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ABSTRACT. - We use IV’,” approximations of minimizing sequences 
to study the growth of some quasiconvex functions near their zero sets. 
We show that for SO(n), the quasiconvexification of the distance function 
dist’(.; SO(n)) can be bounded below by the distance function itself. In 
certain cases of the incompatible two elastic well structure, we establish 
a similar result. We also prove that for small .Lipschitz perturbations of 
SO(n) and of the two well structure, the Young measure limits of gradients 
supported on these perturbed sets are Dirac masses. 

1. INTRODUCTION 

The study of Young measures limit of gradients [KP, BFJK] supported 
in various compact sets in MN’ n and quasiconvex relaxations of certain 
distance functions to these sets are very important subjects in the study of 
martensitic phase transitions and optimal design problems (see [CK, BJl, 
BJ2, F, K, KS]). As far as I know, explicit relaxation formulas are hard to 
obtain and there are only a few known examples [Dal, Da2, KS, K, D2, 
DR]. Therefore, the study of the behaviour of quasiconvex functions is very 
difficult because we cannot work on them directly. It is closely related to 
the analysis of quasiconvex hulls of the neighbourhoods of the zero sets for 
given non-negative functions and the stability problems related to Young 

Annalrs de l’lnstitut Henri Poincurr’ Analyse non h&tire 0294.1449 
Vol. 14/97/06/O Elsevier, Paris 

© 1997 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



760 K. ZHANG 

measures under perturbations. In this paper. we give some examples where 
we can estimate the growth of certain quasiconvex functions of the form 

E;‘(P) = Qdist”(P, K) 

for some closed subset K c ili[nx “, where h4” X” is the space of all 
N x 12 real matrices, without knowing the exact formula of F(P), and 
where Qdist”( P7 K) is the quasiconvexification of dist”( P, K), and p > 1. 
We establish these results for SO(n,) and for two incompatible elastic 
wells SO(n,) U SO(n)H h w en H satisfies the technical condition (1.3) 
below. The p-th power of a distance function to a given compact set is 
the simplest function from geometric point of view and the quasiconvex 
relaxations of this type of functions give information of quasiconvex hulls 
of the neighbourhoods of the zero sets of the original functions. 

The main results are the following. 

THEOREM 1.1. - Suppose n > 2. Let F(P) = Qdist’(P, SO(n)) 
be the quasiconvexification (cf. [Dal, Da2], also see Dejinition 2.1) of 
dist2(P.SO(n)), P E Ad”‘“. Then there exists a constant c(n,) > 0, such 
that 

c(n)dist2(P, SO(n)) 5 Qdist”(P. SO@)) 5 dist2(P, SO(n)) (1.1) 

for all P E M’” ‘I’. 

The method we use for proving of Theorem 1 .l applies to two 
incompatible elastic wells under a further technical condition. Let n > 3 and 

K = SO(n) u SO(n)H. (1.2) 

where SO(n)H = {RH. R E SOL}, and H is a 71, x ‘n positive definite 
diagonal matrix satisfying 

71, + n d&H - tradjH - trH > 0. (1.3) 

It was proved in [Ma, Sv] that the quasiconvex hull of K defined by (1.2) 
remains K itself under assumption (1.3). We have, 

COROLLARY 1.2. - Suppose n > 3, K is given by (1.2) with H sati&ing 
(1.3). Then, there exists a positive constant c(n, H) > 0 such that 

c(n, H)dist”(P, K:) 5 Qdist’(P, K) < distJ2(P, K). (1.4) 

We also study the Young measure limit of gradients ([KP, BFJK]) 
supported ‘near’ SO(n) and SO(rb) U SO(n)H. We give some estimates 
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of the quasiconvex hull of the t-neighbourhood of these sets. This problem 
is related to the stability of ‘one-well’ and two’incompatible well structure 
when 77, = 3. For a compact set K c MNxn , let 

K, = {P E MNxn, dist(P,K) 5 CY} 

and let Q(K,) be the quasiconvex hull of K, for a > 0. We have 

COROLLARY 1.3. - Assume (1.3). There exist constants C(a) > 0, 
C(71, H) > 0, such that 

Q(SO(n.)c) c SW&(+ 

and 
QW(d u SObWl4 c W-W u SO(WIC(,,H), 

for all F > 0. 

We always assume that R C R’” is a bounded open and connected set with 
smooth boundary. Let f : SO(n) -+ Mnxn and 9 : S0(7~) u SO(n)H --f 
M ‘lx” be Lipschitz functions such that 

If( L t: If(p) - f(Q)1 5 4’ - &I: P:Q E S0(7~)> (1.5) 

ldP)l i 6% Ig(P) - g(Q)1 < EIP - &I, I’. Q E SO(7t) U SO(n)H, 
(1.6) 

for some t > 0. 
We have 

THEOREM I .4. - Suppose that f and g are defined as above, let K, and 
Kg be their graphs, respectively, i.e. 

K, = {P + f(P)> P E S0(7~)}. 

K,q = {P + g(P), P E SO(n) u SO(n)H}. 

Let (uj) be a bounded sequence in W’,r(R; W), 1 < p < ocj, such that 
TL~ - u in W’J’(R;W) and dist(&, Kf) -+ 0 (dist(Duj: Kg) + 0, 
respectively) almost everywhere as j + W. Then, for sujjiciently small 
F > 0 and up to a subsequence, Duj -+ Du almost everywhere. In other 
words, K, and Kg support only trivial Young measure limit of gradients 
(see Theorem 2.4 for the dejinition of Young measures). 

Similar to Theorem 1.1, we have 

COROLLARY 1.5. - Suppose that 71 > 2, and let f and g satisfy (1.5) and 
(1.6), respectively, for E > 0 suficiently small. Let F(P) = Qdist*( P, Kf), 
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and let G(P) = Qtlist*(P. K,) be the quasiconvexijcations qfdist2( P, Kf) 
and dist’(P, K,,), respectively. Then there exists a constant c(7). F) > 0 
such that 

~(11. c)dist”(P. Kf) 5 Qdist2(P. Kf) < t-l&*( P, K,f). 

c(7~. f)dist2(P. K,) 5 Qdist*(P, K,) < dist”(P. Kr/). 

,for all P E iVX”. 

The methods we use to prove Theorem 1.1 are: (i) an approximation of 
W1.* minimizing sequences by W’.” sequences (Lemma 3.1) using the 
maximal function method through a modified version of [Z, Lemma 3.11; 
(ii) V. Sverak’s idea of showing that a sequence is a Cauchy sequence [Sv]. 
To prove Theorem 1.1 and Corollary 1.2, we have to make use of the special 
structure of the sets concerned, that is, both SO(rr,) and 5’0(7~) U SO(71)H 

have the property 

(adjP - adjQ) . (P - Q) > trJp - Q[*, P. Q E SO(n) u SO(7L)H 

for some (1 > 0, where adj P is the transpose of the cofactors of P E M7’ ’ ” 
(see [Sv]). In order to use this property, the sequences under study should be 
in W1.” at least. When 71 > 3, our sequence is bounded in W1.*, therefore. 
we have to approximate the original sequence by a bounded sequence in 
W1,“. I do not known how to bypass Lemma 3.1 and prove the result 
directly. The approximation lemma (Lemma 3.1) stands on its own right. 
It gives an estimate of the minimum energy of quasiconvex relaxations for 
distance functions dist”(.. K) for general compact sets K c ~%!f”‘~ when 
we only minimize the energy on a set of bounded W1+ functions. 

In $2, notation and preliminaries are given which will be used to prove our 
main results. $3 is devoted to establishing the approximation lemma which is 
crucial to the proof of Theorem 1.1. In 54, we prove the results stated above. 
To conclude this section, we justify that the function dist*(P, SO(rb)) is 
not quasiconvex itself. In fact, it is not trivial to prove it. 

PROPOSITION 1.6. - dist2( . . SO(n)) : M’“xr’ + W is not quasiconvex. 

Proo$ - Let f(P) = min{lP - A12, IP - Bl’}, where A, B E MNxn 
are fixed matrices. It was established in [K] that the quasiconvexification 
Qf of ,f has the explicit form 

Q~(P) = ,$s, { IP - BA - (1 - O)Bl* + O(l - H)[IA - B12 - Lx]}i 
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where A,,;,, is the greatest eigenvalue of the matrix (A - 13)T(A - B). 
Now, set A = I. B = .I. where l is the II. x 71 identity matrix, 

.J = (,:l I,:*) 
where I? and I,,-? arc 2 x 2 and (71, - 2) x (71 - 2) identity matrices 
respectively. Consider Is’(P) = min{ IP - II’, IP - JI’}. P E M”“‘, we 
have i’( I’) > tlist’( I’. SO(,/l)), since I, .J E SO(7r). If dist*(P, SO(71)) 
was quasiconvex. by Definition 2.2 below, QF(P) 2 tlist’(P, SO(n)), for 
every I' E ;lI"x". In particular, QR’(0) > d&*(0. SO), where 0 is the 
II x I) /;ero matrix. We have 

distj’(O, SO(n)) = 71 

and if we notice that A,,,,, = 4 when A = I, B = .I, we have 

OF’(O) = ,;m& {(HI + (1 - H).JI’ + 0(1 - @[iI - .Jl* - X,,,,]} 

= II - 2 + (,‘:Iii, { pu* - (1 - e)I*l’ + e(1 - H)[l21*2(2 - X,,,,]} 

= I! - 2 + o’:‘d’:‘,{“(“H - 1)2 + 40(1 - r9)) = 71, - 1. 

Contradiction. The proof is complete. 0 

2. NOTATION AND PRELIMINARIES 

Throughout the rest of this paper U is a bounded open subset of R’“. We 
denote by MLVX” the space of real N x 7~ matrices with the RgN” metric; 
hence the norm of P E M-“x7’ is defined by I P (= (trpTP)‘/*, where 
tr is the trace operator and PT is the transpose of P. The inner product 
of two matrices in M”X” is P . Q = trPTQ. For an r~ x 7~ matrix P, 
denote by adjP the transpose of the cofactors of P. SO(n) is the set of 
all rotations with determinant 1. For a compact subset K c MN”‘, let 
c:onvK, diarnK and l[Kll be the convex hull, diameter and the norm of 
K, respectively, where 

IlKI = sup{lPI, P E K}. 

We write C,(n) for the space of continuous functions q5 : 62 + R 
having compact support in S2, and define C’t (0) = C1 (62) n CO(0). If 
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1 5 y 5 cc we denote by L”(c2; W”) the Banach space of mappings 
II, : c! -+ R”, IL = (741.. . ,~.v), such that U, E D’(O) for each %, with norm 
(Iu~I~~(~~;~,v) = Cri, I~u,IIL~(~~). Similarly, we denote by W1J’(12. IR”) the 
usual Sobolev space of mappings IL E LP(Q: W”‘) all of whose distributional 
derivatives 2 = D.,,u,, 1 < % 5 N. I < ,j < 11,. belong to LJ’(12). 
W1J’(f2, Iwlv) is a B anach space under the norm 

where Du = (D,u,), and we define, as usual, IJV,‘,~(~~; I%“) to be the 
closure of Cr(R; R”) in the topology of W1>“(R:RN). 

Weak and weak * convergence of sequences are written as - and 5, 
respectively. If H c MNxn. P E M”x”, then we write H + P to denote 
the set {P + & : cl, E H}, jH = {jz? :x’ E H} for an integer ,j > 0. We 
define the distant function for a set K c A/l’vx” by 

f(P) = dist(P.K) := i;f, ( P - Q I 

DEFINITION 2.1. (see Morrey [MO], Ball [Bll,B12], Ball, Currie and Olver 
[BCO]). - A continuous function f : iMiVx7’ - R is quasiconvex if 

for every I’ E iVfLV “I, c/, E Ct(U; R”), and every open bounded subset 
u c R”. 

For a given function, we can consider its quasiconvexification 
(quasiconvex relaxation): 

DEFINITION 2.2. (see Dacorogna [Da]). - Suppose f : A&“‘” -+ R is a 
continuous function. The quasiconvexification off is de$ned by 

sup{g < f; g quasiconvex } 

and will be denoted denoted by Qf. 

PROPOSITION 2.3. (see Dacorogna [Da]). - Suppose f : h!leViXn -+ R is 
continuous, then 

1 
’ Qf(P) = . 

px$$:~N) meas I 
f(P + Do) dz:. (2.1) . o 

where R c R” is a bounded domain. In particular the injimum in (2. I) is 
independent of the choice of R. 
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We use the following theorem concerning the existence and properties 
of Young measures from Tartar [T]. For results in a more general context 
and their proofs, the reader is referred to Berliocchi and Lasry [BL], Balder 
[Bd] and Ball [B13]. 

THEOREM 2.4. - Let (z(j)) be a bounded sequence in L”(R; If?). Then 
there exist a subsequence (z(“)) of(z(j)) and afamily {Y~},~Q ofprobability 
measures on Iw”, depending measurably on II: E 0, such that 

for every continuous function f : Iw” --f Iw. 

We say that V, is a trivial Young measure at z E R if V, = S.4 for some 
A E R”, where 64 is the Dirac mass at A. 

Suppose that R c R”. A family of parametrized measures {~,},~n is 
called a Young measure limit of gradients [BFJK, KP], if it is generated 
by a sequence of gradients Du,~ with (uj) bounded in W1”(R; R”). 

Let T > 0 and z E R”, set 13(~,r) = {y E R” :I y - II: (< r} and 
meas(B(z, r)) = w,-~?> where w,-~ is the area of the 7b- 1 dimensional 
sphere. 

DEFINITION 2.5. (The Maximal Function). - Let u E Cr(R’“). We define 

(M*?L)(x) = (Mu)(z) + ~(Mu,,)(:r); 
<I*=1 

where we set 

for every locally summable f. 

LEMMA 2.6. (cf. [S, Ch.11). - If f E LP(RrL), 1 2 p < 00, then for 
every X > 0 

meas({x E W” : (Mf)(x) > X}) 5 F s,. lflPdn: 

LEMMA 2.7. - lf~ E C,“(R”), then APu E C’(P) and 
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for all n: E W. Moreover (see [20]) if?-, > 1, then 

and if p 2 1; then 

for all X > 0. 

LEMMA 2.8. (see [AF,L]). - Let ‘u E Cr(R”“) and A > 0; and set 

HA = {x E R” : (M*u)(z) < X}. 

Then for every II:, v E HA we have 

I 4x) - 4Y) I < qnp 
/ :I: - ?/ I ’ - 

LEMMA 2.9. - Let X be a metric space, E a subspace of X, and k a 
positive real number. Then any k-Lipschitz mapping from E into [w can be 
extended to a k-Lipschitz mapping from X into Iw. 

For the proof see [ET, page 2981. 

DEFINITION 2.10. (see [ET, page 2341). - Let 62 c W’” be open. Let 
B c BBP be a Bore1 subset. A mapping 

,f : 9 x B --) n(:= F! u {-S. CG}) 

is said to be a Carathe’odory function if 

(1) for almost all :r E 12, f(z. .) is continuous on B, 

(2) for all a E B, f(.: a,) is measurable on Q. 

We will not introduce the more general notion of normal integrals to 
which the Measurable Selection Theorem applies (see [ET, page 2341). 

THEOREM 2.11. (The measurable selection theorem (see [ET, page 2361). 
- Let B be a compact subset of W and g a Carathe’odory function of 62 x B. 
Then, there exists a measurable mapping 11, : 0 + B such thatfor all z E 0: 

.9(n:, G(z)) = $ll{g(:L a)}. 
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A direct consequence of Theorem 2.11 is the following: 

PROPOSITION 2.12. - Let B c WP be a compact subset and let u : 62 --) Rp 
be an integrable mapping. Then there exists a measurable mapping 
ti : 62 + B such that for all 2 E 0 

Iu(:c) - G(x)1 = dist(ll(x)> B). 

We conclude this section by giving the definition of quasiconvex hull 
QK of a compact set K c MNxn, and some simple properties of it. We 
use a more restricted definition than that in [S]. 

DEFINITION 2.13. (see [S]). - Let K c M” Xn be non-empty and compact. 
The quasiconvex hull QK of K is dejined by 

QK = {X E MNX7’, ,f(X) < ;‘:‘ir f(Y), f : M‘vx7’ i R quasiconvex}. 

PROPOSITION 2.14. - For any 1 < p < CC 
QK = {X E MNxn, QdisP(X, K) = 0). 

Proo$ - Let K1 = {X E MNx’L, QdisP(X, K) = 0). Obviously, 
QK c K1. Let f : MNXn ---f IR be any quasiconvex function. Let 

Nf = slip f(X) 
SEK 

and 
f&X) = max{f(X) - Of, o}. 

It is easy to see that jai is quasiconvex, QK c fijl(0) and QK = 
nffifl (0). We may assume that f<;,! (0) is compact, otherwise, take the 
convex function 

g(.) = dist*(.,convK), 

which is the squared distance function to a convex set. Therefore fa f + g is 
quasiconvex. We claim that (fol, +9)-l(O) c convK, hence it is compact. 
This is easy to see because fa, > 0 and g-l(O) = convK. We have, for 
any fixed 1 5 p < 00, 

QdisP(X; f;;(O)) < disP(X> f,;“(O)) 5 dist”(X, K) 

for all X E MNXrL. Since QdistP(X,fC;jl(0)) is quasiconvex, we have 

QdistP(X, j;;(O)) 5 Qdi&(X, K). 

F&m [Z, Theorem 1 .l] and its proof, we see that for a compact zero set 
f,-:(O) corresponding to a nonnegative quasiconvex function fm,, and for 
any 1 5 p < 3c, 

f<&‘(O) = {X E &P”“, Qdist?(X, f&;(O)) = O}. 

Hence, K1 c f&‘(O)) for every quasiconvex function f, thus K1 c QK. 
The proof is complete. 0 
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3. THE APPROXIMATING LEMMA 

In this section we establish our main approximation lemma which applies 
to general compact sets in A4J”x”. 

LEMMA 3.1. - Suppose that h? c IIZ”~~” is LI compact subset. Let 
1 < p < 3~. Let P E M~v’X” be such that 

0 < Q = Qdist”(P. K). 

that is, 

where D = (0. 1)” C R’” is the unit cube. Then there exist a minimizing 
sequence (u,;) bounded in W,““(D. R”), such that 

lirri * 
I .I’=-. D 

dist”(P + DuJ: K)ds: = a. 

uj - 0 in W,““(D, W”‘), a bounded sequence ({l,j) in Wl.“(D. W”), and 
a constant C(n. N.p) such that 

.I 
1Du.j - D.Y, I “do < C(TL. N. P)O, + r/j, - (3.1) 

D 

and 

Proo$ - Let $j E Cr (D, R”) be a minimizing sequence 

I dist”( P + D&,,: K)d:r: = a + F, + a, 
.D 

as j + cc, where Fj -+ 0 is a nonnegative sequence. Let KP = {A - I’, 
A E K}, and set 
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It is easy to see that 

IlKpI < tlist(P, K) + diamK. 

We have 

I 
’ diStr’(P + D$!lj. K)$T = 

I 
diSt”(D$!lj~ Kp)dX -+ (1. 

.D .D 

as j -+ 00. Since KP is compact, we see that (D4,)) is bounded in 
W,‘>“(D. W”); in fact, since 

we have 

x 
I 

lD$jjPd:l: - dist”(P, K) - (diamK)“, 
.D 

I ID4jIPd3: 5 3”-l(a + cj + dist”(P! K) + (diamK)“). 
.D 

Extend 4.j to be defined in R” as a periodic function, and then let 

for j = 1,2,..., and I): E D. It is easy to see that (uj) is bounded in 
W,i,P(D, R”) and up to a subsequence, uj - 0 in W~~p(D,RN). Let 
B(O,h) be a ball in A!fYXn such that KP C B(O,A) and 2--(p-1)hp > 
IIKPllP. Extend uj by zero outside D, we see that TL~ E CO~(Rn,RN) 
and IIU,jJIIC”.P(W,“.R,Y) = IIUjlJ~~~.p(D,n,\~)~ Uj = (~sl). . >~i’v)). For each 
fixed j, %, ‘define 

H? = {.I: E R” : (M%(~))(T) < A}; 
“.J J 

, / HJ” = ; Hfj, A > 3nA. 
i=l 

Lemma 2.8 ensures that for all X, TJ E Hj”, 

I “!i)(‘) - $yy) I 
3 I;, - :c”I 5 C(n)X. 

Let 91” be a Lipschitz function extending ~1’) outside Hi with Lipschitz 
constant not greater than C(n)X (Lemma 2.9). Since H,f is an open set, 
we have 
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for all 1: E H,$ and 

K. ZHANG 

If Ht = 0, set gj(z) E 0 for .c E D. If HF n D # 0. then we may 
also assume that 

Indeed, fixing y E H,; n D, for every 3: E D. 

lbj”‘(~)I 5 I.Y;.i)(n.) - g;‘)(y)] + lgf’(:y)l 5 v%(n)X + x, 

where we have used Lemma 2.7 to assert that Iu:j) (y) I < (Masse)) < X 
when y E Hf. Now set g,j = (gi”. . . .fgi.“‘). 

In order to estimate SD distP( Dgj, Kp)d.u, we start from the inequality 

and find a bound for rneas(D \ Hi). 

Similar to the proof of Lemma 3.1 in [Z], we have, from the definition 
of Ht&, 

D \ HA- c {x E D : (Mu”‘)(x) 2 A/2) 7.J J 

C 
I, 

u XED: C( 
ru=l 

and 

Define IL : R” -+ R by 

“(“) = { 
if Is/ < A, 

i’s, - A if IsI > A, 
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so that we can prove that 

In fact, when (M(DO~~y)))(:~) 2 &, we have a sequence of c)ik > 0, 

(vk + 0 and a sequence of balls Bk = B(x, Rh) such that 

1 
meas( Bk.) I’ . BA 

which implies 

Passing to the limit k + cc in (3.6), we obtain (3.5) (we have chosen 

& > A). 
From Lemma 2.6, we have 

meas 
(1 

z E R’” : (Mh(Du!‘)))(z) > L - A 3 271 

Also, from Lemma 2.6, together with the embedding theorem, we have 
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as ,j + CG. Therefore 

Since $j is periodic, we have 

I’ 
&A”( Du,?, KP)da: = 

I’ 
diStp(D$!lj(jX), KpjdzC 

.D .D 

= I dist”(Dti,(:r:j, Kp)d:r = a + c,~. 
.D 

Therefore, 

which implies that 

From the above two sets of inequalities, we have 
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Consequently, 

Hence, 

Also. from 

n+FJ= I distp(DUj, Kp)d~ 
.D 

we deduce that 

a + F,, 2 
I 

[2-(‘-1)lD~t~jlp - IIKpl)“]dz. 
D\H; 

thus. 

‘y 1 

. I  

jD'/l,,l" 5 22(“p1)(U + fj) + 22’p-1’II~Kpll”*~,eas(D \  H , X )  

D\H’ 

Therefore 

i 
ID//, - Dgl" t1.r 5 2-l 

I 
(lD~jl" -t ID,~,,I")~x 

1) D\H; 

< :“‘-‘C”‘( ,,)X” + ~~i(fl + F,j) 

$“-l)A” 
aeon, C(n) 

,211 -  21’--l/lKpllJ’ ($ - A)P 

+ 2”‘‘-“(0 + c,) + 2”“-1)11KpIll’lll~i~~(D \ H,x) 
5 2”‘~-1J(f, + f,,) + [2”-w(n)x” + 2Q-l)llKp(lqv 

y- 1 ‘\I’ C(n) 
’ ‘J + (’ + “)(;\I’ - 2/J-l(di;t1llK)P) (& - A)P (3.11) 
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Given A, B E M1vXrL , if we take Q E Kp such that IA-Q = dist(A, KI>), 
we have 

dist”(A, &,) = IA - ~1” > 2-(p-1)113 - (21’ - IA’ - ‘I” 
> 2-(T’-‘)dist”(B, Kp) - IA - Bl’. 

and so 

a + F,j = 
J’ 

dist”(Duj, Kp)dn: 
D 

( > 2-kl) 
I 

dist”( Dgj, Kp)dx - I DuJ - Dgj I”dz. 
.D I .D 

Therefore, from (3.11) we obtain 

.I’ 
distP (Dg,j ~ Kp)d~ 

D 

5 2”-l(U + Ej) + 2”-’ 
I 

lD?rj - DgjIPd:c 5 2”-l(~ + c,,) + 2”-’ 
.D 

x 
{ 

22(p-1)(a + F3) + [2”~W(TL)X” + 22(p-lqKpy]N 

(3.12) 

NOW, taking A = 2/1Kpll, X = 6n/lKpll, we have 

I disP(Dgj, Kp)dn: 5 C(N,p)nj + C1(n. N,p)(c~ + F~) (3.13) 
.D 

which yields (3.3) after letting j + cc. Also 

IDgj(x)/ 5 C(n,)X = 6;7~C(n)llK(pll < Cl(n)(diamK + dist(P. K)) 
(3.14) 

almost everywhere in D and 

Igj(:c)l < C(n,)X 5 C(n)(diamK + dist(P, K)). 

Since dist”(P, convK) is a convex function and disP’(P, convK) <: 
disF(P, K), we have, from the definition of quasiconvexification, 

disP’(P, convK) 2 &distp(P5 K) = 0,. 
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Therefore, 

dist(P.K) < a lip + diam(convK) = ul/p + diainK. 

thus, 

IDgj(:c)I 5 C2(7h)(diamK+n”p), lgj(x)[ 5 C3(n)(diamK+a1’“). 0 
(3.15) 

From the numerical analysis point of view, when we minimize the energy 
in a bounded subset of W1@ and compare the minimum with the W1+ 
minimum, we have proved the following result 

COROLLARY 3.2. - Suppose that K c IL!I-~~” is compact. Then there exist 
Cl (n,, N, p) > 0, C2 (n, N, p) > 0, such that 

inf 
ii 

dist”(P + Dg, K)dz, ~~gl~lvl.~~D,Iw.~~ 
.D 

5 Cz(n,p)(disP(P, K) + diarnK) 

5 Cl(n,N,p)Qdistp(P,K). 

The only fact in this Corollary to be remarked is that the IV>” bound 
of g depends on distp(P, K), while in (3.15) it depends on al/P. In fact, 
they are equivalent because of the following inequalities, 

dist”(P, convK) < Qdist”(P. K) = a < dist”(P, K). 

Remark 3 .l . - From the construction of .9? in the proof of Lemma 3.1, 
we see that even if a minimizing sequence is not bounded in W’+, we 
may find a W1l” -sequence such that near the zero points of QdistP(., K), 
it serves as an approximate minimizing sequence. 

4. PROOFS OF THE MAIN RESULTS 

Proof of Theorem 1 .I. -Let F(P) = Qdist2(P, SO(n)) for P E AFJx’“. 
It is known (see [Z]) that F-l(0) = SO(n). Let 0 < a = F(P) for some 
P, i.e. 

n = F(P) = ~ EgicDj D dist2(P + 04; SO(7~))dx. 
!J ” J 
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By Lemma 3.1, we find (‘(L,;) and (!I;) satisfying (3. I)-(3.15) with 41 = %. 
We have that 

and by (3.15) 

We may assume that, up to a subsequence. !I,, 5 11 in w”’ X (D. W” ). 
From the measurable selection theorem (see Proposition 2.13), for each 
% = 1.2, . . there exists a measurable mapping I’, : D -+ SO(r),), such 
that 

almost everywhere in D. Let 

?l,(:I*) = (P + Dy,(.r)) - cj(*I’). 

Following Sverak [S], we consider the integral 

I;j = 
I 

’ [adj(P+D!l,j)-atlj(P+Dg,)].[(P+Dg,~)-(r+Dg;)]n’n:, (4.2) 
.D 

for i,g = 1.2 ,.... From the weak continuity property of null-Lagrangians 
[Bl ,R], if we let *i + oc , then ,i + x,, 

lim lim I,, = 0. 
.j-x7-x 

Now, since p;(z). I’3 (:I:) E SO(l),) almost everywhere, we have 

adjP, = I’,. adj(Pj + n,j) = a,ljPJ + C(rj,~lj): 

adjPi = P;, adj(P, + rl,) = adjP, + C(I’,,ni), 

where adjPi + C(Pj. 71,) is the expansion of ad,j(pj + 713), and 



QUASICONVEX FUNCTIONS, SO(v) AND TWO ELASTIC WELLS 

We then have 

777 

I1.j = 
! 

’ [dj(cj + Sbj) - adj(Pi + TL;)] ’ [(P, + 7Lj) - (Pi + 7L;)]dX 
.D 

=/I 

(adjPj - adjP,) + (C(I’j, 761) - C(Pi, 71;)) 
.D 1 (Pj - Pi) + (7/,j - TtLi) [ II dX 

= 
I 

’ [(cl + 7L.j) - (PI + 71()] ’ [(PJ + ‘tt,j) - (Pi + 7L+,)]dX 
.D 

+ , D[(C(Pj, 71j) - 7Lj) - (C(Pi. 71;) - 7LJ] ’ [(cj + ‘tt,j) - (P, + TL,)]dT 
.i 

> 
I 

1Dg.j - Dg;l*d:c 

lD/ I(C(pj. 7tj.j) - nj) - (C(P;, ?li) - 7LJ2dX 
.D 

- i .I, IDgj - D,g;12d~:. 

Here we have used the facts that 

(adjP - adjQ) . (P - Q) = IP - [)I2 

if P. Q E SO(71,), ab 5 (J* + $ for real numbers and that P, +7bi = P+ Dg;. 
From (4.3) we get 

(4.3) 

where C(n) > 0 i s a constant depending only on n. Since /PI < 
a1/2 + diarnSO(7b). 

Irt,;(z)l = IP + Dgj - PiI = dist(P + Dgi, SO(n,)) 

I P9jI + al’* + cl(n) < C(7L)(l + #), 
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and so, from (4.4) and (4.1) we conclude that 

/' 

2(7L-2) 

.D 
JDgj - DgJ2dXJ 5 C(n)( C 

k=O 

uki2) / [dist2(P + Dg,i, SO(n)) 
.D 

+ dist2(P + Dg,. 5’O(r~))]d~ + I7.j 
2(r-2) 

5 C(7L) 

(  )  

c uk’2 [h, + ‘; + a + ti + Fj] + CI,j. (4.5) 
k=O 

Now we find a lower bound of 

I IDgj - Dg;12d:c:. 
.D 

Recalling the estimate (3.11) on SD IDg; - D?Lij’dz, we have, for our 
choice of A. and A, 

I . IDgj - Dgi12d:c 
.D 

= 
I 

I(Dgj - Duj) + (DUE - Dw~) + (Du; - Dgi)l”d:I 
.D 

> i / IDuj - D7Li12dnJ - / IDg, - Dujl”dX - / 1D.g; - Du,~~$x~ 
.D .D .D 

> ; ; lDuj - Dui12 - C(n)cl. - 71,~ - r/]. 
I 

(4.6) 

where limj+, 7/j = 0, lim+ix 71; = 0, and C(71, N,p) = G(n), N = 71, 

p = 2 is a positive constant. 
Combining (4.5) and (4.6), we see that 

I 2(71-2) 

I(P+Duj)-((P+D~~~)12d~~ 5 C(T/,) 
.D 

C u”‘~[u + 7/i +7/J] 
k=O 

(4.7) 
Since the integral on the left hand side of (4.7) is lower-semicontinuous as 
1: --) cc and u, - 0 in W,‘.“(D! FP), letting i + w we have 
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By applying the measurable selection lemma (Theorem 2.13) to the function 
II’ + D7Lj(:IJ) - &I for Q E SO(n), we can find a measurable mapping 
Qj : II -+ SO(n), such that 

dist(P + Dr~,j(x). SO(n)) = IP + L$(%) - Qj(z)l 

for almost every z E 12. Therefore the following inequalities hold almost 
everywhere, 

I(P + Du,(x)) - PI2 > flP - Qj(X)I” - IF’+ DUE - Q.j(~)l 

2 kdist(P, SO(~L))~ - dist(P + DUE; So(r~))~. 

and also 

dist(P, S0(7~))~ 5 2 
s 

dist(P -t DUE; SO(7~))~d.z 
D 

As U’L~ is a minimizing sequence, we pass to the limit as ,j + 00 and 
we obtain 

dist(P, SO(n))2 < C(n) (4.10) 

Since we also have 

dist2(P,convS0(n)) < Qdist2(P, SO(n)) 5 dist2(F’, SO(n)), (4.11) 

and when lP( 2 3IJconvSO(n)II we obtain 

dist2(P,convSO(n)) 

dist2(P, SO(n)) 

while, when IPI 5 3(lconvSO(n)II, we have 

c11/2 < dist(P, SO(n)) 5 IPI + IlconvSO(n)II 5 5llconvSO(n)lj. ’ - 

we conclude that 

2(IL+2) 2(n-2) 

c 
aw < - C (5llconvSO(n,)II)‘“, 

k=O k=O 
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which, together with (4.10) yields 

tlist(P. SO(rb))’ < C(rb)C)dist2(P. SO(71)). 

for some C(n) > 0. Therefore we conclude that there exists c(r)) > 0 (in 
fact c(n,) = l/C(r~,)) such that 

c(n)dist(P, SO(r,.))” 5 Qdist(P. SU(rL))’ 5 tlist(P, SO(71))’ 

for all P E M”X’f. 0 

ProoJ’of Corollary 1 .2. - In the proof of Theorem 1.1 we used the fact 
that if P, Q E SO(n). 

(MljP - iLd,jQ) ’ (P - 8) = JP - C)l’. 

It was observed by Sverak in ]Sv] (also see [Ma]) that under the condition 
(1.2), there exists an c?(H) > 0, such that 

(adjP - ;LdjC)) (P - Q) > rr(H)lP - C)l”. (3.12) 

for all P. Q E K = SO(n) U SO(n)H. 

We denote by A,,,(,.,. the greatest eigenvalue of H and 

A = 
n + udetH - traci.jH - trH 

C:‘& + A;)’ - 

we see that if P, & E SO, (4.1 1) holds for (r = 1. If P, Q E SO(r/,)H. 
(4.11) holds for a = detH/J&,,. This is because we can write P = PIH. 
CJ = d)lH for some PI. C), E SO(n) and notice that H is a diagonal 
matrix, so that 

while 
IPIH - &HI2 5 X;,,,lP, - Qll”. 

Hence we reach the conclusion. Finally, if P E SO(n)H and Q E SO(r),), 
then we write P = RH, where R E 5’0(1/,), and since trRH < t,rH, 
trHR 5 trH R E SO(YL) and H is a diagonal matrix with positive entries, 
we see that 

(adjP - aci,jQ) (P - 0) 

= tr[(detHH-‘R” - QT)(RH - Q)] 

= ndetH + rl, - tJr(detHH-lRTQ + QTRH) 

2 detH + n - tradjH - trH. 
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Since 

IRH - Q12 < x(1 + A;)*. 
i=l 

it is clear that (4.1 I) is satisfied setting 

71, + ndetH - tradjH - trH 
0 = 

c:i& + &I2 
= A. 

Take 

,,(H)=min{l,E,A}. 

and (4.11) holds for all P. Q E K. We may follow the proof of Theorem 1.1 
to prove Corollary 1.2. The only place in the proof of Theorem 1.1 where 
o(H) is involved is the last inequality (4.3). Also the constants C(n). ~(77,) 
in Theorem 1.1 are replaced by C(71. H) and c(n), H), respectively. 0 

Remark 4.1. - In fact Matos [Ma] proved that if for some eigenvalue 
Xk of H, we have 

(1 - Xk)(l - d&H/Xk) > 0, 

then the quasiconvex hull of K remains itself. It turns out that, it is enough 
to assume this condition in Corollary 1.2. What we need is a variation of 
(4.11). Let E, = (eij) be a matrix such that e?,i = 0 if 1: # j, eii = 6 for 
some E > (1 sufficiently small if Z # k: and ekk = 1. We consider the form 

[E(adjP - acljQ)] . [P - Q]. 

Then this form is still a null Lagrangian. We also have, for P E SO(n)H, 
Q E SO(n), 

[E(acljP - a(l.jQ)] . [I’ - Q] 
2 t[)Jl - X,)(1 - detH/Xj)] + (1 - xk)(I - dctH/Ak) 

.i#L, 

when F > 0 is small enough. Therefore the conclusion of Corollary 1.2 is 
still true under this weaker condition. 

Proof of Corollary 1.3. - Let F(P) = Qdist2(P, S0(7~)), and let 
P E Q[SO(~L)~]. Then by proposition 2.15 we have 

Qdist2(P, SO(n),) = 0; 
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and since 

tlist2(P, SO(n)) < (F + dist(p, SO(n),))2 5 2~~ + 2dist,‘)(P, SO(?),), ). 

using Theorem 1 .I we obtain 

dist’(P. SO(n)) < C(rb)Qdist2(P. SO(n)) 

5 C(U)(C’ + Qdist”(R S0(7~),)) 
< C(71)f2. 

The proof is finished for SO(n.). The other case is similar. 0 

Proof of Theorem 1.4. - We only give a proof for f : SO(71) -+ n/l” “I. 
The proof for g is similar. Let { ~,},~(2 is a family of Young measure limit of 
gradients supported on Kf. If we can show that V, is trivial for almost every 
:c, the proof will be finished. It is known [Z, KP] that if a Young measure 
limit of gradients has bounded support, then the Young measure can be 
generated by a bounded sequence in W1*“. Next we notice that if F is small 
enough, then the mapping Y = X + .f(X) from SO(r),) to K,f is invertible 
and the inverse is continuous. Let Q(.) : 9 + Mrrx” be measurable. If 
we apply the measurable selection theorem, we may find a measurable 
mapping P : R -+ Kf, such that ]P(:c) - Q(z)] = dist(Q(z:),Kf), where 
P(x) = R(z) + f(R(a)), and R : S2 ---f SO(rl) is measurable. Now, let 
(u,,) be a bounded sequence in Wl.“(R, IwAV) such that the Young measures 
generated by (DUj) is supported in K,f and Uj 2 u in IVr,“(fl. R”). For 
each j, we may find a measurable mapping X, : (2 -+ SO(n) such that 

almost everywhere. Let 91j = D?L,j(.I:) - R,j(:c) - f( R,j (:I:)). As in the proof 
of Theorem 1 .l, setting 

we have linli+oc limj-, li, = 0. We also have 

Iij = 
/’ 

[adj(Rj(z) + f(Rj(x;)) -t- rLj(l:)) 

-‘idj(&(:z) + f(R;(x~)) + ,rl,i(~:))] . [(&(x1) + f(Ri(x)) + rbj) 
- (R;(z) + f(&(rr)) + 7l&E))]ch 

= 
.I 

{[ad.% + f(R.j) + 71,.7] - [adj~, + f(~) + n,]> 
n 
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. {CR, + fCRj) + rbj) - (R; + f(R;) + TL;)}d:C 

+ 
.I 

AL {[c(R.j, f(Rj), rl*J) - C(Ri, f(Ry), 7tQ)] 

-[(fCRj) + 7L.j) - (f(Rj) + 7t,,j)]} 

{CR,1 + f(Rj) + r"j) - (Rf + f(R;) + 7l;))dX 

= It + IjiT, 

where C(Rj, f (Rj); 71,j) is defined by the expansion of the determinants 

adj(Rj + f(R,i) + 7”,j) = adjRj + C(R,, f(Rj), rbj). 

Therefore we have, due to the fact that Rj E SO(n) and f satisfies (IS), 
that 

+ C(17Ljlk + If(f + Inilk + If(Ri)l”)(l~~~I + l71.J) 

k=l 
IL - 2 1 

+ C(I7hjI’ + If(Rj)lk’)l + lnzlk + If(R)l”)lf(Rj) - f(R)1 

k=l J 
It-1 

5 C(n) flRj - Ril + ~(lniIk + 1~~~1’;) (4.13) 
k=l 

Since Du, = Rj + f(Rj) + “,j, from (l-5), and if we choose F 5 l/2, 
we have 

jRj - Ril < 2IDuj - Du~I + 2(ln,jl + ITJL~[). 

Thus we have, 

I; 2 - 
/ 

C(n,)(2fIDTL,j - Du;I + 2f(lnjl + IYL;~) 
* 66 
71-l 

+ C(lnjl” + Inil”)lD~i - Du,~[~x 
k=l 

- C(n) 
I’ 

C(lnjlk + I~~~l”)lDt~~ - D7LjjdZ. (4.13) 
. Q k=l 
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Obviously. 

Choosing F = nun{ l/2. 1/(3G’(rr))}, we see that if we combine (4.13) 
and (4.14) we have 

(3.15) 
Since l,r/,j / + 0, when ,i d 0 in L”(0) for any 11 > 1. and (U’L,j) is 
bounded in L”, passing to the limit in i + x, and using the fact that 
the functional on the left hand side of (4.15) is lower semicontinuous, then 
letting j + x in (4.15). we see that 

Therefore I/,,. = n,,,,,,., almost everywhere. 

The proof for h;l is similar. 0 

The proof for Corollary 1.5 is similar to that for Theorem 1.1 and it 
is left to the reader. 
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