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ABSTRACT. - This paper is concerned with positive solutions of the 
semilinear system: 

C 

ut =Au+w”, p> 1, 
wt = AU+@, 92 1, (S) 

which blow up at x = 0 and t = T < 00. We shall obtain here conditions 
on p, q and the space dimension N which yield the following bounds on 
the blow up rates: 

u(x, t) 5 C(T - t)-i+ ~(5, t) 5 C(T - t)-s, (1) 

for some constant C > 0. We then use (1) to derive a complete classification 
of blow up patterns. This last result is achieved by means of a parabolic 
Liouville theorem which we retain to be of some independent interest. 
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Finally, we prove the existence of solutions of (S) exhibiting a type of 
asymptotics near blow up which is qualitatively different from those that 
hold for the scalar case. 

Key words and phrases: Semilinear systems, Reaction diffusion equations. Asymptotic 
behaviour, Liouville theorems, A priori estimates. 

1. INTRODUCTION 

In recent years a considerable effort has been devoted to unraveling the 
structure of the blow up mechanism for equations of the type 

ut = Au + f(u) ; f(u) = up. (P > 1): f(u) = e”, . 

(cf. for instance [28] for a recent survey). While some interesting questions 
concerning the asymptotics of solutions near blow up remain open as yet, 
a rather comprehensive picture of the possible blow up patterns is now 
available. Let us examine for instance the case where f(u) = UP with 
p > 1 in the equation above, i.e., consider the scalar equation 

ut = Au + up: p> 1. (1.1) 

and assume that U(X, t) is a positive solution of (1.1) in a strip 
ST = RN x (0,T). Suppose further that U(X, t) blows up at :L: = 0, 
t = T, by which we mean that there exist sequences { 2, }, {&} such that 
limnia 2, = 0, lim7,,--too t,, = T, and limnioo u(z,,: t,,) = /x;. A quick 
glance at equation (1.1) suggests that blow up should be driven by the 
reaction term f(u) = 9, which in turn hints at a blow up rate of the type 

u(z, t) < C(T - t)-*. for some C > 0 and any t < T. (1.2) 

From now on, we shall restrict our attention to positive solutions of the 
Cauchy problem corresponding to (1.1) with, say, bounded initial values 
u(z, 0) = Q(Z). Suppose also that p is subcritical, i.e., 

N+2 
l<P<m if N 2 3 (any p > 1 if N = 1,2). (1.3) 

Then a complete classification of blow up patterns for (1.1) is known. 
In order to state the corresponding result, we need to introduce some 
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notation. For z = (x1,. . . ,XN) and Q = (~r,. . . , a~), we shall write z” = 
x -y...xN NN. Set Hj = cjfij(zj/2), where cj = (2j/2(4,)1/4(j!)1/2)-1 and 
Hj (s) is the standard J ‘th-Hermite polynomial; actually cj is a normalisation 
constant whose role will be made clear later on. Finally, for z and o! as 
before we shall write Ha(z) = Ha1 (:G~) .. . H,,V(zN). Let us introduce 
now self-similar variables given by 

u(x, t) = (T - t)-* @(?J,‘), y = x(T - t)-i 
7- = - log(T - t). (1.4) 

Notice that the choice cP(y, r) = (p - 1)-h corresponds to an explicit, 
homogeneous solution of (1.1). Then there holds: 

THEOREM A. - Let ~(2, t) be a positive solution of (1.1) in a strip 
ST = RN x (0,T) which bl ows up at x = 0, t = T < 00, and assume that 
(1.2) and (1.3) hold. Let $(y, 7) be the function given by 

@(Y>T) = (p - 1)-h + $J(Y,T). (1.5) 

where Q is dejined in (1.4). Then, if $(., r) $ 0 for some r > 0, the 
following possibilities arise. Either there exists an orthogonal transformation 
of coordinate axes such that, denoting still by y the new coordinates, 

G(w) = +~H~,,,,+o(;), 
asrim, (1.6) 

k=l 

where 1 5 ~‘2 5 N and C, = (47r)lj4(p - 1)-*(&p)-‘, or there exists 
an even number m, m 2 4, and constants c, s (C,~. . . . : c,~ ) not all 
zero such that 

q,(y,J) = -&-Y)’ c ceHcy(y) + Ok), as 7- t w. (1.7) 
INI=TTl 

where the homogeneous multilinearform B(x) = C c,xa is nonnega- 
lOl?ll 

tive. Convergence in (1.6), (1.7) takes place in C2,1(RN) for any k 1 0 
and y E (0,l). 

See [26] and also [15]. Notice that different blow up patterns are known 
to exist; this was shown in [22] for the case N = 1. Corresponding results 
for higher dimensional problems can be found in [9] and in [l]. 

We shall briefly sketch next the main ideas leading to Theorem A, since 
they provide a basic background for the argument to be developed here. 

Vol. 14. Ilo 1.1997. 
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Following Giga and Kohn ([ 191) we change variables as in (1.4) to obtain 
that cP(y, T) satisfies 

cp 
@,=A+@+@“--. 

P-l 
(1.8) 

It is shown in [19] that, if (1.4) holds, then, as T + oo, @(y, r) should 
approach a stationary solution of (1.8) above. It is then shown that, if (1.3) 
is satisfied, the only global, nonnegative and bounded solutions of 

are the constants (P+ = (p - 1) - * and @- = 0, a Liouville theorem of 
elliptic type. As a matter of fact, the case where Cp- z 0 should be ruled 
out (cf. [17] for the case where N = 1 and [20] for a general argument 
covering the range (1.3)). At this juncture, one has that 

(P(y,r) -+ (p - l)-,-1 as r + co, 
uniformly on compact sets ( y ( < R. (1.9) 

This is the crucial startpoint towards deriving Theorem A. In order to obtain 
it, though, further elaboration is required. To proceed, one first defines 
$(y, T) through (1.5) and considers the equation satisfied by 4, namely 

$7 = A$ - ;YW + 1c, + fW) = 4 + f(llt)> (l.lOa) 

where 

f(qq = ((p - 1)-A + $I)” - (p - 1)-5 - 3; (l.lOb) 

so that f(Q) = O(Q”) as + -+ 0. The next step consists in deriving the 
form of the asymptotics of solutions of (1.10) as T -+ cc. To this end, 
one takes advantage of the fact that operator A in (1.10) is self-adjoint 
in LL(RN), where 

L”,(RN) = { 9 E Ltoc(R”) ] In\ ]&)12e-‘y’*‘4dy < w}; (l.lla) 

which is a Hilbert space when endowed with the norm 

Ilsll~,, = IId = ./,- ld4/2e-iy’*‘4 dy = (sd. (l.llb) 

On the other hand, the domain of A, D(A) is given by Hz (RN), where 
for any lc = 1, 2, . . ., Hk(RN) is defined as the space of those functions 

Annales de l’lnstitut Henri PoincarC Analyse non Ii&ire 
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in HFoc(RN) such that they and their derivatives up to order /C belong to 
Lt (RN). Moreover, the spectrum of A consists of the eigenvalues 

l- 
rn1+...+mlv 

2 ’ 
wherem1,mz ,..., mN=O,1,2 ,... . (1.12a) 

and the corresponding eigenfunctions are 

H rnlrnz...rnN (Y) = Key. . . HmN (YN), (1.12b) 

where the polynomials Hj(yj) have been defined before. This is the way 
in which Hermite polynomials enter the proof of Theorem A. Incidentally, 
the constants cj appearing in the definition of the Hj are selected so that 
llHn(y)ll = 1 for any n = 0, 1, 2, . . . 

The basic motivation for the work under consideration was our desire 
to understand how the previous approach could be extended to systems 
of equations, where the mechanism of singularity formation is much less 
understood than in the scalar case. See however [5], [6], [lo], [14], [16] 
for recent work on blow up for parabolic systems. More precisely, we shall 
consider here the simple semilinear model 

Ut = Au+v”, P > 0, (1.13a) 

vt =Av+uq, q > 0. (1.13b) 

It is known (cf [ 121) that any nontrivial positive solution of (13) which is 
defined for all z E RN must necessarily blow up in finite time if 

pq>l, and ___ Y+l >N 
pq-1- 2’ 

where y = max(p, q). 

When one considers boundary value problems for (13), blow up may occur 
whenever pq > 1, provided that the data are large enough: see for instance 
[13]. In case where such phenomenon appears, both functions U(IC, t) and 
v(z,t) must blow up at the same time. 

Our purpose here is to obtain an analogue of Theorem A for (1.13). 
It will turn out that even in the case where p = q, important differences 
arise with respect to the scalar case. Moreover, in the course of analysing 
(1.13) some interesting new facts will emerge even for the single equation 
(1.1). We shall make these statements precise where appropriate. Drawing a 
parallel with the program fulfilled for the semilinear equation (1. I), our first 
step will consist in deriving an estimate for the blow up rate in our case. 
Assuming that (u(z, t), ~(2, t)) blows up at t = T < 00, a quick glance at 
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the first order system obtained from (1.13) by dropping the laplacean terms 
therein, leads to guessing the following natural analogues of (1.2) 

u(z.t) 5 C(T - t)@% u(2. t) < C(T - q-7%. 
for some C > 0. 

(1.13) 

It is to be noticed, however, that we cannot expect (1.14) to hold unless 
some restrictions are imposed on p and (r. For instance, even in the scalar 
case (1.2) is known to fail for (1. l), if IV > 11 and p is large enough, so 
that (1.3) is not satisfied (cf [23]). We shall prove here the following result 

THEOREM 1. - Let (~(z.t).v(:c.t)) h e a solution of (1.13) dejined in 
ST = R" x (O>T), which blows up at time t = T < 30. Then the bounds 
(1.14) hold true in ST provided that 

PY>l, and at least one of the following two inequalities holds. 
q(pN - 2)+ < N + 2. p(qN - 2)+ < N + 2. 

(1.15) 

where, as usual, for any real number s we set s+ = max(s, 0). 
It is worth noticing here that the upper bounds (1.14) have been obtained 

by Caristi and Mitidieri [lo], under assumptions on p and q different 
from (1.15). These authors consider radially symmetric solutions of (1.13) 
that blow up at x = 0 and t = T, in such a way that ~~(0. t) 2 0 
and ut (0, t) > 0 for all t < T. They proceed by means of ODE-related 
techniques, thus extending Weissler’s approach for the scalar case (see [30]). 
We shall follow a different strategy here, and will resort instead to classical 
regularity methods for parabolic equations. Such a technique has been used 
in [2], [4] to discuss existence and non existence of solutions to Cauchy 
problems, for a class of equations and systems including (1.13). in terms 
of the regularity of the corresponding initial values. See also 131, and the 
book [ 1 l] for a general outline of these techniques. We should also mention 
the book [25], where somewhat similar ideas can be found, which however 
do not seem to suit our purposes here. 

The proof of Theorem 1 is to be found in Section 2 below. Let us remark 
on pass that the L1-estimate in Lemma 2.1 therein (which holds for any 
p > 0 and q > 0 with py > 1) seems to be of independent interest. 

Once the upper bounds (1.14) are available, the path is open to pursue 
the existing trail for scalar equations. To this end. we rescale variables 
as follows 

u(z,t) = (T-t)+ cP(y,~). U(ZL-,t) = (T-t)-* q(y.~). (1.16) 

where :y = z(T - t)P1/2; 7 = -log(T - t) 
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One is then led to the system 

(1.17(L) 

(1.17b) 

Our next task consists in characterizing global, bounded and nonnegative 
solutions of (1.17) defined for all times. Clearly (1.17) possess constant 
solutions, namely 

@ z @ = 0, and the positive solution (Q. @) 3 (r. y) of 

P+l y’) = r- 
pq - 1’ 

p=y(l+l 
pq - 1’ 

(1.18) 

We shall prove the following parabolic Liouville theorem 

THEOREM 2. - Assume that (1.15) holds. Then there exists a continuous 
and positive function E defined in the interval (1: (N + 2) /(N - 2)) (f 
N 2 3 (tap. in (1, c~) if N = 1, 2), such that, [f 

IP - PO/ + I(1 - PO1 < 4Pn). for some p0 satisfiing 

N+2 (1.19) 
1 < PO < N-2. ifN>3 (anq‘;oa>l,ftirN=1.2), 

then any nonnegative and bounded solution of (1.17) which is dejined for 
all :y E R’\’ and all r E R is either one of the constant solutions of (1.18) 
or satisfies otherwise 

II@(.. r) - q + /p’(.. r) - y/I + 0. as r + - cx. (1.20a) 

ll@(.* T)II + IIq(.> dll -+ 0. as 7 * cm, (1.20b) 

+vhere (IY 7) is the positive constant solution in (1.18), and (I (1 denotes 
the Lz:( R”)-norm dejined in (1.11 b). 

Notice the rather tight assumption (1.19) in the statement of Theorem 2. 
At this stage, we have been unable to significantly weaken such hypothesis. 

As a last goal in this paper, we set out to classify the possible patterns 
which may develop near a blow up point. To this end, we first prove that, 
if (u(x. 1?), ~I(:J. t)) bl ows up at :I: = 0, t = 7’ < eo, then one must have 

@(:y.r) + r. *‘(:yj:rT) -+ 7% asri3z. 

uniformly on compact sets 1~1 < R < CC. where 

IY yare the positive constant described in (1.18). (1.21) 

Vol. II. no l-1997 
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We shall prove (1.21) in Section 4 (cf. Lemma 4.1 there). A natural step 
consists then in linearizing around (T, y) by setting 

WY> 7) = r + (P(Y, 7), Q(Y; 4 = Y + NY! r). (1.22) 

A quick computation reveals now that (cp, $) satisfies 

P + P-Y’-% + fl($) (l.=a) 

= A& + qF1y + fz(p), 

where fi(s) = O(s’) as s -+ 0 for i = 1, 2. We may write (1.23) in a 
more compact form as follows 

(1.24) 

where I denotes the identity operator. Notice that the operator 

is not self-adjoint in the natural functional frame V = Li,(RN) x Lk(RN), 
unless p = q. At any rate, we will be able to expand any element (i) E V 
in the form 

c azH,u+ + c a;H,lL-. 
a 

where u+, K is a basis in R2 consisting on unit vectors parallel 
respectively to 

Set now 

cp(YY, 7) 
‘u(Y>T) = $(y,r) . ( ) 

We then prove 
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THEOREM 3. - Assume that 

The upper bounds (1.14) are satisjed, (1.25) 

and the conclusion in Theorem 2 holds, i.e., 
Any nonnegative and bounded solution of (1.17) which is defined for all 
y E RN and r E R is given by the constant functions defined in (1.18) or 
satisjies otherwise (1.20) (1.26) 

Then, if (a, Xi!) $ (0, 0), the following possibilities arise. There exists an 
orthogonal transformation of coordinate axes such that, denoting still by y 
the new coordinates, one has that either 

as r + 00, (1.27) 

where 1 < e 5 N and C = C(p, q) > 0, or else there exists an even 
number m, and constants cu not all zero such that 

v(., T) = -( 1 ~,H,(y))d-~)~u+ + o(e(l-?I’), as T + 00, 
lal=Tll 

(1.28) 
where m = 4, 6, . . ., or 

u(+,r) = ( C caH,(y))e-gTu- + o(eeoT), as 7 -+ co, (1.29) 
lCil=Wl 

where o = (p~~~I’l) + 7, m = 0, 1, 2, . . ., the multilinear form 

B(z) = c c,x” is nonnegative in (1.28), and convergence in (1.27)- 
la/=Wl 

(1.29) takes place in ITA as well as in Cf$(RN) for any k > 0 
and y E (0,l). 

If we compare Theorem A and Theorem 3, we readily observe that 
the main novelty in this last result consists in the possible occurrence of 
behaviours (1.29). We shall prove that such profiles actually exist. More 
precisely, we show here the following 

THEOREM 4. - For any even number m 2 2 and any dimension N > 1 
there exist radial solutions of the Cauchy problem corresponding to (1.13) 
with arbitrary p > 1 and q > 1, such that they blow up at a given T < 00, 
and (1.29) holds. 

It follows from Theorem 4 that, even when p = q, there always are blow 
up profiles for (1.13) which are different from those occurring in the scalar 

Vol. 14, no l-1997. 
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case. For instance, in variables (a. XI’) one has in a region 1~~1 = 0( 1) the 
following approximate picture for m = 8 and r < y 

Y 

FIG I, - Blow up patterns for case (1.29). 

Finally, the plan of the paper is as follows. A number of a priori 
estimates on solutions of (1.13) that will eventually lead to the proof of 
Theorem 1 are collected in the next Section 2. The following Section 3 
contains a parabolic Liouville theorem, as well as the detail of our basic 
functional frame. These tools are used therein to prove Theorem 2. Finally, 
Theorems 3 and 4 make the content of Section 4. 

2. A PRIORI ESTIMATES. THE PROOF OF THEOREM 1 

In this section we shall consider the system 

ut = au + t!l’, (2.10) 

tit =nv+uy. (2.G) 
where p and q satisfy 

p > 0; q > 0, and Pcl > 1. (2.2) 

More precisely, we shall consider local positive solutions of (2.1) (2.2). 
By this we mean functions u(z: t), V(Z, t) which satisfy (2.1) (2.2) in 
cylinders QT = R x (0: T), 52 being a bounded, smooth and open set in 
RN (N > l), and are positive in QT. 
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2.1. L1-estimates 

For any R > 0 and any locally integrable function f we shall write 

s BR 

fdz= & BRfdx, 

s 

where BR = {x 1 1x1 < R}, and IBn 1 denotes the volume of the ball 
BR. We then have 

LEMMA 2.1. - Let (u(z,t),v(z,t)) b e a local positive solution of (2.1), 
(2.2) defined in a cylinder QT = .(2 x (0, T), T < DI. Then for any p > 0 
such that p2 5 T - t and BZP c ti, there holds 

(2.3~) 

f 
‘u(z, t) dz 5 yp-‘*. (2.3b) 

BP 
for some y = y(N,p, q) > 0. 

We shall point out a few consequences of Lemma 2.1. First, we observe 
that it implies in particular 

COROLLARY 2.2. - Set p2 = C(T - t) for some C > 0. Then 

f 
u(z, t) dz 5 $2’ - t)-s, (2.4~~) 

BP(,) 

f 
~(2, t) dz 5 r(T - t)-5, (2.4b) 

. B,(t) 
for some y = r(C, N,p, q) > 0, provided that Bzp c 6’. 

On the other hand, Lemma 2.1 has some interesting consequences for 
the scalar equation (1.1). Indeed, if one sets p = q and considers (1.1) as 
a particular case of (2.1), we obtain 

COROLLARY 2.3. - Zf u(z, t) is a local positive solution of (1.1) in QT 
and p > 1, there holds 

f 
u(x, t) dz < $T - t)-&; 

* B,, 

for some y > 0, where p’(t) = (T - t), provided that BPpct) c a. 
It is worth noticing that, while (2.5) seems to suggest that (1.2) 

should hold for all p > 1, this last result is actually false. More 

Vol. 14, no 1-1997. 
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precisely, it has been recently shown in [23] that if N > 11 and 
p > (N - 2(N - l)‘/“)((N - 4) - 2(N - 1)‘/2)-1, there exist positive 
and radial solutions of (1.1) such that 

limsup (T - t)P-l~(O, t) = co. 
t+T 

By Corollary 2.3, however, such solutions must satisfy (2.5). 

Proof of Lemma 2.1. - For fixed p > 0, let W(X) be the first eigenfunction 
of the problem 

-Aw = Xw, in B, ; w = 0, on 1x1 = P, (2.6) 

which satisfies the condition j’n W(X) dz = 1. We may assume that 
w(x) > 0 in B,. By classical results one has that the first eigenvalue 
X1 is such that X1 = ype2 for some y = y(N). We also have that 
w 2 TOP -N for 1x1 5 p/ 2, and some y0 = y,(N). Let us write 

U(t) = 
s 

45, t>w(4 dz, V(t) = 
B, J’ 

~(2, t)w(x) dz. 
BP 

Assume first that p, 4 2 1. Then, if we multiply both sides of (2.la) 
(resp. (2.N)) by W(X), integrate over B, and use Jensen’s inequality, we 
readily arrive at 

u’(t) L --p(t) + V(t)“, 

VW 2 -$v(t) + U(t)q, 

(2.7a) 

(2.7b) 

for 0 < t < T. Define now y(t), z(t) as follows 

y(t) = e3-)U(t), z(t) = @+-$qt), 

for a fixed to E (0,T). From now on, we shall denote by y a generic 
positive constant (possibly changing from line to line) depending at most 
on IV, p and q. Taking into account (2.7), one readily sees that 

ylI 2 &zWdzP > 
zI > e-$?2(t-to) q 

- Y . 

A comparison argument reveals then that 

Y(t) 2 W), z(t) 1 P(t), for to < t < T, 
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where A, fl are the solutions to the system 

A' = e-iw-tO)pP, pI=e P -3Wo)p (2.8~) 

A(to) = uo, pL(to) = v,, where U. = U(to), Vi = V(t0). (2.8b) 

Notice that, on setting a(t) = X(t)q+‘(q + 1)-l - p(t)p+‘(p + 1)-l, we 
obtain that g’(t) z 0, hence a(t) = a(to) for any t > to. Thus 

&) = 
( ) 
(+$ (qt)‘+q - u,““, + vo’ip) &. (2.9) 

We may substitute now (2.9) into the first equation in (2.8~) to obtain after 
one quadrature that 

l”’ ((!22)(s”V - @‘“) + v;+p)p- ds 

= $(I _ e-$ml)) 

which holds for any t E (to, T). We now impose that p* 5 T - to, in which 
case we may select t = to + p* in (2.10) to obtain 

and since the last integral above converges, we deduce that 

The corresponding estimate for V. is obtained in the same way, and (2.3~) 
follows in this case. 

Let us turn to the case where min(p, 4) < 1. Without loss of generality, 
we may assume q > 1 > p and pq > 1. We shall exploit the following fact, 
established in [ 131, Lemma 4.1: There exists a positive increasing function 
g E C*((to,T)) such that 

g(Lo) = uo. 
((t - to)‘-“g’(t))’ 2 e-~(‘-to)g(t)P4, for to < t < T. (2.11) 

Vol. 14, Ilo I-1997 
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Note that, although the authors in ] 131 considered a problem in a bounded 
domain, their result is easily seen to carry over to our case by means of 
comparison arguments. Consider first the case where 5$ < T - to and 
Bk,, c Lt, for some X: = X:(N) > 2 to be chosen presently. Standard 
calculations show that (2.11) implies 

> ?,,,“(lW (,&)I’“+1 - fl(j(l + /)~)Pa+l), 

for all p2 5 2; - to < 2/j”. This inequality yields at once a lower bound for 
g’(t). On integrating such estimate over (to + $. to f 20’) one finds 

Taking into account that ~1’ > 0 (so that !I(&)) 5 !j(to + I)“)), the bound 
for ci, follows. The function ‘r! can be estimated as follows. Using classical 
representation formulae for solutions of the linear heat equation. one readily 
checks that 

Actually the requirement that Bk.,, c f2 for some k = X:(N) large enough 
is needed to derive (2.12). If we combine (2.12) and the bound for r,‘,, 
previously obtained, we have that 

Indeed the previous part of the proof applies since we have that 
to + 3p2 < T - 2p2 by assumption. To conclude, we merely notice 
that the extra restrictions imposed above on p can be relaxed to the 
assumptions made in the statement of the Lemma by means of the following 



LIOUVILLETHEOREMS ANDBLOW UP BEHAVIOUR 1s 

straightforward covering argument. Let p2 5 (T - t), B,, c Bz,, c 0. Then 
the ball B,) can be covered by r(N)F’ balls B’ of radius pi = ,~/t? (k as 
above), centered at points of B,. Therefore, for each %, the ball with the 
same center as B’ and with radius ~?p; = p is contained in -12. As we 
may assume that h: > fi, it is clear that 5~: 5 (T - t). so that the extra 
assumptions made above are satisfied. The bounds in (2.3) then follow by 
applying the just proven estimates to every ball 6”. Note that the final 
constant y appearing in (2.3) differs from the one found under the extra 
assumptions only for a multiplicative factor depending on N. n 

Taking into account (2.4), we may multiply both sides of (2.1~) and 
(2. Ih) by the function UI introduced in (2.6). and then integrate over 
B,, x (t - p2. t) to obtain 

COROLLARY 2.4. - Under the assumptions of Lemma 2.1, one has that if 
/? = C(T-f)f . ot some C > 0, there exists y = T(~V. C.p. q) > 0 such that 

*t 
I I yI”d:r:(l-r 5 y(T - t)hF+ (2.14) 

. t-p’ . B,, 

We point out that the arguments in the proof of Lemma 2.1 do not 
require of any smallness restriction on T - f. We then may let t -+ 0 in 
(2.3) to obtain 

COROLLARY 2.5. - Under the assumptions of Lemmcr 2.1, U(X. t) has cm 
initial trace p in -0, p being a locally jnite Bore1 measure in ,(2. Moreover 
for ull .I: E d2. 

,u(B&)) 5 y/,“‘-2*, 

for 0 < p < min T1/“. 2 1 dist (:l;. a,(,,) 
> 

(2.15) 

A similar stutement holds for u(:I:. t). 

Remark. - a) If 2(p + 1) < IV(pq - l), (2.15) actually places a restriction 
on the local regularity of any admissible initial datum U(Z, 0). Such 
restrictions are well known for the case of the scalar equation (1 .I) (see 
for instance [4], [3], and the references therein). Concerning the case of 
the system at hand, we refer to [2], where existence of solutions is proved 
under assumptions which, in the light of Corollary 2.5 above, are optimal 
if 2(;r, + 1) < N(pq - l), 2jy + 1) < N(pq - 1). 
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b) Assume that one of the two inequalities stated at the end of part a) 
above is violated. Then, by letting /7 -+ cx, in (2.15) we would recover that 
the only global solution of the system is the trivial one, i.e., u E w G 0, 
as observed in [ 121. 

2.2. L” -estimates 

In this paragraph we shall derive some upper bounds for solutions of 
(2.1) which will eventually provide the proof of Theorem 1. To that end 
we begin by recalling some notation. For given positive constants k, p, a 
and t with CJ < 1, and any nonnegative integer n, we set 

k, = k(l - 2-+l); p7) = p(l + (72-n), t, = f(l - a22”), 
(2.16) 

Bn = B,n; Qn = 6, x (t,,,t). Qm = B, x (t/24, 

The key result in this Section is the following estimate for the linear 
equation which we deem to be of some independent interest. This estimate 
is valid for nonlinear equations too (see the Remark at the end of this 
Section). While the Lemma can be proved by the classical methods in [24], 
[ll], we are unaware of any precise reference in the literature, and will 
therefore provide a proof below. The precise result reads as follows. 

LEMMA 2.6. - Let ~(2; t) be a nonnegative solution of 

Ut = au + f, in Qo, (2.17) 

where f E L’(Qo) with r > (N + 2)/2. Then for any a > 0 there exists 
y = y(N, T, CY) > 0 such that 

where 

(2.18u) 

(N + 2)~ 1 - v1 

v1 = (N + 2)~ + a(2r - (N + 2))’ 
v2=-. (2.18b) 

a 

Proof. - Let C& be a smooth and nonnegative cut-off function which 
vanishes outside Qn and is such that cn 3 1 on Qn+i, IV&] 5 (y2”)/(ap), 
and 0 I Cnt 5 (-Q”)/(Q~), w h ere as before y will denote a positive generic 
constant, possibly changing from line to line, which depends at most on 
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the parameters listed in the statement of the Lemma. We next use the 
customary notation s+ = max(s, 0), and for fixed ,f3 > 0 multiply both 
sides of (2.17) by the test function (U - Ic,+,)$C,“. One then obtains after 
integration by parts that 

+Y s f(u - kn+,)~~n2 dx dT. (2.19) 
Qn 

Write now A,+1 = {(xc, t) E Qn I u(z, t) > L+I}. Then for mY T > 1 
one has that 

s (u - k~,+~)$++l dz d7 Q?‘ 
< ,A,+~\‘/~(/ (IA-- k,)ydzdr)+: - 

Qn 
(2.20) 

< y2”K (s, 
11 

,f,‘dxd$‘,-( 1 (IL - k,)F dL.dr)? (2.21) Qn 
Set now s = (N + 2)(r - l)/(Nr) > 1. Then 

d 
5 IAn+11 s 

(J’ 
Q ((u - Ic,,+~)~C,)~- dzd$‘“. 

n 

Vol. 14, no 1-1997. 
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We now take advantage of (2.19)-(2.21), and of the embedding in [24] 
p. 74 to obtain 

< YIA~~+~[+ (I 
Li+l)r 

(11 - kn)F dzdr 
. Qj2 > 

x (22n,-2(t-1 + P~~)]A~+~~“~ + 2”Kl~fll&+. (2.22) 

If we now write m = (/j + l)~/(r - l), and observe that for all (I: > 0 

IA,,+1/ 2 yk-“2”” 
I 

(u - Al,,); dx dr; 
. &,I 

then it readily follows from (2.22) that 
. . 

/I 

WC,), 
(u - k,,+&-- dx dr 

Qn+1 
Id+l)r 

< y2-?+ 
(I 

. Q (71 - &)+rl dn: dr 
) 

1++ 

,I 
x k-qulj~; ((p(t-’ + 

,1 (2.23) 

where S1 = (/j + l)(s - l)r/(s(~ - 1)). A classical argument (cf [24] 
p. 95) yields then that 

IIILII,.Q_ 2 ‘. (2.24~) 

provided that 
. . 

Y 
II 

$t$? dz d7 
. . Qo 

whence 
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Suppose first that A > B. Setting 

2)) ’ 
one then has that 

19 

where 

6, = (P + 1)’ _ 1 
3 ( r-1 ) 

2. 27-(/h- + 1) 
= 2r - (N + 2) (r - 1)(2T - (N + 2))’ 

Hence 

and thus 

/Iulloo,Qx 5 VIlul(m,Q, + -yl/-*(‘T-2(t-1 + F’)F 2Ldxd7 , 
> 

Q” (2.26) 
for any v E (01 1). Assume now that B > A in (2.25). Then, setting 

& = (B + 1)’ + rs = (P+l)r (N + 2)~ 
r-l (r - l)(s - 1) 7.-l + 2~ - (N + 2)’ 

it follows that 

provided that p = /J(T! CX) > 0 has been chosen large enough. Whence 

Vol. 14. no 1.1997. 
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for any v E (0, l), with B = d(p,r, a,N) > 0 and ~1, 23 as in (2.18). 
Putting together (2.26) and (2.27), we obtain that for any v E (0,l) there 
exists C = C(v) > 0 so that 

l14100,Qm 5 +4l,,Q, + yC(c~-~(t-’ + p-“))v (/lq0ud2d7) 

We next select a sequence of cylinders {Qi} in the following form 

Qi = Bi x (&t), ti = f(1 - (1 - 2-74 ; i = 0, 1,2,. . . 

where 
Bi = B,s, pi = ~(1 + (1 - 2-94, B” = B,, 

so that Q” = Qo. If we write now (2.28) with Qm (resp. Qo) replaced by 
Qi (resp. Qifl), we finally obtain by induction on i that 

I14L,Qm I -44l~:Q’ 

+ yC~(2”+‘v)qc7-“(t-’ + p-“))V (JJ 11. dz dr 
> j=o QO 

whence the result, on letting i --+ oc, for a suitable choice of v. I 
We now point out the following consequence of Lemma (2.6). 

COROLLARY 2.7. - Let u(x, t) be a positive solution of the scalar equation 
(1.1) in Qo. Then, ifp < (N+ 2)/N, there exists a constant y = y(N, p! o) 
such that 

where p = 2(N f 2 - Np)-‘. 

Proof. - Let T > (N + 2)/2. Clearly one has that 
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Therefore, if we use (2.18a) with f = UP and Q: = p, and set 

H=H(p,t,y)=y 1+, ( y(q (2.29) 

it follows that 

where we have used Young’s inequality to derive the last bound above, 
v E (0,l) is to be chosen, C depends on y, and 1-1 is as in the statement 
of the Corollary. An iterative argument similar to the one at the end of the 
proof of Lemma 2.6 yields the result. n 

We are now in a position to prove 

LEMMA 2.8. - Let (u, u) be a positive solution of (2.1) in the cylinder Qo. 
!f at least one of the two inequalities 

p(qN - 2)+ < N+ 2, or q(pN - a>+ < N + 2: (2.30) 

holds, then we have 

II”l,m,Qm IH 
ff 

‘yoodxdT + (Hjfyadxd+ 
P(-l)Pl 

111 
X 

(JJ 

/12 - 
12 dx dr 

) (JJ 
VP dx dr 

QO > 

U~.uqdxdi)~(~Jill.dliiill)llil~ (2.31~) 

provided r, s > (N + 2)/2 are chosen so that 

Xl = pq(r - l)(s - l)OlLLI < 1. 

Here y = y(N, P, q, T, s, a), 

p1 = (N + 2)((N + 2)~ + q(2r - N - 2))-l, 

al=(N+2)((N+2)s+p(2s - N- 2,)-l> 

(2.31b) 
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x2 = p(7. - l)Pl/‘l + /L2. ,!;j = /Ll((T - l)(l - s01) + 1). 

/11’ = (1 - p1r)q-1. 

and H = H(l). t. -y) > 0 has been defined in (2.29). Qf course ‘v satisjies 
an analogous estimate. 

Proof. - We shall keep to the notation used in the proof of our previous 
Corollary 2.7. and use first (2.180) in (2.10) with .f = ~0” and (V = (1. 
This yields 

where 7’ > (N + 2)/Z, and /lS1, IL2 have been defined in the statement. A 
similar argument applied to (2. lh) with ,f = ,//‘I and 0: = p gives 

where s > (N + 2)/2, (~1 has been defined above, and g’L = ( 1 - o1 .s)/J), 
Next we take advantage of (2.32). (2.33) to obtain 

with xi. x2, x3 as defined in the statement. It follows from easy calculations 
that, if (2.30) holds, then 7’. s > (N + 2)/2 can be chosen so that ~1 < 1. 
We assume below that such a choice has been made. As a matter of fact, 

a rigorous derivation of (2.34) requires of using suitable intermediate-size 
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cylinders, as in the last part of Lemma 2.6. For ease of notation, though. 
we shall omit here and henceforth such auxiliary steps. Estimate (2.31~) 
follows by using Young’s inequality to split the last term in (2.34). The 
analogous estimate for v is obtained in a similar way. n 

Proof of Theorem 1. - We set p2 = C( T - t) in (2.3 1). One readily sees 
that the quantity H is bounded above by some positive constant. Moreover, 
one may use now (2.4) and (2.13) to obtain (after routine but tedious 
computations) that all three terms on the right hand side of (2.3 la) provide 
the same bound r(T - t)-s, and the estimate of II follows. The bound 
for u is obtained similarly. n 

Remurk. - The local L” bounds given in this section actually hold for 
positive subsolutions of more general systems 

11,~ - diva(z, t, rL, Vu) = wP: II+ - divb(:c. t; ,(I. CT,) = 1~~. (2.35) 

provided a, b satisfy standard structure assumptions. If (7~. U) is a solution 
of (2.35), the positivity requirement can be dropped, working separately 
with the positive and negative parts of U, 71. 

3. A LIOUVILLE THEOREM 

This Section is devoted to the proof of Theorem 2. In what follows, 
we shall assume that 

Nt2 
1 <P*(I< N-2 if N 2 3 (any y, 4 > 1 if iV = 1.2). (3.1) 

Let (,(:I;, t)? u(:c. t)) b e a solution of (2.1) which blows up at z = 0, t = T. 
We recall the auxiliary variables @, Q’, y and r introduced in (1.16). One 
readily checks that cft and Q satisfy 

Let r, y be the constants defined as the positive solutions of the equations 

p + 1 rP=r---- 
Prl- 1’ 

p = y q + l 
Pq- 1’ 

A crucial role in the proof of Theorem 2 is played by the following 
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PROPOSITION 3.1. - Assume that there exists K > 0 such that 

O<@<K, OI:@<KK, for -co<r<c~. (3.3) 

Then, for any po E (1, (N + 2)/(N - 2)) when N > 3 (any po > 1 if 
N = 1,2) andany E > 0 there exists S > 0 such that, if~p-po~+~q-po~ < 6, 
one of the following cases must necessarily occur 

sup (II@(V) - Tll + II%4 - rll) L E> (3.4a) 
-m<T<N 

or 
(3.4b) 

or 

and 

limsup (ll@(.,~) - rll + WC., T) - rll) 5 E, i----m 

J& (IIW> 411 + Iv% 411) = 0. 
To prove the Proposition, we proceed in several steps. Consider first the 
scalar equation 

in R”. 

Then there holds 

LEMMA 3.2. - Let @(y, r) be a nonnegative and bounded solution of 
(3.5) which is defined for all r E (-co, w). Then one of the following 
possibilities must occur 

qy,7-) s (p - 1)-h, (3.6a) 

or 
(3.6b) 

or 

fD(y,7) 3 (p-1)-p’, as 7 + -c0, and @(y, r) -+ 0, as T + 00. 
(3.6~) 

Remark. - It is worth pointing out that (3.6~) actually takes place for 
the explicit solutions 

@‘k(Y,T) E @k(T) = ((p - 1) + W-p-’ 

where k is any positive constant. 
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Proofof3.2. - We take up an argument already used by Giga and Kohn 
in [ 191, and consider thus the functional 

E(@) = (3.7) 

Notice that E(+(.,r)) < co for any T E (- 00, co) by interior regularity 
theory for parabolic equations since @ is globally bounded. A quick check 
reveals that 

-&@(.; T)) = - J’ @;+‘12/4 dy. 
RN 

Consider now the elliptic counterpart of (3.5), i.e., 

A@-+@+Op- 
Q, 

- = 0, 
P-1 

for y E RN. (3.9) 

Arguing as in [19], it then follows that 

“‘2’4 dy < co, 

and 

+(y,7-) + (a+(y) as 7 --+ co, *(y,7-) -+ (a-(y) as 7 + -00, 

where convergence is uniform on compact sets ]y] 5 R < 00, and @+, a’-, 

are global, nonnegative and bounded solutions of (3.9). (3.10) 

As recalled in [ 191, it follows from the results in [ 181 that for 
1 < p < (N + 2)/(N - 2) we must have 

If W(y) = 0, then @(y, T) = 0 for all T by (34, and (3.6b) holds. If 
a+(y) = (p - 1)-h, we observe that 

whence E(@-) = E(G)+) > 0 and (3.6~) holds in this case. Finally, 
(3.6~) corresponds to the only remaining admissible situation, namely 
W(y) = (p - l)-,-1, and (a+(y) = 0. n 
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As a next step we show 

LEMMA 3.3. - Let {p,, }, { qj } he sequences such that 

lim p,; = jim yJ = p 
,, ---icx 

where 1 < p < (IV + 2)/(&N - 2) if N > 3, and p > 1 if N = 1, 2. Let 
(Qj, @j) denote the corresponding solutions of (3.2) with (p, q) replaced by 
(p,, q,i) there, and assume that (3.3) holds for any pair (@j, ~j). Then there 
exists a subsequence (also labelled by> j) such that 

where a* solves (3.5) and convergence is uniform on compact subsets 
of RN x R. 

Proof. - It follows from (3.3) and a standard compactness argument that 
there exists a subsequence (Q:, , @j) which converges as j + 0~: on compact 
subsets of RN x R towards a solution of the system 

(Xlla) 

(Xllb) 

We now claim that 

Q, E q. (3.12) 

To show (3.12), we set 2 = @ - 9, subtract both equations in (3.11) and 
use Kato’s inequality to obtain 

Since (21 < K by assumption, we readily see that 

IZ(y,r)) < Ke-3. for any r. < 7 < x. 

Letting now r. -+ --x. (3.12) follows and the proof is concluded. n 
To proceed further, we now prove 

LEMMA 3.4. - Assume now that the hypotheses in Proposition 3.1 are 
satisfied. There exists E > 0 small enough such that, iffor some ro E R 
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then one has that, setting D = min(p, q), 

IfD(.,r)II + llQ(.,r)ll 5 CEe-*(‘-‘O)) 
for some C > 0 and any r > r. + C/2. 

(3.14) 

Proof - Let us denote by se(~) the semigroup associated to the 
differential operator A0 E A - ;yV. Taking advantage of (3.3) and Kato’s 
inequality, one easily sees that 

for some a = a(K,p, 4) > 0. Since (61 satisfies a similar equation, it 
turns out that 

(PI + IQ 

Hence 

‘IL 5 w4 + PI) - ;Yv(l@l+ PI) + 0 WI + PII). 

IW, 41 + IW, r)l - < .e”(i-T4s& - ro)(lQ(.,ro)l + p(.,rJ). (3.15) 

In view of (3.15) and the delayed regularizing effect which holds for 
operator A0 (cf [26]), one has that, for any r‘ > 1 there exists Co > 0 
and L > 0 so that 

IIW 4,w + II% dlr,ul 5 CO(PC! ToIll + llQ’(.> ~O)ll>> 
whenever L/2 5 r - rO 5 L, 

(3.16n) 

where 
llhll::,, = .I’ Ih(S)p-‘s’2’4 ds: (3.1Cib) 

RN 

this last definition being meant for functions h for which the right hand side 
above converges. Recalling (3.13) we may now use variation of constants 
formula in (3.2), and take advantage of (3.15) (3.16) to obtain that 

II+(.,r)I17.,tLj + I[*‘(,, T)(/~,~~, 5 dfe-~(T-To). 
for some 111 > 0 and 0 = min(p, 4): provided that L/2 5 T - r. 5 L. 

(3.17) 
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We next use variation of constants formula in (3.2) to obtain that 

for L/2 < r - r. < L, where 

llF1(7; To, L)ll = ,-+%+o++)) s 
/I ok (Q+;)) 

x (a(-, T- (TO+;)) +(+- (~o+;)))i~. WW 

and 

T ll~2h70,L)lI = J e-*(T-S)llSO(~ - s)(9(., s)~ + (a(., s)(J)11 ds. 
TO-t% 

(3.18~) 

Since lISo(r - s)f(., s)ll L Cllf(.,s)ll, it follows from (3.15) &at 
ll@(.,~o + $) + Q(*,To + $)I1 < EeaL/2. Hence 

llFl(T; TO, L)ll L EGe -&%(~+o+9),for some Cl > 0. (3.19a) 

To bound F2, we first observe that 

IISob - SM.> 4”ll 5 cllfc> dPII 5 Cll.K> 411;p,w. 

We then make use of (3.17) (or rather of a variant of it, since we set r = 2q 
in IPC a.,, and T = 2p in (IQ(.,r)(j,,,) to obtain that 

JlF2(7-; 70, L>ll L E”Mpe 
-$$(r-To+$) 

> for some M > 1, (3.19b) 

where P = max(p,q). It then follows from (3.19) that 

I[+(., T)II + I[@(., T)II 5 (ECU + 6’Mf‘)e-%(‘-TO+*) 
provided that r. + L/2 < T 5 r. + L. 

Recalling ((3.16a), one then has that 

(3.20) 

II@(.> 4Ilv,u + ll~I(~~~)Il~,~ I Co(&G + ELM’)> (3.21) 
whenever 7. + L < T 5 7. + 3L/2. 

If we select now E > 0 such that &Ci +cOM@ 2 2d1 and M > 0 in (3.17) 
so that M > 2CcCi, we can repeat the previous argument with 70 replaced 
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by 7a+L/2 to obtain (3.20), this time in the interval ra+L 5 r 5 r0+3L/2. 
Iterating this procedure, the result follows. n 

End of the Proof of Proposition 3.1. - Assume that (3.4~) fails to 
hold. Keeping to the notation in Lemma 3.3, there exists E > 0 and 
sequences {pj}, {~j} and {rj} such that limj,,pj =lim+oo qj = po, 
1 < po < (N + 2)/(N - 2) if N > 3 (PO > 1 if N = 1, 21, and 

IPjC, ‘j) - rjll + II w, Tj> - Tjll > E> 
where rj, rj are given by (1.18) with p, q replaced by pj and qj there. Let 
us continue to denote by @j (y, r), !IJ~ (y, r) the functions given respectively 
by aj(y, 7 + TV) and Qj(y, 7 + TV). Then we have that 

IPjC, 0) - Gil + IIW, 0) - Yjll > E. 
By Lemma 3.3 it follows that a subsequence (still denoted by {@j}, {ej}) 
should converge to a solution cP*(y, r) of (3.5) which is defined for all 
r E (--00, co). These last solutions have been classified in Lemma 3.2. By 
assumption (3.6~) cannot hold, so that either (3.6b) or (3.6~) should occur. 
In either case, one has that for some ~~~ llaj(., 7-o)(j + llqj(., ~~)(j becomes 
small enough, and then Lemma 3.4 yields ll@j(.,~)II + ll@j(~,r)lj -+ 0 as 
7- --+ co. Suppose now that the limit function +*(y, T) is not identically 
zero. We then claim that 

lI@jW - till + lPjb> - Tjll I c, as 7 -+ -00, 

where C = C(pj, qj) -+ 0 as j --f 00. The proof of this last fact follows 
again by contradiction, since cP* necessarily is either a S-shaped function 
as that in (3.6c), or zero. This concludes the proof. m 

We now turn our attention to the situation where (3.4a) holds. Our aim 
consists in proving that, in such case 

a E r, P E y. 

To this end, we linearise around (r, 7) by setting 

cp=@-r, ?J=e-y. (3.22a) 

One then obtains 

~;-=A~-~~Vy+(y+li,)~-~(r+~) 

=Ap-;yVp- P + PYp-v + flW> 

(3.22b) 
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where fi($) = O($“) as ,d) - O. In a similar way, we obtain 

where f2((p) = O($) as p + 0. As a next step we define a function space 

I .f>g E L-::!R\)}. and a linear operator A : I” -+ C’ with 

domain D(A) = Hi, x Hj;),(R”), given by 

(3.23) 

where, as usual, I denotes the identity operator. Notice that if p # (1. 
qT9-l # py”-i, and in such case A is not self-adjoint in the space I’ 
endowed with the natural scalar product 

((‘). (i)) = Jnr(I/tii’i)e-l”liidg. 
This lack of self-adjointness translates into some modifications in our 
forthcoming approach with respect to that corresponding to the scalar case 
(cf [26], [27]). We shall next sketch the relevant details. We start with 
operator A0 z a - i:(/V. already considered in Lemma 3.4. By standard 
results (which have also been recalled in the Introduction), A0 is self-adjoint 
in Ltl(RAT). Moreover, if we denote elements in RN by o = (o,. , ~g). 
the spectrum of A” consists of values -Iol/2, where o,, is a nonnegative 
integer for any i = 1. 2. . ., iV, and /o( = 01 + . . . + (YY = 0. 
1. 2, . . . The corresponding eigenfunctions are given by co H,, (y) = 
I:,,, Ha, (~1) . . c,>,,r K,., (YS). where W,, (s) = fi,, (s/2), &,, being the 
standard ntl’-Hermite polynomial. The constant cn = (c,,, . . . cc,, ) is 
selected so that Icrr \‘(H,, . H,,) = 1. The family {H,, } constitutes an 
orthonormal basis in Lz; (R”). This last space is isomorphic to the space 
of sequences e2 = { (:I:,,) 1 C,, IX,, 1’ < 0~; o = ((2,. . . , a*%--) as above }. 
As it is well known, this isomorphism is given by the mapping f H {(I,,}, 
where 

This correspondence is extended up to an isomorphism between V and 
P(C”) = {(uo(,bN) E C? I Ccr(]an12 + lbn12) < X,Q as before} in a 
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natural manner. Namely, denoting transposition by * for ease of notation, 
we associate to every pair (f, g)* E V an element ({f,,}. {!I~~})* in P( C’) 
given by 

so that the action of the operator iz given in (3.23) on the space e*(C?) 
is described as follows 

m=( ‘4 ‘U ‘(I 0 Jj 2 (lr -- ‘I- P’4 P+l 1 - 1 -bJ yylJ-l Yfl - UC, 110 . (X24) 
-__ 

1 

( ) 

2 pq 1 

Set now 

I (3.25(L) 

A straightforward computation reveals that hf has eigenvalues X+, X- 
given by 

x+ = 1, A- =-(P+wi+1) 
pq-1 (3.25b) 

It is therefore possible to select u+. L such that 

Mu+ = ?L+. Mu- = x-t-. Iw+l = I’U-1 = 1. (3.254 

Notice that U+ and YL- are parallel respectively to 

( 
1, qfl * 1 --p -7 . 

pq - 1 ) ( 

1, /lk+ 1) 
yy _ 1 W-Y *. 

1 

Bearing in mind the previous remarks, we now write 

(f: .y)* = c a,’ H,,,u+ + c u, H,UL . (3.2&l) 
(7 n 

for any pair (f! 9)* E V. A word of caution is required, however, concerning 
(3.26a), since {Hcyu+} u {Hcyz~-} 1s not an orthonormal basis in V (this 
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follows from the fact that U+ and U- are not orthogonal). Nevertheless, 
we may define subspaces V* in the form 

and we still have that 

v=v+cBv-, but V+ is not orthogonal to VP. (3.26~) 

Summing up, we have obtained that the spectrum of operator A in (3.23) 
is given by 

(P + l)(q + 1) 
Pq - 1 > 

H,u-. (3.27b) 

where, as before, a = (~1~: . . , a,~) and for any i with 1 < i < IV, CQ is 
a nonnegative (possibly zero) integer. There are two positive eigenvalues: 
Xr = 1, to which it corresponds the eigenfunction Hou+, and X:, = l/2. In 
this last case, there are N eigenfunctions, given by H,u+, where CY runs 
through the unit vectors (1,O;. . . : 0), . ., (0; . . , 0,l). The eigenvalue 
Xs = 0 has in turn N(N + 1)/2 eigenfunctions of the form HLYu+, where 
the index a has either two coordinates equal to 1 or one coordinate equal 
to 2, all others being zero. All remaining eigenvalues are negative. 

At this juncture, a couple of remarks are in order. First, for any pair 
(cp,$)* E V there holds 

cl ~(idl*+i~ni*) I (b~,y’,)*~ (cP,~)*) I c2 ~(idi*+b;l*)~ (3.28) 
0. (I 

for some positive constants cl and ~2. We shall henceforth use the notation 

4Y,T) = (cp(Y, T), 1li(Y, T))“, 
IMP. T)II = II(P(.; 7); tic.> T))*ll. 

(3.29) 

Second, we should stress -that our functional frame allows us to make use 
of the delayed regularizing effects introduced in [21] and [26] to study the 
scalar case. These will be used in deriving our next result, which reads 
as follows 
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LEMMA 3.5. - For any g > 0 there exists E > 0 such that, if (3.4a) 
holds, then 

C Iu,‘I 5 ~I(w(.,~)ll, for - cc < T < 00, (3.30) 
1~151 

where ‘u(.,T) is given in (3.29). 

Proof. - We shall argue by contradiction. Assume then that there exists 
a real 7 and cr > 0 so that 

c k&o > d~Wll~ (3.31) 
Ial< 

regardless of how small E > 0 in (3.4a) is. For the ease of notation, we 
shall assume 0 = 1 in what follows. In view of our previous discussion, 
we have that 

w, = Au + f(w), (3.32) 

where A is given in (3.22), (3.23), and f(w) = 0(w2) as z1 + 0. If we 
denote now by S(r) th e semigroup associated to A, we may represent 
solutions of (3.32) in the form 

w(., T) = S(T - T)w(., 5) + 
s 

T S(T - s)f(w(., s)) ds, for 7 > r. (3.33) 
7 

Let T > 1 be large (but fixed). Then there exists L > 0 such that 

Take now 7 so that 2L 5 T - 7 5 3L, and split the second term on the 
right of (3.33) as follows 

i’ S(T - s)f(w(., s)) ds = s’-” . . . + I7 . . . z I1 + 12. (3.35) 
. r r T-L 

Using (3.31) and (3.34) we readily see that 

Il4l 5 4 c ld(m2> (3.36) 
la151 

where here and in what follows C denotes a positive generic constant. As 
to 11, we notice that the value of L is determined by our choice of r in 
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(3.34), and this in turn has been already fixed to derive the bound (3.36). 
It may therefore happen that (3.36) does not continue to hold when we 
replace I2 by I1 there. In such case, we argue as follows. Select A > 0 so 
that f(~) = O(T:‘+“) as ‘V + 0. where h is small enough so as to have 

We then have that 

(3.37) 

(3.38) 

whence, using (3.33) 

Hence 

C Iu,t(r)l 2 C la~(7)l. for 2L 5 7 -T 5 3L. 
IQ151 1~~151 

(3,39) 

regardless of how small E > 0 in (3.4a) is. 

whereas on the other hand 

114.. T)II 5 q4.. 311: for 2L 2 r--7 <3L. (3.40) 

We now write ‘II = w+ + ?I- with U+ E V+ (resp. L E VP). where I;. 
V- are given in (3.26). We also set 

and define 

(3.41) 
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Clearly, 

T(r) 2 01 > 0. for F+2L < 7 5 7+31;, and some 19~ > 0. (3.42) 

We now compute 

52c db,t,(llw+(~:~)ll’ + 11~4~)11’)-’ 
lo IS 1 

- 2 c (a~(r))2(J~1U+(~.7)~~2 + ~~7L(~:~,II”)-’ 
I~/<1 

x ((111+, (w+),) + (,(I-. (,QT)). (3.43) 

Notice that operator A commutes with the decomposition V = V+ $ V-. 
Therefore, denoting by I’+ (resp. P-) the projection operator on V+ (resp. 
on V-), equation (3.32) gives raise to 

(u+)T = A(v+) + p+(f(u)). (3.44u) 

(T/L), = A(c) + P-(f(u)). (3.44b) 

Let Q be the projection operator from V+ onto the subspace orthogonal 
to the eigenfunctions Hcrrh+ with Q = 0 or (v = (1: 0. . . ~ 0), . . 
CY = (0.. . . ,O. 1). Thus UI+ = Qv+, and 

(w+L = A(w+) + Qf’+(f(?~)). (3.45) 

Using (3.43)-(3.45) we obtain 

- 2 c IfL,t~2(~Iw+(~.T)~~2 + l~7:-(.,T)~l’)-’ 
I(~151 

x ((w+, An,+) + (a~+, QP+(f(v))) + (L AL) + (.up, P-(f(u)))), 

As (‘to+, Aw+) < 0, and (x, Ax) 5 --c(lt- II’, it then follows that 

g 22 c I~~12(Ilw+(~J)l12 + llfu-(.~~)l12)-1 1451 
x ; - (lb+.Qp+f(4)l c 
+ l(li-,P_f(v))l)(l~w+(..7.)l12 + ll7~-(..r)lly). 
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We next remark that i), we have the estimate 

114.. 4”II I 114.: d;,T,> 5 Clb(~:~ - W! 

and ii), by (3.39) and (3.42), I/v(.,r - L)ll 5 C~~U(~,~)II, where C > 0 
depends indeed on L and dl. Putting all together, we see that 

Ild~> d”II I w4~ 4113: 

and hence 

g 12 c l~,+12(l/~+(~;4112 + ll~-(.~~,II”)-’ 
blil 

x (; - Clb(.> ~)ll”(ll~+L 3II” + II=(., T)1’)-‘) 

L 2q4 (; - cqr)ll4*> 411). 

Therefore, if E > 0 in (3.4a) is small enough, we obtain by a standard 
continuation argument that 

T(T) 2 02 > 0: for 7 2 r+ L. (3.46) 

We now claim that (3.46) cannot possibly hold. To wit, we notice that, by 
(3.32), one has that for T 1 ? + L 

for some Cl > 0, where we have made use of (3.4a) and (3.46) to derive 
the last inequality. Integrating the previous inequality in time we finally 
arrive at 

1 Iu,‘(T)~ 2 C Iuz(T + L)le~(‘-‘-L). for 7 17 + L: 
lel<l Id51 

where 7 = l/2 - Cl&. Letting E + co, we obtain a contradiction with the 
fact that v(., r) must be bounded. n 
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The final step is the proof of Theorem 2 is 

LEMMA 3.6. - For any CT > 0 there exists E > 0 such that, if (3.4a) 
holds then 

(3.47) 

Proof. - It follows from the lines of that corresponding to our previous 
Lemma. Therefore, we shall merely sketch most of the arguments involved, 
to describe in more detail those parts where differences with respect to that 
proof appear. Let us write 

‘?I+ = c u,‘Ho,u+ + c a,’ f&u+ + R+(r), (3.4&i) 

T(.,-r) = c 1412(11~+(~,~)112 + ll4,II’)-‘. (3.486) 
Ial= 

A straightforward modification of the arguments in Lemma 3.5 gives 

T(r) L 0, as far as (i) T(i-) 2 6, > 0, for 
some 8, and (ii) E in (3.4a) is small enough. 

(3.49) 

Fix now 6 > 0. Then either 

(3.50) 

for some sequence {rj} with lim rj = --co, 
3100 

or else 

For any M > 0 large enough, and any I- 2 -M, there holds 

c k&a < s( c ld(a + ll~+L~)II + ll~~Ldl>. (3.51) 
Id12 InIll 

Suppose now that (3.51) is satisfied. Then, using the equations for %r_ and 
R+ (which are easily obtained from (3.32)) we derive 

&>~~ll I --cLll’1~(~,~)ll + qll~J(? - qlll+“): for 7 5 -M. 
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where fi > 0 and ‘r~ > 0 are (small) positive numbers. We may now use 
(3.4~~) to see that, for any T,, < T < -121, 

lly:( . . r)ll 5 Cc(J-‘l(‘-r”). (’ > 0. 

whence by letting ~(1 4 -x we would obtain that ,v( ‘. 7) E 0 for any 
r < -III, which in turn yields I*( . . 7) 3 0 for any r > -,%I by a standard 
continuation argument. 

It remains yet to consider the case where (3.50) occurs. i.e., when 
quadratic modes dominate in the expansion (3.26) with (f. !I)* replaced 
there by 11 = (C,CI. rli~)*. In this case. we may use a continuation argument 
involving (3.49) to obtain that 

C IaN+(r)I > f5( 1 If~~(r)I+IIR+(.;r)ll+//ul-(..r)ll). for any real T. 
lb152 10 Ii1 

(3.52) 
We now define 

and, as in [26], define the matrix G = (G,,,,), 1 5 Z.,j 1. N, whose entries 
are given by 

<;,, = vqx. ~2(:4)~+)~:-‘. 
i 

if i = j, T ‘ 
(X. H1(:YL)H1(Wj)lL+)H~~~~. if a # ,i. 

A minor modification of the arguments in [26] yields now 

i: = Z/G2 + dH(G). 

where Y > 0, and H(G) = O(llGil’) for small l/Gil. Moreover, G is 
symmetric, and its eigenvalues Xk(7) satisfy 

x,. = H,,.,X; + hO( ~~x~~2). (3.53) 

where I]Xll’ = C,, Xi, and coefficients H,., are positive. The analysis of the 
O.D.E. system (3.53) is similar to that performed in [26], Section 3. It turns 
out that the eigenvalues {XI.(~) } satisfy (after a possible relabelling) that 

c 
Xk(7) = ---. for 7 2 rlJ. X: = 1. I’. (3.53a) 

r - To 

for 7 2 7(). k=(l$l.....N. (3.546) 

Letting r0 -+ -30, one then obtains that l/Al) = 0 and hence [IGIl = 0, 
whence ~]u(..~)II = 0. n 

Putting together Proposition 3.1, and Lemmata 3.2-3.6, the proof of 
Theorem 2 is now complete. 
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4. CLASSIFICATION OF SINGULARITIES. OCCURRENCE 
OF A PARTICULAR CLASS OF PROFILES 

In this Section we shall prove Theorems 3 and 4 in the Introduction. 

4.1. The proof of Theorem 3 

Our first result in this direction is 

LEMMA 4.1. - Under the assumptions of Theorem 3, one has that 

WY,~) + c VYJ) + Y, as7 -4 00, 

uniformly on compact sets 1y/1 5 R < x. 

Proof. - Consider the sequence (@, . Qn) given by 

(4.1) 

%(y, r) = @(y; r + n), *IIIL(~, r) = *(Y, r + n). 

Since Q + 9 is bounded, there exists a subsequence (still denoted by 
(an, QI,)) such that limn+oo a,(., T) = a*(., Q-) and lim,,, 9,(.,~) = 
Q*(.,T) uniformly on compact sets IyI < R. Clearly, (a*, Q*) solves 
(3.2). By hypothesis, one of the cases (1.18) or (1.20) holds. Assume that 

(@*, +*) # (04 Th en, for any E > 0 and r. > 0, we would have that 

lI@a(., 70 + n)ll + llQ(., TO + n)II 5 E, for large enough n. 

Arguing as in the proof of Lemma 3.3, it then turns out that 

II@(.3~)II I Ce-sTT IlQ(.,T)ll < Ce-ST, as T i m. (4.2) 

We then take up an argument already used in the proof of Lemma 3.5. We set 

G = I@Ies’ + I$les’. (4.3a) 

and readily check that G satisfies 

G, 5 AG - ;yVG + CG. (4.3b) 

for some C > 0. We now consider the following integral introduced in [27]: 
For any q > 1 and ‘r > 0, and for any h E L$,(RN) we write 

L;(h) = sy ( /;,v lh(y)lqexp ( - v) df)“‘. 
T 
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Let Ao, Sa (7) be as in the proof of Lemma 3.5. It has been proved in [27] 
(cf Section 2 therein) that 

J%%(~)dJ) 5 c*Gw, for any r > 6 and some C* = C*(S) > 0. 
(4.4) 

From (4.2) (4.3) and (4.4) we then obtain that 

L:(G(.;-r)) I C, for some C > 0, and T > 0, 

which in turn implies 

for some positive generic constant C. We are thus led to 

We can perform now a translation in space to see that, after selecting 
Pd.1 41 w.> 4) as a new initial value in (3.2) standard regularity theory 
for parabolic equations will give 

0 5 U(Z, t) + v(z, t) 5 C: for any ]zj 5 6 < 1, and any r E (7’ - 6; T), 
(4.6) 

which provides a contradiction with the assumptions of (z, t) E (0: T) 
being a blow up point. This concludes the proof. n 

As soon as Lemma 4.1 has been obtained, we are able to use the 
arguments developed in Section 3 to deal with the case where (3.4~) holds. 
Namely, we linearise as in (3.22) and make use of the functional frame 
previously implemented to repeat the steps in [26] where the scalar case 
(1.1) was analysed. This yields at once Theorem 3. 

We next set out to prove that the profiles described in (1.29) actually 
occur. 

4.2. The proof of Theorem 4 

We shall obtain the sought-for result by means of a topological argument. 
Such approach has been employed by Albert0 Bressan to discuss on blow up 
patterns in semilinear parabolic equations (cf. [7], [S]). Arguments alike to 
those to be explained below have been used in [23], [29]. We shall refer to 
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these works for details, and concentrate instead in describing here the main 
idea behind the proof. Basically we will prove that if the coefficients cro, . . ., 
Q,, P 0, . . .1 /3t defined below are chosen satisfying (4.11) and II satisfies 
(4.46) then we recover (4.46) with a strict inequality for r. 2 r 2 rl, 
r1 2 r. arbitrarily large. This allows us to use a topological argument that 
proves that (4.11) still holds for suitable CX~, ,& and rl replaced by rl + S. 
By means of a continuation argument we could then assume that rl = +CG 
and this yields the required result. 

To simplify a bit the notation, we shall consider in detail the case N = 1 
only. It will become apparent from our approach, though, that the case of 
radial solutions in higher dimensions can be obtained at the expense of 
some minor modifications, which shall be omitted. To begin with, let m be 
a fixed even integer, m 2 2 and let C be a positive integer such that 

-(a+?) > 1-g > -2(o+3, where CT = (p+l)(g+l)/(pq- 1). 
(4.7) 

Notice that such a e always exists, since o > 1. Remark also that (4.7) can 
be restated in the form 

For fixed r. > 1, we now consider the following function 

vo(y, To) = a,H,(y)e-(g+f)ToU- 

+c 
Qkj-fJk(y)e-(~+3)TOU- 

m#k<n 

e-i 

+ ~~j7Tj(y)e(1-+)ToU+ + /3pHpe(1-g)‘oU+. (4.8) 
j=o 

Here Hj (y) denotes a truncated version of the modified Hermite 
polynomial Hj(y), i.e., 

jff.(,) = Hj(y), for IyI 5 Ce(+-f)To, 3 
C K, for IyI 2 2Ce(3-+)“, 

where C, K are large (but otherwise fixed) constants, n is the largest integer 
which is equal or inferior to 2(~ + F), and ao, . . ., am, PO, . . ., ,L$ are real 
constants to be selected presently. We certainly can rewrite (4.8) in the form 
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d-1 

+ c p~Hj(y)e(l-wL+ 

j=o 

+ ppHpd-%L+ + E(y, 7”): (4.9,) 

where E(y,-r,) G 0 for IyI 5 Cc(t-i)To and 

11E(.,To)11 = O(e-2(“ff)Q). (4.9b) 

Let us define now the function v(y: Q-) as the solution of the Cauchy problem 

?I, = Aw + f(w), for 7 > 7-a) (4.10a) 

4., To) = Vo(Y. 70) (4.10b) 

(cf (3.23)). Fix now ~-1 > 70, and let (ak,/jj) with k # m, j # ! be 
selected so that 

(P-w(-,Tl),Hk) = 0, for 0 2 k 5 72, k # 711: 

(P+v(.:rr),H,)=O, forO<j<!-1. 

We now claim that 

(4.11a) 

(4.11b) 

For any k such that 0 5 k 5 n and k # m, there holds 

(f2kl = O(e-61To), asro-+m.where6r=2(~+~) -(D+:) >0 

(4.12~) 
For any jsuch that0 5 j 5 e - 1, there holds 

l/?jl = O(ePzTO), asrO-+m, where62=2(c+T) -(i-l) >O. 

(4.126) 
Let us show how to obtain (4.12a). To this end, we use variation of 
constants formula in (4.10), to write v(., 7) in the form 

.i- 
w(., 7-) = eAcTpTO)w(., 7-O) + 

I 
eA(7-~‘)f(w(~. s)) ds. (4.13) 

. 70 

We then set T = rl in (4.13), and observe that, for any fixed k # m such 
that 0 5 k 5 n, condition (4.1 la) yields 

eA(rl-s)f(w(.: s)) ds, HI, 
> 

+ (ILE(~, TV). Hk.) 

(4.14) 
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Using the fact that f is quadratic, one readily sees that 

-(“+s)(T1-s)e-2(u+~)s ds < Ce-(“+$)‘,e-b’7h, - 

where ]R2(7-r ) ( gives a contribution which is even smaller than the previous 
one. This yields at once (4.12a); the proof of (4.126) is similar. 

We next proceed to derive a priori bounds for v(y, r), under the 
assumption that (4.11) holds. We do this by using variation of constants 
formula together with (4.9) to obtain that, for any r E [rOo, rl], 

u(y, T) = C Qke -(g+5)THk(y)~- + El(y, T)U- + C@je(l-i)rH,(Y)u+ 
k<n j<e 

+ Ez(Y, T)U+ + 
.I 

7 

eA(r-s)f(u(., s)) ds 

Ei &(y,r) + E,(Y& + SZ(Y>T) 

+ Ea(y,‘)u+ + S3(Y> T)> (4.15a) 

where 

eA(‘-To)E(y, T) = El(y, T)U- + E2(Yy,7-)u+. (4.15b) 

We then write S3 = S3(y, r) as 

s,=cHk Te- .I’ (6+%)(T--s)(P-f, Hk) ds u- 
k<n 70 

+ c Hk T e-(“+~)(T-s)(P-f, Hk) ds u- 
k>n .I nl 

+cHj 

i<f 
.I 

T e(l-$)(T-s)(p+f, H,) da u+ 

70 

T +x4 
.I 

e(l-$)(‘-S)(P+f, Hj) ds u+. (4.15c) 
j>e TO 

We now take advantage of (4.1 la) and (4.15) to obtain that, for any 
7 E [%nl~ 

u(Y,T) = - c HI, 
/ 

T1 eAc7-‘) (P-f, Hk) ds u 
m,#k<n 70 
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+x*k s 
T ,-(“+$)+d(p-f. Hk) ds u 

k> ,I TO 

.I’ i +x*j &f)-)(p+f; Hj) ds u+ 
.I >I 70 

+*m s i e.A(T--S) (P-f, H,,) ds U- 
70 

‘T + He 
J 

c+~)(P+~, HP) ds us 
70 

+ El(Y, +- + EZ(Y> T),U+. (4.16) 

Clearly 

-(c~+$)(r-s)~--2(C+y)s & < Cep2(“+tb, (4.17~) 
- 

and moreover, using (4.7) and the fact that f is quadratic, 

(4.17b) 

On the other hand, using Cauchy-Schwarz, 

II J’ 
7 c *I, ,~-k’+k)+~) (P-f, Hk) ds 

k>n T3 

Ann&s de /‘/nstirur Henri PorncarP - Analyae non ImCaire 
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As a matter of fact, the extra factor (cr + n/2)-l on the right above yields 
at once 

II J c HI, 7 ,-(~+$)(-s)(p-f, Hk) &a < (5’-2(“+t).T, (4.17c) 
k>n To - ffk 

Arguing in a similar way, we easily obtain 

'I J c Hj T &+S)(p+f, HA) ds 5 ~~-2(“+f)~. (4.17d) 
j>F 70 H;. 

Notice that in space dimension N = 1 the above HA-bounds give L&- 
estimates by Sobolev embeddings. Finally, one readily checks that the 
contribution corresponding to the terms Er(y, .T), E2(y, 7) in (4.16) is of 
order o( ew2(“+? )T ) for 3- 2 70. We summarize our previous results (in 
particular, (4.12) and (4.17)) in the following 

LEMMA 4.2. - Assume that conditions (4.11) are satisfied. Then if TO >, 1, 
for any 7 E [7-o, 711 one has that 

I)(~, T) = ~,e-(“+~)‘Hm(y)u- + ,‘&e’ee(l-i)‘&(y)u+ + O(e-2(“+t)y, 

uniformly on sets Iyj 5 C. (4.18) 

Our next step consists in extending Lemma 4.2 (or rather a suitable 
version of it) to larger regions. To this end, we introduce a new variable 
< given by 

[ = ye($-+)‘. (4.19) 

In the variables (I, T), the corresponding equations for (@, Q) read 

(4.20~) 
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Set now 

and consider the autonomous system 

(a = q,” - pS]cp, 
PY - 1 

(4.22n) 

\i! = cp” - LrLL*. 

PY - 1 
(4.22b) 

System (4.22) has two equilibria: (0,O) and (I’, y). A standard phase space 
analysis yields the following phase portrait for the corresponding trajectories 

FIG 2. - Phase portrait of’ (4.22). 

Let us denote by V = (5, G)* the stable trajectory linking the critical 
points (T, y) and (0,O) in Figure 2. Classical linearisation procedures yield 
the asymptotic behaviours 

as < + 0. (4.23a) 

- 
Q’(C) - 7 - dY1 as < + 0. (4.23b) 

for some positive constants cl, cz, and 
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cj(<) N h’21<l-~Ts, as[-+oo, (4.24b) 

for some K1 > 0, K2 > 0. We now consider the following auxiliary 
function 

?i”(<? T) 5 v(<) + a,lTi,(~)e-(“+~b- + R(<, T) 

z V(l) + W(<, 7) + R(E, T)? (4.25~) 

where 

R((, T) = e"-"'Ql([) + e-("+y)TQ,([) + Qs([), (4.25b) 

and functions Qi(<) (i = 1, 2, 3) are to be selected presently. As a a matter 
of fact, our choice of the Qi(<)’ s will be made so that ‘u* (E, 7) will provide 
sub- and supersolutions of system (1+17) in regions I< / = 0( 1). This goal 
will be achieved as follows. We set 

C(u) = u’l - +yu’> f = (fl: &f21*. (4.26) 

where 

We may thus rewrite (1.17) in the form 

u 7 = 44 + f(u). (4.27) 

If we rewrite now %I*(<, r) in the variables (y, T) and plug it into (4.27) 
we obtain that 

a, + W, + R, = L(v + W + R) + f(u + W + R) + f(v) - f(v). 

Hence 

W, + R, = L(W + R) + i&, + f(v + W + R) - f(v). (4.28) 

On the other hand, the arguments in Section 3 (cffor instance (3.22), (3.23) 
there) show that 

w, = C(W) + M(W), (4.29) 

where M is the matrix given in (3.25~). From (4.28) and (4.29) it follows 
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R, = L(R) + fiyrl + f(v + W + R) - f(v) - M(W). (4.30) 

To obtain further insight, we split p(v) into a linear and a nonlinear part. 
Namely, we set 

f(4 = (-SQ%S ) q * + (W, WI)* FE l(w) + g(w). (4.31) 

From (4.30) and (4.31), we finally obtain 

R, = L(R) + l(R) + g(%i + W + R) - y(U) - (M - !)W + tiyy 

E A(R) + K(<. T). (4.32) 

Write now 

(4.33) 

We are now prepared to select Qr ([) and Qz(<) in (4.25). To start with, 
Q1([) is a solution of 

-(I - %)Ql + g(Q1)1 +A?(<)Qr = -(6cC: GEE)*. for [ > 0, (4.34a) 

so that 

QI(<) - 4-‘. as [ i 0. for some c = (c~,c~)*.c # 0. (4.346) 

On the other hand, Qg(c) is a solution of 

-(CT + y)Q2 + ;(1)?)< + li?(<)Q, = P(t). for E > 0. (4.350) 

where 

P(E) = ((c-l - yqw*(J), (32-l - F’)W,([))“. 

with 
w = (Wl, WL?)“, 

as in (4.25), so that 

Qz(<) - dl”+CTe, as < -+ 0, for some d = (dr, &)*, d # 0. (4.35b) 
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For i = 1, 2, let us write &i(E) = (Q,!(<),Q~(<))*, and set cy = (ar,az)*. 
We shall use henceforth the following notation 

aQi(l) = (mQt(I>, mQf(E))*. 

We shall prove now the following result 

LEMMA 4.3. - There exist constants CI: = (cY~,cx~)* and ,f3 
such that the function R(<, r) given by 

R(<, T) = e(+-l)‘aQl(<) + e-‘“+~)‘PQ&), 

with Q1, Q2 as in (4.34), (4.35) respectively, satisfies 

R, - A(R) 2 K(E,r), 

(Pl, isI* 

(4.36) 

(4.37) 

provided that Ae($-f)’ 5 111 5 6, where A > 1, 0 < 6 << 1 and r > 1, 
the inequality in (4.37) being understood as holding for each component qf 
the vectors therein considered. 

Proof. - A quick check reveals that, if Ae(S-i)’ 2 111 < 6, where A, b 
and r are as before, then there holds W + R << V. Setting R = (RI, Rz)*, 
(4.42) reads 

E (RI>, =j(R1)S - SRI + P% p-‘R2 + p(f/“-l - -/“-l)w2 

+ e(3-1)T ( (R,)CE + SC0 : (4.38a) 

I 
(R2)T =-(Rz)< - - 

e 
’ + l R2 + c$Q-~R~ + /J(@-~ - F1)Wl 

YQ - 1 
+ e(s-1)T((R2)ES + Gee). (4.3%) 

A routine computation reveals now that, if we set R.= e(!-l)TQQ1, we 
may select a so that 

R, - ;R4 - a(<)R >> e+)‘(R<< + G,,). (4.39) 

In deriving this last inequality, we make use of expansions (4.23) together 
with the fact that 

e2($P1)T<e-4 << e(f-1)T[e-2. whenever Iyl > A >> 1. 
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A similar argument shows then that if we set R = e-(“+t)‘[jQ:!(<). we 
may select /3 so that, in the region under consideration 

R, - ;RF - A?l(<)R > P(c) + e($+)‘R,,. 

Putting together (4.39) and (4.40), the Lemma follows. n 
Let now B > 1 be given, and let QE be such that 

$(QE)( + &f(O)Q, = 2(1 - x~)(<-‘~‘,<-“‘)*. for < 

where p = p(q+l)/(pq- 1); 11 = q(p+l)/(pq- I). 
and 

Q(B) = 0. QE(B) # 0. 

L 

(4.40) 

B. 

(4.41u) 

(4.416) 

In (4.41a) we are using the customary notation xB([) to denote a function 
such that XB (<) = 1 for < < B and XB (<) = 0 for < > B. We then have 

LEMMA 4.4. - Let R(<,r) = R(c.7) + QE([:~), where R(t.7) is the 
function in the statement of Lemma 4.3. Then there holds 

R, - A(R) 2 K(C, T), whenever 6 < I<1 5 be:. and 7 > 1. (4.42) 

Proof. - It suffices to consider the case where I[1 > B. To begin with, 
we observe that if QO(<) so ves 1 the homogeneous version of (4.41a), one 
has that 

Qo(<) - c(<p”‘~.<ey~)*, as ( + cx), (4.43) 

for some c = (cr ; cz)* (cf (4.23)). An application of variation of constants 
formula in (4.41~) yields then that QE(<) also has the asymptotic behaviour 
described in (4.43). We then observe that, as far as I<[ < Set with 6 > 0 
small enough, we have that v + W + R 5 2~, and (4.32) reads 

R, 5 c(R) + l(R) + g(S) + (lower order terms), 

whereupon QC satisfies 

To conclude the proof of the Lemma, one has yet to prove that 
R(t: T> i &Q&J)> f or some 61 > 0 sufficiently small, in the region 
under consideration. To this end, we consider the first component of R( <. r), 
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which we shall still denote by R for the ease of notation. Bearing this 
convention in mind, we notice that, as < + cc. 

In a similar way, we see that e-(“+y)‘Qz(<) 5 Smioe<-p~, as < --f 00. 
The second component of R([, 7) is taken care of in the same way, and 
the result follows. n 

For convenience, we next point out a consequence of our previous results. 
We remark first that the region where (4.42) holds corresponds to ]y] < Se?, 
7 > 1 (i.e., ]:tr] 5 S and r N T). Consider now the subregion given by 

One easily checks that R + Q < U in Cr. Recalling (4.25) it turns out that 

COROLLARY 4.5. - In Cl there holds 

WY. T) + Q~(Y. T) + ,~Y/:T) N 
K1ly-‘g+e(i-l)&&+T 
K2y-p~e(i-1)s, 

> 
> (4.45) 

for some positive constants K1 and K2. 

End of the proof of Theorem 4. - Let 8 5 1 be a given positive number, 
and let us define A’ = A’( ro, C, K; m, l) as the set of smooth functions 
qy, T) = (hl, h2)* such that the following properties hold 

x&T, is the set of functions satisfying (4.46) whenever r E [ro, rl] : 
(4.47) 

and argue as follows 
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Step 1. - Take 7. >> 1 large enough, and select functions +(y,ro), 
Q(y, ~a) not identically zero and such that 

Since (a, $) are sufficiently small in the interval 

I, = {y ( $2 5 (yJ 5 Se?}, 

a typical degeneracy argument repeatedly used in this work (cf. for instance 
that in the proof of Lemma 4.1) yields then that there is no blow up in, 
say, the subset 

Step 2. - Let 71 > ro, and select r~(y,~~) given by (4.8), where 
constants (arc; &) are selected so that (4.11) holds, and such that (4.48) 
and (4.49) are satisfied. The corresponding solution v(y, T) of (4. IO) satisfies 
U(Y) 4 E e&T1 for some 2y < 1. In particular, v(y, 7) remains bounded for 
0 5 IyI 5 $ey, 7. 2 7 5 rl. We have shown in detail that (4.46a)-(4.46c) 
hold; the remaining bound (4.464 is easily seen to hold. We now claim 
that w(yy,~) E Afo,T for all 7 > ro. In view of our previous arguments, that 
will in turn ensure that ~(y, 7) develops the blow up behaviour encoded in 
(1.29) as 7 + co. To justify our claim, we just remark that, since z9 < 1, 
standard continuous dependence results yield that there exists 7 > 7l so 
that w(y, .) E A7i,i. Let T* be the supremum of such 7, and suppose that 
T* < cc. Then arguing as before we would obtain that v(y, .) E A:,., with 

x = ti(1 + 19)/a, and therefore v(:y, ,) E AT% for some 7 > 7*, which 
provides a contradiction. n 
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