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ABSTRACT. - We consider the regularity of solutions of a system for 
nonlinear arbitrary order variational inequalities with some general concrete 
closed convex sets. The maximal function method and the convergence 
method are used, and a higher integrability of the derivatives is obtained. 

RBsuMB. - Nous Ctudions la regularite des solutions d’un systeme 
d’inegalites variationnelles non lineaires d’ordre arbitraire dans des 
ensembles convexes ferrnes gCnCraux qui peuvent &tre represent& sous 
une forme concrete. On utilise la methode de la fonction maximale et la 
methode de convergence pour obtenir un resultat d’integrabilite sur les 
derivees d’ordre superieur. 

1. INTRODUCTION 

Variational inequalities are used in theoretical studies for many free 
boundary problems. Such problems commonly occur in a variety of 
disciplines, e.g. elasticity, crystal growth etc.. There are already a lot of 
results about the existence and the regularity of solutions for second order 
variational inequalities (see [5], [15], [27] for instance). There are also 
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some papers studying the existence of solutions for higher order variational 
inequalities (e.g. [4]). 

Some free boundary problems can be viewed as nonlinear higher order 
variational inequality problems in specific closed convex sets. A practical 
example of higher order variational inequalities can be found in 181, and 
some practical examples of some convex sets, different from the one of 
the obstacle problem. can be found, e.g., in elasto-plastic theory (17 ], 
] 16]), capillarity problems with prescribed volume ([ 12]), restricted mean 
curvature of horizontal plate problem ([8]) and others. 

Among the different tools available to study the regularity of the solution 
for a nonlinear problem (see [ 111, [ 171 for instance), the so called maximal 
function method is frequently employed. It uses a quasiconformal map 
to gain additional regularity (see Gehring, [I 11). More precisely, it states 
that, when a certain reversed maximal function inequality holds for a 
function in L1, the function is, in fact, in JJ1+E for some ic > 0. Thus, 
obtaining this additional regularity reduces the approach to proving a certain 
reversed maximal function inequality. This method was applied to the many 
second order nonlinear equation problem (e.g. see [6] and/or Chap. IV in 
Giaquinta’s book [13], as well as references mentioned there). In [23], 
the method was employed for a higher order nonlinear equation system 
by Meyers and Elcrat (197.5). In [ 141, Giaquinta and Modica adapted the 
method to a higher order equation system in a more general form and with 
a higher growth condition (1979). And in [19], Liang and Santos applied it 
to study the regularity of solutions of a higher order variational inequality 
system in a simple case with closed convex sets of obstacle’type, i.e. 

The Wnr,p+E(0) regularity of the solution is obtained, for some c > 0 
(1993). 

The study of higher order variational inequalities can present closed 
convex sets of many different types, and a crucial difficulty for the maximal 
function method will be to find a test function which should be suitable 
to the maximal function method, and at the same time should be in the 
closed convex set of the problem. Extending the obstacle v > !J? to an 
operator inequality in K brings more troubles in the choice of the test 
function, which do not show up in equation or second order problems. As 
the general structures of closed convex sets may be very complicated, it 
is interesting to study a regularity result, in some more general structures 
of closed convex sets. 

In this paper, we give the first results concerning general arbitrary order 
problems. The main results we have obtained here concern the W”‘.pt’ 
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regularity of solutions for a system of nonlinear arbitrary order variational 
inequalities in a class of general closed convex sets K of some concrete 
types. We will take 

K = {V E [lV”‘~~‘(n)]“. T(v - @)(.c) E X plus boundary conditions}, 

and X is a closed convex set. The cases we consider arc, roughly speaking, 
the following: T may be a differential, integral, or integrodifferential 
operator. In each of these situations, we need a structure assumption on X. 
which should contain either a sufficiently large ball, or a cone with vertex 
at the origin and nonempty interior. In all, there are six cases, which cannot 
be reduced to a single situation, and in each we obtain higher integrability 
of high order derivatives (Theorems 3.2, 3.8, 3.11, 3.12. 3.14, 3.16). 

These results may be regarded as a considerable development of those 
presented in [ 191. We also use the convergence of closed convex sets results 
obtained in [18] (see also [20]) to extend the regularity results to cover 
many nonsmooth cases (Theorem 4.1 o-4.14). 

Since this represents the beginning of the research on the structure of 
closed convex sets for arbitrary order variational inequalities, there are still 
many open problems left to be examined, especially the generalization to 
convex sets I6 which do not fall within the cases studied here. 

In detail, the problem considered in this paper is described as follows. 

Let B be the vector-valued Banach space B = w”‘,“(R) = [IV-“.“( 12)lL. 
where y > 1. R is a bounded C”‘-l.l domain in Iran, M. N, L E N. 
Consider the following problem 

u E K, (Au. v - u) > 0. VVEE. (1.1) 

where K is a nonempty closed convex subset of B and 

(Au:v) = I’ 2 c Al,(.c,D”‘u)i)~~u, dx. u.v E IEB. (1.2) 
’ i2 1=1 pl<nr 

We assume that the operator A, with A!, . 1 = I,. . L, (71 5 M, being 
Caratheodory functions, satisfies the following assumptions: 

l (AlI 
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where a E L”(R). 6 > 1: 

l (A2) For IyI = j < M. 

c IA&r:, D”‘u(x))[ 2 a,(~)~t+(z)~“-‘J + b,(:l:): 
lrl=j 

a.e. in 12. 

The closed convex subset 06, in the variational inequality problem (1.1) 
considered in this paper, has the following structure 

K = v E B : T(v - !P)(2) E x, for a.e. :I: E 62. 

d’V 
_ =o: 
dvi ar2 

i=O,l,..., M-1 

where v is the unit outward normal vector at the boundary of 0. The 
following conditions in the definition of K are also required: 

l (Cl) X is a closed convex set in V containing the origin at least. 
where V is a Banach space; 

l (C2) T : B + V is a continuous linear map; 
0 (C3) k E wfqq. 
With (Cl)-(C3), it is also easy to verify that K is closed and convex. In 

addition, K is nonempty since 9 E K. 

Remark 1 .I. - If the boundary condition in the definition of K is not 
homogeneous, but still sufficiently smooth, by a translation argument we can 
reduce the problem to the homogeneous case (see also [19], Remark 4.6)L 

We give now some examples of convex sets of (1.3) satisfying conditions 
(Cl)-(C3): 

Example 
l Ex. a. If T = 1, where I is the identity operator, X = V = B. then 

IK = W,“>‘(O). This is the case of an equation system; 
l Ex. b. The closed convex set for the obstacle problem is 

K= VEB: v > @. 
d’v 

a.e. in $2: _ =o: ,i=O.l,.... M-l 
> dv” i)R 

Annales de l’lnstirur Hrnri PoincorC Analyze non lin&xire 
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Here, 2’ = I, V = B and X = {x E B,x > 0). This is just the case 
discussed in [19]; 

l Ex. c. In [8], the closed convex set considered is K = {U E H*(R) : 
(1 5 nv 2 p>. 

More examples of the closed convex sets of the form of (1.3) can also 
be found in [I 81 and [20]. 

Remark 1.2. - The structures of the closed convex sets should be carefully 
defined. If the condition for the closed convex set K is too strong, # may 
reduce to {O}, so that, the problem has only the trivial solution 0 (see 
Remark 3.7 as well). 0 

The outline of the paper is as follows. In Section 2, some lemmas, which 
will be used later, are collected; In Section 3, we discuss the regularity of 
the solution of problem (1.1) by using the maximal function method. Here, 
the six different cases are discussed, for three different definitions of T’s 
(differential operator, integral operator or integrodifferential operator) and 
for two different image sets (containing a big ball or a cone). The key in 
this section is to look for test functions which are in K and are suitable 
for the maximal function method. In Section 4, we discuss the convergence 
of the solutions with converging convex sets. Then applying these results 
and the results in [ 181, we extend the regularity results of the solutions of 
problem (1.1) of Section 3 to more general closed convex sets. 

2. PRELIMINARIES 

In this section we present some preliminary lemmas that will be used 
in the sequel. 

First of all, we introduce a symbol “5”. Let c1(~) be a nonnegative 
function of 7‘, if 

then, a,(r) < c(r), and !I& > 0, 3~ > 0 such that ‘dr < ~a, CA(~) 2 kc(~). 
We denote by B,,,,, the open ball of radius r and center z0 in any space 

Iwo : the appropriate dimension, either 0 = N, or 0 = L, will always 
be clear from the context. 

LEMMA 2.1. - Assume that 
1” 1 < p,y < OS and l/y > l/q - l/N! or 1 5 p,q 5 x and 

l/p > l/q - l/N; 

Vol. 14. no 6.1997 
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2” IL E WJ(w) and j, UH:C = 0, where w C: B,F,,.,, (1. > 0) has a cone 
property, meas = Cr.“. jkr Some P > 0 independent of r. 
Then, 

JI1&,,(,) 5 (;l,~~(‘/I’-l/o)+l lb-ad 41,~~(~). 

where C depends on N. p, q, c and the cone condition of w, but does 
not depend on 7’. 

Proof. - It is similar to the one of Proposition 1 in [23] when w = B,.,,,,.. 
Notice the proof there, which is also true for 1,‘~) > l/q - l/N, when 
p = co. or q = 1. 17 

LEMMA 2.2. - Assume that 
1” 1 < y:q < x’ and l/it) > l/q - l/N. or 1 < p,y < x and 

l/p > l/q - l/N: 
2” u E W1,‘l(w), ,uJ~ = 0: where w 5 B,,,.. (T > 0) has a coneproperty, 

measN(w) = Cr”. r c i3w, meas,v-l(r) > F’Y,“-~. where meas@ 
means the O-dimensional Hausdorf measure of G, c and F’ are positive 
constants which are independent of I-. 
Then, 

~~71,~~L,+) 2 cr :v(“p-“‘J)+l IIgrad uI~~(~~, 

where C depends on N, p, q, C, c’, and the cone condition qf w, but does 
not depend on r. 

Proof. - The proof is similar to the one of Lemma 2.1. The argument on 
the boundary, using its smoothness, can be found in [IO]. 0 

LEMMA 2.3. - Let u E W”‘J’(w), where w C B,r,,.,. (r > 0) hus a cone 
property, meas = C?. where C > 0 is independent of T, 0 < j 5 M - 1, 
then 

for all constant E > 0, where C depends on M, N, p, rt and the cone 
condition of w, but does not depend on I-. 

Proof. - The proof is similar to the one of Lemma 2.3 in [19], noticing 
that ~0 there can be any positive constant (see [I] 4.17). 0 

LEMMA 2.4. - If X is a closed convex set of V containing a cone C 

vertexed at the origin with interior 6 # p), then ,for any w E & there 
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exists 80 > 0 such that for any 0 < 0 5 Ho, and any z with ljzllv 5 1. 

w+Bz~~.Moreover,foranyO<H~~~anda~zyv~X,v+w+Bz~X, 

i.e., v + w E 2. 

Proof. - (See also [20]). Since X is a closed convex set of V, from 

C c X, for any w E 6, there exists a Ho > 0, such that V’8, 0 5 8 < Bo. 

and Vz. llzllv 5 1: we have w + Bz E & . 
As C is a cone vertexed at the origin, a(w + 0~) E C for all n > 0. 

Then, from X being a convex set and C c X, we have 

xv + (1 - X)n,(w + ez) E x5 V’x E [O. 1). Vv E x. 

Letting CL = &, it is concluded that 

xv + (w + ez> E x, VA E [O, 1). 

And because X is closed, X going to 1 yields 

that is, v + w E 2. 0 

LEMMA 2.5. - Suppose that &,,,(:E) is a cur oflfunction o~B,~,,~,. (i.e. 
CT,,7. E C7(h-,.2T). 0 5 G,,T 5 1, G,,T = 1 on B,,~,). Suppose also that 

F = c &(:~:)a:: (2.2) 
lnl<k 

is a differential operator with d, E Clnl(lRN) and do so large that 

do(z) + ( 1 (-l)“i),“d,(z:)) > 0, a.e. . (2.3) 
O<lCtllk 

then 

Moreover, ifK is a bounded set in R” with C”‘-l.l boundary, x0 E dK, 
and d N (z) E Cp’( K); then, 

Vol. 14. no 6.1997 
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Proof 

by (2.3). 
If xa E cYK, because d,,(x) E Ct’(K). the integrals by parts as above 

formula are still available in K n B,,,,.z,.. the argument is similar. 0 

LEMMA 2.6. - Assume thut ZI E W”‘.“(w), where w C B,,,,,. (I. > 0) has 
a un(form cone property, ~0 E w. meas = c;riV, with c > 0 independent 
of r‘. There exists a unique polynomial P(z). cfdegree < A4 - 1. .such that 

(2.6) 

where 

and the c,,,, depend only on M, N, (1, p and C. 
Moreover, when 0 < ICYI 2 k, M - k: - N/p > O)for any given X0 > 0. 

there exists r’() > 0. such that (f 0 < 7’ < r’()> the differential 3:yP has the 
estimate 

j@‘PI < x,j. on B.ri,.~,.. (23) 

where ~0 depends on the [(uII~~M.,~(~~), M, N. L, k:, p, c and X0, but not on 7’. 

Proof. - A special case of the first part of this lemma, w = B,,,,,., can be 
found in [23] and [19]. The proof of the first part of this lemma is similar 
to the one of that special case. 

Now we only need to prove (2.8), in fact, by Lemma 2.3 and imbedding 
theorem, for any 0 < r’ < I’~), 0 < IcyI < k and given X0 > 0. when 
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if only taking 

which can be done as M - Ic - N/p > 0. 0 
This lemma will be frequently used for the estimates in the sequel. With 

this polynomial, from Lemma 2.1 and i$?P = 0, we have 

where 0 5 IN/ < M, p > 1, C is independent of 1’. 

LEMMA 2.7. - Assume that h, and g are non-negative mea.surable functions 
on R” such that 

M(.9”) 5 VMU(g) + hf(h”)) a.e. in 8, 

where y E L”(d)); h E L”(Q) f or some s > 71 > 1; b > 1 and Q is a 
compact cube, M(g) : R”’ + [0, w] is the maximal function ,for 9, defined 
as follows: 

M(g)(z) = sup 
f?>O 

l I’ y(s) d,}. (2.11) 
meas(Bz,d . BI.R 

Then, there exists p > 71 such that 

Vol. 14. n” 6-1997 
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where C depends only on I/. 11, and h. 

Proof. - The proof of this lemma can be found in [ 1 l] (see also, e.g.. in 
[61, [141, WI). 0 

The following theorem establishes sufficient conditions for existence of 
solutions of the problem (I. I ). The theorem requires more assumptions fat 
the operator /I: 

. (A31 

where cn 2 MC + 1. being C and CO sufficiently large positive constants 
depending only on L, M, N, p, IIcI,,,II~~~. /Ih,jj/,,i. 7,. (j = 0. 1.. M - I) 
and 12. 

Remark 2.8. - If 7,) ,j = 0, 1; . . M - I satisfy (A4), then it is not 
difficult to verify that they satisfy (A2). A special case is that they satisfy 
the natural condition, 7j = 1. ,i = 0. 1~ . M - I. 0 

THEOREM 2.9. - If the operator A verijes assumptions (Al)-(A4), then 
problem (1.1) admits at least a solution belonging to 8. 

Proof. - (See also [4]). From (Al)-(A3). we know that the operator A is 
pseudo-monotone in a reflexive Banach space by [21] (the definition of the 
pseudo-monotone can be found in Definition 4.1 later). Review the proof of 
Theorem 3.1 in [ 191 (see also Remark 3.2.in [ 19]), the test function Y = k 
used in [ 191 still belongs to 06 defined in (1.3). With (Al), (A2) and (A4), 
we can obtain the a priori estimate. Then the existence result is a direct 
consequence of a result of [21] (~245 Theorem 8.1). 
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In the above estimate, we have used Nirenberg-Gagliardo inequality 

for 

HE O:l-$ [ 1 and pf<(l-0) (2.15) 

where 1 < p, 4, T 5 cc (see [22], ~69 and [26]). 
And for our case, we take q = p/Tj. 1’ = p/ro, 1 - 0 = j/M. With 

(2.12), (2.13) it is not difficult to verify that they satisfy (2.15). 
So that, from (2.14) as Tj > 1 - 8, we have 

Then, using (Al) and (A4) the a priori estimate can be obtained as 

where C depends only on the given data. 0 

Vol. 14, 11~ 6.1997 
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Remark 2.10. - It can be seen that if the operator A satisfies the following 
monotonicity condition as well, 

(Au - Av.u - v) > 0. a.e. in 12. Vu~v. 

then the solution of problem ( 1.1) is unique. 0 

Remark 2.11. - The closed convex set 06 c B in Theorem 2.9 can, in 
fact, be more general than the one defined in (I .3) satisfying the conditions 
(Cl)-(C3), since we only used that K is closed, convex and nonempty. 0 

3. THE REGULARITY BY MAXIMAL FUNCTION METHOD 

In this section we want to establish additional regularity for the solution 
of problem (1 .l) by maximal function method. This is more delicate than 
proving existence. 

Throughout, we denote 

U(x) = p~fu(:c)~. (%.I) 

for LC E 62, where u is the solution of problem (1.1). We intend to use the 
maximal function method, already used in [23], [ 141 and [19] for higher 
order problems. For this purpose, we need to choose carefully a suitable 
test function in K. More specifically, we are looking for a test function 
v = u + # (corresponding a test function 4 in equation) verifying the 
following requests: 

1. 4 E WpyB,“,C7. n 0)! for any 0 < ;I’ < ro, where r’o, C are positive 
constants independent of r; 

2. c A,(z. Dn’u)L)y+ > rUJ - h,(:x:. D”‘-lu), for F > 0, where /I, 
I-,l=M 

is a function independent of tJ; 

3. .--Ri/-i (k ,p;@h) l’-q-‘~~~ (I’ mx) l’i+ATL(,h,)+l]. 

for Ial 2 M and”1 < (I < p, where h is a k:own function in L”(0) for 
some s > 1, C is a constant independent of T, y > 1 is some positive 
constant depending on ri (see [23], [19]>; 

4. v E K. 

Here, request 1. is set because we study the regularity, which is a 
local property of the solution: request 2. is for obtaining an estimate, with 
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which we can have the desired positive term in the left hand side of our 
estimate inequality; request 3. is required to use maximal function method 
(it implies that the average integral of the differentials of 4 in B,. should be 
independent of r’ except the one which can be bounded by some maximal 
functions); request 4. is an imposition of the variational inequality. 

To meet request l., it is natural to take some cut off function; it needs to 
be treated carefully, since each differentiation will produce a r.-‘. To satisfy 
request 2., u must appear somewhere in $, (e.g. 4 = <(--u + Cr” )! where 
C is a cut off function, C is a constant). To verify request 3., a function 
P, which is the polynomial defined in Lemma 2.6 (see also [14], [ 191 and 
[23]), is introduced. This idea comes from the study of the. regularity of 
second order equation, when u - & &, u&r:, multiplied by some cut off 
function <, is chosen to be a test function (see [13], Chap. IV); the function 
u - & JB udz lets the raise of the differentiation under an integral in 
B,. become’ possible to kill the 7-l produced by the first differentials 
of C. In our higher order case, corresponding to & J,, udz, we have 
the polynomial P. In the equation case, only requests I.- 3. are needed. 
Therefore, the main work in this section becomes to verify request 4. 

However, in many cases, the general test functions used for equation 
system will be failed for variational inequality system as they are no longer 
in the given closed convex set. So we have to find new test functions for our 
cases studied here. And because of the opavators of K, we must overcome 
particular difficulties which we have not met in the secound order problem. 

As mentioned in Remark 1.2, not every case of K defined in (1.3) is 
interesting and feasible. In this section, we study six particular cases of 
three types of T and two types of X for closed convex set K. 

For simplicity, we consider the case Ik = 0, noticing that the general 
case can be treated similarly, replacing u by u - %I!‘, P by PQ, where PQ 
is the unique polynomial of degree < A4 - 1 satisfying 

for all 1~~1 5 M - 1. 

3.1. T is a linear differential operator 

In this subsection, we consider that the operator T in K is F defined 
by (2.2), with d,,(z) E C”(W”), k: < M - N/p. 

Vol. II. n’ 6.1997 
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If the map T in (C2) is P defined in (2.2). it is easy to verify that T 
satisfies (C2). In fact. V = L”(62). T is continuous. 

forcEW “‘J 62) and 7’ is a linear operator, ( , 

T E L(w’yi2).Ly62)) 

In order to study the regularity of the problem with such an operator T 
in the definition of K, we seek a test function which is mapped by F into 
X; to do this, we need more properties on ,ri, that is, we suppose as an 
additional condition either of the following: 

l (Cal) X contains a ball &,.Ril with R,) > m;tx{ll&ll~-~~~~ 

/IuIIL”(q~ O}. where rlo is defined in (2.2), u is the W2”z’-solution of 
the problem (I. 1) with closed convex set 06 defined in this case. 

l (Ca2) h: defined in (2.2) equals zero. tlo in (2.2) is nonnegative, X 

contains a cone C vertex at the origin. & # fl. 

We discuss them separately. 

3.1.1. case of (Cal) 

THEOREM 3.1. - Suppose rhat 06 is dejned by (1.3) satisfying (Cl) and 
(Cal), T being a smooth d$ferential operator F of order k < M - N/p 
dejined in (2.2), 9 = 0: atld that A is UIZ upemtor .satisfjGng (Al)-(A2). 
Then the solution u irz B of problem (1. I) cvith the closed cower set K 
belongs to W-“. * (G) jar some 0 < c < 1 in any compact subset G of $2. 

Proof - If we have found a test function in K, the remain part of the 
proof, using maxima1 function method, is similar to the one in the proof 
of Theorem 2.1 in 1141. 

Let G’ be any compact subset contained in 12. Denote X = dist (G. 80). 
Now choose I’() such that r,) satisfies (2.9). (3.3) and 0 < 210 < mill{ 1. A}. 

For any point .I’() E G” and any 0 < 7’ < Y’~). let <.,.,,.,~(x) be a cut off 
function of B.r.ii.zr.. set 

where P.r,l,~r is defined in Lemma 2.6 with w = n.,.,,.~, 
Now, let us check v E 06. In fact, it is obvious that v E B and $$I,,(? = 0. 

i = 0.1.. i M - 1. To verify TV E X, we need to present now some 
calculations: 
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TV = Tu E X. 

2) In &,,~2,.. 

TV = T(u - <.rii,,.(u - P.~+P,.)) = Tu - T(Cr,,,,.(u - f'.r,,.-,,.)) 
= TP,,.,,.2r + (Tu - Tf’.r,,2r) 

Here 

From Lemma 2.6, as well as the definitions of T and P,,.,,.T,., by letting 
X0 = A’,] - Ild& . IjuIIx, we have the estimate as follows when ‘1’0 is 
small enough 

If we have IzoI 5 Co, Cc, is independent of T, and 7.0 is taken small 
enough as 

( 
x0 

1 

A \,-A \‘,‘l, 
0 < 7’0 < 2C,(J-,, U’ld:x:)l~” . (3.3) 

Vol. 14. II’) 6.1997. 
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so that when 0 < I’ < I’(~. 

then we know that 

Now, let us verify lzOl 5 CY,,. In fact, by Lemma 2.1 and Lemma 2.6, 
recalling that ,I, .I/, It 

c~;(u -P,,.,,,2,.)cJ:~: = 0, /yI 5 AI - I. we have 

where 
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where q is chosen such that p > q > max{ 1, A}, which can be done 
because k < M - N/p and p > 1; Co is chosen to satisfy the last inequality 
of above formula and (3.4) below, which depends only on L, M, N, p, 
LOO-norm of d,, ]<Y] 5 k, it is independent of T. In the same reason 

Therefore, lzal 5 Co, so that 

v E K. 

Then, using this test function, we can obtain a Caccioppoli type reversed 
inequality, by it, we can use maximal function method to obtain the maximal 
function inequality. The steps are almost the same as in [14] (see also [19] 
and [23]). Therefore, we can prove that the solution of problem (1.1) 
belongs to W”,* (B,,,,), for some constant 0 < E 5 1. Since G can be 
covered by a finite number of such balls, u belongs to WA’>* (G), with 
norm depending on TO as well. 

In fact, using v as a test function, we have 

where 

where 4 = ($i,... ,4~) = Czo,r(u - Pzo+-) having a support in B,o,2T. 
NOW let us estimate S,, j < M. First, we have 

-c Ihldx + T~(~--P’~) 
CL.,..,. uydx~p’q) 

Vol. 14, no 6.1997. 
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where h is a function of known terms in L”(12) for some s > 1. 
which depends on given functions (1, a,![, bar, etc., 0 < F < 1; 
max{l~ & } < q < p, C depends on given data and F, it is independent 
of T. Notice here, we utilise the same estimate of ~(C,,.,.(U - P,r,,.2,.)) 
as (2.10), so that for IyI = M. 

5 c 
I 

U”dx. 
.B ‘“,.?“ 

Next, for 0 < j < M. 

where h is a function of known terms in L”(R) for some s > 1, which 

depends on given functions n,j, b,j. etc., o!j > c$ max 
{ 

1. (T,--l)~~~~,,lP,jjp 

C is independent of r’. 
> 

. 

As u E W”~“(O), uJ E Ln~~(i2), ?i < 1. there exists a T() > 0, which 
depends only on E, Il~ll~~,~(o, and IlnjllL~~,(I~), j = 0; 1,. ,M: such that 
when 0 < T < TO, 

for any given 0 < F < 1. 
Then, we can obtain the following Caccioppoli type reversed inequality, 

for x0 E R and 0 < T < r. such that B,To.zr c R, and r’o is small enough 
satisfying (2.9), (3.3), (3.5) etc. 

I 
pf’ulpdx < s 

s 
Id,n’ulPdx 

. B,,., B TO.-” 

+ c [,(1-p/y) (J,.,,;. ,~~fu~qdx)Y’q+ ./,,,,,r IhId:,-]. (3.6) 
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where 0 < S < 1 is a constant, 1 < q < p, h is a function of known 
terms in L”(Q) for some s > 1, C and 6 depends only on the given data 

and II~w~~~~~~~~~ 
Multiplying the both sides of (3.6) by r-ILT and using standard arguments, 

we have 

M(18;‘ujp) < CMp’q(ld;fulq) + CAd(lhl). (3.7) 

Then, by Lemma 2.7, we have proved the result of this theorem. 0 

THEOREM 3.2. - Suppose that 06 is dejined by (1.3) satisfying (Cl) 
and (Cal), T being a smooth linear differential operator F of order 
k < M - N/p defined in (2.2), and that the operator A verifies the 
assumptions (Al)-(A2). 

Then the solution u of problem (1 .l) with the closed convex set K has 
the estimate 

where 0 < E < 1 and C > 0 depend only on 

Proof. - We only need to prove that the Caccioppoli type reversed 
inequality (3.6) holds also on the boundary of R. That again reduces to 
find a suitable test function on the boundary. 

We extend u to RN by defining it to be valued 0 in RN\R. For za E 1952 
and 0 < T 2 TO, choose 

v = u - c~o.,u (3.9) 

as a test function in (1. l), where TO > 0 will be chosen later. &,, ,l. is a cut off 
function of BXO,zr. OnecanshowthatvEB,$$(ao=O,i=l,...A4-1. 

If ~1: E O\B,,,z,, then 

TV = Tu E X. 

Let us see the image of TV when 2 E t n B,o,27.. Since dR E C”‘-l,l 
and u E W,“‘,‘(O), we can verify D”-‘u = 0 on 80 in distribution sense, 
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SO that Tu = O! on X2, and if:+ is continuous, for any 0 < j 5 k. as 
ICI - Ic > N/p. That means, there exists r1 > 0. such that in 11, ,,., , , 

and by Lemma 2.2, there exists I’~ > 0. such that when 0 < I’ < I’?. 

Set 
7-o = $ min{ rl . r2 } (3.10) 

and let 0 < r < ra, which depends only on the bounded norm of the 
coefficients of F (i.e. L” -norm of d,) and other given data, that is. 

TV = TU - T(&,,,.u) E Bo.R,, E X. 

namely 
v E #. 

Then, if we work in almost the same way as in the proof of Theorem 3. I. 
we can obtain that the maximal function M(U) has the same estimate as 
(3.7) in Theorem 3.1 on the boundary. By finite covering, the result of 
this theorem follows. 

Now, we see that E and I~uI/~~,,+(~~) depends on the (’ and h in 

Caccioppoli type inequality (3.6), and r. as well because of the finite 
covering. Review all the conditions we set on 6’. h and I’,?, we have the 
estimate (3.8). 0 

COROLLARY 3.3. - Suppose that K defined in (1.3) verifies (Cl)-(C3) 
and (Cal), T being a smooth linear diferential operator F of o&r 
k: < M - N/p dejined in (2.2); \k E Wf’p+f (fl), with F > 0, clrld .q 
is an operator satisfying (Al)-(A2). Th en, there exists 0 < t’ 5 t .such that 
the solution u of problem (1.1) with the closed convex set K satisjies 

where E’ and C depend only on l[XI?ll whr,,J+e (I~) and the constants C) dqfined 
in Theorem 3.2. 0 

COROLLARY 3.4. - Suppose that # defined in (1.3) verifies (Cl)-(C3) 
and (Cal), T being a smooth linear differential operator F of order 
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k: < 151 - N/y dejned in (2.2); K@ E Wf’p+E (fl), with E > 0, and A 
is an operator satisfying (Al)-(A2). Suppose also that (M - j)p = N for 
some 0 1. j < M. Then the solution u of problem (1 .l) with the closed 
convex set K satisjies 

where 0 < S < 1, Sand C depend only on (I\EIIW~f,P+G(nj and the constants 
Q dejined in Theorem 3.2. 0 

Remark 3.5. - If the coefficients da(z), Icrl 5 AZ, in the operator T only 
belong to Co@“), all steps of the proof still hold. So under this weaker 
condition, the results of Theorem 3.2 and the corollaries above hold, too, 
but we can obtain a similar result for some further weak conditions on T, 
by using the convergence results of closed convex sets (see next section).0 

Remark 3.6. - If we already have that the solution u of (1.1) belongs to 
W,“‘,“(O), the assumption of dR E C A’-1)1 for the boundary of R can be 
weakened to the following assumption, 

where 13i ,qn (A) is the Bessel capacity (see [2]) and E,,,. = r-l(B,,,.\0) 
(the condition above is always satisfied for p > N). (See [2] and the proof 
of Theorem 2 in [23]). 

In the same way, in [19], with dR E C”‘-l.l, the condition similar to 
(3.11) in Theorem 4.3 is not necessary. 0 

3.1.2. case of (Ca2) 

We also can consider the case when X does not necessarily contain 
a large ball centered at the origin, but instead it contains a cone with 
nonempty interior, and with vertex at the origin. The cone can pull the 
other vectors into X as shown in Lemma 2.4. We can look for a function 
in Wf~P(Bd.O,).) such that the image of F is in C, but 

Remark 3.7. - In general, there exists no such function t that < E 
~~,J’(O,E,,,.) and Ft E C when the order k of F is positive, except 6 s 0. 

We show this remark by a counter-example in a very simple case. If 
N = 1, f2 = (0, l), M = 2, /z = 1 we can not find a function < such that 
$-” > 0 and t(O) = c(l) = E’(O) = E’(1) = 0, except < =: 0 by a simple 
analysis. cl 
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However, if the order AZ of F is 0, we can have the same results as 
the previous theorems and corollaries with this different condition on X. 
That is, 

THEOREM 3.8. - If T is the diflerential operator dejined in (2.2) with 
k = 0 and do(z) > 0 a.e. in 0; M > N/p; X satis$es (Cl) and (Ca2); 
then the results of Theorem 3.1, 3.2, Corollary 3.3, 3.4 still hold, with the 

norm II4w‘:.~,,, estimated by (3.8) of C depending on C in addition, 

but independent of RO. 

Proof - We can use 

as a test function in the interior point x0, where max{l, g} < 4 < p. 

w E (3, 5zo,r is a cut off function of B,,,.zrr CO will be determined later: 
and v defined in (3.9) for boundary point x0. 

The regularity result for this problem can be obtained in the same way 
as Theorem 3.2 etc. by these test functions. 

Noticing that here, the constant term in the square bracket in (3.12), 
different from previous case, has a factor r“’ with a maximal term, which 
can kill the troublesome r-j, j < M, caused by the differentials of c.r,,., 
when we do the estimates for maximal function, so that this test function 
is qualified for maximal function method (checking requests l.- 3. in the 
beginning of this section and reviewing the proof of Theorem 3.1). 

So we only need to show that in both cases v E K. In fact, v E M$‘.“(St) 
is obvious. In O\B,,.zV, TV = Tu E X and in B,0,2,., 

by Lemma 2.4 noticing do(z) > 0, a.e. and <z:,,r > 0 . if only 
> 

IIz&= < 1, a.e., where 80 is defined in Lemma 2.4. But 

if s,,,,,, UP& = 0 
zo = 
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C,, can be chosen big enough such that llza]l~- < 1 by the estimate 

which as we have done before in the proof of Theorem 3.1, provided 
M > N/q. 

On the boundary, as 0 5 <z,,r < 1, we have, for v as (3.9), 

TV = (1 - Cz,,r)dou = (1 - &,,.)Tu E x; 

for the convexity of X and 0 E X. 
So that 

v E K. 

Even though, 

Remark 3.9. - the problem discussed in [19] is not included in 
Theorem 3.8 above. When N is large enough, the condition M > N/p 
might fail. However, if X is only a cone vertexed at the origin, the condition 
M > N/p may be skipped too. With some technical transformation, the 
proof is similar to the one in [ 191. El 

Remark 3.10. - Having a suitable test function, using the same method 
as in [14], we also can discuss the almost everywhere regularity of the 
solution for this problem in all the cases discussed in this paper. 17 

3.2. T is an integral operator 

In this subsection, we consider the closed convex set 06 defined in (1.3) 
when T is an integral operator 

Tu(z) = 
J’ 

r(x, !/)4YM/, 
Ii 

(3.13) 

where K is any open subset of R with boundary belonging to C”.l, I’(z, w) 
is the kernel of the integral. 

It is easy .to verify that T defined in (3.13) satisfies (C2). In fact, 
v = L”(n); 
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for E E W”‘+(O), if only 

.I’ jl?(z,y)jsd?~ 5 C. V’:c E $2 and some positive constant C. (3.14) 
K 

1 
A-p 

hrp+N(p-1) . if N > iUp. 
whereO= >I, if N = Mp, That is, T is continuous. And T 

l> if N < Mp. 
is a linear operator. 

For this problem, besides (Cl), (C2), we need more conditions for X 
and T. That is, either of the following conditions is additionally required: 

l (Cbl) X contains a cone C vertexed at the origin with 6 # v); 
M > N/Z.‘; I’(.%, ?/) satisfies 

l (Cb2) X contains a ball Bo,R,~, I’ E C0(0,L8(0)), and Rn > 
Il~llL-(n,L~(n,, II~lb> where 0 is defined in (3.14) and u is the Wh’3p- 
solution of the problem (1.1) with closed convex set K defined in this 
case. 

3.2.1. case of (Cbl) 

Here, the cone is used for pulling the test function into X. 

As the discussion of Theorem 3.8, for the interior point, we can use the 
same test function v as in (3.12). 

It is obvious that this function v belongs to Wf,‘(Cl), and as we discussed 
before, it works for maximal function method. Also, 

TV = et Y)U(Y~JY 

where 

0, 

zo = - JKr(z, Y)~~,,~(Y)(u -K,,~,.)(Y)~Y 

Cr&+“--N~q(JB “(1 pwlIySKr(~, Y)L,~Y)~Y i 
otherwise. 
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We have, similar as in the proof of Theorem 3.8, lzal < l1 if only CO is 
chosen properly. That is, taking count of SK l?(z, ~J)u(?/)&J E X, TV E X. 
then 

v E K. 

Therefore, we have a local Caccioppoli type reversed inequality for 
maximal function as (3.6) and a finite cover. As almost the same as we 
have done before, we have the interior estimate. 

On the boundary, we should consider it carefully in another way. Notice 
here, the test function defined in (3.12) no longer satisfies the boundary 
condition of K if x0 is on the boundary of 0. 

Let zo E dR. Without any loss in generality we may suppose that the 
boundary near zro is {(x1,. . . ,zN), x1 = 0} and {x1 > 0) corresponds 
to II. We choose 

as a test function, where &O,r, w are as before. 
Then, v E W,“‘,‘(Q) and 

- 
.I 

r(x> dL,,,(du(ddy 
K 

ZZ 
/ 

qx, y)udz 
. Ii 

if only IIzo~~L-(~~) 5 1, where 
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But, 

where, by noticing 

qiu =(I, j=O,l...,M-1, 
y, =o 

we have 

with C being independent of I’. 
The inequality (3.17) comes from the imbedding theorem on the boundary 

presented in ~433, Corollary 2. of [22] (q can be chosen properly). 
When CO in (3.16) is properly chosen, it leads to 

IIZollL-(r2, - <1 

Namely 

Then we have a Caccioppoli type reversed inequality as (3.6) over 0, 
by the finite covering, the regularity results run over the domain 11. The 
estimate (3.8) then holds but depending on ~a, which can be determined 
by given data, and IllI’jlL-(~~,L’(~<)) as well. 

Now, there comes 

THEOREM 3.11. - uthe operator A satisjes the assumptions (Al)-(A2); 06 
is dejined by (1.3) verifying (Cl) and (Cbl), T being an integral operutor 
dejined in (3.13), where K is a subset of 12 with dK E Co,‘; \k = 0: 
then the solution u of problem (1.1) with the closed convex set OB, belongs 
to wfiflh (cl) f or some 0 < E 5 1. Mure precisely, (3.8) holds with C 
depending on IlrllP(W’(h-)) and the cone C in addition, but independent 
of d, and Ro. 

Similarly, Corollaries 3.3, 3.4 also hold for this case. 0 

Annules de I’lruritur Hrnri Poimvrl Analyre non IinCairr 
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3.2.2. case of (Cb2) 

On the boundary, we can choose v as (3.9), while in the interior we can 
choose v as (3.2) to be test functions, which work for maximal function 
method and are in K. 

On the boundary, we can use Lemma 2.2 and the fact Dj,lan = 0 for all 
0 < j 5 M - 1. The other discussion is similar to the one in the interior, 
we only write the details about interior points here. 

In fact, 

* + coJf+“(+;) 
J IVY:, YNecz",7xY)~Y K 

5 Ro. (3.18) 

if only 0 < 7’ < TO and r. is small enough such that 

which can be done since M + N( l/0’ - l/p) > 0 and u E @‘.n($j). 
Therefore, 

TV E BO,R,, c x 

by (Cb2). 
Then we have 

THEOREM 3.12. - If the operator A satisfies the assumptions (Al)-(A2); K 
is dejined by (1.3) verfying (Cl) and (Cb2), T being an integral operator 
dgfined in (3.13) where K is a subset of 62 with 3K E CO.l; Xl? = 0: 
then the solution u of problem ( 1.1) with the closed convex set K, belongs 
to @f,& (62) ,for some 0 < E < 1. More precisely, (3.8) holds with C 
depending on IlrllL-(~2,LO(~~)) in addition, but independent qf cl,,. 

Similurly, Corollaries 3.3, 3.4 also hold for this case. 0 
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3.3. T is an integrodifferential operator 

Now let the operator T in 06 be defined as 

Tu = I I-(:1:, y)Fu(y)dlJ. (3.19) 

where K is any open subset of (2 with boundary belonging to c-“-1”; E: 
is a linear differential operator as (2.2), with &(:L) E G’“(R”‘), k 5 M; 
and the kernel I satisfies 

.! 
Iryx, y)l’dy 5 c. \J:I: E f2 and some positive constant CJ. (3.20) 

I> 
Np 

(A-k+N)p-.v - if N > (M - k:)y. 
wherer= >I, 

1 
if N = (A4 - /G);o, 

1, if N < (LY - k);u. 
It is easy to verify that T defined in (3.19) satisfies (C2). 
As in last subsection, for this problem, besides (Cl), (C2), we also need 

more conditions for X and T. That is, one of the follows is additionally 
required: 

l (Ccl) X contains a cone C vertexed at the origin with C # (n: 
I’(%, y)=constant, F in (3.19) defined by (2.2) verifies (2.3), with k: < M. 
A4 > N/p; K = 12 or &,(z:) E Cl,“‘(K). 

l (Cc2) X contains a ball Bo.J~~. I E 6”“((2, L’(f2)); and Ro > 
llJ3:~ :1/)ll~qcw(n)) . IlWL~~~12~> where 7 is defined in (3.20) and u is 
the Wnr+-solution of the problem (1.1) with closed convex set 06 defined 
in this case. 

Remurk’3.13. - Under (Ccl), if k = 0 and da = 1, it is the case we 
discussed in last subsection, when we need not require I’ to be a constant 
but a C”(i2, L1( K))-function. Also, the set K may be any subset of 62 with 
6”O.l boundary. 0 

3.3.1. case of (Ccl) 

We do not lose any generality if we assume that I’(z. y) = 1. 
We denote 



REGULARITY OF SOLUTIONS 747 

As in previous subsections, the cone is used for pulling the test function 
into X. It should be careful to deal with the point in R but on the boundary 
of K. 

Let G and X as before in subsection 3.1.1, 0 < 2r0 < min{ 1, X}. 
Considering :I:() E G and 0 < r’ < ~0, let us define a test function v in K 
for maximal function method. 

If K = 62, take any :I:O E G: there exists 0 < r < r. small enough such 
that B,r,1,2r. c It, define a test function v as (3.12). 

Let us show that v E K. In fact, it is obvious that v E El, and v satisfies 
the boundary condition of 06, and by Lemma 2.5, 

TV = 
I 

Fvd.r, 
Ii 

where -90 is a constant chosen as in Lemma 2.4, and 

Notice, the coefficient of the w + &z. in the above formula is not negative, 
and ,I, Furh E X, so that by Lemma 2.4, SK Fvdx E X, as long as 
IIzoIIL=(~) < 1; which can be verified as before by choosing proper Co. 
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That is, this test function v is the one we wanted. 

If K C R but K # i2, then, the following cases are considered separately: 

a.) If IL‘O E k nG, we can discuss it in the same way as the case of K = 0 
above by choosing 0 < 7’ < r. small enough, such that B,,,,,2,. c K. 

b.) If ~0 E i3KflG, in a similar way of the case K = 62, we also can discuss 
it, but by use of the second part of Lemma 2.5, and the fact d,, E Ct’ (K). 

c.) If 20 E G\??, then, when 0 < I’ < 7’0 small enough, there exists a cut 
off function c,p, .,. . such that supp(C.,,.,.) c G\K. Set 

therefore 

j“~Fvds=~<FudrEX. 

Hence, combining a.)-c.), as well as having the discussion on case K = f2, 
we have. 

holds in any case presented in the theorem for this operator. 
Thus, we have a local Caccioppoli type reversed inequality for maximal 

function as (3.6) and a finite cover in 12. By the same steps as we have 
done before, we have the interior estimate. 

As in the last subsection, without losing the generality, for ica E 812. we 
suppose that the boundary near :zu is {(:cI,. . . . .I:~v). :rl = O}, and {:cl > 0) 
corresponds to 0, we can choose the test function v as (3.15) for .J:~~. It is 
not difficult to see, this function is in Wf.‘(O). Then using Lemma 2.2, in 
a similar way as the discussion on the interior points, by noticing (3.17). 
we also can have the same boundary estimate as the interior one. 

So that 

THEOREM 3.14. - [f the operator il .satis$es the assumptions (Al)-(A2); 06 
is dejined as (1.3) verifying (Cl) and (Ccl), T being an integrodiferential 
operator defined as (3.19) where F is dejined in (2.2) ver$jing (2.3) for 
M>k,M>N/p,K=R or K is a subset of R with 3K E (7’t-l.l and 
d, E Ct’ (K); @ = 0; then the solution u of problem (1.1) with the closed 
convex set K, belongs to W”, * (0) for some 0 < E 2 1. More precisely, 
(3.8) holds with C depending on C in addition, but independent of Ro. 

Similarly, Corollaries 3.3, 3.4 also hold for this case. 0 
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Remark 3.15. - It is not difficult to see that, under (Ccl), if there is 
a kernel I’(z, y) not being a constant but a function smooth enough and 
satisfying that 

F,*r‘(z: y) > 0, for a.e. 2,g E 0, 

where F* is the adjoint of F defined in (2.2), and F, means the differentials 
with respect to X, then the results obtained in this subsection can be 
extended to the set K with the operator 

Tu = 
I 

I’(n:, y)Fudz: 
. I< 

where K = R or K c R with dK E CA’-‘,’ and d, E Cp’(K). 

3.3.2. case of (Cc2) 

In this case, the discussion is almost the same as in (Cb2). So that, 

cl 

THEOREM 3.16. - Ifthe operator A satisjies the assumptions (Al)-(A2); # 
is defined in (1.3) verifying (Cl) and (CC~), T being an integrodifferential 
operator defined as (3.19), where F is dejned in (2.2) veriJLing A4 2 k, 
and K is a subset of R with dK E C “‘-l.l; !I? = 0; then the solution 
u of problem (1.1) with the closed convex set K belongs to Wh’l* (0) 
for some 0 < E 5 1. More precisely, (3.8) holds with C depending on 
I[~~~L~(Q.J~(K)J in addition. 

Similarly, Corollaries 3.3, 3.4 also hold,for this case. 0 

4. THE REGULARITY BY CONVERGENCE RESULTS 

In this section, we use the results obtained in [18] to get some more 
regularity results by a limit process. 

In the discussions of the last section, we see that a certain smoothness 
of K is necessary, but, in general, the regularity results do not depend so 
strongly on this assumption on K. So that, there is an expectation to weaken 
this smoothness assumption. The discussions on the convergence of closed 
convex sets (see [18], [20]) make this expectation possible. 

We give some applications of the convergence of the closed convex sets 
here, thus we extend the regularity results obtained in the last section. 

The convergence of the closed convex sets we discuss here is called the 
convergence in Mosco sense and/or in local gap. It is stated in [24] and 
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[25] that the convergence of the closed convex set in Mosco sense will 
imply the convergence of the solutions of problem (1.1) if A is monotone 
(so that the solution is unique). Also discussed there is the convergence of 
the solutions for a sequence of operators {A,, },!. 

To study our problem. first of all, we list some definitions and theorems 
about the convergences we will use and we already have. More results 
about Mosco convergences can also be found in [3] and its references, as 
well as in [18]. 

DEFINITION 4.1 (see also 191, [2lJ). - An operator A : V + V’ is called 
pseudo-monotone if for every UI,, such that UJ,, d ‘~1 weakly in V when 
71, + 30, and lim sup, (i2u1,. w,, - *w) < 0; then 

Remark 4.2. - We notice that when the operator A of problem (1.1) 
satisfies the assumptions (Al)-(A3), A is an operator of the Calculus of 
Variations (in the sense of Leray-Lions), so that it is pseudo-monotone by 
a result of [21] (~~182-183). q 

DEFINITION 4.3. - Let V be a Banach space, {K,, },, a sequence of closed 
convex sets of V. We say that K,, converges to K, in the Mosco sense, if 

l] Vu E K,, 3u, E K,, , II,, + II as71 + x8, in V. 
21 ‘11,~ E K,,*, v,? - II as 72; - x, weakly in V =j II E 06,. where 
{K, I } is any subsequence cf {K,, }. q 

DEFINITION 4.4 (See Section 4 in [25]). - Let {K,,} be a sequence 
of nonempty closed convex Sets of a Banach space I/. We say that K,, 
converges to K, in local gap in V, if there exists k:o > 0 such that 

VI40 > x:,,, aa(~rn. k.3) + 0. 

where (T~~(X,Y) = ~r~ax{o(X”~~,Y).cr(Y~~,X)}, with X’O = (2: E 
x. IIxllv I k:o), arzd n(X. Y) = sup{dist(z. Y), :I: E X}. q 

Convergence in local gap results in the convergence in Mosco sense. 
More discussions on these two convergences can be found in [ 181. 

Set 

K,, = Y E B : T,,v(x) E x. for a.e. :I: E U, 

cl% 
_ II dvi, 0: i=O>l,..., M-l ?l E N u {cc}. (4.1) 

an 
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The following two theorems can be found in ]lS]: 

THEOREM 4.5. - Suppose that (Cl)-(C3) are veriJedfor K, deJined in 
(4.1), X also contains a small ball BO,no with Ro > 0; T,, = F,, is a 
.sequence of differential operator of order k < M - N/P dejined by 

F,, = c d,,, (x)a,?l. 71ENU{X}, (4.2) I-l<k 
such that d,, E C”(Rw), ‘dn, and d,,(z) + d,,(s) in L”(a), as 
71 -+ W, Ia 1 5 k. Then, { #, }n converges to K, in Mosco sense, when 
r1 + 00. 0 

THEOREM 4.6. - Suppose that (Cl)-(C3) are verified for 06, defined 
in (4.1), X also contains a small ball BO,no with RO > 0; T, is the 
integrodifferential operator 

where the integral area K C R with dK E C”‘-l,l, r,, satisjies (3.20), F,, 
is defined by (4.2) with k < M. and I?,, + r in L” (f2. L’(0)), where r is 
dejined in (3.20), d,,,(z) + dCyX(:r), in L”(R), loi < X.. as n -+ 00. Then 
the result of Theorem 4.5 holds. 0 

Remark 4.7. - The convergences discussed in Theorem 4.5, 4.6 are in 
fact, in local gap. (See [IS]). •1 

Now, let us see a theorem about a convergence of the solution of problem 
(1.1) with a converging sequence of closed convex sets as follows. 

THEOREM 4.8. -Let {K,,}., ‘n E N U {co}, be closed convex sets of E! such 
that K,, --f 06,, in Mosco sense, when n -+ cxj. If A satisfies the assumptions 
(Al)-(A4), let {u,},, be any sequence of solutions qf problem (1.1) with the 
closed convex set {K,},, ~1, E N. Then there exists at least a solution u, 
qf the problem (1.1) with closed convex set K, which can be approximated 
weakly by a subsequence of {u,, },, in 5. Moreover, if A satisjies 

(Au - Av, u - v) 2 $11~ - 41~): (4.3) 

where y(.) is a continuous strictly increasing function from [O. +cxj) to 
[0, +CD) with y(O) = 0 and lim,.,+, y(r) = +x, then the solutions are 
unique and the sequence {u,,},, converges to u, strongly in B. 

Prooj: - (See also [24], [25]. Since the definition of A in our case here, 
which is only pseudo-monotone but has a concrete structure, is different 
from Mosco’s, the proof is different as well.) 
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From Remark 4.2, A satisfies (Al)-(A3), then A is a pseudo-monotone 
operator. 

If u,, is the solution of problem (1.1) with K,, . then by (Al), (A2) and 
(A4), reviewing (2.16), we have 

where C depends on given data and is independent of 71: TO; CO and C are 
defined in (A4). i.e. there exists R > 0 independent of 7~ such that 

II.%IllS L l?. (4.4) 

Thus, there exists a subsequence of {u,,},, converging weakly in B to ii,. 
As K,, converges to K, in Mosco sense, from 21 of Definition 4.3, 

we have, U, E K,. 
Also, from l] of Definition 4.3, we know that there exists U,, E K,, such 

that U,, ---f U, in B. Then for u,, being a solution, 

(ilu,, 1 ii,, - 4,) 2 0 

and 

liminf(Au,;u, - u,,,) = liminf(Au,,ti,, - u,,) n-x n-C%= 
+ liminf(Au,, ec, - u,,) > 0. (4.5) 

1L’O 

Now, we are going to show that this ii, is the solution of problem (1.1) 

in Km, i.e. one should be hold 

u, E K,, (Aa,; v, - a,) 2 0, vv, E K,. (4.6) 

In fact, for any v, E K,; from 11, there exists v, E K,, such that 
VT, + v, in B. Since u,, is the solution in 06,. for these v, E K,,, one holds 

u, E 06,) > (Au,, . v,, - ~7,) 2 0. 

Hence, 

0 5 lim s.up(A~,, ,v,, - u,,) 
n+oo 

= limsup(Au,,,v, - ~,~)+li~~~sup(A~,,.v,, - v,) < (A&,,v, - uK). 
71-00 l2ioC 
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because: 

lim SUP(AU,, , v, - v,) + 0; 
T-L-LX2 

2” A is pseudo-monotone with u,, - Us, weakly in B and 
liminf,,(Au,,,u, - un) 5 0 by (4% as 12 --+ x, then from Definition 4.1 

limsup(Au,,v, -u,,) < (AIL,,v, -ax). 
1z130 

That is, 1z, is a solution of problem (1.1) with K,. 
Finally, if A also satisfies (4.3), then from Remark 2.10, the solution 

u,, for problem (1.1) with closed convex set OCR is unique, r~ E N n {x}. 
Thus, all subsequences of {u~}~~ converges to U, weakly in lE8, that means, 
the sequence converge to U, weakly in IE!. Moreover, from (4.3) and 
Definition 4.3, there exists uiL E K,, and uiL -+ U, in IE!. So 

as rt, + co. That means 

47 --+ %2, strongly in B 

Therefore, we have proved the theorem. 0 
From this theorem and Mazur Theorem (see [28] p120), we immediately 

have 

COROLLARY 4.9. - Let {K,},,, n E N U {cc}, he closed convex sets of 
RI such that #,, + K,, in Mosco sense, when ‘I% + X. [f A satisjies the 
assumptions (Al)-(A4), {u,,}, b e any solution sequence of the problem 
(1.1) with the closed convex set {K,L},l, n E N, then there exists at least 
a solution u, of the problem (1. I) with closed conve.r set K, which can 
be approximated strongly by a convex combination of‘ the sequence {u,, },, 
in B. i.e. 

II 
,I 

urn - c II XjUj + 0, as 7~ 4 x. 
J=l 5 

for some Xj 2 0. C.T=, X, = 1. 0 

Vol. 14. 11' 6.1997 



Now, we give some applications 01‘ the convcrgcncelr on the regularities. 
In Subsection 3. I. wc have considered the regularity of the solution of 

problem (1.1) being K defined through a (’ * (in fact C “I) operator 7‘ defined 
in R’. Since in the proof. we need 7’ to he smooth over !!. Houcver. the 
regularity and the convergin g result only depend on the I, x -nom of the 
coefficients of 7’. Also. 7’ detinded on I, is enough. This IIW~I~S we can 

improve this result by supposing tl,, E I,‘ (12) only. The discussion on the 
convergence of the closed convex sets in Theorem 1.5 ~IICI Theorem 3.X 
make it possible. 

THEOREM 4.10. ~ Suppse that .-I srrtisjies (Al)-(A4); K is &finrti 

in (I .3) \‘er$ji:virlg (Cl)-(C3). ~vhere ?i contains (I bull &J,, T is 

cl d@rential operator k’ &fined in (2.2) \tith I?,) > IIMX (l~I~~11~ 
1 

1~1~%<d,ltio,, c l/4,}. (J}. d, E LX (12) only, 1~1 5 k with M - b: > N/p. 
Then there exists a solrltion u of the problem (1.1) with closed convex set 
06 such that the results of Theorem 3.1. 3.2. Corollary 3.3. 3.4 still hold 

,for this solution. 

Proof. - Let 

be the operator satisfying the assumptions of this theorem, d,,,(x) is defined 
in IR”, rl,, E d, on 62, d,, E L”(R”); and jldn,IILV(Rx-) 5 (Id,,]l~,=(~~). 
Then TX E T on 62. We can find a sequence of {T, },, such that T,, is 
defined as 

T;, = c d,, ,, 8,; . 11, E N (4.7) 
iwl<l, 

with ct,,, E C”(R”). and 

Then, 

T,, + T,. in ,C(w”‘+(12):Z,“(O)). as 71, ---) x. (4.X) 

Letting K ,I . JU E N U {CC}, be defined as in (4.1) with operator T,, defined 
in (4.7), by Theorem 4.5 and (4.8), we know that {K,, },, converges, in 
Mosco sense, to K,, where K, is the K considered in this theorem. 

Aw&~ de i’l~~s-titw Horri t’hu~r@ Analyss non lintawe 
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Notice that in the converging process, the corresponding the solution 
sequence depends only on maxl,,l<k: I)d,,,,/I~=(n.v), which is bounded by 
~nq,l<k Il~mmII~-(~~~) + 1. 

That-is, by Theorem 4.8 and Corollary 4.9, there exists a solution U, 
of problem (1.1) with a closed convex set 06, and a convex combination 
of the sequence of {zL,~}~~, - the solutions of problem (1.1) with the closed 
convex set K,,, such that 

II 
c &u,, + u, = u. in El: 
j=l 

as 7~ + cc. 
By Theorems 3.1 and 3.2, there exists 0 < E,, 5 1, such that 

u,, E w”eqq. 

Reviewing the proof of Theorem 3.1 and 3.2, we find out that the norm 

IIU, IIw”‘>+l) and E, depend uniformly on the LX-norms of d,,, for 

1~~1 < k;, with respect to 7~, so are the norm I/ Cy=“=, Xjuj(l n,,+(ca), where 

E:, = rIliIlo<j<,L EJ _ _ { .}. Then taking ~0 = rninj>o{E,}, wzch is positive by 
the uniform argument, from Vitali theorem (see [27] p59), we have 

for some 0 < Ed < 1. The other results then follow. 0 

THEOREM 4.11. - Suppose that A satisjks (Al)-(A4); 06 is dejined in ( 1.3) 
verijjkg (Cl)-(C3), where X contains a cone C vertexed at the origin with 

& # 8 and a bull B 0,~~ with Ro > I)! T is an integral operator de$ned 
by (3.13), with K c 12, i)K E C”,l, I? > 0 is only in L”(iI,Ll(K)), 
M > N/p. Then there exists a solution u of the problem (1.1) with closed 
convex set OB, such that the results qf Theorem 3.1 1 and corresponding 
Corollary 3.3, 3.4 still hold for this solution. . 

Proof. - By using Theorems 4.6 (when the order k: of F,, equal 0), 
choose T,, = JIi d:yr,,(:r:: y), with I’,, E G’“(Q x (2) converging to 
r in L”(O,Ll(K)), 
c(w”‘Jyn),L-(n)). 

so that T,, converging to T = .I;,- d;qr(:c, ~1). in 

Then noticing the uniform estimate (3.14), by Theorem 4.6 (when k: = 0), 
we have K,, + 06 in Mosco sense, where K,, and K defined by (4.1) and 
(1.3) respectively, with operator T,, and T defined above respectively. So, by 
Corollary 4.9 there exists a solution u of problem (1.1) with closed convex 
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set 06 and a convex combination of the sequence of {u,},,, - the solution 
of problem (1.1) with closed convex set K,, such that Cy=, X,;U,~ + U. 

in B. but by Theorem 3. I I, u,, E W”‘3*(f2) uniformly with respect to 
r~, SO are cf=r X,jUj. Then by Vitali theorem, u E WA”* (62). for some 
0 < E() < 1. Thus, the results follow. 0 

Similarly, we have 

THEOREM 4.12. - Suppose that A sati.$es (Al)-(A4); 06 is dq%zed 
in (1.3) verijj~ing (Cl)-(C3). where X contuins a bull &R~, . T is an 
integral operator deJined by (3.13), with K c 12, i3K E C”.l. IY being 
only in L”(O,L’(K)), H defined in (3.14); Ro > III’I(L”(~~,LH(K)) . 
~~~itx,,~,,t~~~~{~~u~~~~}. Then th ere exists a solution u qf the problem ( 1.1) wit!? 
closed convex set K, such that the results of Theorem 3.12 and corresponding 
Corollary 3.3, 3.4 still hold for this solution. 0 

The following result is much more advanced in a certain sense than the 
one obtained in Subsection 3.3. Review the proof, we can see that the 
assumption on the coefficients of d, in F is at least cl’Yl(IWN). but the 
regularity result does not depend on the CIUI-norm but LE(K)-norm (or 
W/,fr’~OO(K)-norm if K # 12) of d,, . That is, 

THEOREM 4.13. - Suppose that A satisfies (Al)-(A4); # is dejined in (1.3) 
ver@zg (Cl)-(C3), where X contains u cone C vertexed at the origin with 

e # B and a bull B o I?,, with RO > 0. T is an integrod@erential operator 
dejined in (3.19) satisfving 

with IY being a constant, K = 62 and d,, E L”(K) only; or K c 12. 
K # 12, dK E C~“-‘~’ and d,, E W,!,“““(K), j?jr n/r - k: 2 0, M > N/II. 
Then there exists a solution u of the problem (1.1) with closed convex set 
K, such that the results of Theorem 3.14 and corresponding Corollary 3.3, 
3.4 still hold ,fijr this solution. 

Proof. - The proof is almost the same as the one of Theorem 4.10. By 
using Theorems 4.6. we can choose 

with &,, E C,“(FPv) converges to d,, in LX(K) (or in WC, lkb(K), 

if K C 62 and K # 12) so that, by (4.9), when 11, is big enough, F’,, 
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verifies (2.3). Therefore T,, converges to 

in c(W”‘%P(Q),La(R)), and T, satisfies the conditions of Theorem 3.14. 
By Theorem 4.6, K, with operator T, converges to K with operator T in 
Mosco sense. Then by Corollary 4.9, there exists a solution u of problem 
(1.1) with closed convex set 06 and a convex combination of the sequence 
of {%,)n, - the solution of problem (1.1) with closed convex set K,, , 
such that C,“=, Xjuj -+ U, in B; but by Theorem 3.14, u,, E W”*,*(Q) 
uniformly with respect to ?I,, so are ~~=, Xju,. Then by Vitali theorem, 
u E w”‘&- -0 (0): for some 0 < EO < 1. Thus, the results follow. 0 

Similarly, consider also I?, 4 r in L”(1), L’(K)) and $,,, + rl, in 
L”(K), we have 

THEOREM 4.14. - Suppose that A satisjies (Al)-(A4); 06 is de$ned in 
(1.3) verifying (Cl)-(C3), where X also containing a bull BO,Ro, T is an 
integrodiflerential operator dejined in (3.19) with order of F, k: 2 n/l. 
and K C R, dK E CAfel.‘, lY E L”(O!L’(K)), d, E L”(R) only, for - 
14 5 k:; Ro > llJ%~(R,L’(K)) . max(sollrt;oll II Full+. Then there exists a 
solution u of the problem (1 .l) with closed convex set K, such that the 
results qf Theorem 3.16 and corresponding Corollary 3.3, 3.4 still hold for 
this solution. 0 

At last, the author would like to thank Dr. L. Santos for some helpful 
discussions on this paper. 
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