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ABSTRACT. - For a Hamiltonian system, in which the Hamiltonian 
is assumed to have an asymptotically linear gradient, the existence of 
nontrivial periodic solutions is proved under the assumption that the 
linearized operators have distinct Maslov indices at 0 and at infinity. Both 
the linearized operators may be degenerate. In particular, the results cover 
the “strong resonance” case. 

RI~SUMI? - Pour un systtme hamiltonien dans lequel l’hamiltonien est 
suppose avoir un gradient asymptotiquement lidaire, on montre l’existence 
de solutions periodiques non triviales, sous l’hypothese que les operateurs 
1inCarisCs ont un indice de Maslov different en 0 et en l’infini. Les 
operateurs 1inCarisCs peuvent meme etre degeneres. En particulier, ces 
resultats comprennent le cas de CC resonance forte D. 
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1. INTRODUCTION 

We study the following periodic solution problem: 

-J 2 = Hz (t> 11;) (1.1) 

where H E C2 ([0, l] x II2 71, R) is l-periodic in t, and 

J= (,qL -$). 

(1.1) is called asymptotically linear, if there exists a 2 n x 2 7~ symmetric 
matrix function B, (t), which is continuous, l-periodic such that 

(Hz (t, x) - B, (t)xl = O(lxl) as 1x1 -+ cc (1.2) 

where ] . I is the R’” norm. 
The following question is raised: Having found one solution, say 8, which 

is called the trivial solution, can we conclude the existence of a nontrivial 
solution by assuming conditions on the two linearized systems at 19 and at 
oc, i.e., on the two matrices: 

and B, (t). 

Bo (t) = Hz, (6 0 (1.3) 

An important notion in this study is the Maslov index. For a continuous 
l-periodic symmetric matrix function B (t), let W (t) be the associate 
fundamental solution matrix of the linear system: -J $$ = B (t) X . B is 
called nondegenerate if W (1) has no eigenvalue 1, i.e., 1 is not a Floquet 
multiplier of B. Let Sp (n, W) denote the set of all 2 n x 2 n symplectic 
matrices, and let 

P = {y E C([O, 11, Sp(n, R))ly(O) = I, r(1) hasnoeigenvalue l}. 

According to Conley Zehnder [CZ] and Long Zehnder [LZ], there is a 
map j : P + Z. For nondegenerate B (t), one defines the Maslov index 
i (B) = k if j (IV) = k, where IV is the fundamental solution matrix. 

If B is degenerate, i.e., 1 is a Floquet multiplier, Long [Lo] extended the 
definition. A pair (i- (B), n(B)) is called the Maslov index of B, if 

{ 

n(B) = dimker (W (1) - I), 
i-(B) = iirn i(C) where C is nondegenerate. 

C-B 

In particular, if B is nondegenerate, then n (B) = 0, and i- (B) is the 
Maslov index i (B). 

Annales de l’lnstitut Hewi Pomcuri Analyse non liwia~re 
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The above problem was firstly studied by H. Amann and E. Zehnder [AZ 
1, 21. They assumed that both Ba and B, are constant matrices, where 
B, is nondegenerate, and i (B,) @ [i- (Bo), i- (Bo) + n (Bo)]. Later, 
C. Conley and E. Zehnder [CZ] studied the case where B0 and B, are 
nondegenerate, but not necessarily constant, and i (Bo) # i (B,). Other 
authors followed the study in case where B, is nondegenerate, see [LL], 
[Lo], [LZ], [DL], [Li]. As to degenerate, but constant B,, [Ch2] and [Sz] 
studied the Landesman Lazer type resonance condition; and [Ch3] [Sal 
studied the strong resonance condition. 

Set 

h (t, x) = H (t, z) - ; (B, (t) 5, x). (1.4) 

where ( , ) is the inner product of W2”. The so called strong resonance 
condition is defined as follows: (1.1) is asymptotically linear, and B, (t) 
is degenerate and satisfies: 

h (4 ~1 + 0, (1.5) 

and 

lb (4 ~11 + 0, (1.6) 

uniformly in t E [0, l] as 121 -+ co. 
Our main result reads as 

THEOREM 1.1. - Assume (1.3), (1.5), (1.6), where B, is degenerate, and 
that 

I&z (4 ~11 5 Cl Cl+ I4”) (1.7) 

for some Cl > 0, s E (1, co) and all (t, x) E [0, I] x W2”. Then (1 .l) 
possesses a nontrivial solution if one of the following three cases occurs: 

(1) Jb’ H(t, Qdt = 0, 

(2) Jo1 H(t, 0) dt > 0 and i- (L) @ [i- (Bo), i- (Bo) + n(&)], 

(3) Jo1 H(t, 0) dt < 0, and i- (B,) + n(L) 6 [i- (BQ), i- (Bo) + 
77, (BON. 

For Landesman Lazer type resonance, we have 

THEOREM 1.2. - Assume (1.3), (1.7) and the following hypotheses: 

IH, (t, x) - B, (t)q = O(1) as 1x1 + 00, (1.8) 

Vol. 14, Ilo l-1997 
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where B, (t) is a degenerate symmetric continuous matrix function. Then 
(1.1) possesses a nontrivial solution if 

1:- (B,) $z [i- (B(J), i- (B”) + 72 (Bo)], 

(or i- (B,) + ?z (B,) $ [1:- (B,), i- (Be) + n (Ba)] rrsp.). 

As a consequence, we have 

COROLLARY 1.3. - Under the same assumptions in Theorem 1.1 or 
Theorem 1.2, (1.1) possesses a nontrivial solution if 

[i- (BO)l i- PO) + n PO)] n [i- (B,), i- (B,) + r-2. (B,)] = VI. 

Remark 1.4. - In Theorem 1.2, if further we assume that B, (t) is 
nondegenerate, and that (1.8) is replaced by (1.2); then the assumption 
(1.9) can be dropped out. 

It seems that the above two theorems and their remark include and extend 
all known results in literature on this problem. 

The novelties in proofs consist of the following three ingredients: 

(1) By a variational approach, the Morse inequalities are used to estimate 
the number of critical points. But, the Palais Smale Condition fails for 
strong resonance problem. We compactify the kernel of the linear operator 
by adding an infinity point, and extend our functional to the enlarged 
manifold, so that the (PS) Condition is gained. (2) We introduce an abstract 
Maslov index for compact self adjoint operators with respect to a bounded 
self adjoint operator with finite dimensional kernel. The index relates to 
the difference of Morse indices of a certain functional. This abstract index 
coincides with the Maslov index for a matrix function (with respect to 
-J g). (3) The Maslov indices, which replace the critical groups for the 
strongly indefinite functional, are used to distinguish genuine critical points 
from the fake. 

2. ABSTRACT THEORY 

We would study the above problems in an abstract framework. Let 3-1 be 
a separable Hilbert space with inner product ( , ) and norm ]I . ]I. Assume 

(A) A is a bounded self adjoint operator with a finite dimensional kernel 
N, and the restriction Ajivl is invertible. (Denote by P the orthogonal 
projection 3t + N.) 
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(G) G : ‘Ft -+ R1 is a Cl-functional with a compact differential G’. And 
there is a linear compact symmetric operator B, such that 

1 
G(x) - i (B, x, x) -+ 0, 

JIG’ (x) - 8x xl/ + 0, 

as 1) P, z/1 --f cc uniformly on any subset in which Q 2 is bounded, where 
P, is the orthogonal projection from 7-1 to 3-1,, the kernel of A + B,, 
and Q = I-P,. 

We consider the functional 

f(x)=$pix,x)+~(x). (2.1) 

Suppose G’ (19) = 8, then 0 is a critical point of f, we are looking for 
nontrivial critical points of f, Since f is strong indefinite, the critical point 
6’ has cc as its Morse index. In order to go around the infinity of Morse 
indices, we introduce the abstract Maslov index with the aid of a Gal&kin 
approximation procedure. 

DEFINITION 2.1. - Let I = {P,,/n = 1, 2, . ..} be a sequence of orthogonal 
projections. We call I? an approximation scheme w.r.t. A, if the following 
properties hold: 

(1) ?tFI, := P, ‘Ft is finite dimensional Vln, 
(2) P,, + 1 strongly as r~ + 30, 
(3) [P,,. A] = P,, A - A P, + 0 in the operator norm. 
For a self adjoint bounded operator C, denote by m (C) the Morse 

index of C. 

LEMMA 2.1. - IJ’ T is a compact linear operator defined on l-l, and if 
{ Pn} is a sequence of orthogonal projections satisfying (2) in Dejnition 2.1, 
then V E > 0 there exists no an integer, such that /IT (I - PQ) jl and 
Il(I - I’,,) TII < E, Vn L no. 

Proofi - We only prove the first one; the second is proved similarly. 
If not, there exist EO > 0, and a sequence z, with l/znll 5 1 such that 
lI~(~-~rLbJnll 2 ~0. Substracting a subsequence, denoting again by x,~, 
we have 5, - LC, and then T x,, + T 5. Since P, 5, - :c, TP,, x, + T :c. 
This is a contradiction. 

Now we prove 

THEOREM 2.2. - Let B be a linear symmetric compact operator. Suppose 
that A + B has a bounded inverse. Then the diflerence of Morse indices 

m (Pn (A + B) Pm) - m (Pn (A + P) I’,, ) 

Vol. 14. Ilo I-1997. 
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eventually becomes a constant independent of n, where A satisjies (A), P is 
the orthogonal projection onto the kernel of A, and r is an approximation 
scheme w.r.t. A. 

Proof 1” P, (A + B) P,, + (I - P,) is invertible for n large. Indeed, 
we only need to verify that 

llpn (A + B) Pn, 211 2 E /lPn 4 Qn > no (2.2) 

for some E > 0 and no. However, for n large 

llpn (A + B) Pn XII 
2 II@ + B) Pn xl1 - I](1 - Pn) BP, XII - II[% A] Pr, XII 
1 (Cl - w - PnPII - IIRK AIll) llPn4 

where Ci = ll(A + B)-lll-l. By virtue of lemma 2.1 and (3) in 
Definition 2.1, Il(I-Pn) BI( < Cl/3 and II[P,, AllI < Ci/3, ourconclusion 
follows. 

2” We define a finite dimensional orthogonal projection S satisfying 

[S: A] = 0, and Il(I - 5’) B(I < ~/6. (2.3) 

as follows: Let gl, y2, . . . . yl be a &/lt3 net of the image of B acting 
on the unit ball U, i.e., Q z E U, there exists 1. E [l, 11 such that 
IlBx - yill < &/18. Th ere exists a finite dimensional orthogonal projection 
S satisfying [S, A] = 0, and IISylj - yjll < &/18 Q’j, according to the 
Spectral Decomposition Theorem. It follows 

II(~-SP4l I IIBX-Yill+llYi-Wl+llS (Bx-y/i)ll < E/G. Qx E U. 

Set S, = P, SP,, we shall prove 

m (pn (A + B) PT,) =m (S (A + El) S) 

+ m (pn (I- sn) (A + B) (I - S,) P,)> (2.4) 

for large n. Indeed, 

P, (A + B) Pn 3, (A + B) S, + Pn (I - S,,) (A + B) (I - S,) Pn 

+ S, (A + B) (I - S,) Pn + P,, (I - S,) (A + B) ST,,. 

Applying lemma 2.1 to T = S and P, S respectively, we obtain 

IIS, - SII I II% - prl SII + ll(I - Pn) SII < E/(fjW, cw 

Anna/es de I’lnstitut Henri PomcarP Analyre non lintme 
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where A4 = IIA + BII, for large n, and then 

IIS, (A + B) (I- Sn)lI 

F Il(S, - S) (A + B) (I- &)I/ + IlS(A + B) (Sn - S)(l 

+ llS(A f B) (I- S>ll 
< E/2. 

Similarly, we have the same estimates for (I - Sn) (A + B) S,. Thus 

rn, (P, (A + B) P,) =m (S, (A + B) Sn) 

+ m (P, (I- 3,) (A + B) (I- Sn) P,), 

because .?: = S, zr + I’, (I - Sn) z is a direct sum in 3-1,. By the 
same argument in lo, one may choose S satisfying (2.3) such that 
S(A+B)S+(I-S) IS invertible. Again, by (2.5) for n large, 

m(S(A+B)S)=m(S(A+B)S)+(I-S)) 

= m (S,, (A + B) S, + (I - S,)) = m (S, (A + B) Sn). 

This proves (2.4). 
3” Recall P is the orthogonal projection onto N. Again by (2.5), 

m (P,, (1-S) (A+B) (I - Sn> P,) = m (P, (1-S) (A+P) (I- Sn) 4,) 

and then (2.4) becomes 

m (P, (A + I?) Pn) =m (S (A + B) S) 

+ m (P, (I - Sn) (A + P) (I - Sn) P,). 

for n large. Similarly we have 

m (P, (A + P) P,) =m (S (A + P) S) 

+ m (P,(I - &) (A + P) (I- ST,) P,). 

Finally, we obtain 

m(P,(A+B)P,)-m(P,(A+P)P,) 

= m(S(A+B)S) -m(S(A+ P)S) (2.6) 

for n large. And the right hand side of (2.6) is independent of n. 

Vol. 14, Ilo l-1997 
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Given an invertible AtB, with compact symmetric B, we define an index 

I(B)=r~~~(m(P,,(A+B)P,,)-rn(P,,(A+P)P~J). (2.7) 

It is easily seen that the index I does not depend on the special choice of the 
approximation scheme. In fact, let I? = {r,, In = 1, 2: . ..} be another scheme 
different from F, we define a new scheme I? V f’ = {PA 1 n = 1. 2 ~ . } where 

I),{ = 
{ 

2 7r, = 2 ,k - 1. 
I, VI> = 2 k, 

k: = 1, 2, . . . . then, by Theorem 2.1, I (B) is well defined w.r.t. I V I;. This 
proves that the index w.r.t. lY is the same with I’. 

Now, we give 

DEFINITION 2.3. - For a given compact linear symmetric operator B, let 
Pn be the orthogonal projection onto ker (A + B), we define 

N(B) = dimker(A + B). 

I- (B) = I(B + Pn); 

and call the pair (I- (B)? N (B)) the abstract Maslov index of B w.r.t. A. 

By definition, we immediately have 

I- (B) + N (B) = 1 (B - Pn). (2.8) 

The following theorem is a generalization of Theorem 2.8 in [CL]. 

THEOREM 2.4. - Assume that the functional f defined in (2.1), satisfies 
the assumptions (A) and (G). Then f has a critical point. Moreover, if 0 
is a critical point, and if G is C2 in a neighbourhood of tJ and one of the 
following conditions hold: 

(1) f(e) = 0, 

(2) S (0) < 0 and I- (B,) @ [I- (Bo). I- (Bo) + N (Bo)]. 

(3) f (0) > 0 and I- (B,) + N(L) @ [I- (Bo), I- (Bo) + N (Boll. 

where Bo = d2 G (e); 

then f possesses at least a critical point other than 8. 
Proof - We take a sequence of orthogonal projections P,, such that. 

H, = P,, H is invariant under A + B,. Since B, is compact, by 
Lemma 2.1, I = {Pn} is an approximation scheme w.r.t. A. According to 
lemma 3.1 in [CL], f satisfies (E’S): condition for c # 0, i.e., any sequence 
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z,, E 7&& satisfying fit (x~) + c # 0 and f; (x~) -+ H possesses a strong 
convergent subsequence, where fn = fix,,, the restriction of f on ‘H,,. 

Next define 

F (u. s) = 
i 

f (u + s) (u, s) E ‘Ft& x 7-lFI,, 

; ((A + Kc) u, u) (u, s) E ?-t& x {m>, 

and let F’” = F(R+,c, where c = ‘FI, U {co} 21 S”‘“, rn,o = dim ‘X,, 
tii = 3-1; n ‘FI,,, and 7-& = ker (A + &,). 

We apply lemma 2.6 in [CL] to F’“, and obtain two subordinate classes 
a:! 4 oilL in the relative homology groups H, ((F”)d. (F”),) for large 
d and --u, where (F”)c is the level set of F”; and n. n! > 0. We know 
from the same lemma, 

q,, = dim IY, = m,(p,,(A+B,)P,,)+N(B,). and 

d = dim oTS = rn (Pyl (A + B,) I’,). 

Let 

c,, = inf sup F” (x) 
zEn,l sE1.T 

These are critical values of F’“, if they are not zero. Since c,,, cz are 
bounded, we have convergent subsequences such that 

c = lim c,,, 
1L’oC 

c* = lim cz. 
71’CX 

It is easily seen: 

(1) c* < c. 

(2) If c or c* is not zero, then it is a critical value of f. 

(3) If c = c* = 0, then f has a noncompact critical set. 

It remains to show: if either c* < 0 or c > 0, then we have a nontrivial 
critical point with the critical value c* or c. 

If not, the only critical point of F is 0 and F (0) = c* (or c). 

We only consider the case F (0) = c*, the other case is similar. 

On one hand, we have no > 0 such that ‘dn > ran, 

WI. 14. no 1.1997. 
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s: = m (f’n (A + &a) p,,) 
= rrt (I’, (A + B, + I’%-) I’,,) 

= I- (B,) + rn (5’7, (A + P) p,,) 

6 [I- (Bo). I- (Bo) + N (Bo)] + 771 (pn (A + P) pn,) 

= [m (Pn (A + Bo + PO) pn): ~1 (J’n (A4 + Bo - PO) K)], 

where PO is the orthogonal projection onto ker (A + Bo). 

One may find 6 > 0 such that 

V’z E B(6’: &), the 6 ball centered at 0; b’n 2 TL~), by Theorem 2.2. 

According to the (F’S);. rl < 0, for 7),0 large, we have 

df’” (z) # H as /1x)/ > s/a and n 2 110. 

V’n, by Marino Prodi Theorem [MP], one constructs a functional J?“’ on 
7-1,,, which satisfies: 

(1) (PS), v (1’ < 0, 

(2) (F”),.yg*, = (F”)c;,hc for some E, 

(3) p7’ = F” in ‘NFI,,\B (0. E). 

(4) Fn has only nondegenerate critical points :yl. . . ~JI all concentrated 
in B (0; s/2) n Ff,,. 

Thus, 

j = 1, 2, . I. 

On the other hand, by the definition of cfL, we have 

4, wL,,+E~ (F”)& = Hq, (FcI;,+E; F&J # o 

This contradicts with the Morse inequalities, if we choose c* + E < 0. 

THEOREM 2.5. - Assume (A) and 

(G’) G : l-l + R1 is a C1 functional with compact differential G’. There 
is a linear compact symmetric operator B, such that 

/IG’ (x) - B, ~11 = 0 (1) und 1141 -+ ‘x, (2.9) 

Am&s de l’lnvtitur Hrrm t’oinmrt’ Analyte non IinCaire 
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and 

G(x) - ; (&a 2, x) --+-oo(or +co) (2.10) 

as IjP, z/l -+ 03, where P, is the orthogonal projection onto ker (A + B,). 
Then f has a critical point. Moreover, f possesses a nontrivial critical 

point, if 0 is a critical point and if G is C2 in a neighbourhood of 6 and 

I- (Bm) Sr [I- (Bo), I- (Bo) + N (Bo)] 
(or I- (B,) + N (B,) sl [I- (Bo)! I- (Bo) + N (Bo)] rev.), 

where Bo = d2 G(8). 
The proof is similar to the previous one, but simpler. Because the 

Landesman Lazer Condition (2.10) implies (PS), there is no need to be 
concerned with the critical point at infinity. Only qz (or qn) is used in the 
same argument to show the existence of a nontrivial critical point. 

Remark 2.6. - In Theorem 2.5, if further, N (A + B,) = 0, then (2.9) 
can be replaced by ]]G’ (x) - B, z]] = O(]]X]]) as ]]x]] -+ cc and (2.10) 
is not needed. 

Remark 2.7. - In both theorems 2.4 and 2.5, if we are only concerned 
with the existence of a solution, then the local C2 condition of G at 0 
can be dropped out. 

3. HAMILTONIAN SYSTEMS 

Now, we return to the problem (1.1). Let IFI be the fractional Sobolev 
space H f ( S1 , W2 “), where S1 is the unit circle, which is diffeomorphic 
to [0, l]/{O, 1). D fi e ne a bounded self adjoint operator A on ‘E by the 
bilinear form: 

(3.1) 

Ifx E C1 (S1, R2pL). The functional G 
.l 

G(x) = - 
.I 

H (t, x) dt 
0 

(3.2) 

is C1 on 3-t, if we assume that H, is of polynomial growth in :r. 

The critical points of the functional 

f(x)=; 1’ (-J$,x)dt-i’H(t,:c)dl: (3.3) 

are solutions of (1.1). 

Vol. 14, Ilo l-1997 
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Let I3 (t) be a continuous l-periodic symmetric matrix function, then 
the multiplication :I: (t) ++ B (t) n: (t) defines a compact linear self adjoint 
operator on Hi (S’, Rzn), and then A + I3 is again self adjoint. Let 
I’B = {I’,, ]n = 1, 2...}, where P,, is finite-dimensional projection, strongly 
converges to I the identity, and commutes with A + B. Then l?n is an 
approximation scheme w.r.t. il. Indeed, only (3) in Definition 2.1 is needed 
to verify. Noticing 

[P,,. A] = [I%. A + B] - [I’,>, B] = -[P,,. B], 

and that the right hand side converges to zero in the operator norm provided 
by lemma 2.1, our verification is complete. 

We turn out to study the relationship between abstract and concrete 
Maslov indices. 

THEOREM 3.1. - For any given continuous l-periodic symmetric matrix 
function B (t), we have 

N(B) = n(B) (3.4) 

I-(B) = 1:- (B) (3.5) 

Proo$ - By definition 

N(B) = dimker(A+ B) = dimker(W(1) - I) = n(B) 

In order to show (3.5), firstly, according to [AZ 21, for a nondegenerate 
constant matrix Ba, we have 

I- (B,,) = I(B,,) = 1 (BO) = ?- (BO). 

provided by choosing a special r = Yo,. Secondly, for general 
nondegenerate matrix function B (t), according to [CZ], there exists a 
nondegenerate constant matrix Ba, homotopic to B (t) in nondegenerate 
class. By homotopic invariance of the Morse indices, and the definition of 
Maslov index, we obtain 

I-(B)=I(B)=l(B,)=i(B,)=i(B)=,i-(B). (3.6) 

Finally, for degenerate B (t), according to Long [Loll, we have on one 
hand 

%- (B) = &r~ pi(C) 
C+B 

i- (B) +71(B) = $mBi(C) 
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where C (t) is nondegenerate. On the other hand, by the lower semi- 
continuity of the Morse index, 

b I(C) 2 I- (II): 
C-B 

and 

hiI < I- (B) + N(B). 

It follows from (3.4) and (3.6) 

I- (B) < i- (B) 5 i- (B) + n (I?) 5 I- (B) + n (El). 

(3.5) is proved. 

LEMMA 3.2. - Assume (1.5) and (1.6). Then (G) is satisjied. 

ProoJ: - We want to prove the following conclusion: 
For < E Hi (Sl, R2rL), 

](P, []I --f cx) * ](Poo <) (t)] + 0.2 uniformly in [O, l] (3.7) 

Indeed, let {er (t), . . . . ed (t)} be a basis in ker (A + B,), where d = 
dim ker (A + B,). On one hand, let &f = Max { Jej (t) ]nz n 11 < j 5 d, t E 
[0, I]}, we have 

j=l 

for every z E kcr (.4 + I?,), and 

z(t) = 

7) = (vr! . . . . U,I) E R”, with 

5 Vj ej ( t ) .  

j=l 

On the other hand, since {ej (t)} is linearly independent V t  E [O: 11, by 
compactness of [O: I], one finds &o > 0 such that 

However, $ ]nj ] is an equivalent norm of ker (A +B,). This proves (3.7). 
j=l 

Let z = Pm 2; r/ = (I - Pm) z. Suppose 

Il~lnll .5 M, II41 + co: 

Vol. 14, no I-1997. 
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then VE > 0, 3 measurable sets E, satisfying 

{ 
IYn @)I L wfi fort 6 En 
and mes (E,,) 5 E. 

We have 

ZIG 

s .I 
+ I (Max IhI+ 1) E 

ET, CE,, 

as n large enough, because Iz, (t)lRzv2 + +CQ. 
Similarly 

’ (G’ (qJ - B, xn, V)~S = 
s 

hz (6 in (t> + 2, (t)) . v (t) dt 4 0, 
0 

vu E L2 (9: FP”). S’ mce II+ ci L2 is compact, (G) is verified. 
Proofof Theorem 1 .I (or 1.2). - We are going to show that Theorem 1.1 

(or 1.2) is a special case of Theorem 2.4 (or 2.5 resp.), if we choose A, G 
and f as in (3.1), (3.2) and (3.3) respectively. Obviously, (A) is satisfied, 
and (G) follows from Lemma 3.2. By the Sobolev embedding theorem and 
the Holder inequality, we have 

.I Hz, (6 1~ (t)) Y (t> 2 (t) I c kds IIYII ~~~~~~ 
This implies that G E C2. Theorem 3.1 identifies the concrete Maslov 
indices with the abstract. Theorem 1.1 (or 1.2) now follows directly from 
Theorem 2.4 (or 2.5 resp.) directly. 
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