w* implies that g 
is invariant, hence r* is invariant and ?U is equivariant: w (~0) = (W (v))H 
for PI E U (0) and 6’ E S1. Since r* E Cr (U (0) - (0)) we have 
ti E C1 (U(0) - (0): W). Using (2.3) it follows that 

w wll4 -+ O as ?i+O, 

Hence dti (0) = 0. We claim that ti E C’ (U (0)) W), that is dti (v) -+ 0 
as *u + 0. By the definition of w and r* we obtain from (2.2) the equation 

(I - P) (A’ (u + 711 (?I)) - T* (v) 7-f’ (71 + w (91))) = 0. (2.7) 

Vol. 14, no 6-1997 
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Differentiating (2.7) yields 

jldw (w)jl < lldr* (II)// (I (~~~J~~) + 0 (1) as ‘II - 0. 

In order to estimate &* (1:) we differentiate the equation ~1 (r* (,(I), 11) = 0. 
This gives 

lldr* (w)II = Ildw (w)ll . o (1)/11,011 + o (1)/11~/1 as ‘~1 ---f 0. (2.9) 

Combining (2.8) and (2.9) we obtain 

(1 -o(l)) Ildw(w)lI < o(1) as ‘0 + 0, 

hence dw (II) + 0 as 11 + 0. 

Equation (2.6) can be reformulated as a finite-dimensional variational 
problem. We define 

A0 : U(0) i R. 71 H “4 (li + m (II)), 

and 

7-l” : IJ (0) -+ R. ‘II H 7-l (II + m (11)). 

These functionals are of class Cl. They are invariant under the action 
of S1 on U (0). Moreover, X0 (0) = 0 and R’a (0) = 0. We claim that 
‘FI{{ (0) exists and 

I 

.1 
(7-q (0) w, 11,) = (W (0) ‘/I (t). ‘u(t)) dt 

. 0 
This can be seen as follows: 

T-l;, (II) IL = 7-t (w + ,ru (w)) (11 + dl2 (w ) us) 

= (7-l” (0) (I, + 18 (w)), I/ + dlo (u) u) + o (~~~/~~~) 

= (7-l” (0) Ii. I/,) + 0 (~~1~~~) 

uniformly for bounded u E V. Here we used that 111 E G’l (U (0), IV). 
?r/ (0) = 0 and dti (0) = 0. 

If w E U(0) - (0) is a critical point of ~$~17-1,~ (X) then there exists a 
Lagrange multiplier r such that 

A:, (II) = 7 ?i;, (Ii). 

A simple computation shows that this implies r = r* (?I) and that 

:c = II + ?3 (w) = ‘U + w* (r* (Ii), *Ii) 

satisfies A’ (z) = r 3-1’ (x) , so z solves (HS)r and Z : t H :I: (f/r) solves 
(HS). The periodic orbit Z satisfies 

1 -7 
T - 

I 
H(z(t))dt = H (cc (t)) dt = IFI (x) = ‘Ho (u) = A. 

r -0 
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This implies H (n: (t)) = X for all t, so 5 lies on the energy surface H-l (A). 
If 0 is an isolated periodic solution of (HS) on H-l (0) then the critical 

points of dolX;1 (A) which we find converge towards 0 as X -+ 0. hence, 
their Lagrange multipliers converge towards 70. Moreover, if 7~1 and ~2 
are critical points of do IX<’ (A) which lie on different S1-orbits then the 
associated periodic solutions %I, :CZ are geometrically different provided 
X is close to 0. Namely, if :Cl and z2 differ only by a time shift then 
either V-* (11~) = T* (?I~), hence v1 and 11~ lie on the same S1-orbit; or 
IT* (711) - 7* (112)l IS an integer multiple of the minimal period of 21 and 
:E~. The minimal periods of periodic solutions of (HS) near 0 are bounded 
away from 0 (c& [Yo]), so the last case cannot occur if X is close to 0 
because then also /7* (~1) - r* (~a)] is close to 0. 

In the following proposition we summarize what we have achieved in 
this section. 

PROPOSITION 2.10. - Periodic solutions of (HS) on the energy level 
H-l (A) near the equilibrium with period near TO correspond to critical 
points of the ,functional do constrained to the hypersu$ace Hi1 (A). The 
jiinctionals do, Fio : U (0) + R are of class C1 defined on an open 
neighborhood U (0) of 0 in V g E. Moreover, ‘Y-lo (0) = 0, 3-I; (0) = 0, 
Xii (0) exists and 

(IFt:: (0) 71; 71) = (H” (0) u (t). u(t)) dt. 

Both functionals da and FL” are invariant with respect to the action of S1 
on V. Different S1-orbits of critical points of do17-iFI,1 (A) correspond to 
geometrically d$terent periodic solutions of (HS) on HP1 (A). 

3. CONLEY INDEX AND BOREL COHOMOLOGY 

In Section 4 we shall construct an equivariant local flow in U (0) whose 
stationary solutions are close to the critical points of dolT-&' (A) for X 
close to 0. In order to analyse this flow we use a cohomological version of 
the equivariant Conley index. We assume the reader to be familiar with the 
standard version of Conley index theory as developed for instance in [Co], 
[CoZ] or [Sal. We just introduce the basic notions without proofs. 

Let kr be a locally compact metric space on which the group S1 acts 
continuously. Let cp be a continuous equivariant local flow on ikf, that is, 
p : 0 + M, (t. :I:) H pt (x), is a continuous map defined on an open 
S’-invariant subset c3 of R’ x M such that: 

- {0} x M c 0 and c3 n R x {x} is an interval for any :x: E 1cf; 
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- ‘Pt : Ot = (X E 111 : (t, X) E O} + M is equivariant; 
- (y o (g = (+p+t : p+t ----) M. 

A compact subset S of M is said to be isolated invariant if S is invariant 
with respect to the action of S1 and if there exists a neighborhood N of 
S in M with 

S = inv (N) := (9~ E M : pt (z) E N for all t E W}. 

In particular, S is also invariant with respect to the flow: ‘pf (x) is defined 
for all .7: E S and t E R and lies in S. A neighborhood N as above is 
called an isolating neighborhood of S. 

An index pair for an isolated invariant set S is a pair (N, A) of compact 
St-invariant subsets A c N of M with: 

- N - A is an isolating neighborhood of S; 

- A is positively invariant with respect to NI that is, if :I: E A and 
$ (x) E N for all 0 5 t < to then $ (:c) E A for 0 5 t 5 to; 

- A is an exit set forN, that is, if z E N and @ (x) @ N for some 
t,-, > 0 then there exists 1 E [0, to] with $ (x) E A. 

The starting point of (S1-equivariant) Conley index theory is the following 
result. 

PROPOSITION 3.1. - For any neighborhood U qf an isolated invariant 
subset S of M there exists an index pair (N, A) for S contained in U. [f 
(N, A) and (N’, A’) are two index pairs for S then the quotient spaces 
N/A and N’/il’ are homotopy equivalent as S1-spaces with base points. 

The Conley index C (S) of an isolated invariant set S is the based Si- 
homotopy type of N/A where (N: A) is an index pair for S. We use the 
convention N/0 := N LI pt. 

An S1-Morse decomposition of a compact invariant set S c M is a 
finite family (M (TT) : r E P) of pairwise disjoint compact invariant sets 
M (7r) c S with the following property: 

- There exists an ordering 7rl, . . : x,, of P such that for every 
z E S - UXEP M (7r) there exist indices %, .i E (1, . . ! n} with i < ,S 
and w (x) c M (ni) and Q (x) c M (T,~). Here a (x) and w (x) denote the 
alpha and omega limit set of .z respectively. 

Next we recall Bore1 cohomology; see [tD] for its basic properties. Let 
H* (-1 Q) denote Alexander-Spanier or Tech cohomology (c$ [D] or [Sp]). 
Let ES1 be a contractible space with a free action of S1; for example we 
may take the unit sphere of an infinite-dimensional normed complex vector 
space where S1 considered as the group of complex numbers of modulus 
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1 acts via scalar multiplication. ES1 is determined up to equivariant 
homotopy. For S1-spaces B c A we write 

h* (A, B) := H’ ((ES1 x A)/S1, (ES1 x B)/S1; Q) 

for the Bore1 cohomology of (A, B). Here (ES1 x A)/S1 denotes the 
orbit space of the diagonal actional of S1 on ES1 x A. Observe that 
ES1/S1 = BS1 is the classifying space of S1. It is unique up to homotopy 
and homotopy equivalent to CP”. Therefore the coefficient ring is 

R := h* (pt) g H* (BS1; Q) g Q [c] 

with a generator c E H2 (BS1; Q) ” Q. The cup product in cohomology 
turns h* (A) into a graded commutative ring with unit and h* (A, B) into a 
module over h* (A). The homomorphism R -+ h,* (A) induced by A + pt 
induces an R-module structure on each h* (A, B). 

DEFINITION 3.2. - For a pair (A, B) of Si-spaces the length e (A, B) 
of (A, L?) is defined to be 

L(A, B) :=min{kEN : ck E R annihilates h* (A, B)} 

= min {k E N : ck [ = 0 for all < E h* (A, B)} 

=l+max{kEN : c”< # 0 for some< E h* (A, B)}. 

We use the convention min 0 = 3cj. 
This notion is due to Fade11 and Rabinowitz [FR], at least if B = 0. They 

call it cohomological index for S1 because it is defined analogously to the 
cohomological index for Z/2 introduced by Yang [Ya]. 

PROPOSITION 3.3. - The length e has the following properties. 
(a) Monotonicity: If there exists an equivariant map A -+ A’ then 

!(A) < !(A’). 

@I !(A. B) I: e(A)f or any invariant subspace B of A. 

(c) Subadditivity: Zf A and A’ are open subset of A U A’ then 
!(A u A’) 5 [(A) + [(A’). 

(d) C(JJiEl Ai) = sup {!(Ai) : i E I} 

(e) Continuity: Any locally closed invariant subset B of a metrizable S1- 
space A has an invariant neighborhood N with t? (N) = L (B). Here I? 
is said to be locally closed if it is the intersection of a closed and an open 
subset of A 

(f) Triangle inequality: For any triple C c B c A of S1-spaces 

!(A, B) +ci(B, C) > [(A, C). 
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(g) If C c B c A are invariant subspaces and C is closed in A then 

(h) If V is a representation of S’ without nontrivial ,$xed points (i.e. 
< v = u .for all C E S1 implies ‘ii = 0) and SV is the unit sphere then 

P (SV) = i tlim 1: 

This also holds if dim V = X. 

Proof. - The statements follow easily from the properties of h*. See [FR] 
for the proof of a), c), e), h) or ]B2], 5 4.4. 

We conclude this section with some direct consequences of the properties 
of L applied to isolated invariant sets. 

PROPOSITION 3.4. - Let S be an isolated invariant set of the equivariant 
local jlow +5 on M. 

(a) 1 (C (S)) := B (N/A. pt) = P (N. A) is independent of the choice of 
an index pair (N. A) ,for S. 

(b) I! (S) 2 C (C (S)) 2 I (N) - ! (A) jar any index pair (N. A) of S’. 

Cc) lf (fif (n) : r E I-‘) is an S1-Morse decomposition qf S then 

B(S) L c p c-u CT,). 
T;EP 

Pro@. - a) Follows from 3.1 and 3.3 a), g). 

b) Follows from the fact that we may choose an index pair (N, A) with 
! (N) = P (S) by 3.1 and the continuity of P. Then apply 3.3 b) and f). 

c) Can be deduced from 3.3 a)-c); see [B2], Theorem 6.1. 0 

4. THE LOCAL FLOW 

In this section we construct an S’-equivariant local flow cp on U (0) which 
leaves the level surfaces Xi1 (A) invariant and whose stationary points on 
IFlO’ (A) are close to the critical points of AOl’Hil (A). To begin, recall that 

FL0 (II) = y (II) + 0 (11~~~11’) for ljrill --i 0. 

We need the following S1-equivariant version of the Cl-Morse lemma; see 
[BL] or [Cal for a non-equivariant version. 
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LEMMA 4.1. - There exists an S1-equivariant difleomorphism x : U + 
U (0) of class Cl, dejined in a neighborhood U qf 0 in V with x (0) = 0 and 

x0 (x (7))) = (r (7J). 

Proof. - Decompose V ” V+ $ V- g VI $ . $ Vn into irreductible 
representations Vk of S1. Here dim V = 2 n and we may assume (for 
later purposes) that q is positive definite on V+ which consists of the first 
n, + summands and negative definite on V- which consists of the last n- 
summands. Here rr, = rr,+ + n- and 2 (,r~+ - K) is the signature of q. Then 

with real numbers a1 2 . . . 2 o,,+ > 0 > Q?,++~ > . 2 N,,. The function 

is invariant, continuous and of class C1 in U (0) - 0. Setting 

‘(ilk (71) := Wk (1 + Y)‘/; k = 1, . . . 11: 

we therefore obtain an equivariant map (making U (0) smaller if necessary) 

7) = (7/j], . . 1/&,,) : u (0) --+ v = v, Q3 . @ v,,. 

This satisfies $ (0) = 0 and 

Clearly, $1 is continuous and of class C1 in U (0) - (0). One can now check 
as in [BL] that 4~ is even of class C1 in U (0) with ,JJ’ (0) = Id. The lemma 
follows with x := g-l which is well defined in a neighborhood of 0. 0 

Instead of looking for critical points of AolX;’ (X) we set f := A0 o x 
and 4 = FfFlo o x and are left with the problem of finding critical points 
of .flq-’ (X) for X near 0. After this Cl-change of coordinates around the 
origin of V the Cl-function X0 has been replaced by the quadratic form 

with is C”, of course. 
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Now we choose cl, X1 > 0 so that f is defined on the set 

We think of C as being a space over A = [-A,, X,] via the map Q : C + A. 
If Xi is small then 4 is surjective. It is a bundle map if one restricts q 
to the part over A - (0). We write Cx = 9-l (A) for the fibres, even for 
X = 0. Clearly, the CA are manifolds with Co having a singularity at 0. 
We decompose V = V+ $ V- with dimV+ = 2n+, dirnV- = 2 n- as 
in the proof of Lemma 4.1 so that 

and 
CA ” SV+ x BV- - s27,+-1 x B277- for A < 0. 

All spaces are S1-spaces and the diffeomorphisms are equivariant. 
In the same “over A” spirit we write fx for the restriction of .f to CA. 

These functions induce a vector field over h on C - (0) which we denote 
by V.1 f defined as follows. For ‘u = 0 we set V,i f (0) = 0 and for 
‘71 E C,,j - (0) we set 

VA j'(u) := (V fx) (~0) E T,! CA. 

We write K := (71 E C : V.1 f (1)) = 0} for the zero set of this vector 
field. From now on we assume that 0 E Co is an isolated zero of V fa. If 
this is not the case then part (i) of Theorem 1.1 holds and we are done. 
We may also assume that Ed is so small that 0 is the only zero of V fa in 
Co, i.e. Ko = (0). U pon making /\i smaller if necessary we may assume 
that ]]u]] < &r/4 f or 11 E K. Finally, we assume that ]]V,, f (rj)]] < 1 for 
every u E C. 

Unfortunately, f is only of class Cl, so V,\ f is only continuous and may 
not be integrable. We replace it by a locally Lipschitz continuous vector 
field 11 over A for f whose zero set is close to K. Compared with the usual 
construction of a pseudo-gradient vector field as in [RI, for instance, there 
are two differences. First, we want the vector field to be locally Lipschitz 
on all of C, not just on C - K. The reason for this is that we do not 
have a minimax description of the critical values of f~ but instead apply 
ideas from Conley index theory. Second, the new vector field 77 has to 
respect the fibres C x, that is, v(u) E T,. CA for II E CA - (0). This has 
to be done with some care near the singularity 0. We construct a function 
& : A + (0, &r/4) wh’ h ic is continuous in A - (0) and satisfies E (X) --+ 0 
as X + 0. We may also assume that ]]u]] < cl/4 for ‘u E U,(X) (Kx) where 
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u,(xj (KA) C CA is the closed E (X)-neighborhood of Kx in CA. Moreover, 
we can choose E (0) so that 

where 

/L := min{ljV~f(U)112 : ‘u E Co, ~1/3 5 ~~u~~ 5 &l/2} > 0. (4.3) 

In addition, if for X # 0, Kx consists of finitely many S1-orbits ol, . . . : o, 
then we require that E (A) has the following two properties. 

*nax f (U,(x) (oi)) < min f (UC (xj (Oj)) 

for ‘1, j E (1, . . , r} with f (oi) < f (oj); (4.4) 

dist CUE(,) (oz), U,(x) (oj)) > max flu,(x) (oi) - rrlirl flU,,~, (q) 
if f (oi) = f (oj). 

(4,5) 

The reason for the choice of E (0) is the following. If II (t) solves 
c(t) = -V,f(w(t)) and if for the time tl < t2 < t3 we have 
11~1(tl)ll = Ilv(t3)ll = &l/3, Ilv(b)ll = ~1/2 then k - tl > ~1/3 
because IIVJ\ f(~ (t))ll < 1 f or II E C. From this it follows that 

f (u (h)) - f (u @3N > &1 . CL/~. Consequently, an orbit of the negative 
gradient flow of f0 that connects two points of Co with norm E (0) cannot 
approach the boundary of Co in between. Similarly, E (A) is chosen such 
that there cannot exist a solution I of G(t) = -V., f (U (t)) with 
~(?/(o)) C U,(X) (0%) and ~(~(01) c U,(X) (0.i) if f(oi) 5 f(0.i). 

Now we set 

and 

2~ := U,,(X) (Kx) C C,j for X E A 

2 := u 2x c c. 
XE.1 

Then 2 is a closed subset of C lying in a small neighborhood of K; in 
fact, 2 = U, (K) in the “over A” sense. 

LEMMA 4.6. - There exists a continuous equivariant vector$eld rl on C 
with the following properties. 

a) q is a vector$eld over A, i.e. 7 (71) E T, C,i for II E CA - (0) 
b) 77 (71) = 0 H ‘II E 2 

c) llrj (w)II i 1 for every ‘u E 2 
d) (VA f(v), rl (u)) > 0 for every II E C - 2 
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PIVC$ - We first construct an equivariant pseudo gradient vector field 
rll for ,j’ over n. This is a vector field over ~1 which is locally Lipschitz 
continuous in C - K and satisfies 

(i) lh (,t1)11 < 1 for /’ E c; 

(ii) (V,1j(v). rjl (‘0)) > ~~~V.,~(U)II’ for 7; E C - K. 

Each II E C - (0) has a neighborhood N“ which is isomorphic over :1 
to U (X) x R” where li (X) is a neighborhood of X = 9 (11) in n. The 
isomorphism K“ : N” - II (A) x R” ’ IS a smooth map over h such that the 
restriction hI; : Ni + {X} x Iw’ 1 c d’ff IS d I eomorphism with k;i (0) = (X, 0). 
In our situation k = dim C,, = 2 II - 1. We define r/2 (1~) E R” by 

cl&j; (0) (a.1 f (II)) = (A. ‘r/2 (~1)) E {xj x W” = {A} x To [WA’ 

Now we set 

r/:;‘ (IL) := (d&j; (71,))~l (11. r/“ (w)) 

for II, E N” with ~1 = q (11). Then 71: (1~) is a pseudo-gradient vector for 
V.\ f (II) if V.\ f (II) # 0: that is, the inequalities (i) and (ii) are satisfied 
for r&’ (u) if u E C - K. If N” is small enough then (i) and (ii) are also 
satisfied for 71; (u) for all TL E N“ provided /I l C - K. Moreover, 71;; 
is Lipschitz continuous. Next we choose a locally finite partition of unity 
(r, : C + [O. l]li E I} subordinated to the covering {N“ : 11 E C - K}: 

7r,: ’ (0. 11 c IV”’ for % E 1. 

We also assume that each r; is locally Lipschitz continuous. Then we obtain 
a pseudo-gradient vector field 7/1 over A for f by setting 

rj4 (TJ) := c n-, (w) r/;‘, (71) for (1 E C - K 
iE1 

and 

rj4 (*(I) := 0 h ‘(1 E K. 

Finally we define for u E C - 0 and X = y (II) 

I’ 
1 

r/l (w) := (d6’ (TJ))-’ r/a (wo) d0 E T,, CA. 
. 0 

Here d0 (,u) : T, Cx + T,,, CA is the derivative of the action of 0 on 
CA. This is the required equivariant pseudo-gradient vector field over 
A for f. Alternatively, one can construct $’ to be equivariant, that 
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is, N” is an invariant neighborhood of the orbit {Q : Q E Sl} and 
$J (u,~) = CM (II) 71; (7~). Then also each K, can be chosen to be invariant. 
This makes 7jl = 7j4 automatically equivariant. 

We obtain a vector field 77 satisfying a)-f) by defining r](O) := 0 and 

7/ (‘0) := N (li) . 711 (u) for II E c - 0 

where (1 : C + [O, l] is a smooth S’-invariant function with (~-l (0) = Z 
and N (u) = 1 if ~i/3 5 ]],o]] < Ed. •l 

Let ‘rj be a vector field as in 4.5. For each A E h we obtain a local 
flow y,l, : 0~ + CA on CA which consists of the maximal solution of 
the differential equation 

Clearly cpx is gradient-like with Lyapunov function fx because for 
71 E CA - zx 

Thus for 71 E CA with 17 (u) # 0 the map t H f’ o cpi ($11) is strictly 
decreasing. Here we used the properties of 7 as stated in Lemma 4.5. 

We set 

LEMMA 4.7. - cp is an equivariant local flow over :I. It is gradient-like 
with Lyapunov jiinction f. 

Proof - We only have to show that 0 is an op>n subset of I# x C and that 
cp is continuous. The other conditions for cp to be an equivariant gradient- 
like local flow over A with Lyapunov function f follow immediately from 
the fact that these properties hold for each cp~. Since 7) is continuous and 
P/]C~ is locally Lipschitz continuous for each X according to 4.5 f), we see 
that 0’ := 0 fl R x (C - (0)) is an open subset of R x (C - (0)) and 
(~113’ is continuous. It remains to prove that 0 is an open neighborhood of 
W x (0) in R x C and that cp is continuous at each point of lR x (0). 
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If ‘u E C we write (T- (II), 2” (u)) for the maximal interval on which 
$ (u) is defined. Then 0 is an open subset of R x C if the function 
T+ : C -+ (0. x] i s 1 ower semi-continuous and T- : C -+ [-~1, 0) 
is upper semi-continuous. We only treat the case of T’, the other 
case being analogous. Clearly, T+ (0) = rx: and we have to show that 
T+ (v~,) + rx, for every sequence II,, -+ 0. Suppose to the contrary that 
T+ (~1,~) remains bounded for some sequence II,, -+ 0. Then there exists a 
sequence t,, E (0, T+ (u,, ) such that ]]$,I (u,~)]] = &r/4 = : 6 and such 
that ]I$ (Q)]] < 6 for every t E [O, tn] for ~1. large. We may assume that 
t ‘?I + to as r~ + m. In addition we have 

IL,, := ‘pf” (/I,)) + ‘IL E co along some subseouencc 

and ]]u]] = h. Clearly -f, E (T- (su,,), 0) for n large and we claim that 
-to E (T- (u), 01. If -ta 5 T- (u) then there exists t E (T- (71,). O] 
with I]$ (u)]] = 26. Then pt (u,~) is defined for r~ large because T- is 
upper semi-continuous in C - 0. Moreover pt (u,,) + ‘pf (u). which is 
not possible because 

Ild (%,)ll = IIPt+“Tz (%)II 5 0 < 2s = I($ (UN. 

This shows that -to E (T- (TL). 01. Therefore 

71 ?I = P -t,l (lln) -+ ‘P-t” (u) E co - 0 

contradicting the facts that 21,~ + 0 and that ‘p is continuous at the point 
(-to: u). Thus we have proved that 0 is an open subset of R x C. 

In order to see that cp is continuous at the points of R x (0) we again 
argue indirectly. Suppose there are sequences ?I, -+ 0 and t, bounded with 
‘~~7” (un) bounded away from 0. Making It,,1 smaller if necessary we may 
assume that U, := pt,’ (71~~) -+ u E Co with ~~71~~ = S E (0, ~~/a) and 
such that ]I$ (v~) I] 2 h‘ for every t E [0, tn] for 7~ large. This leads to a 
contradiction as above. 0 

5. PROOF OF THEOREM 1.1 

We study the local flow cp on C using Conley’s index theory and Bore1 
cohomology as described in 9 3. 

LEMMA 5.1. - For any Ed E (~~/2, Ed) the set 

No := {w E C,] : llw~l < Ep} c co 

is an isolating neighborhood of the jlow cpo on Co. 

Annukv du I’hstitnt Hrnri Poincd Anaiyse non h&ire 
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Proof. - We have to show that the set 

So :=invNo={vECa : cpt(v)EIVoforalltEW} 

is obtained in the interior of No (relative to Co). The only stationary flow 
orbits of cpn are the points in 20 = U,(n) (0). Since yn is gradient-like a 
point II E SO must satisfy 

Q(U) u w (u) c 20 c UE,/, (0). (5.2) 

We claim that JJ$ (~)jl < ~~/2 for any t E R. Suppose to the contrary that 
there exist times tr < t2 < t3 with 

IW’ (411 I IW (u)II = 43, /lP bJ)II = 42 

and 

II@ (u)II E [&l/3, &I] for all t E [tr, t3]. 

Since & C# = -r/0$ and j(q (cp” (u))II 5 1 fort E [tl, t3] by Lemma 4.6~) 
this yields t3 - tl 2 c/3. Therefore we obtain 

f (Y”’ (u)) - f (y+ (II)) = - 1:,3 f f 0 yt (71) dt 

=- 

where w is defined as in (4.3). Now using (4.2) and (5.2) we obtain 
If (cp’ (u))I < ~1 . ,LL/~ for all t E R. This leads to the contradiction 

El . P/3 > ,&fm s (Y’ (II)) - p& f (Y’ (4) 

> f W’ (4) - f W” (71)) 

> El . p/3. 0 

LEMMA 5.3. - There exists X2 > 0 such thatfor [XI 5 X2 the set 

UA = {u E CA : Ilq F E*} 

is an isolating neighborhood of SX := inv (Ux). 
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Prmf - We have to show that Sx c iut ([ix) for ]A/ small. If this is not 
the case then there exists a sequence Xh, i 0 and points 

‘fjk. c iriv (liAi ) n Xi,, = iriv(Ux,) n {‘II : ]]TJ]] = cz}. 

Consequently pf (ok) E I; xI for all t E R. By compactness we may assume 
that QUA. converges towards ‘I! E XT 0 along a subsequence. Moreover, the 
continuity of p implies pt (,(I) E c,r,, for all t E R. This means 

‘11 E iuv (r,:,,) n X/,, = ,!!a n dlJo = II. 
a contradiction. Cl 

With ~2 and X2 as above we set 

u := {v E c : Illilj 5 c‘2. Iq(u)l 2 A,}. 

This is an isolating neighborhood with respect to the flow Q!J restricted to the 
part over [-X2, X2]. Let S := iuv (U), so that Sx = inv (r/x) = Sfyl (A). 
Choose an index pair ( W. -4) for S in U. Clearly, (,v,, , A,!,) is an index pair 
for Sx, IX] < X2. By the continuity of the length P we can find X0 = 0 such 
that ! (Ax) < li (,4a) for IX] 5 X0. because Ax is contained in an arbitrarily 
small neighborhood of 40 in N if h is small. Proposition 3.5 implies 

~(Sx)>~(C(Sx))>F(~~x)-F(Ax)>F(iVx)-P(Ao). 

Observe that 

-40 c No - (0) c {/I E C’ - (0) : f4 (0) = O} cy sv+ x sv-. 

Thus there exist equivariant maps A(, 4 SV+ and n,, 4 SV. According 
to Proposition 3.3 a). h) we obtain 

Y(Ao) < min{Y(SV+). II( = min{7b+. K}. 

For X > 0 small we have 

SV+ Cr CA n (iI+ x (0)) c lvx c CA r sv+ x BV- ” sv+ 

hence, P (N,,) = p (5%~’ ) = rl+. Analogously we obtain P (NA j = II- for 
X < 0 close to 0. Finally this yields for IX] small 

if Xrr (7,)) > 0. 

(5.4) 
To deduce Theorem 1.1 recall that the set 2~ = UE cx) (Kx) of stationary 

orbits of cp~ has the following property. If Kx consists only of finitely 
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many S1-orbits ol: . . . ~ o, of critical points then CJ, is the disjoint union 
of the E (X)-neighborhoods of 01. . . . 0,. In that case we obtain an S1- 
Morse decomposition (AJ,. . . . , MT.) of SA with AJ, := II,(x) (0;). Here 
we use that E (A) satisfies (4.4) and (4.5). Now Propositions 3.4~) and 
3.3a), h) yield 

C(Sx) 2 c B(M,) = 7’. (5.5) 
7=1 

Theorem 1.1 follows from (5.4) and (5.5). 0 

Observe that the same argument yields more solutions if I (A,) < 
nun {n,+. rr,-}. In fact, then we would get rr,+-! (A,,) Si-orbits of stationary 
points on CA for X > 0 small; and we would obtain ‘II- - ! (A”) stationary 
S1-orbits on CA for X < 0 close to 0. Therefore the number 

l’” (SC,) := rnin{~ (Ao) : (No, A 0 is an index pair for Sa} ) 

is of interest. It is called the exit-length of So with respect to the flow pa 
on CO. It has been introduced and studied in [B2], Chapter 7. In certain 
situations it is invariant under continuation; see [B2], Theorem 7.4. In 
particular, if one considers a one-parameter family of Hamiltonian functions 
H,, E c* (R’“‘; R), 0 5 LL < 1, with H,, (0) = 0, Hh (0) = 0, “:: (0) 
non-degenerate, then the exit-length !” (So) = !!‘” ((0)) does not depend on 
the Hamiltonian H,, to which one applies the constructions of this paper, at 
least as long as there are no other periodic solutions on H;’ (0) near the 
origin. Potentially this continuation invariance of !” (S,) provides means 
for its computation. Improvements of Theorem 1.1 in this direction would 
depend on higher order terms of H. 

6. REMARKS 

In the situation of Theorem 1.1 one obtains more periodic solutions if 
one knows more about the signatures gi := g (7-a/i) of Q restricted to the 
spaces E; := E (TO/~), % E fV, of r”/Gperiodic solutions of (LHS). Clearly 
E; c EJ if .j divides 1;, in particular Ei c El = E for any i E N. Set 

for every % E I, E; n E,i = 0 for all i # j E I} 
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for CV~Y~ i E I, E'i n E,j = 0 for all % # j E I}. 

Theorem 1 .I yields the following 

COROLLARY 6.1. - In the situation of Theorem I. 1 assume that case (i) does 
not apply, that is, there are no periodic solutions of (HS) on H-l (0) near 
0 with periods close to 70, Then for each X > 0 (respectively X < 0) close 
to 0 there exist at least i u + (respectively k IT-) geometrically different 
periodic solutions on HP1 (A) with periods close to 70. 

We conjecture that this result is optimal in the following sense. Let 
Q be a non-degenerate quadratic form on R2” and consider the linear 
Hamiltonian system 

.k = JQ’ (x) = *JQ” (0) :I’. (LW 

Fix some period ra > 0 of non-trivial periodic solutions of (LHS). Suppose 
R2” = E@F splits as in the introduction into two linear subspaces invariant 
under JQ” (0). As above we write E+ = E (~~/1:) for the space of periodic 
solutions of (LHS) with (not necessarily minimal) period TO/~, so E = El. 
And we write cr; for the signature of Q restricted to Ei. Then we conjecture 
that there exists a polynomial function H (z) = Q (z) + o (11~11~) such 
that the Hamiltonian system :h = .IH’ (3;) has for ,I > 0 precisely Z$ U+ 
geometrically different periodic solutions on H-l (X) with periods near 70; 
and it should have precisely i K such periodic solutions on H-l (A) for 
X < 0. We shall only prove the following special case. 

PROPOSITION 6.2. - If the signature cri of Q restricted to ISi is 0 jar 
all i E N then there exists a polynomial function H : R2” + R with 
H (z) = Q (CC) +o//x[~~) and such that the Hamiltonian system j: = JH’ (x) 
does not have any periodic orbits with periods near ro except the equilibrium 
0. 

Proposition 6.2 shows that the sequence (ai = CJ (70/i) : Z E N) of 
signatures is the only invariant of H which depends only on the second 
order terms of H and whose non-vanishing guarantees the existence of 
periodic solutions of (HS) near 0 with periods near 711. 

Proof. - As in 5 2 we may assume that 

Q (~1 = Q (ml + Q (3;~) where :I: = zE + ZF E E c4 F. 
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We shall find a polynomial H as required such that H (z) = Q (x) depends 
only on ZE E E. Therefore we may assume that R2” = E and z = zE. 
Let Ej be the space of periodic solutions of (LHS) corresponding to the 
eigenspace of the eigenvalue 2 7r j/70. These solutions have minimal period 
TO/~ (except 0, of course). Let nj be the signature of Q restricted to Ej. 
If U< = 0 for all i then crj = 0 for all j because 

d = c p (i/j) cTi 
ili 

where p : N -+ (0, *l} is the M”b’ o ms function (cf [J], $ 8.6). For each 
j E N with Ej # 0 we shall find a polynomial Pi which depends only 
on x E Ej with Pi (x) = o (11x11”) an such that the Hamiltonian system d 
i = J(Q+ Pj)‘(,) h as no periodic solutions in Ej. Thus we may assume 
that E = Ej and 

Q(x) = 5 (IIz+Il” - 11x-11”) for z = Z+ +x- E E g E+ $ E 

Here ry := 2 j X/TO and E g E+ @ E- is a direct sum decomposition of 
E into subspaces Ef and E- on which Q is positive respectively negative 
definite. Clearly, dim E + = dim E- = : 2 d since & = 0. We introduce 
symplectic coordinates in E* so that X* = cl* + p*. Now we define (cJ: 
[MW], Example 9.2) 

H(z) = Q(x) + 11412 . k+ q- -P+P-1 

= Q (XI+ 11~112 . ~(q: 41, - i%h,). 
k=l 

If z = 5 (t) is a solution of the associated Hamiltonian system (HS) then 
a straightforward computation shows that 

g (P+ 4- - P- (I+) = i(;: (P$ QI, - 1); q:)) 
k=l 

= 4 (q+ q- - p+ p-)’ + 112f 

If z # 0 then p+ q- - p- q+ is strictly increasing, so z cannot be periodic. 
This proves Proposition 6.2. 0 

The methods of this paper together with the length for arbitrary compact 
Lie groups as defined in [B2], Chapter 4, can also be used to treat more 
general non-linear eigenvalue problems. 

Vol. 14. no 6.1997 



716 T. BARTSCH 

Let Q, Q : X + R be of class C” defined on a Hilbert space X on 
which a compact Lie group G’ acts orthogonally. Suppose Q and 4~ are 
G-invariant and consider the equation 

9’ (.I:) = T v (.I:) (PI 

If Q’ (0) = 0 = @’ (0) and q” (0) is non-degenerate one can study the 
bifurcation of solutions on V1 (X) near ( T(~. 0) with the level X as 
parameter. Equations of this type have been studied by many authors. 
but mainly in the special case Q’ (:r) = :I: or if ‘4”’ (0) is positive definite 
on the kernel of the linearization Q” (0) - TV Q” (0). Our method allows 
to treat the case where 9” (0) is indefinite on this kernel. We state only 
one result in this direction. 

THEOREM 6.3. - Let @, q E c” (X. R) satisj~ Cp (0) = + (0) = 0 and 
a’ (0) = 9’ (0) = 0. Let 7-0 E R be a possible bifurcation value, thut is, 
V := krr (a” (0) - ~-0 q” (0)) # 0. Assume moreover that thr quadrutic 
form (I (71) := $ (Q” (0) 1’. ,u) on V is nondegenerate with signature CT # 0. 

a) A least one qf the ,fdlowirzg holds. 

(i) There exists a sequence (7~. :rk.) E [w x @-I (O), k: E N, of solutions 
of (P) which converges towards (7,). 0) as k + 3~. 

(ii) For each X > 0 close to 0 there exists a solution (r~, :I:,) E 
IfI x 9-l (A) of(P) lh’,h w IC converges towards (~0. 0) us X + 0. 

(iii) The same statement us in (ii) holds,for X < 0 close to 0. 
b) If @, 9 are even ,func.tions then either (i) holds or 

(iv) For each X close to 0 with u X > 0 there exist at least [~]/2 puirs 
(TAX.,. fxx,;) E R x 6-l (A) f 1 t 0 .so u ions qf (P) which converge towards 
(70, 0) us x + 0. 

One can construct examples where precisely one of the cases (i), (ii) or 
(iii) in 6.3 a) holds. It is interesting to observe that with the Z/2 symmetry 
the direction of the bifurcating solutions is determined by the sign of (r 
which is not the case in general. Theorem 6.3 can be generalized to include 
other symmetry groups. For example, if a compact Lie group G acts 
orthogonally on X and a, 9 are invariant with respect to this action then 
6.3 a) holds if the unit spheres Sk’+ and SV- are not stably G-homotopy 
equivalent. Here V+ and I’+ are invariant subspaces of V = V+ cf I’- 
such that f~ is positive definit on V*. Also 6.3 b) can be generalized 
to other symmetry groups. In fact, in this paper we essentially proved 
the S1-version of 6.3 b). We refer to [B3] for details. It is interesting to 
compare the proof of Theorem 1.1 with the approach of Floer and Zehnder 
in [FZ] and of the author in [B2] who give new proofs of the result of 
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Fade11 and Rabinowitz [FR] on the existence of periodic solutions of (HS) 
parametrized by the period. In [FZ] and [B2] both the Conley index and 
Bore1 cohomology are also used. The situation considered in these papers 
is somehow dual to the one considered here. There one considers a family 
N, of isolating neighborhoods but the topology of N, does not change and 
neither changes the exit-length P’ (S,) of S, = inv (NT). In fact, the family 
of flows cp = ((p7) provides a flow over the parameter space [TO - 6. 70 + h] 
in the sense of [B 11, contrary to the flow cp over A = [-A,, A,] constructed 
in 8 4. This implies in particular that also the Conley index of S, does not 
change. Instead for each 7 the invariant set S, contains a “trivial” solution 
:I’, = 0 which is isolated for 7 # 70. The existence of non-trivial solutions 
follows from a change of the exit-length of {x,} as 7 passes 70. 
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