
Ann. Inst. Hmri Poincar-4, 

Vol. 14. no 1, 1997. p. 143-162 Analwe MWI /int;aiw 

Young measure solutions for nonlinear 
evolutionary systems of mixed type 

bY 

Sophia DEMOULINI 
Department of Mathematics, University of California, Davis, CA 95616 

demoulini@math.ucdavis.edu 
et 35, route de Chartres, F-91440 Bures-w-Yvette. 

ABSTRACT. - This is a study of measure-valued solutions for systems 
of mixed type modelled by a hyperbolic-elliptic and a dispersive-parabolic 
system in arbitrary dimension. Existence is established by time-discretisation 
of the equations which is solved by the minimisation of a non-convex 
functional. By relaxation, a Young measure solution is obtained for every 
time step. Uniform bounds derived by energy considerations allow passage 
to the limit of continuous time. The potential gradient and the identity are 
shown to be independent with respect to the Young measure. 

RBsuMG. - Ceci est une etude des mesures, solutions des systemes de 
type mixte, modelis& par un systeme hyperbolique-elliptique et un systeme 
dispersif-parabolique, en dimension quelconque. Un resultat d’existence 
est Ctabli par une discretisation en la variable temps d’une equation qui 
est tquivalente a la minimisation d’une fonctionnelle non convexe. Par 
relaxation, une solution, mesure de Young, est obtenue a chaque Ctape. Des 
bornes uniformes derivant de la fonction Cnergie permettent de passer a 
la limite en temps continu. Nous prouvons que le gradient du potentiel et 
l’identite sont independants par rapport a la mesure de Young. 

Consider the following two systems 

{ 
V+ = VW 
‘Wt = v q(v) 

onQ,=RxW+ 
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144 S. DEMOULINI 

with initial data u(x,O) = ug in Hd(62) and VJ(X:,O) = zo in L’(12) and 

(2) 1 
lit = VW on Y, 
‘Wj = -aqp ?I) 

with w(z,O) = uo in H,“(R) and w(z:O) = z. in L*(R). In both cases 
fl C W” is open and bounded: y is non-monotone and is the potential 
gradient of a non-convex energy function C$ (often referred to as the stored 
elastic energy function). The lack of convexity of 4 is associated with the 
failure of ellipticity of the associated stationary problems and the failure 
of hyperbolicity or dispersivity in the corresponding dynamical equations: 
so the above systems are of mixed type, the first hyperbolic-elliptic and 
the second dispersive-parabolic. In elastodynamics and in three spatial 
dimensions (1) is known as the anti-plane shear problem (it models the 
motion of a cylindrical body of a general cross-section undergoing a shear 
deformation along its cylindrical axis). Also the Riemann problem for (1) 
in one dimension models dynamics for phase transitions in van der Waals 
viscoelastic fluids. 

For one dimensional, strictly hyperbolic systems (corresponding to the 
case of a convex energy function) strong solutions have been obtained. 
either in the class of functions of bounded variation or in the context of 
compensated compactness, ct [7, 81. Dynamics in the non-convex case have 
also been considered. In Ball et al. [2] an infinite dimensional dynamical 
system related to (1) in one space dimension with a viscoelastic term is 
studied. Existence of strong classical and weak solutions is proved which 
are unique in each case. Fan and Slemrod [9] construct solutions for the 
Riemann problem for (I ) in one space dimension by a vanishing similarity 
viscosity term in the special case where hyperbolicity fails on a single 
(bounded) interval of the real line. 

In the case of a non-convex energy strong solutions to (1) or (2). or 
to their equivalent formulations (3) and (4) respectively. do not exist 
for general space dimension. Swart and Holmes [16], using a method of 
Rybka [14], have proved the existence and uniqueness of a strong solution 
to a regularised version of the anti-plane shear system with an added linear 
viscoelastic term. In their framework, it should be interesting to investigate 
the limiting problem as the viscoelastic term vanishes using a method as 
in [IS]. 

Non-convex energies possess multiple local minima and typically do 
not admit absolute minimisers. They are associated with the dynamical 
formation of intricate microstructure and model solid phase transformations 
in which the co-existence of multiple phases is energetically preferable to 



NONLINEAR SYSTEMS OF MIXED TYPE 145 

a single phase. In equilibrium configurations, microstructure is accounted 
for by the development of oscillations in minimising sequences which fail 
to converge to minimisers. The analysis of microstructure formation in 
dynamical systems with non-convex energies is complicated. For systems 
modelled by ordinary differential equations with an energy acting as a 
Lyapunov functional solutions converge to rest points of the energy. For 
systems modelled by partial differential equations, even in the presence of 
a dissipative mechanism, it is observed that the dynamical solutions may 
imitate the behaviour of oscillatory minimising sequences and hence fail to 
minimise the energy as time tends to infinity. For example in Ball et al. [2] 
it is found for the viscous equation related to (1) mentioned above that 
time-asymptotically the solution does not minimise the energy (in contrast 
for example with a solution of the corresponding non-local equation in 
which the nonlinear term is replaced by a spatial average). 

In this article I obtain Young measure solutions to (1) and (2) by the 
method time-discretisation. This method has been used before to obtain 
solutions for a variety of evolution problems, including the heat flow of 
harmonic maps in [3], and for semilinear parabolic systems in [IO] to 
obtain classical weak solutions. By expressing the discretised equations 
variationally and incorporating the Young measure theory developed in a 
series of articles by Kinderlehrer and Pedregal in [12], this method has 
been previously applied to give a Young measure solution for a nonlinear 
parabolic evolution of forward-backward type in [ 111. 

In the sequel I will discuss Young measure solutions for the systems 
above by considering the equivalent equations. respectively, 

‘1Ltt = v . q(Vu) on Q, 

(3) 
u(., 0) = 7hJ on 0, 710 E H,:(Q) 

t&,0) = 20 on Q. zo E P(O) 

7J. = 0 on dS1 x lR+ 

denoted by 7A: 

i 

‘Utt = -Ay(Au) on Qx 
PL(., 0) = 650 on R, 7Lo E H,2(f2) 

(4) zk(.>O) = zo on 0; z. E L’(R) 

‘U = 0 on ai2 x lF!+ 

vu = 0 on DR x R+ 

denoted by 27. Here R c R” is open and bounded with mildly smooth 
boundary (the cone or the segment property suffice) and (1 = Vq5 where 
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4 E C1(Rnr) (where ~1 = I), for 3-1 and ‘~1, = 1 for D) and satisfies 
a quadratic growth condition at infinity. Denote by IV”+ the space of 
functions which together with their k-order weak derivatives belong to (an 
equivalence class of) U’. We adopt the convention that f E U’,:‘,” means 
that P’.f has zero trace on i)l2 for all multi-indices with lo 5 X, - 1. 

The regularisation scheme to obtain existence involves the time- 
discretisation of the equations which are the Euler-Lagrange conditions 
for a non-convex functional. In contrast to the case of a gradient flow. 
estimates for the solutions of the discretisation are derived from the non- 
increase of the discretised energy rather than from the minimisation. The 
uniform bounds provided allow passage to continuous time to obtain a 
weak solution described by a Young measure. The support of the measure 
is contained in the hyperbolic region for 3-1 and dispersive region for ‘T, 
but these regions can be strictly ZNQP!- than the support of the measure. 
The potential gradient (1 and the identity have the interesting property that 
they are independent with respect to the Young measure. In the parabolic 
case in [6] this is a key property on which the uniqueness result relies. Not 
surprisingly, and in contrast to the parabolic case, there are no uniqueness 
properties for Young measure solutions for ‘Ft and 2, - at least in the 
context of this method. 

In what follows we first define the Young measure solution and prove 
its existence for 3-1 and ;D and finally show the independence property of 
the measure mentioned above. 

Definition. A Young measure solution to 1-I is a function 

(5) ‘11 E I/V,fl;7;(R+. Hp1(f2)) n W,f,;?(R+. L’(R)) n L;(.(iw+. H,:(o)) 

and a Young measure u = ( I/~,~)( 1. lJECa, which satisfy the weak equation 

(6) i’j ((u. (1) C( - ,/L&) dxdt = 0 V( E fq(Q& VT > 0 
.(I L2 

and 

(7) 

and such that the initial data are obtained in the sense: 

(8) 

(‘3) 

strongly in L2 (a) as t i 0 

strongly in H-l (62) as t f 0. 
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In the case of D a similar definition holds: here it is required that 

71 E WI~,x(R”. H-2(R)) n W,~,;po(R+, L2(f2)) n Lg.(R+, H:(0)) 

be paired with a Young measure v = (u,,.,~)(,~.~)~~, so that the weak 
equation 

(10) 
II 
. UT ju.q)Ai - ut(+ dxdt = 0 V{ E H;(QT): VT > 0 

be satisfied and also 

(11) Au(.c, t) = 
I 

Ad+.,,(X) a.e. in Qx. 
. R 

The initial data obtained in the sense: 

(strongly) in L’(R) as t; -+ 0 

(strongly) in HM2(fl) as t -+ 0. 

By differentiation the weak equations also hold a.e. in time. 

Young measure representation. Recall from the fundamental theorem 
of Young measures in [l] that a sequence of functions (flc)k satisfying a 
mild boundedness condition will generate a family of probability measures 
u as follows: whenever ($(f”)) k is weakly (sequentially) precompact in 
L1 for a continuous function $1, then (yi/(fk))k is in fact convergent (on a 
bounded domain) in the weak topology in L1, i.e., 

(12) 7i/(f”) ‘Y (u.7)) in n(Ll. Lx). 

(Below - is used to denote weak convergence). That a given Young 
measure satisfies this L1 weak limiting property when the (S”)L. are 
bounded in L2 and $ is of strictly subquadratic growth is immediate: 
the sequence (r/1( fk)) k is automatically bounded in L” for some 1 < p 
and thus weakly (sequentially) precompact. The limiting case is the case 
of interest here and consists of continuous functions of quadratic growth, 
namely in the Banach space 

with norm jlr$il~ = SU~,,~~J~~ $$. In this case the sequence ($(f”))k 
is bounded in L’ which is not enough to guarantee precompactness and 

Vol. 14. n" IL19Y7 
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thus more information is required: it suffices to establish (12) in the case 
of ,$z((?) = Ia12 ( or any other function bounded quadratically from below) 
so that 

LPI’ --+ (v.,$) in a(Ll.L”). 

This information alone gives a bound on the generating functions (fk)k and 
guarantees the representation (weak) for all $ E E by a direct application 
of Dunford-Pettis theorem. As noted in [12] the space I is not separable, an 
impediment particularly when duals of spaces such as L1(R, X), where X 
is a Banach space, are considered. For this reason in place of & we consider, 
when appropriate, its separable subspace. Banach under the same norm, 

Furthermore, if y’i has linear growth it is easy to show (using suitable cut-off 
functions) that the convergence in ( 12) will be weakly in L*. 

As it turns out from the existence scheme below, v is a spatiul grudienr 
(respectively, Laplacian) Young measure, that is, v is generated by gradient 
(respectively Laplacian) derivatives in the 1: variable which belong to L”. 
(In the present framework one obtains in the case of IFt a time-parametrised 
curve of measures in the space of Ht-gradient Young measures, a space with 
a rich structure and, loosely speaking, characterised by a form of Jensen’s 
inequality. Refer to [ 121 and references therein for an in-depth analysis 
of gradient generated Young measures. The theory has an analogue to the 
case of Young measures generated by Laplacian derivatives of functions 
in Hi(R).) 

Existence of Young measure solutions 

Let d** denote the convexification of $. We assume that 4 E C1(R”‘) 
and impose the growth condition 

Then, 4** E C1(lRBlrL) and obeys the same growth condition as 4. Clearly, 
4 and $** are in f (the quadratic growth from above and below is essential 
to obtain weak precompactness in L1 as indicated above). Let p = V$**. 
We assume that 4 and p have linear growth: [q(n)1 < C]a] and a similar 
bound for p. Corresponding to (3) of ‘,% and (4) of D are the relaxed 
equations of single type, 

‘Ut = v . p(Vu) and u tt = -‘Ap(Au) 
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hyperbolic and dispersive respectively. We have the following 

Existence theorem. Given initial data ug E Hi(O) (respectively, in 
H,f (0)) and x0 E L2 (0) there exists a Young measure solution (u, Y) for 3-t 
(respectively, Do>. Moreover, this solution solves the corresponding relaxed 
equations, respectively, 

utt = v . p(Vu) 

in the case of X and 

utt = -Ap(Au) 

in the case of V with the same initial-boundary data. In addition, for both 
3-1 and D, 

SUppVr,t c {u E R : 4(a) = +**(a)} u.e. in Qm 

Remark. - The hyperbolic region for 7-t (or the dispersive region for 27) is 
possibly strictly larger than the support of the Young measure: for example, 
in one spatial dimension, if C$ is the double well potential function with 
wells at fl then the support of the measure lies in the complement of the 
interval (-1; 1) (where C$ = d**) whereas the hyperbolic (or dispersive) 
region includes an interval around zero. 

Proof of the theorem. A) The problem 57. 

Step 1. Discretisation and estimates. - We discretise 7-l implicitly: for 
time step h > 0 we have the equilibrium problem 

(13) h2 
and equivalently the discretised form of 
j > 0 

= y7 . q(-y7uh,j) 

the corresponding system is for 

In the above we define uh,’ = ‘~10 and u”‘-’ = ‘~0 - hza so that the 
initial data are attained with interpolation. A priori this discretisation obeys 
estimates obtained by energy considerations: the energy for 7-L defined as 

E(t) = 
/ .R 

+**(Vu)(z,t) + ;ut’(~,t) dz 

Vol. 13. Ilo l-1997 
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(the use of q!~ ** in place of q5 is appropriate due to the use of relaxation. as 
will become evident). The energy is formally conserved: 

dE -= 
dt I 

p(Ou) . Vu+ + UtlL+t d:r: = 0 
$1 

by (3). Consider the energy discretisation 

i 
. (15) El, ,,, = 

. (1 
ci,**(ouf’.j) + $d~..~)2 d:lT 

and Ea := Et,,o is defined by the convention above. Notice that 

(16) Gl I ‘ll~~“llg#>) + lI~~“ll;~(!r, 

The crucial estimate in the existence proof is the following one which 
asserts the non-increase of the disretised energy. Consider the discretised 
relaxed problem with p in place of q in (13): using (14), the convexity of 
$b** and suppressing temporarily the dependence on II,. one obtains 

Thus 

Thus by (17) 

(19) 
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By the growth condition of $** we have from (4) 

and since U” ;j E H;(n) this implies 

Next we solve the discretisation. Let /1 > 0 be fixed. For each j 2 1 and 
II E Hi(G) define the coercive functional 

which has Euler-Lagrange equation (13). By relaxation we shall obtain a 
generalised minimiser ~“,j E Hi (0): define @T* (II) to be the corresponding 
relaxed functional 

then a** is also coercive and is sequentially weakly lower semicontinuous 
on Hi (a); it attains its infimum at ‘u. “.J E H,1(62) and by standard relaxation 
theorems (~$1 [5]) 

(22) Ij := inf @j(?l) = inf @T*(U) = (P5*(?S”‘J) 

where the infimum is taken over all ‘u E H,j (62). The choice of variational 
principle is a priori a suitable one because it satisfies 

by (18) and thus we obtain bounds (20), (21). The question of what is a 
good choice of a regularisation and a variational principle to solve it is 
addressed at the end of the article. 

Vol. 14, Ilo I-1997 



152 S. DEMOULINI 

Consider minimising sequences (~~;j,“)k. c Hi (52) such that 

where we have used the lower semicontinuity of the functional @J*. Also, 
by the coercivity of cP** the minimising sequences are bounded in Hi (Cl) 
uniformly in h by the estimate (23). So we may assume 

where the notation UI - s is used to imply that the convergence is weakly 
in Hi (0) and strongly in L’(R) by compact embedding. Together with 
(24) this implies 

We may now apply a theorem in [ 12, Theorem 1. I] which asserts that the 
growth condition and the convexity of +**, (25) and (9) imply that 

Since 4 E E has quadratic growth from below we conclude by the remarks 
on Young measures above that for all ,rii E E the sequence ‘,I)( y Us’.‘,‘) )k 
is convergent weakly in L1(12) to the limit given by the Young measure 
generated by (VU”.~.‘)A.. To be precise, if for each j > 0 we let (I,,:J) ,.tll 
be the Young measure generated by (Vu”J~“)~. we have 

and thus 
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A particular consequence of (26) (27) and (28) is that 

I 
(l2.j. 0) dx = . (2P.j: fJ5**) d:c 

.n I .R 

and since c$** 5 (;h this implies 

(29) suppv’“,j c {$!I = C/I**>. 

Thus, 
(V’~‘J,q) = (VhQ7) a.e. in 12 

vUhj = (&. g) a.e. in 12 

where id is the identity on R”. At the minimiser ,u”.j the derivative of a** 
is zero and we obtain the equation 

(30) J ,l,,fj .j _ 2&.J-1 + uh,J-2 

*dV’““~J) . v< + 
j:o 1 . 

{ nx = 0 

V’CE P(R) 0 1 > 1.. 

By considering the stability of the Young measure minimiser (c$ [4, Sec- 
tion 61) one observes the equilibrium equation 

(31) 1’ /y (1) . v< + 

VJC E I&$2), j = 0,l. . . . 

and similarly with p in replacing q. In view of (30) and (31) we have 

v . (vhj ,q) = v . (vh.J:p) = v .p(VzPJ) in H-l(0). 

Step 2. Interpolation. - Let I”.J = [hj, h(j + 1)) and ,$&.j be the indicator 
function of I”.J. Letting as above 

,&.j - 
Uh.j _ u/t,j-l 

h 

and interpolate as follows (explicitly indicating only time-dependence) 

u:;(t) = c p(t) 
wfl,J+l _ wll,j 

h = c pJ 
lLl~~j+l - zUh,J + 1Lfl&l 

.i j 
h2 

and its integral 

(32) u:“(t) XI xX”;‘(t) 
,h.j+l _ &,J 

.i 

h 

Vol. 14, 11” l-1997. 
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Also define 

I$ (t) = 1 ,y”.J (t) dl~Jfl 

G”(t) = c ,pJ(t)(u”.- + 711’l.j+l(f - hj)) 
.I 

72(t) = c y’yt)d2..~+‘. 

Interpolate the Young measure 

(where .Fo is the space of continuous functions of linear growth such as 

q:p); thus Y/I is a Young measure generated by C,j ~‘,j(,t)V,,c”.,i,~’ b, 
> 

and satisfies 

equivalently. 

,Jl - v . (v” ~ (1) tt - in HP1(f2) ‘d’t E (w+ and in H-‘(c&j. 

Integrating (34) and using (32) we have 

(the time intergral of a function in Hi(QT) belongs to Hi(12)). We may 
also replace Qr with Q&. In addition, 

(36) Vu” = (v”. id) a.e. in 12%. 

With the above definitions ti” (0) = ~(r and jLF( 0) = zo. 

Step 3. Passage to the limit as 1~ -+ 0 - Observe that (v”)h is bounded 
in &.(Q,;F,!,) which is isomorphic to the dual space of LE,,(Q,:.Fc,) 
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as F,, is separable. Thus there exists a subsequence (not relabeled) weakly 
convergent to a parametrised measure u, that is, 

v. .f) Ic--ta, (u, f) in LL.(Qm) Qf E -6. 
Using cut-off functions as in [1] it is straightforward to show that the 
convergence extends to weak L1 convergence for functions f(.c, t. .) E Ea. 
so that 

(37) Yh -- v weakly in LfOC(Q30: Ed) n L;,,.(C),: 3;). 

For details see the proof of [6, Lemma 2.41. By the same lemma it can be 
shown that the limiting measure v is a Young measure generated by the 

spatial gradients of a diagonal subsequence of 
( 

Cj ,$-J (f)~u”J$~ 
1 lr ,k . 

By the linear growth of 4 we have (v”. ‘I) - (v. (I) weakly in Li,, 
(similarly for p) and passing to the limit as h 4 0 in (35) we conclude 
that (&)I, is bounded and in fact convergent in H-‘(O). Together with 
estimates (16), (17), (23) this implies bounds independently of h and 
hence the existence of a single weakly* convergent subsequence in /L (not 
relabeled) and limiting functions as indicated below such that 

IL" -2 ?L in L”(R+, li,l(O)) 

,ri ” r, ri in W1,“(R+. L’(O)) 
,u:’ A II in L”(R+, L’(O)) 

ii; 5 ,,j in WI-“(R’. H-l(O)) n L”(R+. L’(Q)) 

(where the boundedness of (I$~)!, in H-l(O) is used for the convergence of 
<ii:). Clearly, &*G = v (as &Gh = %L:)). Furthermore, the above convergences 
hold also weakly in Lt,,(Q,) and by [ 12, Lemma 6.31 we conclude that 
U = ‘II and fi = I: a.e. and thus &u = 6. Hence, 7~ satisfies (5). Also 
(29) implies 

(38) supp v c {c/I = q5** } 

by choosing test functions with support in the complement of (4 = 4**} 
and using the convergence (37). Passing to the limit in /h in (35) yields (6) 
and (7) required in the definition: 

Vol. 13. Ilo l-1997 
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and by (38), (v. q) = (~.y) (:I:. t) ae. in Qm so the same equation as 
above holds with p replacing q. Equivalently, 

utt = V (v. q) = 0 (v.p) in f?&(‘(Q,). 

Furthermore, passing to the limit in (36) we obtain 

Vu = (v, id) a.e. in Q,. 

The initial data are attained in the sense of the definition: by the embeddings 

(39) w’.-((o.T),H~l(!2)) - cqo. T). HP(n)) 

(4(J) lvlyo. T)), L2(R)) - CO([O. 2-y. L2(R)) 

(see [ 13, Lemma 1.21) and since by construction ?I” (0) = ILL and 6: (0) = z. 
the functions PL(.. t) and ‘ILL (.. t) are well defined for each t > 0 and so (8), 
(9) are true. Thus the pair (71. V) is a Young measure solution of X and 
the corresponding relaxed problem. 

B) The problem V. The above scheme can be modified in the following 
way to prove existence for V. Discretising similarly, 

l,l _ .,p.i-1 
: = ,&.J 

11. 
7,)1’..I _ (L,l’../ - 1 

11 
= -nq(Q..i) 

we obtain the Euler-Lagrange equation of 

I  

h.j-1 
+ ,u1'.J-2)2 

1 R 

2h2 

Standard relaxation and weak lower semicontinuity results extend to this 
case: 

,,&$) Q)lL../ (7)) = 
(1 

, tqn) @;;1; (‘(I) 
0 

where a** is the corresponding relaxed functional which is (sequentially) 
weakly 1.s.c. in a(Hi(O).H-‘(a)) and attains its minimum at u”-j E 
Hi(R). Consider the energy 

and let 
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be its time-discretisation. Then E,l,J+l - E,,,j 5 0. As above, @h;j(uh.J) < 
Et,,0 whence one obtains the uniform bound 

By the regularity of the Laplacian the sequences 

Il~u~LqIH;(r2), Ipu”‘jll H;(Q;p)’ lj~2~h.jllL~(12;1\1~~ X,V) 

are bounded independently of !1 and II. If (~‘,j;‘)k C H:(0) is a minimising 
sequence then using the coercivity of @** we know 

where the notation 1~ - s - s is used to imply the triple convergence weakly 
in Hi(n) and strongly in Hi(R) and L’(0) by compact embedding. We let 
(&&J.“’ )k generate the Young measure ZI”.! = (u[!.J),,.~~~. As in the case 
of gradient generated Young measures, v”,J E EA and characterises weak 
limits in L’(R) of ,$(a~“$,~,’ ) for all $ E C? (generalising to the space I 
was justified earlier). Letting k + x one can deduce as before that 

&l”.j = (vhJ. id) a.e. in R 

and by the stability of the Young measure minimiser 

a(&J : q) = A(v’~.J.~) = &J(&“.~) in H-l(o). 

Following this, interpolate as for X and use similar uniform estimates (with 
Hi(f2) and H-‘( 0) replacing Hi (0) and H-l(R) respectively) to pass to 
the limit as h --+ 0. This yields a Young measure solution (u. Y) satisfying 
equations (IO) and (11) in accordance with the definition and which also 
solves the corresponding relaxed problem. The initial data are attained by 
the embeddings (39), (40) with H-*(12) replacing H-l (12). This completes 
the existence proof. 0 

Independence 

The Young measure solutions for X and 2) have the property that the 
measure CJ and the identity function are independent with respect to the 

Vol. 14, no l-1997. 
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measure Y. In the case of the parabolic equation u,+ = 0 I this 
independence is a key property for proving the uniqueness of a Young 
measure solution in 161. 

Independence lemma. - Let (II. u) be u solution to ‘l-t or D. Then the 
epulity below holds, 

(Y. y . id) = (Y. ‘I) . (Y. ati) (.I:. t) (1.f’. in Qx,. 

Pro@ - The cases X and D are treated similarly. Here the proof is 
given for IFI. Let (u”.-‘.“‘)I; be the minimising sequence as in (25) generat- 
ing yh ..I . Taking the limit as k - x and using (3 1) one has 

and by the strong L’ convergence of ( II~~.J.~),~. 

V . q(Vu”..j.“) F V . (V”.,j. ‘I) (strongly) in K’(0). 

Furthermore, since (r. id E 3 and y Cl E t‘, we have as k - 3~ 

y(~77,k-~~) i (J’..‘. y) in I;‘(St) 
C,,,“..‘.” - (u”.~j.itd) in L’(Q) 

y(p’lLf~+b) VU”../.‘. _I (J’..‘. y . j$) in L1(12) 

By the div-curl lemma (or by direct computation using the strong H-’ 
convergence) one concludes 

(that is, in the sense of distributions). Therefore, 

(41) (u”.j, yd) = (d.J. q) . (v”.~. id) :c a.e. in 12 

By the interpolation in (33) 

(42) (22’; y .id) = (u”,y) (22. id) z a.e. in 12. v’f 2 0. 

We now wish to take the limit as /L -+ 0. By the existence theorem 
ii:’ - U+ weakly in La(R+,L2(R)) and thus also weakly in L;)(.(c&). 

A~wlrs de /‘l~strtut Hmri I’oincari Analyae non h&me 
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By the embedding L’(Qr) -+ H-l (QT) and by taking into account (35) 
and (37) this implies 

v . (v”: ‘1) + V. (v,g) in HPl(Qr). 

By applying the div-curl lemma once more we may pass to the limit in (42) 
above and the lemma follows. 0 

Alternative discretisations and variational principles 

It is clear that the way of discretising the systems above is not unique 
and neither is the variational principle used to solve a discretisation. I 
try to illustrate here two aspects, namely, (i) as long as the discretisation 
obeys energy non-increase, any variational principle which solves it (and 
can be minimised by relaxation) is admissible: (ii) if the requirements on 
the discretisation are too severe, (if for example the energy were minimised 
at each iteration), the dynamics may disappear in the process completely. 

(i) In the existence proof the uniform estimates on the ~,“,j come from 
the energy and cannot be expected in general to come from the variational 
principle. In particular, (in the case of ‘H with similar considerations in the 
case of D), the estimate 

which is the crucial estimate in the case of a gradient flow (see [12]), does 
not suffice to infer (21). The criteria for choice of a suitable variational 
principle are that it possess the correct Euler-Lagrange equation (agreeing 
with the discretisation (14)) and that the discretised energy dominate the 
minimum at each level j so that the uniform bounds (20), (21) hold. 
For example, an equally appropriate choice of a functional to solve the 
discretisation (14) is 

_ (u - t&-l)2 do 
2h2 ’ 
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for all ‘u E @(a), which is also coercive: 

where 0 < c, 0 < k, 0 < 6 < 1 and io, are constants. Thus Q** attains its 
infimum in HJ (a), say at z”--). Notice that in this case also the variational 
principle yields no uniform estimates by itself but through its domination 
from above by the energy: 

9;*(zh.J) 5 !I?;*(2 -1) = ~j~“(Qz”.i-l)di: < Eh.j-1 < E(). 

Both functionals solve the same discretisation (14) for which the energy 
is given by (15). The present method of construction of solution to K has 
no way of discriminating between the two functionals. In what follows we 
continue to work with Qj. (ii) A rather subtle modification of the existence 
scheme results in a regularisation for which the dynamics of the equations 
are lost and the scheme approaches the solution of the equilibrium equations 
Q . q(Vu) = 0 (respectively, &(a~) = 0). Assume @T* and E,,,, are as 
above in the case of K. For j > 0 we let u”:~J+~ be the minimiser of 
Eh,2j+l (which is possible since Eh,J is convex and coercive) and uh,‘j+’ 
the minimiser of a** (u: u~‘*‘J+~. ,u”.*J ). That is, the energy is minimised at 
each step rather than being evaluated at the minimiser of a**. Clearly the 
energy will fail to be conserved in the limit as /L 3 0 and it approaches 
its equilibrium value. In fact, U: vanishes as h -+ 0. To see this, consider 
the estimate 

(43) I’ 
4**p11 w+7 da; 

R 
5 

.i 

’ (ij**(v,Uh.2j+2) + ( 
u/t 2J+2 _ 2Uh.2.7+1 + ?],h.Zj)2 

2h’ 
d.r 

R 
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h,2j _ 2&2J-1 + uh.2j-2)2 

2h2 
dx 

< - ... 
< 

J 
’ q5**(Vuo) dx 
52 

independently of hT j. That is, 

@**(Uh,2j+2. , &2J+l j zb2j) < Eh,2j+l 5 
I 

u”,~J) dx 
.R 

5 
.I’ 

+**(Ouo) dx. 
R 

Consider the sequence (V~~‘j)j>r which we use to generate Young 
measures (~~,j)~ and following interpolate and obtain a Young measure 
solution as above. It is easy to see that (43) implies 

so that /Iz&(~Lz(Q,) = O(A). Similarly by (32), 

and so I/u:IIL~(Q~) = O(A) as h -+ 0, i.e., ZL: + 0 as h -+ 0 and 
so ut = 0. 
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