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ABSTRACT. - In this article we study the global stability of one- 
parameter families of hyperbolic vector fields with simple bifurcations in 
three-dimensional manifolds at least in all known cases (see introduction). 

RESUML - L’objet de ce travail est d’etudier la stabilite globale 
des familles a un parametre de champs de vecteurs hyperboliques avec 
bifurcations simples dans les varietes de dimension trois. Cette etude est 
faite au moins dans les cas connus (voir le prtliminaire). 

1. INTRODUCTION 

We first recall that the global stability (see definition in Section 2) 
of one-parameter families of vector fields {X,,}, 1-1 E [0, I] with simple 
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recurrences (that is, for each parameter value, /A, the nonwandering set 
of X, is constituted solely by a finite number of critical elements, i.e., 
singularities and periodic orbits) was studied by Palis and Takens in [P-T] 
for gradient vector fields and by Labarca in [La] for many cases of quasi- 
transversal intersection orbits and the remaining cases were completed by 
himself and Plaza in [La-P!]. The study of the stability or not of the 
bifurcation due to a saddle-node periodic orbit was done by Plaza in [PC] 
and in all remaining cases the global stability or not follows from the 
articles of Palis and Takens [P-T] and Newhouse, Palis and Takens [N- 
P-T]. For families of vector fields on three-dimensional manifolds which 
are hyperbolic, say for /L < p, and for 1-1, = p there exists an orbit of 
quasi-transversal intersection between an unstable and a stable manifolds, 
the global stability was studied by Vera in [Ve]. It is to be noted that for 
higher number of parameters, the question is quite open, except for the 
case of two-parameter families of gradient vector fields which was solved 
by Carneiro and Palis in [C-P]. 

In this article we study the global stability of one-parameter families of 
vector fields {X,,} that are hyperbolic, say for 1-1 < p, and at 11, = Ji the 
vector held X, has a simple bifurcation that unfolds generically, wfiich will 
be (i) a saddle-node that is, singularity or periodic orbit. (ii) a flip periodic 
orbit, and (iii) a Hopf singularity. Adding this result to those mentioned 
above we have a complete study of the global stability of one-parameter 
families of vector fields in dimension three, modulus a Conjecture of Palis 
and Newhouse (see [N-P]). 

In order to obtain the result we must impose some mild nondegenerated 
conditions which we explain in the following section. 

2. BASIC CONCEPTS 

In what follows, M will denote a C” compact boundaryless YL- 
dimensional manifold. In the following sections we will impose that 
rt. = 3. 

Let X”(M) and XT(M) d enote, respectively, the spaces of (7” vector 
fields and C” arcs < : IT = [-1, l] 4 Xcu(M), both endowed with the Cm 
Whitney topology. If < E Xy (M), we let < = {X,} where X,, = I(/L), 
for each 1, E I. 

First we recall some concepts and results on hyperbolic vector fields. 
Let X E x”(M), we denote by Xt its flow. The nonwandering set O(X) 
of X is the set of (c E M for which each neighborhood U of z and 
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each T > 0 , satisfies U n (U I~~>~X~(U)) # 0. Note that the periodic 
orbits and singularities, which in the sequel will be called critical elements 
of X, belong to R(X) and that n(X) is a closed X-invariant set, i.e., 
X,(12(X)) = n(X) for all t E R. 

A closed X-invariant set I? is a hyperbolic set for X if the tangent bundle 
of M restricted to I, TrA.4, can be written as a Whitney sum of three 
DX,-invariant subbundles, TyA.4 = E” $ EC $ E”, and there are constants 
c > 0, X > 0 such that for each 2 E r, we have: 

a) EC is the one-dimensional bundle tangent to the flow of X; 

b) I] DXt(z)v 111 c. e-xt I] ‘u 11, v E Ez and t > 0; 

c) 11 DX-t(x)w 112 c. e-xt 11 w 11, w E E,: and t > 0, 

where, respectively, E; and Ei is the fiber of E” and E’” over :I;. 

Let F be the set of singulaties of X (i.e., z E F if and only if X(z) = 0) 
and let A be the closure of the set of periodic orbits. We say X satisfies 
the Axiom A if, (i) 0(X) = F U A, (ii) F is finite and hyperbolic; in 
this case hyperbolicity yields E” = { 0 } and it is equivalent to that for 
each :): E F, D X(z) has no eigenvalues with null real part, (iii) A is 
hyperbolic, as well (iv) F n A = 0. 

It is well known that if X is Axiom A, then there exists a spectral 
decomposition of R = R(X), i.e., it can be writen as a disjoint union, 
R = fli U . . U 02p, where- each s2i is a closed X-invariant set which 
contains a dense orbit of X ( i.e., the flow X,]o, is topologically transitive) 
(see [Sm]). The sets R, used to be called basic sets of X. 

In what follows we will say that Ri is nontrivial if it is not a singularity 
or an isolated periodic orbit. Let IC E M, we define, respectively, the stable 
and the unstable set of .?: as We’ = {y E M : d(X,(a).X,(y)) -+ 0, 
t + cz} and lV(x) = {y E M : d(X,(z),X,(y)) + 0, t + -x}, 
where d is a distance function on M induced by a riemannian metric. Now 
let y = Utt-~Xt(z) be the orbit of 5. We define, respectively, the stable and 
the unstable set of y as l@(y) = UYE,w”(y) and VP(y) = uYEYWLL(y). 
Note that W’(y) and VP(r) are invariant by the flow of X. It is well 
known that if y is a hyperbolic critical element of X or if X satifies 
the Axiom A and y is the orbit of a point :c E 52(X), then W” (x:), 
WU(z), W’(y) and WU(y) are C” injectively immersed submanifolds 
of n/f. Let B,(s) denote the disc of radius E centered at 5 in n/l then the 
connected component of W”(z) n BE(.z) that contains 2, W:(z), and the 
connected component of VVL(z) n BE(.z) that contains 2, We, depend 
differentiably on :I;. Furthermore, T,Wz (:E) = E: and 7’cWz(:~) = E:f 
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Let X be an Axiom A vector field, we say that X satisfies the strong 
trunsversality condition if for each orbit y c IV. W,‘(y) transversally 
intersects W”.(y) 

We say that X E xx(M) is lzyperbolic if it satifies the Axiom A and the 
strong transversality condition. It is well known that if X is hyperbolic then 
it is structurally stable (see [Ro]. [Rob]), that is, there is a neighborhood 
M of X in X”(M) such that each Y E IA is topologically equivalent 
to X, this last assertion means that there is a homeomorphism. called 
topological equivalence, h : M + A4 which sends orbits of X into orbits 
of Y preserving their orientation time. Respect to this last assertion we 
have the following remark: let X be a hyperbolic vector held and let 
62, be a basic set of X, then for each I7 E xx (AI), C’ -close to ,y, 
which may be chosen to be hyperbolic (the set of hyperbolic vector fields 
is an open set in x”( 31)). there is a homeomorphism (over its images) 
1~ : 12, + M, C” -close to the inclusion map such that /),(<I,) = II;(Y) is a 
hyperbolic basic set for Y and /r. is unique up to a composition of Ir with 
a homeomorphism rl : (1, -+ 12i close to the inclusion map which leaves 
invariant the orbits of X restricted to 12;. 

Now let X E x”(;V). We say that X has a weakest contracting (rest). 
expanding) eigenvalue, A, at a singularity 11 if: (i) A is a simple eigenvalue 
of DX(p), (ii) S(A) < 0 (resp. R(A) > 0), and (iii) for all eigenvalue B 
of DX(p) with %(I?) < 0 (resp. B(B) > 0). B # A, 2, S(B) < R(A) 
(resp. 8(B) > %(A)). (H ere R(Z) denotes the real part of the complex 
number z). Similarly, assume that X has a periodic orbit CJ. Let C be a 
transversal section to X at q E CT and let 1’ be the corresponding Poincare 
map. The vector held X is said to have a weakest contracting (resp. 
expanding) eigenvalue. iz, at o if: (i) /I is a simple eigenvalue of DP(q), 
(ii) IAl < 1 (resp. IAl > l), and (iii) for all eigenvalue B of DP(q). with 
(BI < 1 (resp. IBI > l), B # A. 2, IBI < IA\ (resp. IBI > I-41). 

We now recall some concepts related to one-parameter families of vector 
fields. Let {X,,}. {YkL} E x;“(M). I, b E I and 7. i, be orbits of XT 
and Y;, respectively. We say that {X,, } at (7. jZ) is locally equivalent 
to {Y,,,} at (i/. b) if there are intervals 7, i C I. with /-G E 7. fi E i 
and a neighborhood U of the closure of 7 in A4’ and a homeomorphism 
(over its images) I? : 0’ x 7 -+ A4 x f: H(:c,p) = (h,,(:r):~(p)), where 
P : KP) + (r. 1;L) is a reparametrization and Ill, : U -+ h,,(U) is a 
topological equivalence between X,, jr] and Y,(,,) lh,([,-) and hi = i/. We 
say that {X,,} E XT(M) is locally stable at (7, j5) or that the pan (y. p) is 
stable if there is a neighborhood U of {X,,} in XT(M) such that for each 
{qL} E U, there is a parameter value b near j? and an orbit r of 1”~ near 7 
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such that {X,} at (r,Ji) is equivalent to {Y,} at (+. b). Furthermore, we 
say that {X,} E x?(M) is stable at Jo E I, if there exists a neighborhood 
U of {X,} in x?“(M) such that for each {Y,} E U, there is a parameter 
value ,G E I near Ji and a homeomorphism H : Ad x 7 --+ M x i where 
7, respectively j, is a neighborhood of jZ, respectively of b, in I and 
H(z,p) = (h,,(~r;),~(p)), with p : (7.~) --+ (i.6) a reparametrization and 
h,, : A/l + iU is a topological equivalence between X,, and k;,(,,), and the 
map I --+ Horneo(M7 IV), p + lb, is continuous. 

Let now Ot, and itj be basic sets of the vector field X we put fli 3 62, 
if (WU(R;) - 0;) n (lW(n,) - Rj) # 8 and we say that X has no cycles 
among its basic sets if there are no sequences Ri, : . . . R;, . k: 2 1 of basic 
sets such that Ri, = Ri, and Ri,, 5 s2,J+, . j = 1. ... . k - 1. It is well 
known that if X is Axiom A and there are no cycles among its basic sets, 
then the partial order “3” can be extended to a total order, “<“, so that 
Ri 3 12, if and only if 1: 1. j. 

In what follows we will consider one-parameter families of vector fields. 

vu E x;“(M)7 f or which there exists a first bifurcation value ,L E I, that 
is, X, is non structurally stable and for each p < p, X,, is hyperbolic, and 
for each p E I, X,, has no cycles among its basic sets. Furthermore, we 
suppose that for each p < ;rZ, the basic sets of X, are ordered as follows: 

R 1,/L 5 . . . 3 Q2i.bL 5 Q+l,p i . . . 5 qp 

and for p = p the vector field Xc has one and only one orbit 7 along 
which it is non locally stable. In this article we will only consider the cases 
in which 7 is an orbit of the following type: 

(1) an isolated saddle-node singularity, 

(2) an isolated Hopf singularity, 

(3) an isolated flip periodic orbit, 
(4) an isolated saddle-node periodic orbit, 

(5) a flip periodic orbit arising from two hyperbolic periodic orbits inside 
a basic set (which may be an attractor, a repeller or of saddle type). 

Remark. - If the vector field XT has a saddle-node periodic orbit inside 
a basic set, then {X,} . is non stable at ii; this follows from [Ma-P] or [P!]. 

3. RESULTS 

In what follows we will suppose dim&f = 3. In this paragraph we will 
specify in a more precise way the set of one-parameter families of vector 
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fields that we will study. For this we specify some generic conditions (the 
nondegenerated mild conditions mentioned in the Introduction). 

Let l?l c X;“(M) be the set characterized as follows: {X,} E I’] if 
and only if 

1) there exists a parameter value Ji E I, so that for p < ,I, X,, is a 
hyperbolic vector field, and for each p E I, X,, has no cycles among its 
basic sets and the order above holds. 

2) for p = CL, the vector field Xp has one and only one basic set. say 
R,,p , which is nonhyperbolic and may be of the following type: 

(i) if 0. z,G is a singularity, then it is an isolated saddle-node or a Hopf 
singularity, which unfolds generically at p (for definition see [P-T] or 
[La-Pi]); 

(ii) if R i,F is a periodic orbit, then it is an isolated saddle-node or an 
isolated flip periodic orbit. which unfolds generically at p; 

(iii) if 0i.p is a nontrivial basic set, then there exists a unique non 
hyperbolic periodic orbit y contained in (2i.F which is a flip periodic orbit 
unfolding generically at ,1. 

Let now I2 c I1 be the set characterized as follows: {X,,} E I2 if 
and only if at the first bifurcation value IL = p of {X,} the vector field 
X = XT , depending on the case, satisfies the following generic conditions: 

1) saddle-node singularity. Let Qi.7~ = (T be the saddle-node singularity 
of X. In this case, it is well known that kVS (a) = { y E M : 
d(X,(y), X+(z)) + 0, t -3 x8} is a C cT: injectively immersed submanifold 
with boundary, awS(cr) = W’“((T). called the strong stable manifold, 
and characterized as follows l@“+(g) = {y E M : n(X,(x,).X,(y)) < 
c . 6’ --Xf .d(:l;,y), t > } 0 , where C’ and X are positive constants. Analogously. 
for l@“(a) = {y E M : ~l(x-~(~),X-,(;y)) -+ 0. t + ‘cc}, its 
boundary akV(a) = W”“(U) = {:y E M : d(X-,(z),?_,(y)) 5 
(1 . e -Xf . d(:zT.y), t > } 0 is called the strong unstable manifold. In this 
case, we impose the following generic condition: for each basic set, (I,.,. 
j # %; W” (Rj,,) is transversal to W”“(a) and to WCS(~), and 1N”( Q,~,F) 
is transversal to W”” (0) and to VV”( (T), where VV( g). respectively 
W”“(a), denote the classical center-stable, respectively center-unstable, 
manifold of C. 

2) Hopf singularity. Let It,., = (7, be the Hopf singularity of X. 
We suppose that for I-L < JZ, dim W’(O~,) = 2. At the parameter value 
p = p, we impose the following generic condition: for each basic set 
Qj.p! j # i, w”(a2j,jZ), and W,‘(flj.~) are transversal, respectively, to 
wS(a) and to W” (0). Analogously, if dim ?V”(gll) = 2 for p < n. 
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3) isolated flip periodic orbit. Let R,,p = g be the isolated flip periodic 
orbit of X. It is well known that in this case, there exist the strong stable and 
the strong unstable manifold for the Poincare map, PF, associated to the flip 
periodic orbit g, denoted respectively by W,“(q) and by W”‘“(q), (I E CJ, 
these manifolds are PT;-invariant. In this case we impose the following 
generic condition: for each basic set Rj,,, j # 1:, W” (0j,p) and W” ( R,,F) 
are transversal, respectively, to W”(q) and to W”“‘“((I). 

4) isolated saddle-node periodic orbit. Let Ri,, = CT be the isolated 
saddle-node periodic orbit of the vector field X. We let C, c h1 
be a transversal section to the flow of X at a point q E CJ, so 
that C = U ,lEIzj x b) . IS a transversal section to the vector field 
X(2:: p) = (XiL(:c): 0) defined on A4 x 11, where 11 c I is a small 
neighborhood of p. Then the Poincark map P = {Pll} of X is an 
arc of saddle-node diffeomorphisms and in this case at the bifurcation 
value, I-L = CL, there are the following rigidity conditions: (i) in a center 
manifold of q, W’“(q), there exists a unique C” vector field, 2, such 
that P,,I(LvC(y)nc,X(cl)) = Ztzl, and if we let h,, : W’(q) 1 W’(G) 
be a conjugacy between the corresponding PoincarC maps of two nearby 
arcs having a bifurcation due to a saddle-node periodic orbit, then h, is 
a conjugacy between the corresponding C” vector fields 2 and 2; (ii) 
a conjugacy between the PoincarC maps associated to two nearby one- 
parameter families {X,,,} and {x,,,} f o vector fields bifurcating through 
saddle-node periodic orbits, say CJ and 6, respectively, must send leaves 
of the strong stable (resp. of the strong unstable) foliation of X, into the 
corresponding ones of 2;. We say that a basic set (2j.p of X, is s-critical 
(resp. ?I,-critical) if there exists a tangency orbit between W”(0,,,) and the 
strong stable foliation, pS (resp. between VV’(n,,,) and the strong unstable 
foliation -7”). From [Pe] it follows that if 12j,/, is a non trivial basic set 
or a periodic orbit or a singularity with complex weakest contraction (resp. 
expansion) which is s-critical (resp. ,u-critical), then {X,,} is non stable at p. 
Taking the latter into account, we impose the following generic condition: 
[f there exists an s-critical (resp. u-critical) basic set, 12,,F, then it is LI 
singdarity with real weakest contraction (resp. real M?eakest expansion) . 
On the other hand it is easy to see that if the s-criticality (resp. ?L-criticality) 
is non generic, i.e., the contact between W” (61j;,) and F,’ (resp. between 
VV’(nj.,) and ,“U) 1 a ong the orbit of s-criticality (resp. ?l-criticality) is non 
quadratic, then {X,,} is non stable at in (see [P!] or [Ma-P]), analogously if 
there are two or more s-criticalities (resp. u-criticalities), then {X,,} is non 
stable at 1~ (see [P!] or [Ma-P]). Therefore we impose the following generic 
condition: If there exists an orbit of s-criticality (resp. u-criticality), then it 
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is the unique orbit of tangency between W”(!FI,.,) and -7’ (resp. between 
W”(62j,,) and P”), ‘t L 1s generic, and <I,,, is a singularity with real weakest 
contraction (resp. real weakest expansion). This condition is not sufficient 
for the stability of our family, thus we furthermore impose the following 
condition: Let .c the unique point of tangency between W” (Rj.,j ) (resp. 
between W” (II,j,,)) and .P” (xxp. and .P”J We suppose that a center 
unstable (resp. center stable) manifold, W”“j12,,.,i), (resp. Wfs(12,j,,)) of 
12 1.i’ is transversal to -7’ (resp. to ,‘I”) in a neighborhood of :I’ in C,,. 
(See Figure 1.) 

Fig. I. 

Let {X,} E I’? and let Jo its first bifurcation value. Since, for /L < fi, 
X,, is hyperbolic, we have an order: 

between the basic sets of X,. At the parameter value p = ,%, we have a 
simple bifurcation which we will study in the following order: 

(I) Isolated saddle-node singularity; 

(II) Isolated Hopf singularity; 
(III) Isolated flip periodic orbit; 
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(IV) Isolated saddle-node periodic orbit: 

(V) Flip periodic orbit arising from a hyperbolic periodic orbit inside 
a basic set. 

Note that in the cases (I), (II), (III) and (IV) the bifurcation occurs outside 
the nontrivial basic sets of X,. In each case we will assume that we have 
the following order among their basic sets: 

/L < /-L : al,, 5 . . i 62i-l.p 3 fJi,p 5 oz+l.p 3 " ' 3 On.p 

(I') 

i 

p=ji: R,,, 5 ... 3 f&p 3 fG,& 3 G+z.fi i . . . i %,ki 

#LL>ji: !a 1,p i ‘.. 3 KIJL 5 %+2+ 5 ... 3 %+ 

i.e., for cr. < ,G there are two hyperbolic singularities 12i,LL = s,,~ and 
gi+1,p = ~,+i,/~ collapsing at p = I_L, creating the saddle-node singularity 
R z.P = s that disappears for p > /L 

p < p : &# 3 ’ ‘. 5 c2~.@ 5 . ” -x R 

(II’) 
i 

p=p: Rl,, 5 . ‘. 1’ I=& 3 . ” ; ,,:r.; 

h > fi : %;,A i . . . 3 Q,,, 5 K,,, 5 . . . 3 %+ 

i.e., for 1-1 < j%, the singularity Ri,+ = sk, is hyperbolic and for p = Ji . n;,D 
is non hyperbolic and OX, ( sp) IW” cSii ) has eigenvalues X = bb , 3 = --BcL, 

b # 0 and for p > p appear a periodic orbit ?&+ and the singularity ai.,, 
became hyperbolic, but changes its index of stability. 

pL<p: R 1,p 5 . . . 3 gi,p i . ’ ’ 3 c,.,, 

(III’) 

{ 

p=ji: fh,, 5 . . . 5 Q,,,3 . . 5 a,., 

P > D: a,,, 5 .” 5 c.p 3 %.p 5 ... 3 Q,,., 

i.e., for p < fi, 62,,, is a hyperbolic periodic orbit and for IL = ,!& aL.P is 

a generic flip periodic orbit and for p > ,c, 3. &.I& is a hyperbolic periodic 
orbit arising from the flip bifurcation. 

P < P : R1,p 1’ ” ’ 3 n2;-1.p 5 f2i.p 5 fti+l,p 3 " 5 f2n.,, 

(IV') 

i 

I-1 = /!I : II,,, 3 . . . i Xl,, 5 a,,c 3 %+2,, 3 ” ’ 5 c,,, 

p > #E : fh,, 3 ’ . . 5 %I.,, 5 %+2+ 5 . . . 3 c,, 

i.e., for p < ,G there are two hyperbolic periodic orbits, IL;,,, and fi,+i,,, 
collapsing at p = ,G, creating the saddle-node periodic orbit a,.,, that 
disappears for LL > ,L 
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i.e., for h < p in Oj.h, there is a hyperbolic periodic orbit such that for 
p = ,!Z, it became a generic flip periodic orbit and for 1-1 > ,& Ei+ is 
a hyperbolic basic set and fi;.!, is a periodic orbit arising from the flip 
bifurcation. 

Now, let B({X,}) = {jI E I : p is a bifurcation value of {X,,}}. The 
set B( {X,}) is called the bifurcation set of the family {X,,}. 

With the above notations, we have 

THEOREM. - Let {X,} E r2 and let ,E E B({X,}) be itsjrst bifurcation 
value. Then {X,,} is stable at p. 

Proof - We give the proof in each case as was itemized above. 

I. Isolated saddle-node singularity 

Let_ {X,}, {X,} E I’2 be close families, and fi E B({X,}), i; E 
B({X,}) be the corresponding first bifurcation values. Each time we make 
a construction for the family {X,}, we assume that a similar construction 
is made for each close family {Y,, } E I?2 . 

Without loss of generality we suppose that dim WS(O+) = 2. For 
simplicity we use the notation s = RL,~. We also assume that for p < ,Q 7 
X,, has two hyperbolic singularities s~:~, and s2+ near s collapsing for 
p = p in the saddle-node singularity s and dissapearing for /I > ,G (see 
Figure 2). 

P<P Pi=F 

Fig. 2. 

,’ > ,i 

As in [Ve] we define compatible systems of stable and unstable 
foliations {F;}k and (Fz}k, respectively, and a compatible selection 
of leaves, R, between the respective foliations. The construction of the 
compatible system of foliations is the same as in [Ve] but we have 
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to take some care in the construction of F%?, ?!%y and R over these 
two foliations: Let U be a small neighborhood of s. If 7 is a small 
neighborhood of fi, then in the neighborhood U x 7 of (s, ,G) we have 
a center stable and a center unstable manifolds, and a center manifold 
for the vector field X(x, ,u) = (X,(x), 0) denoted, respectively, by 
WCS(s) = UpE$l$yS) x {p} ) WcU(s) = Up,IW;‘“(s) x {I*} and 
Wc( s) = Up,iW;(s) x {II}. Furthermore, in U x 7 we have an X- 
invariant foliation of codimension two, Y”, called the stable-unstable 
foliation, with leaves transversal to W’(s). The intersections F” n W”(s) 
and FT”” I? WcU(s) give us, respectively, the strong stable foliation, Y”, 
and the strong unstable foliation, p”, of s. These foliations having as 
distinguished leaves, the strong stable manifold, W”(s), and the strong 
unstable manifold, WU“(s), of s, respectively. Note that for each p E f, 
M$‘(s) = VV(s) n (A4 x {p}) (resp. W,“~“(S) = Wcu(s) n (A4 x {p})) 
is the union of leaves of .? (resp. FUU). 

Fundamental domain in Wcs( s) <W’“(s)> and fences 

In order to construct a fundamental domain for the vector field X 
in k’WS(s) we proceed as in [P-T]: first, in WCS(s) we take a cylinder C 
transversal to the strong stable foliation Fs” and disjoint from all connected 
components of WU( Rj,p) that not intersects WSS(s), j 5 i - 1, i.e., C is 
taken so that WU(R,,,) n C is transversal to FS in C. Take a disc D in 
a leaf of F’ so that the boundary of D intersects the boundary of C, we 
have that the union C U D is a fundamental domain for X, IWS ~~1. Now we 
define a fence C;,, over this fundamental domain in such a way that it is 
the union of a disc contained in a leaf of .7” containing D and a cylinder 
transversal to WSS(s) that contains C, (see Figure 3). 

For p E 7 we choose a continuous family of C’ discs, D,, in .TsU(zO), 
and a continuous family of C2 cylinders, C,, C = C,, such that 
Up E~( C, UD,) x {p} is diffeomorphic to (CUD) x 7 and it is a fundamental 
domain for the vector field X restricted to WCS(s) = UpE~W~(s). Define 
a continuous family of fences C;,, such that Cp p is the fence of above and 
for every pL; Cf,, is the union of a disc B, contained in the leaf of YsU 
containing D, and a cylinder Kp transversal to .7$” containing C,. The 
same construction applies for families {X,}. 

As in [Ve] we define a p-dependent compatible systems of unstable 
foliations {.T;“,cL, . . . , J?~,,,},~ and {?r,,(,), . . . , ?~~&+~} for the families 
{X,} and {X,}, respectively, and a compatible selection of leaves, R, 
over these foliations, sending leaves of FJy,L into leaves of ?;p(p), where 
p is a parametrization as in [P-T]. 
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Fig. 3. 

Now we define a p-dependent one dimensional foliation 3&, over Cy,,. 
To do this we first observe that we may assume that discs B, are contained 
in the unstable manifold of a trivial repellor (transversality condition). 
Define 3&y,, over B,, as the intersection between B, and the leaves of 
3;lL. To define 3FIL over K,,, take the intersection between KJL and the 
X,-saturated of every leaf of 3&, , 1 < j 5 i - 1, and then extend to a 
p-depedent one-dimensional fohation (same technique as in [Ve]). In the 
same way, we define C:,,, and 3&,. To define 72 between the leaves of 3:/, 
and 37!Lp(lr) we proceed as in [P-T] for the leaves of 3Ly, contained in the 
cylinder K, and as in [Ve] for the leaves of 3?yAL contained in the disc B, 
For the remaining indices, i + 1, . . . , 71, we define the fences C;,+ and c;,,,, 

the foliations, 3Tp, and 3;!,,, and the selection R, the same way as in [Ve]. 
A similar construction gives us compatible system of unstable foliations 
{3;“.,,, . : 3&, .3;;.,J * {y:.@> . . 1 3cli, . ~ 3&} and a compatible 
selection R between the leaves of these foliations. From these contructions 
the topological equivalence between the families follows as in [Ve], of 
course in a neighborhood of s we define the equivalence as in [P-T]. 

When dim W’(s) = 3 we define Es,, like the union of a cylinder, CO, 
transversal to the strong stable manifold WS,‘(s) (see Figure 4), disjoint 
from all the connected components of IQ”‘” (Q;tj,D) that no intersect W”“(s), 
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1 5 j 5 1: - 1, and a disc D, contained in a leaf of J=iU that intersects 
wc,q(s). 

Fig. 4. 

Take a continuous family of fences (cylinders) Ci,, such that Cf., is 
the fence of above and for every p, Cp,, is the union of a cylinder, C,, 
transversal to the strong stable manifold W”(s) and a disc D,A contained 
in a leaf of F;” that intersect W”“(s). 

To construct a compatible system of unstable foliations and a compatible 
selection of leaves between the foliations of {X,} and {X,} we proceed 
as above but for j = i we only foliate the cylinder C,, contained in Ct.P. 
To define the selection ‘A! we do it as above, and as in [Ve] the equivalence 
follows. 

II. Isolated Hopf singularity 

Without loss of generality we suppose that the basic set SF = II;,, is 
the isolated Hopf singularity and that the bifurcation occurs as it is shown 
in Figure 5, (a), (b) and (c) 

Fig. 5a Fig. 5b Fig. 5c 
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that is, for 

or. < ,G: s,, is a hyperbolic singularity of saddle-type with complex weakest 
contraction. Let A,, = n. + ab, a < 0 and x,, = n - & the eigenvalues of 
~-JL(s,)lw-(.s,)~ 

p = ,!i: SF is a nonhyperbolic singularity, and X, = ib, xfi = -ib are 
the eigenvalues of DXD(sii) JwS (Spj, and 

,Y > II: s!, is a hyperbolic singularity (source) and a;2i.p is an hyperbolic 
attracting periodic orbit of saddle-type. 

Notation. - fl;,, = So,; /L < fi , Ri,~ = s, and az;,, = G’, IL > fi. 
Let {X,}, {X,} E I?2 be nearby families which have a bifurcation due 

to a Hopf singularity s and 5, respectively, for nearby parameter values ,G 
and fi . As before we assume that each time that we make a construction 
for {X,} then the similar construction is made for each family {X,} 
close to {X,,}. 

In this case, the construction of a topological equivalence between 
close families {X,} and {X,} . is really more simple than case treated 
before, isolated saddle-node singularity, because at present case, if 
l’VU(fij,p) n wS(R~,,) # 8 for j < % - 1 and e 2 % + 1, then this 
intersection is non empty for all cr. E 7, (I c 1 a small neighborhood 
of ,G). Furthermore, the topological equivalence H : M x r + M x I”, 
(Ix C_ I a small neighborhood of b), H(~,/L) = (h,(z),&)) where 
P : (f, P) -+ (II, fi) is a reparametrization and for each p E r, the 
restriction H,, = H[AJ, tlI) : M x {h} -+ M x {p(p) ]t is a topological 
equivalence between the vector fields X,J]ILzx~fil and Xp(ll)jnlx(P(bl)I, is 
made as in [Ve], for this we must note that the fundamental domain for 
W”(s), say C, gives us only a part of the fundamental domain for a small 
neighborhood of CT, the other part is constructed as in Figure 6. 

III. Isolated flip periodic orbit 

Without loss of generality we suppose that the bifurcation occurs as 
follows: 

III(i) Case dim W,‘(q) = 2, q E c = Qi,p the isolated flip periodic orbit, 
(i.e., dimW”(cr) = 3) (see Figure 7) 

Let Pp : (%d -+ (C, , q) be the Poincart map associated to the flip 
periodic orbit CT. In this case we have, for p > ,G , P,(ql,,) = q2+, 
PhL(q2,w) = ql+ and P,(q,) = qp, that is, {a+, a+} is a periodic orbit 
of period two and it is a sink for P,,. 

III(ii) dimW”(q) = 1, (i.e., dimW”(cr) = 2). 
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Fig. 6. Fig. 6. 

--i.iit 

In this case, {ql,@, q~} is a periodic orbit of period two for Pfi and it 
is a hyperbolic saddle. 

Let {X,} E rz and ,G E B({X,}) its first bifurcation value such that X, 
has an isolated flip periodic orbit. Then it is well known that there exists a 
neighborhood U of {X,} in xy (111) such that for {%Fs-,, } E M there exists 
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a bifurcation value (the first bifurcation value) j2 near ,G for which X, has 
an isolated flip periodic orbit. As before each time that we make some 
construction for the family {XAl} we assume that the similar construction 
is maked for each family {X,, } E U. 

Case III(i). For the construction of a topological equivalence between 
two nearby families {X,,) and {X@} as above, we note that: if 
W’“(Rj,,) n W”(62e,fi) # 0, then the same holds for p E f (r c I a 
small neighborhood of fi). In the present case a fundamental domain for 
the associated PoincarC map is constructed as in [N-P-T], and following 
the method of the s-behavior as in [Ve], it is easy construct a topological 
equivalence between two nearby families {X,,} and {X,} as above. 
Case III(ii) This case is treated in a similar way as case III(i), with the 
obvious modifications. 

Remark. - The fundamental fact in the above construction is that there 
are not mistake between the unstable and the stable manifolds of {X,l} for 
all fL E I when this fact does not happen for ~1 < fi, that is, if we have 
control of the behavior of the unstable and the stable manifolds for IL < jr, 
then we have control of the behavior of these manifolds for all f” E I. 

IV. Isolated saddle-node periodic orbit 

Let {X,} E x?(M) and I-1 E B( { X,, )) such that X, has an isolated 
saddle-node periodic orbit. say CJ = Q,~,. We will suppose that for 
p < fi there are two hyperbolic periodic orbits, say CJ~./, and (~2.~‘. 
collapsing for the parameter value AL = h creating the saddle-node periodic 
orbit and disappearing for /1, > ,I. Let (I E g and let C, C. M be 
a transversal section to X, at y. Without loss of generality, we may 
assume that C = U Percy x {p} is a transversal section to the vector field 
X(x: CL) = (X,,(z), 0) at (y. fi), where 1 C I is a small neighborhood of @. 
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We will assume that dimW”(q) = 2 (the other case is analogous) 
(see Figure 9) 

Fig. 9 

It is well known that there exists a center manifold W’(q) of q E 0, 
dim W(q) = 2, and in W’(q) there exists a C’. T 2 5, adapted vector 
field and at b = D in W;(q) = WC(q) n (U x {,G}) (U a small 
neighborhood of q in C,) there exist a unique vector field, 2, such that 
if P” = PlwL denotes the restriction of the Poincare map to the center 
manifold and for each p E 1, P,” = P,lw;, VV,C,(q) = W’(q) n U x {p}, 
is the arc of Poincare maps, then P’ = {E’G} is an arc of saddle-node 
diffeomorphisms (see [N-P-T]) and we have that Pi = Ztxl (2, is the 
respective flow of the vector field 2). Moreover, if {XL} is another 
family of vector fields close to {X,,}, we denote by 6 = R,,b, 4” E 6, 
and Fr = {pl} the corresponding (close) saddle-node periodic orbit, 
the point in the intersection of 6 with the corresponding transversal 
section, and the corresponding arc of saddle-node diffeomorphisms. Then if 
h-: W’(q) + W’(S), h(z,p) = (h,,(xz);p(p)), where p : (f,,~) -+ (f,b) 
(1 L I a small neighborhood of ,G) is a reparametrization, and h is a 
conjugacy between the arcs of saddle-node diffeomorphisms P’ and PC, 
that is, for each ,U E 7, h, : y;(q) + W;cLl,(@) is a conjugacy between 
the diffeomorphisms P, and P,,(,), then h, o 2, = 2, o h,, where 2 
is the corresponding unique C” vector field defined in W,:(i) such that 
p; = &=I, thus h, is a conjugacy between the vector fields 2 and ,!? in 
an small neighborhood of q, respectively of i (see [Ta]). 

On the other hand, a conjugacy between the arcs Plwcs(gj = 

P/LIwwxd - - and Plw-(+) = {Pp~~~~.~~~~x~p~~} at the parameter 
value I-L = fi must send leaves of the strong stable foliation 3”“]w6(y, into 
leaves of the strong stable foliation FslwS(c, in a compatible way with h,. 
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Now it is well known that can not exist orbit of s-criticality between the 
unstable foliation of a nontrivial basic set or a periodic orbit or a singularity 
with complex weakest contraction (see [PQ). Furthermore, if there exists 
an orbit of s-criticality between the unstable foliation of Q~L,~,, ! 5 i - 1 
then Rt,, = o: is a singularity with real weakest contraction and the orbit 
of s-criticality must be generic and there is a center unstable manifold of 
RQ which is transversal to 3,’ in a neighborhood of the s-criticality (SW 
[PI!]) (see Figure 10). 

Fig. 10 

Note that for b > ,E we can have orbits of quasi-transversal intersection, 
for example if o and ,B (o 3 CJ is a singularity with real weakest contraction 
and CJ 5 ,L3 is a singularity with real weakest expansion) are such that 
IV(a) has a generic orbit of s-criticality with 3’” and W”(p) intersects 
transversally W’(q) as in Figure 10. 

It is clear that the generic condition “there is a center unstable manifold of 
CA which is transversal to .F in a neighborhood of the s-criticality” implies 
that the orbits of quasi-transversal intersection that appear for I-L > ,G are 
generic. 
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Now as it is done in [N-P-T] we construct a fundamental domain 
in the stable manifold of the vector field X(x, 1~) = (X,(z) , 0) at the 
nonhyperbolic periodic orbit (c, ,G) and a fundamental domain in the center 
manifold W’(q) = UpLE~W~((q) x {p}, without loss of generality we may 
suppose that, IV(p) n C, are leaves of the strong stable foliation .Y 
of l@“(q), for this note that, 7” is uniquely determined in W”(q), and 
we may extend it to all WCS(q) , for this the unique condition required 
is that such foliation is P-invariant. Now let a-“” denote the projection 
along leaves of F”. Let 0 be the orbit of s-criticality between IV(o) and 
F”, and let z denote the point of the orbit 0 which is in the fundamental 
domain, D”(q), of PILVs(q). Then we choose the fundamental domain in 
such a way that .xr = Y?(Z) is in the interior of the fundamental domain. 
D’(q) = W’(q) n P(q), of PlwC(,). (See Figure 11). 

We denote by yc the point of intersection of W”(q) and ?V(p), and in 
this part of W”(q) we choose a fundamental domain for PIwCcp) in such a 
way that yc is in the interior of this domain (see Figure 11). 

Fig. 1 I 

In the above condition, we have the following 

LEMMA 1. - ([Ma-P]). Under the above conditions, there are E > 0 and a 
strictly monotone sequence (,G,)~~N of parameter values such that 
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(1) p < bT1 < E, @fi?l. cl/l 71. E N a& liru,,,, ,1,1 = ,I 

(2) for each p, E [ti - -c. ,!I + C] we huve that 

(a) ifp # &, for all 71 E N then X,, has not quasi-transversal intersection 
orbits. 

(b) for each n E N, jd,, E B({X,,}) and X,,,8 has a unique quasi- 
transversal intersection orbit n/D )/ between W”(O~,,) and W”(,‘-l,,,). 

Proof. - Note that 7rss o I’,, = I’,‘; o T”, and then from Lemma 1 (p. 21) 
of [Ma-P] the result follows. 

In what follows, we will take as neighborhood of p. the interval 
I = [,G - t. ,!I + c] given by the above lemma. 

LEMMA 2. - ([Ma-P]). Given {X,, } E r’L and /1 E R( {X,, }) as 
above. Let :cl, ;yl E W”(q) n D’(q) be tw’o points near q. such that 
.1:1 < 3:” < P,~(xl) < q < yl < :y” < P;i(:yl). and let Z he a C” vector 
field adapted to the arc of saddle-node difleomorphisms, {I’;;}, dejned in 
a neighborhood of ((1: t i in W”(q). Then there exists a local conjugacy, ) 
H = (/l,rl), between {T,‘;} and ZtC1. suclz that 

(1) IJ,,,(:K”(P)) = x”(/L), /~/~(:l/(‘(/lr)) = :tl”(/~), where z”(p) (resp. :y”(p)) 
is the point of s-criticality (resp. the intersection point of WC(q) x {p} und 
Wr(/j,,)) is in the corresponding ,fundamental domain ,for I’,, 

(2) (P;)‘“(.c”(tr)) = y”(tt,) (fund only [f Z;(:r~~(p).r~(p)) = y”(p). 

Now we have. 

LEMMA 3. - ([P!]). Let {X,,}. (X,L) E lT2 be closefumilies and p. [L E 1 
its corresponding first bifurcation values, such thut X,, and X, have a 
saddle-node periodic orbit o, respectively 6. Let Z, Z denote adapted 
vector fields to the arcs of diffeomorphisms {I’,:‘} und { lj,:‘} associated to 
the families {X,, } and {X,1}, respectively. Then there exists u conjugucJt 
hC : W’(q) + W”(i) (q E (T. fj E I?), U(:c. jL) = (h;;(.x). p(p)), 
where p : (r. CL) + (i. ih) is a reparumetrizution and for each 11, E r. 
h;; : WC(q) n C, x {jh) i W’(q) n Ci x { p(jk)} is u conjcrgacy between 
P,i und PC ,,(rL), and hi; varies continuously with IL. 

Note that p sends the parameter values ji, (given by the above Lemma 1) 
into the corresponding ones fi,,, that is, values ,G, for which there exists an 
orbit of quasi-transversal intersection between W” (tr, ,/ ) and W” ( /jlL,? ) into 
the corresponding parameter values jI&,(n.) for which there exists an orbit 
of quasi-transversal intersection between W”( iLlr ,,,( ,, , ) and W’(i;j; ,,, (,‘, ). 

Proof - Under the above conditions for our arcs in lT2, we have: 
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(a) There exists a conjugacy /L : W’(q) -+ W’(4) between the vector 
fields 2 and 2, which may be choosen to be differentiable with respect to 
the variable z outside the singular points of 2. This conjugacy provides us 
a conjugacy between the diffeomorphisms Z,=, and gt=l, which we will 
denote by h2 = (h2,fi, k), where Ic : (I. ,C) + (f: ,G) is a reparametrization 
and for each h E 1: /L~,,~ : WC(q) n (C, x {I-L}) -+ WC(@) n (Cc x {k(p)}) 
is a conjugacy between Zt,llw;(q) and &=I Iti>;,,, (see [N-P-T]). 

w;(Y) = WC(Y) f- c, x {III) 
(b) By the Lemma 2, there are conjugacies 

(i) hr : W’(q) -+ W’(y) between {IQ’) and ZtZl, 11.~ = (h1,,,.71), 

where 71 : (r: p) -+ (7. b) is a reparametrization and for each b E f. hl,,, : 

y&d - T(,,,(Y) is a conjugacy between P,‘IIwc(4) and &,r ~w:~,,,,(~~J. 

(ii) 113 : W”(q) -+ W’(i) between {p/:} and .$=I, /by = (h,,,,rj), 
where 6 : (f,fi) + (i,;) . I 1s a reparametrization and for each h E r, h3,,, : 

WC, z;;;c;; IS a conjugacy between ~L~w~;(GJ and Zf=t/).\!ZiC~,IC~). 
< : W”(y) -+ W’(ij) by h“(:z: p) = (h;,; o ha,/, o 

/I,~,,,(.E) . i-l o k: o T)(P)). Then h.' satisfies the properties required. 

Remark. - It is clear that the above constructions are equivalent to 
the similar constructions in a fundamental domain of the vector field X,, 
instead of the Poincare map PAL. 

Taking in account the above remark and the s-behavior it is easy to see 
that the construction made in ]P!] well glues with those made in [Ve] for 
the s-behavior. Therefore the global stability of our families follows from 
the above constructions. 

Case V. Flip periodic orbit inside a nontrivial basic set 

Example. - A flip periodic orbit is created inside a horseshoe. Let {P, } be 
a family of two-dimensional diffeomorphisms with a horseshoe for b < ,-I,, 
as in Figure 12. Let pfi and qlL be the fixed points of P,,, p < fi, and let 
X,, be the negative eigenvalue of DP,(q,,) : 1-1 < D. We will suppose that 
X,, decreases with the parameter p, i.e., for 0 5 /L < fi. X,,, E] - 1, O[ , for 
p = ,iI, X, = -1 and for 1-1 > ,ii. X,, < -1. 

Taking the suspension of {Pkl} we construct a family of vector fields for 
which at the parameter value ~1 = j3, there exists a flip periodic orbit Q 
contained in a nontrivial basic set, say AD. Furthermore, if the flip fixed 
point, qrL of {P/, } unfolds generically then the same holds for the flip 
periodic orbit cr of {X,}. 

Now we will suppose that for p < ,G the basic set A,, is a hyperbolic 
basic set for the vector field X, and it is of the saddle type. 
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Fig. 12. 

i 

Fig. 13. 

Remark. - Since dim n/l = 3, every one dimensional basic set for an 
hyperbolic flow is d-separated (see [N] for the definition). 

Note that in this case, for p > CL, X, is a hyperbolic vector field and 
its basic sets close to Aii consist of a repellor periodic orbit (a source) 
running through Q and a nontrivial basic set &, containing the orbit ql,,,, 
(= orbit of q2,J (see [N]). Note that for h = ,i& A, is nonhyperbolic since 
the point qp is in A, and it is nonhyperbolic, but even in this case we have 
a DXt,p-invariant descomposition, TAG A4 = E’” $ E’ $ E”, of the fiber 
bundle, and there are constants c > 0 and X > 0, such that: 
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1) px-,.p,(q)vl 5 C~-A~~71~: II E E;, t 2 0 

2) E; = (X,(d) ( su s b P ace of TPM spanned by the vector X,(q), 
4 = q/z). 

3) IDX,,,(q)vl 5 ~e-~~lvl, ‘u E E;. t 2 0, large enough, q f O(p,). 
(O(z) = orbit of the point z). 

On the other hand we have that, for all ,LL E f there exists an unstable 
foliation, Y, on which the derivative of X, has exponential expansion, 
but for the stable foliation 7, the orbit O( qp) is the unique orbit along 
which there exists a nonexponential contraction, using this fact we have a 
stable invariant foliation at the parameter value /L = p. From these facts, 
the global stability of this bifurcation follows. The proof is similar to the 
case of isolated flip periodic orbit, because the existence of the stable and 
unstable foliations permit us the use of the s-behavior. 

Remark. - Let Ri,, be a basic set of {X,} so that for p < ,ii, Ri,, 
is hyperbolic and for p = ,i2 a saddle-node periodic orbit of X, appears 
inside Ri,, then {X,,} is nonstable at CL. This follows from the fact that 
the periodic orbits are dense in R,,,, and therefore there are infinitely many 
periodic orbits whose unstable manifolds intersect the center manifold of 
p, (pfi is a point in the saddle-node periodic orbit), and then applying the 
results of [Ma-P] or [Pe] the proof of the claim is done. 
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