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ABSTRACT. - We consider perturbations of the Feigenbaum map in 
n dimensions. In the analytic topology we prove that the maps that 
are accumulated by period doubling bifurcations are approximable with 
homoclinic tangencies. We also develop a n-dimensional Feigenbaum 
theory in the C’ topology, for T large enough. We apply this theory 
to extend the result of approximation with homoclinic tangencies for C’ 
maps. 0 Elsevier, Paris 

RBSUMI? - On considere des perturbations de la transformation de 
Feigenbaum en dimension n. Dans la topologie analytique on prouve que 
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de periode sont approchees par des tangences homocliniques. On developpe 
aussi une theorie de Feigenbaum n-dimensionelle dans la topologie C’, avec 
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d’approximation par tangences homocliniques pour les transformations C’. 
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256 E. CATSIGERAS AND H. ENRICH 

1. INTRODUCTION 

The one-parameter unfolding of a homoclinic tangency, for locally 
dissipative maps of class C’ (T 2 3), in dimension two, originates important 
dynamical phenomena [ 131 [ 151 [ 191 [ 161. For instance: horseshoes and 
hyperbolic sets, cascades of period doubling bifurcations [21], maps with 
infinitely many sinks [ 121, H&on-like attractors [ 111, [ 11. Some of the 
results are also valid in higher dimensions [ 171, [20], [ 181, [lo]. In other 
words, the families unfolding a homoclinic tangency have many of the 
known global bifurcations. They are notable examples of global unstable 
systems. It is not known if the homoclinic bifurcations are in general 
necessary for global unstability. Precisely, J. Palis has formulated the 
following: 

CONJECTURE [16]. - The subset ‘H of difleomorphisms that are either 
hyperbolic (i.e. with hyperbolic limit set and no cycles) or homoclinic 
bifurcating is dense in the space of C” sueace diffeomorphisms. 

When formulating the question, J. Palis has also presented the following 
program: try to approximate with homoclinic bifurcations some particular 
global unstabilities, as for example: 

1. diffeomorphisms having an attractor (as discovered by Feigenbaum and 
independently by Coullet and Tresser [6], [3]), at the accumulation 
of period doubling bifurcations. 

2. diffeomorphisms having a H&on-like attractor. 
3. diffeomorphisms exhibiting infinitely many coexisting sinks. 
To address the first case of the program above, we will consider 

a renormalization T of n-dimensional perturbations of the Feigenbaum 
map a. 

The spectral properties of dT(@) in n dimensions were studied by Collet, 
Eckmann and Koch [2] in the analytic topology. They proved that Cp is 
a hyperbolic fixed point of the renormalization T with a single unstable 
direction and that the maps in the stable manifold are accumulated by 
period doubling bifurcations. 

For one-dimensional analytic maps in a neighborhood of the Feigenbaum 
map, the accumulation of the period doubling bifurcations are approximated 
by band-merging maps. This result was proved by Eckmann and Wittwer 
[51. 

Applying these results we can provide a partial answer to the part 1 
of the program above: n-dimensional analytic maps in the stable manifold 
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of @J are the accumulation of period doubling bifurcations and can be 
approximated with homoclinic tangencies. 

A. M. Davie ([4]) has developed an one-dimensional Feigenbaum theory 
in the C2+e topology. He proves that, although the renormalization is not 
Frechet differentiable in that space, the Feigenbaum map is a topologically 
hyperbolic fixed point. He shows the existence of a C’ stable submanifold 
of codimension one in the space C2+‘. 

Following the ideas of A. M. Davie we develop a n-dimensional 
Feigenbaum theory in the C’ topology, for T large enough. Some of the 
arguments of [4] have to be modified to work in a n-dimensional setting. 
That is why we present a detailed exposition of the theory that occupies 
entirely the sections 2 and 3. We conclude that there is a topologically 
hyperbolic behaviour of the renormalization near Q in the space of 
n-dimensional C’ maps, and the existence of the stable submanifold. 

Applying these results we can improve the first answer to the question 
of approximation with homoclinic tangencies: also n-dimensional C’ maps 
in the stable manifold of Q, are cascades of period doubling bifurcations 
which are approximable with homoclinic tangencies. 

THE MAIN THEOREMS 

We will denote l-lo the space of bounded real analytic maps, defined 
in a neighborhood D of [- 1, l] x (0) in C” to C”. The map @, as will 
be defined in 1.2, is a particular endomorphism of lfo, transforming D 
into an one-dimensional image, and will be called the Feigenbaum map 
in n dimensions. 

THEOREM 1. - In the space l-lo there exists a codimension one manifold 
W, containing the Feigenbaum map 43, such that any differentiable curve 
{ GCL} in XD that intersects transversally W at Go verijies: 

a) It has a sequence of period doubling bifurcations for parameter values 
u, + 0 monotonely. 

b) There exists &,, + 0 (monotonely, at the other side of 0 than urn), 
such that G,_ exhibits a homoclinic tangency. 

The part u) of the theorem above appears in [2]. 

We denote C’ the set of C’ maps defined in a neighborhood D of 
[-l,l] x (0) c R” to R”. 
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THEOREM 2. - For r large enough there exists in the space C’ a 
codimension one manifold W, containing the Feigenbaum map a, such 
that any differentiable curve {G,} in C’ that intersects transversally W 
at Go veri$es: 

a) It has a sequence of period doubling bifurcations for parameter values 
pm + 0 monotonely. 

6) There exists ji,, -+ 0 (monotonely, at the other side of 0 than pm), 
such that G,_ exhibits a homoclinic tangency. 

In the section 1 we prove the first theorem, and in the sections 2 and 3 
the second one. The first theorem has been proved by the first author alone. 
The second theorem has been proved jointly. 

We thank J. Palis for posing the problem, as well as for motivating 
conversations and constant support, and K. Khanin for very useful 
discussions and suggestions. We also thank W. de Melo, 0. Lanford, and 
A. M. Davie. Finally, we thank to IMPA, Rio de Janeiro, for its hospitality. 

1. THE ANALYTIC PERTURBATIONS 
OF THE FEIGENBAUM MAP 

In this section we develop the theory in the analytic case, using the fact 
that the renormalization is differentiable with derivative that is a compact 
operator whose spectrum is computable. In the subsection 1.1 we analyse the 
spectrum of the renormalization and prove the part a) of the theorem 1. In 
the subsection 1.2 we find the homoclinic tangencies and prove the part b). 

1.1. Spectral analysis of the renormalization 

Let us state some results in dimension one that give an understanding of 
the cascades of period doubling bifurcations. 

Let D be a neighborhood of [-1, l] in C, and “2, the space of real 
analytic maps defined and bounded in fi. It is a Banach space with the 
supremum norm. In 3c5 let d be the manifold 

A2 = {$ E Iif) : q!(z) = g(z2) f or some g real analytic, g’ # 0, g(0) = lj 

The renormalization transformation 9 is defined as: 

applied to the maps 4 E i’t?l such that -1 < $(l) < 0 and $(q!~(l)o) C 0. 
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The following theorem provides some properties of ?: 

THEOREM 1.1. - If the neighborhood fi is small enough, then: 
a) There exists cp E A?l fixed by $. The Schwarzian derivative Sp 

is negative. Moreover (~~(0) = cp( 1) = X = - .3995 . . . and 
cp’(1) = X-l; 

b) ? is a C” transformation, and dy(cp) is a compact operator having 
a single eigenvalue S = 4.6692. . . of modulus greater or equal than 
I, which is simple. 

c) The unstable manifold fi”(cp) C &!I intersects transversally the 
codimension one manifold $1 of period doubling bifurcations, de$ned 
as follows: 

n n 
Cl = {Ic, E A/l : q!~‘(x~) = -1 for zo fixed by $J} 

Proof - See 0. Lanford III’s article [9]. This theorem was conjectured 
in [6], [3] and [7]. H 

The Feigenbaum map in dimension one is the map cp of the theorem 
above. 

Following Collet, Eckmann and Koch [2], let us take a neighborhood D 
in C’” of the interval [-1, l] x { 0). Our functional space 3-10 will be the 
Banach real space formed by the real analytic maps defined and bounded 
in D with the supremum norm. 

Usually we will consider only the restrictions to R” of the maps in 7-1o. 
For simplicity we will not use a different notation to refer to the restriction. 

Let us fix Q E RnP1, a! # 0, and define 0 : C” H C, and B. : C I--+ C, 
as follows: 

B(.zo, 2) = zo” - ct! .z 
6,(Z) = z2 

DEFINITION 1.2. - The Feigenbaum map in n dimensions is the map: 

cP=(foe,o):DcC”i-+C” 

where f o B. = cp is the Feigenbaum map in dimension one. 
For fixed cr, there exists D small enough such that 6(D) is contained in 

the domain of f, and therefore Cp is well defined. 
Being X = ~(1) = -.3995.. ., let us define A : C” I-+ C”, the 

linear resealing h(za, 2) = (Xza, X22), and a (first) renormalization 
transformation: 

NG=A-l~G~G~h 

for all G E 7-t~ in a neighborhood of a. 
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The renormalization transformation N will be modified later (substituting 
the linear resealing A with a nonlinear change of coordinates), to get 
a new renormalization transformation T that will have some desired 
properties. Observe that the Feigenbaum map @ is fixed by N and 
o!Aqqu = R-1 0 (u 0 @ + m? 0 a. u) 0 A. 

Remark 1 .3. - For any given real analytic map g: C” H C” we will 
denote 

Qf,,=-aoa++DQ,.a 

It is a map in ?to tangent at Cp to the curve of maps: 

{(I + to)-’ o @ o (I + tc~)}, t E (--E,E) c R 

of analytic conjugates of Q near Cp. 

THEOREM 1.4 (Collet, Eckmann and Koch) [2] 
a) N is infinitely differentiable and &If(@) is a compact operator whose 

eigenvalues of modulus greater or equal than 1 are 1, X-l: XP2, S. 
b) Their respective spectral invariant subspaces $0, 31, $, and C?, are 

eigenspaces. 
Moreover, the subspace u is one-dimensional in 3-1~ . The subspaces 
$0, $1 and ,‘?2 are jinite dimensional described as: 

s, = (9, : a(.~, 2) = (alzo, Bzz; + A. Z)} 

Sl = {ljg : 4zo,-q = (ao, mo)) 

32 = {e, : C(ZO? -q = (0, Bo)} 

with a0 and al in R; Bo, BI and B2 in R”-l; and A E 
C(R”-l, R,-l). 

Proo$ See [2]. H 
For later purposes we need to modify the renormalization N. Let us define 

the transformation 3, applied to the maps G E 3co in a neighborhood of a: 

where AG(zo,Z) = (XGXO, X&Z) for 

x 
G 

= ~10 G2(0,0) 
*I 0 G(O, 0) 

where 7rl is the first coordinate projection. 
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Note that &, = X and F(a) = ni(@) = a. After some computations we 
find that for all u = (~0, U) E 3-10: 

dT(@)u = CLqqu + y(u)%,, (1) 

where: 

and ~i(za, 2) = (x0,22). We have: 

9,, (zo,Z) = (-f(zg - a. 2) + 2f’(X; - a. 2)(2,2 - a * Z), 0) 

So r(!PU,) = 0. Observe that !Pgl E &,, thus it is fixed by dn/(+) and 
U(Q). A consequence of (1) and of theorem 1.4, is the following: 

PROPOSITION 1.5. 
a) Q is a&ed point of 3, and d3( @) has the same spectrum that a( (a). 
b) The spectral invariant subspaces So, S1, S2 and U corresponding 

respectively to the eigenvalues 1, X-l, Xe2 and 6 have the same 
dimension that SO, ,!?I, S2 and u of the theorem 1.4. Moreover 
so $ Sl $ A!$? = SIJ 63 31 $32 = $. 

c) For any u E ‘XD there exists o[u], the unique analytic map in C” 
such that ‘$,[,I = Eu, where E is the spectral projection on S. The 
transformation u H a[u] is linear and bounded. 

Proo$ - Let us denote F = d3( @), N = d#( a). They are 
compact operators. Denote C(F), C(N) their spectra. We know that 
FQI,, = NQ,, = +,,. Let p # 0. We assert that p E C(F) with 
multiplicity m, if and only if p E C(N) with the same multiplicity. In 
fact, take p E C(F), with spectral subspace ker(F - CL)” of dimension m. 
Define V = ker(F - II)” + [qo,]. It is invariant by F. The Jordan matrix 
J of F restricted to V has p in the diagonal repeated m times (and a 
single 1 if p # 1). In the same basis, the linear operator N restricted to V 
has a triangular matrix with the same diagonal than J, (due to (1)). Then 
p E C(N) and has multiplicity at least m. Changing the roles of N and F, 
our assertion is proved, and also for ,u = 1, X-l, Xe2 or 6 : 

ker(F - p)” + [qg,] = ker(N - P), + [@,,I, 

Now, part b) follows easily. Finally, Eu = QO for some u in the set 

C = {a : C” H C” analytic; 

u(zo, 2) = (uo + ~1x0, Bo + Blzo + B24 + A. Z)} 

due to theorem 1.4. 
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Let Q : C H 3 be the linear transformation between finite-dimensional 
spaces defined by Q(a) = XI!‘, as in 1.3. It is easy to check that Q is 
injective. Therefore u H O[U] = Q-l Eu is linear and bounded. n 

We are ready to define our final renormalization transformation in n 
dimensions: 

DEFINITION 1.6. - The renormalization transformation T is: 

T(G) = (I - Q.(G) - @I)-’ o 3=(G) o (I - a[3(G) - a]) 

applied to G E IiD in a neighborhood of @. 
The renormalization T was chosen so that it verifies the following 

properties: 

COROLLARY 1.7. 
a) The map @ is a fixed point of T. 
b) T is infinitely differentiable and dT(@) is a compact operator, having 

a single simple eigenvalue S = 4.6692.. _ of modulus greater or 
equal than I. 

c) The unstable manifold WU( a) = {(a,} is formed by the maps Qp, E ?l~ 
of the form: 

where ft(z”) = cp ( ) t z are the one-dimensional maps of the unstable 
mani$oZd {cpt} = WU(cp) of th e renormalization .? in dimension one 
(cf. theorem 1.1). 

ProoJ: - Part u) can be easily verified. 
Part b) follows from the proposition 1.5: in fact, taking derivatives in the 

equality of the definition 1.6, and denoting F = dF(@), we get: 

dT(+)u = Fu + a[Fu] o Q - DQ,. a[Fu] = Fu - ‘QFuI = (I - E)Fu 

Now, all vectors of s are in the kernel of dT(CD). Thus, the only unstable 
direction that remains has eigenvalue S, as wanted. 

We now show part c). Let A?, defined at the beginning of this subsection, 
be the manifold of one-dimensional maps $. We will consider in ‘Ho the 
submanifold 

9 = (g o 0,O) where g o 80 E hi} 
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(Recall that 0(~a, 2) = .z: - (II . 2 and 19,(z) = z2). Note that Q E A4 and 
that for all !P = (g o 8,O) E M in a neighborhood of a, 3T9 is in M and 
it is obtained computing 3(g o 13s). 

The theorem 1.1 implies that 3 restricted to a neighborhood of @ in 
M has derivative at + whose spectrum exhibits a single eigenvalue 6 of 
modulus greater or equal than 1. Thus Ta M c ker( E), and O[U] = 0 for 
all u E T+M. As M - + c T+ M by the definition 1.6 T@ = F& for all 
@ in a neighborhood of @ in M. As 3@ is obtained computing 3, the 
theorem 1.1 implies c). n 

Due to the theorem 1.1 we can take a parametrization {cpt} of l@.“(v) 
such that cpo = cp, 3((pt) = (~6~ and p-l is the transversal intersection 
of Ci with {cpt}. 

By the part c) of the corollary 1.7 we have the correspondent 
parametrization {at} of VP(+). 

The map G-1 has a fixed point (x-i,O) with X-~ fixed by p-l, and 

Da?-1(x-1,O) = ( d1(=1) --a. f1_1(&) 

0 0 1 

has eigenvalues -1 (simple) and 0 (with multiplicity n - 1). So, there 
exists a neighborhood No of a-i in 7fo such that all G E No has a 
fixed point pG, continuation of (x-1,0), and DG(p(G)) has a eigenvalue 
p(G) near -1 and n - 1 eigenvalues near 0. In particular, for at E No, 
14%) = (~~0) and PC%) = V:(G). 

Let us define 

Cl = {GE No : p(G) = -1) 

It is a submanifold of codimension one in 7i~. Any differentiable curve 
of analytic maps intersecting transversally Ci exhibits a period doubling 
bifurcation of period 1 to period 2. 

By the part c) of the theorem 1.1: $cp:(~~)(,=-i # 0. 

So ~~(%)l,=-~ # 0 and Pt) ’ t in ersects transversally C i at t = - 1. 

Remark 1.8. - As Tm(@-6-_) = a-1, arguing as above the 
submanifolds C, of codimension one in ?t~, where the period doubling 
bifurcations of period 2” to period 2m+1 occur, are transversal to {at} 
in Q-6-“. 

We are ready to prove the first part of the theorem 1. 

Proof of part a) of theorem 1. - Let W = W’((a). Given a differentiable 
curve { GCL} transversal at p = 0 to W its images by the renormalization 
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T” accumulate at WU( a) when m --+ 00, due to the inclination lemma 
([ 141). So, for m sufficiently large there exists p, such that {T”G,} 
intersects transversally Ci at ,u = pm. Therefore {G,} exhibits a period 
doubling bifurcation of period 2” to 2m+1. The argument above works for 
any subarc of {G,} as near as wanted from Go. Thus ,u, + 0. n 

1.2. Homoclinic bifurcating maps 

Let {G,} , P E [a, b] b e a continuous arc of maps in ED. Let us suppose 
that for all p E [a, b] there exists a hyperbolic periodic point p,, depending 
continously on h, of stable codimension one. 

Let us denote A; and Af compact parts of WU(pP) and WS(pP) 
respectively, depending continously on CL, as C1 submanifolds with 
boundary of R”. The point p, does not necessarily belong to A; or A;. 

DEFINITION 1.9. - The arc {G,} , ,LL E [a, b] in Yto exhibits a homoclinic 
bifurcation with unavoidable tangency if there exist p,, A;, Ai as above, 
such that: 

(i) aA; n A; = 6’A; n A; = 0, for all p E [a, b] 
(ii) A: n A: = 0 

(iii) AZ n Ai contains at least one point of transversal intersection. 
The name unavoidable tangency of the definition above is due to the 

following: 

PROPOSITION 1.10. - If {G,} , ,u E [a, b], is an arc as in the dejinition 
1.9, then there exists ~0 E [a, b] such that G,, has a periodic point with 
a homoclinic tangency. 

Proofi - As the interval [a, b] is connected, there exists fro E (a, b) such 
that A; and At have a non transversal intersection. It must be a tangency 
because the dimension of A; is one. n 

We will take the definition of band-merging maps from [5], and relate 
it with the homoclinic bifurcations. 

Let It% be a manifold of one-dimensional maps defined at the beginning 
of the subsection 1.1. 

DEL~NITION 1.11. - A map $ E &?l is band-merging if: 0 < $J o $J( 1) = 
-$(l) < 1. 

As $(x) = g(x’>, we have the following equivalent definition: 
0 < g((g(1))2) = -g(l) < 1. As g(0) = 1 and g(1) < 0, g’ < 0 
and so X$(X) < 0 for all 2 # 0. 
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PROPOSITION 1.12. - If $ is band-merging and the Schwarzian derivative 
S$J is negative then: 

a) -4(l) is a hyperbolic repeller, whose repelling basin includes 

Ml>, -dw 
b) any 4 E I&, near enough $, has a repelling jixed point whose basin 

includes [4(l), --q(l)]. 

Proofi - Let us see part a) . 

The map $o$ is increasing in (0, x-i), where x-l > 0 and $(z-1) = 0. 
Its graph, at z = 0 is below the diagonal, at Z-~ is above the diagonal, 
and at x0 = -q(l) E (0, xP1) intersects the diagonal. By contradiction, 
suppose that ($ o $)‘(zo) 2 1. Then, there exists x1 where ($ o $J)” 
vanishes and ($ o $J) “’ is non negative. This implies that S($ o $)(x1) 2 0, 
contradicting our hypothesis, because S$J < 0 implies S($ o 4) < 0. The 
same contradiction is obtained if $ o $ is supposed to have other fixed 
point 50 E [0, ~0). Therefore ~0 is a repellor and [0, Q] is in its basin. 
By symmetry, also [--x0, 0] is. 

To show part b) , consider any 4 near enough $J, so that it also has 
a hyperbollic repellor, and S$ < 0. The proof also works for 4 instead 
of$J. n 

Due to the above proposition, the band merging maps with negative 
Schwartzian derivative satisfy the condition that the critical point lands 
after three iterations on the unstable periodic point. 

We recall that the family {cpt} is the unstable manifold in Q of the 
hyperbolic fixed point cp of the renormalization P. It is parametrized such 
that cpo = cp, ?((pt) = (~6~ and (pel E &. 

THEOREM 1.13 (Eckmann and Wittwer). - There exists to > 0 such that 
pto E I%“(q) is band-merging, and for all t near to: 

&&t(l)) + 941)) < 0 

Proofi - See [5]. H 

This last theorem asserts that fi”(cp) at pto intersects transversally in &f 
the codimension one (in A%) manifold of band-merging maps. 

Now let us consider the family of maps { $} in 7-t~) that is HP‘(Q), 
the unstable manifold of + by the renormalization T. Due to part c) of the 
corollary 1.7 it is obtained from { cpt}. 

The following lemma is a consequence of the theorem 1.13. 
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LEMMA 1.14. - Given E > 0, fir all y > 0 suficiently small the 
arc {at}, t E [to - y, to + y] exhibits a homoclinic bifurcation with 
unavoidable tangency, and the first coordinate projection of the compact 
part Ai (cf. definition 1.9) is contained in (-E, E). 

Proofi - First, we assert that Cp,, = (ft, o 8, 0) has a hyperbolic fixed 
point pt, = (-A,(l), 0) f t bl o s a e codimension one. In fact, it is fixed 
because ft,, o 00 is band merging. Let us see that it is hyperbolic, computing 
D@t, (Pt, >: 

Dat, = 
[ 
2xfi O 0 -(f& ; 0) . Q! 

I 
with 2xf&(2’) = (ft, o 0,)‘(x). But ft, o B0 belongs to the unstable 
manifold fiU (cp) in h;r, and all maps in l@‘( ‘p) have negative Schwarzian 
derivative because all the maps in a neighborhood of ‘p have, and also 
their renormalizations. Therefore, proposition 1.12 states that - ft, (1) is 
a repellor. Thus: 

12mflo(4)I > 1 for x0 = -b,(l) 

Thus, our assertion is proved. 
Let us choose y > 0 small enough so that, for all t E [to - y, to + y] 

there exists pt = (xt, 0), continuation of pt,, hyperbolic fixed point of 
apt = (ft o 0,O) E VP(@). H ere xt is the hyperbolic repellor of the 
unimodal map pt = ft o B. , whose repelling basin includes [ft( l), - ft (l)], 
as proved in the proposition 1.12. 

We define: 

AZ” = {(x,X> : X = 0, 1x1 I -ft(l)} c w"(pt) 

The theorem 1.13 allows us to choose y such that cpt(cpt( 1)) + cpt(l) is 
positive for t E [to - y, to) and negative for t E (to, to + y]. 

We assert that given 6 > 0 there exists y sufficiently small and 
yt E (pt2(xt), for all t E [to - y, to + y], such that: 

1 < yt < 1 + 6 if t E [to - y, to) 

Yto = 1 
1 - S < yt < 1 if t E (to, to + r] 

In fact, if t E [to - y, to) we have cpt(cpt(l)) + cpt(l) > 0, i.e. the graph of 
qt at -cpt(l) is above the diagonal. As qt is decreasing in (0, 11, the fixed 
point xt is at right of -vt (1). Therefore, given Si > 0: 

cpt(l) > -xt > v%(l) - 61 

for all t E [to - y, to), near enough to. 

Annales de l’lnstitut Henri Poincartf - Analyse non h&h 



HOMOCLINIC TANGENCIES OF PERIOD DOUBLING BIFURCATIONS 267 

The map (Pi is decreasing at right of 0 and defined in a neighborhood D 
of [-1, 11. We conclude that, given S > 0, there exists y and yt E (ptl ( -zt) 
for all t E [to - ~,to), such that 1 < yt < 1 + 6. As -Q E V;‘(Q), we 
have yt E I&‘(Q). The same argument, with the opposite inequalities, is 
valid for t E (to, to + r]. This completes the proof of our assertion. 

We have ft(0) = 1 and f;(O) < 0. If y is small, for any t E [to-~,t~,+~], 
the map ft is invertible and decreasing in a fixed neighborhood of 0. Let us 
denote Et = &-‘(yt). Our previous assertion can be reformulated as follows: 

Given E > 0, for all y sufficiently small: 

- 2 < + < 0 if t E [to - y, to) 

Eta = 0 

0 < &t < 2 if t E (to,to + y] 

With no loss of generality, let us suppose that a,,-1 # 0. (Recall that 
Q! = (Ql,QZ,...,%-1) # 0). 

Let us denote X = (X1,X2,. . . , X,-l). Now we can define, for given 
& > 0. : 

A; = {(x,X) : x2 - crX = it, 1x1 I E, 11(X1,. . . , Xn-,)(I I E}. 

It is easy to check that Ai c (aT3(pt) c IV’&). 
Let us see how Ai looks: For t = to, Et0 = 0 and A% c {x2 - aX = O}. 

It is a quadratic codimension one manifold of R”, passing through (0,O) 
and tangent at (0,O) to AZ”,. For t E [to - y, to), Et < 0, and A,” does 
not intersect {X = 0) > A:. For t E (to, to + 71, Et E (0, Ed). So A; 
intersects {X = 0) at two points q = (--A, 0) and T = (&,O), both in 
the &-neighborhood of (0,O). Then both q and T are in A:. 

Moreover T,Ai and T,Ag are transversal to the subspace {X = 0) = 
T,AZ” = T,AZ”. 

Finally, if E is small enough, we get b’A; n A; = 8A; n A; = 0, for 
all t E [to - y,to + y]. n 

Now we are ready to perturb the family {at}, t E [to - y, to + 71, 
contained in VV‘( a), and prove that the homoclinic bifurcation persists 
for nearby families. 

LEMMA 1.15 - There exists an interval [a, b] with b > a > 0 and 
neighborhoods N, Nl and N2 in ?f~, of {at : t E [a, b]}, a’, and (Pb 
respectively, such that any continuous arc {G,}, in N, with extremities in 
Nl and N2, exhibits a homoclinic bifurcation with unavoidable tangency. 
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Prooj - Let us take ato = (ft, o 0,O) with to as in the theorem 1.13. 
We have that pt, = (-ft,(l),O) is a fixed point, of saddle type. Its local 
stable manifold is contained in {(z, X) : x2 - ctX - (ft, ( 1))2 = O}. 
Any G in a small neighborhood of Qta in %o, has an hyperbolic fixed 
point p(G), whose local stable manifold is of codimension one, given in 
a neighborhood of p(G) by the equation 

{(x,X) : U(x, X, G) = 0} 

where U(., ., G) . is a smooth real function of (2, X), depending continously 
on G ([S], [14]). We have U(x,X,atO) = z2 - aX - (ft,(1))2. 

Let us define, for any (x, X, G) in a certain small neighborhood of 
(O,O, at,) in R” x ‘Flo, the real function: 

F(x, X, G) = U(G3(x, X), G) 

The point (0,O) verifies QzO (0,O) = pt,, and so 

As in the proof of the previous lemma, let us suppose a,-~ # 0, and 
compute the partial derivative: 

gJo,o?w = 2~,-l~~,,(l)(cp~~)‘(l)flo(0) # 0 
Now, by the implicit function theorem, there exists No, neighborhood 

of +‘to in 7-t!~, and E > 0 such that for all G E No, for all x E B, (0) 
and for all (X1,. . . , X+x) in RnV2 with norm less than E, is defined the 
coordinate X,-r = ~(2, X1, . . . , X,-2, G) verifying: 

(xJ> E G-3W,s,,MG))) c ~WG)) 
with X = (X1,.,.,Xn-r). 

Let us take 

A”(G) = {(x,X) : X,-, = 21(x,X1,. . ,Xn+ G); 

1x1 5 E; 11(X1,. . . ,x-2111 I El 

We have that A”(G) is a C1 submanifold with boundary of Rn, that 
depends continously on G E No. It is a compact part of IV’@(G)). For 
the neighborhood No and E > 0 as above, let us take y as in the previous 
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lemma, and also such that +‘t E Na Vt E [a, b] = [to - y, to + 71. We 
take A; = A”(@,) and A; as in the proof of the previous lemma. A: is 
contained, for some fixed no independent of t, in a:” (W,“,,(P(@~))). Let 
us take for any t E [a, b], a small neighborhood Nt of +t in NO, such 
that G”“(W&(p(G))) is C1 near to (a~“(W&(p(Q,))), for any G E Nt. 
Consequently, compact parts A”(G) and A”(G) can be chosen, proximate 
to A: and Ai respectively as C’ submanifolds with boundary, for any 
G E Nt. The three conditions in the definition 1.9 are persistent under 
small C1 perturbations of A; and A:. Therefore, the lemma is proved 
taking 

N = u Nt ; Nl = N, ; N2 = Nb n 
tEb,‘A 

Now, we are ready to complete the proof of the theorem 1. 

Proofofpart b) of theorem 1. - Let W = IV(+). The lemma above states 
the existence of the arc {Qt : t E [a, b]} c VP(@) and the neighborhoods 
N, Nr , N2. Given a curve {G,} , transversal at p = 0 to W, its images by 
the renormalization T” accumulate, when m --+ 00, at the unstable manifold 
of a, due to the inclination lemma [14]. In particular they approach the arc 
{Qt : t E [a, b]} c kV‘(@). Consequently, there exists [a,, b,], for all m 
sufficiently large, such that T”G,,,, E Nl, T”Gb_ E N,, TmG, E N 
for all p E [a,, b,]. 

Besides [urn, b,] -+ 0, because the argument above works for any subarc 
of { GP} as near as wanted from Go. 

The lemma 1.15 states that {T”G,}, ,u E [a,,&] exhibits a 
homoclinic bifurcation with unavoidable tangency, and so there exists 
jYi, E [a,, b,] -+ 0 with Gn, exhibiting a homoclinic tangency. 

The part u) of the theorem 1 states the existence of CL, t 0 where G,_ 
is period doubling bifurcating. As the intersection of Cr with WU(@) 
is produced at a-1 and the homoclinic tangencies were found in a 
neighborhood N of {@t}tE[a,b] with b > a > 0, it follows that L, is 
at the other side of 0 than pm. n 

2. THE C’ THEORY 

Now we will work in a C’ neighborhood U of @, (r 2 3). We define, 
for G E U 

3+(G) = A;& o G2= o A~,G 
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where A+ E L(R”, R”) is defined as A~,G(zo, 2) = (X~,GZO, X&Z) with 

&,G = 
rloGZZ (0,O) 

7~1 oGCO.0‘) 

To obtain gioh’spectral properties we need to redefine the renormalization 
for G E U, considering a sequence {Ti}iEz+, where 

Ti(G) = (I - 0[3i(G) - (a,])-’ o J+(G) o (I - o[Ji(G) - c$~]) 

We need first to extend the linear operator c, using the spectral projection, 
which is defined, up to the moment, only for the space 7I~lo of real-analytic 
maps. 

The main problem that arises in the C’ topology is that the 
renormalization is not Fr&het differentiable. But it is in the space l-tD 
and its derivative, computed at an analytic map, can be extended to a 
bounded linear operator on the space of C’ maps. We will work with these 
operators called formal derivatives. On the other hand the transformation 
Ti is Fr&het differentiable ‘when considered from the space of C’ maps 
to the space of C’-l maps. We will work with its derivatives in this 
sense too, computed at maps of class C’. Finally these derivatives can be 
also extended to bounded linear operators on the space of C’-l or CY2 
maps as formal derivatives. On each case the sense in which a functional 
derivative (formal or Fr&het) is considered will be explicited or otherwise 
clear from the context. 

The unstable manifold found in the space of real-analytic maps verifies 
Ti({%}) = {%>9 now immersed in the space C’. The purpose of this 
section is to define Ti for C’ maps and then to prove in the C’ -topology 
that the distance of a renormalizable C’ map G in U to the manifold {at}, 
decreases. More precisely, we prove the following 

PROPOSITION 2.1. - For r large enough there exist (‘ > 0 and an integer 
N as large as wanted such that for all real t with ItI < C and all C’ map 
u with llujlr < < 

where s = sN(t + a(u)), and a is a bounded linear operator from C’ to R. 
This proposition is an extension to n-dimensional maps of the lemma 

8 of the paper [4]. 
We begin giving some definitions. 
Let us consider a compact parallelepiped D whose sides are parallel to 

the coordinates axes, which is a neighborhood of [- 1, l] x (0) in R”, and 
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the Banach space C’ of maps from D to R”, of class C’ with the norm 
11 . jlr For a given number q > 0, let us define the localized seminorm 

IIGIIVI = SUP lP’G(z) - D’Gbl)II 
ll~-Yll<~ 

Let S be the bounded linear operator on C’ defined as 

SG(x) = -& ui(x) . G@(x)) 
i=l 

where bi E C’+l, hi(D) c D; and for each 2 E D, ui(x) is a matrix 
n x n, depending Cr+l of x. 

Associated to S, let S, be the operator defined on the continuous functions 
from D to &.(R”, R”) (the set of r-linear applications from R” on R”) 
defined as follows: 

where Ilei(x)II is th e norm of the n x n matrix Us as linear operator in 
R” (it is a function of x), and similarly we define IIDb;(x)ll. 

LEMMA 2.2. - Let p > 0. If the spectral radius of S, is less than p, 
then for any E > 0 there exists a positive integer No such that for all 
N 2 No andfor some ~0 = ~O(E, N) we have IISNGII,,, < epNllGllr for 
all G E C’, and v 2 vo. 

Proof. - First observe that SNG(x) can be written as 

5 u;(x)G(vi(x)) 
i=l 

with Ui(x) E C(Rn,Rn), depending Cr+’ on 2; 21; E CT+’ such that 
vi(D) c D. Also, 

We choose p’ < p, p’ greater than the spectral radius of S,. Thus, 
Il&Yll < P’N < g for N large enough, being II(S,)NII the norm 
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of (S,)N as linear operator. As II(S”),ll 5 II(ST)NII, taking H = id we 
have that 

k” 

c ll~i(~>IIll~~i(4II’ < g 
i=l 

We agree into that, in what follows, K is a constant whose value may 
vary in the different formulas. 

We have to bound the localized seminorm of the r-th derivative of SNG. 
D’(SNG)(x) is a r-linear transformation, computed as follows: 

D’(SNG)(z) = 5 D’[ui(~)~G(wi(z))] = 5 u;(+(w’D’G)(z)+R(z) 
i=l i=l 

where (r$D’G)(z)+(el,. . . , e,) = D’G(w;(z)).(Dw;(z)el,. . . , Dwi(z)e,); 
and R(a) involves derivatives of G of order smaller than T and derivatives 
up to T of ui and vi that are C’. 

II~NGII,, = sup IJD’SNG(x) - D’SNG(y)lJ 5 
ll2-Yll<n 

The last term is bounded as follows: 

llR(x> - %/)ll I ~IIGIIvII~ - YII 5 JW%- 5 ;dllGII, 
if n is small enough. 

The first term can be bounded by the sum of the following: 

A = 5 Ilu;(z)(D’G(w;(z)) - D’G(v;(y)) . (Dwi(x)., . . . , Dw;(x).)II 
i=l 

B1 = 5 Ilu;(z)D’G(wi(y)) . ((DT&) - h(y))., . . . , h(~).)II 

i=l 

B, = 5 Ilui(x)D’G(vi(y)) . (D&./l)., . . . , (h(x) - Dwi(y))*)ll 
i=l 

C = 5 Il(ui(x) - ui(y))D’G(wi(y)) . (Dwi(y)., . . .y Dwi(Y)*)ll 

i=l 
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Now, using that ui and vi are of class Cr+l and taking rl small enough: 

C I 5 K,,z - ~llll~‘Glloll~~iII;; I KrlllGIL 5 +II, 
i=l 

k” 
Bj 5 c Il~illoll~‘~lloIl~~ill;;-l~II~ - YII 5 WGIL I ;~~llGlIr 

i=l 

kN 

A I c ll~~(~)IIll~~~(~)ll’lI~‘~(~~(~)) - D’Gbi(~))ll L 
i=l 

i=l 

In the last inequality we have used (3). Thus, A+Cicl B.j+C 5 ~pNIIGjl, 
and IjSNGII,,, 5 EP~IIGII~ as wanted. n 

The last lemma allows us to bound IISNGII,,, knowing a spectral bound 
of the associated operator S,. The following lemma connects the r-norm 
with the localized seminorm: 

LEMMA 2.3. - Let v > 0 be a sufJiciently small real number. There exists 
c = c(n, r) such that for all G E C’, 

Proofi - Let us make explicit the computations for n = 2 but observing 
that similar considerations can be made for n > 2. Let us denote 
Gzt,y, = m, for i + j = T, rri(~, y) = z; ~~(2, y) = 3. We have 
for i 2 1, k E {1,2}: 

J 

z 

%Gzl,y~ 6, Y> dt = ~dG~-~,Y~ (z, Y) - TJL-~,~~(~o, Y) (4) 
20 

We have a similar equality for j 2 1, integrating respect to the second 
variable. The right member of the equality is bounded in absolute value 
by 2llGllr-1. 

Let c 2 1 be a constant such that for every G of class C’ 

llD’G(~~)ll 5 c max 
i+j=r; kE{l,Z} 

Iv&,~, I 
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It is enough to prove that ljGl[,. < 2c for all G E C’ such that 

By contradiction suppose that we have a point z. = (x0, yo), k E { 1,2} 

and i and j with i + j = T such that Ix~G~,,~~ (,zo)l > 2. Thus, as 
IID’G(z) - D’G(z,)l( 5 1 f or z E D in a ball centered in za of radius 
v, we have 

Id&,~ b)I 2 lmG~,&o)l - IID“G(zo) - D’G(z)ll > 1 

Integrating up to the boundary of the ball of radius 71, the absolute value 
of the left term of the equality (4) is greater than 7. The absolute value of 
the right term is smaller than q because jlGllr-i < v/2. This contradiction 
proves the lemma. n 

We recall the equation (1) from the analytic theory in the subsection 1.1. 
For u = (uo, U) E 3-1~ we have 

dF($))(u) = RP[u 0 a0 0 A + (lx0 0 @‘o 0 A) 0 (u 0 A)] 
+ uo(LO> 

( x +uo(0,0) $ - 1 - 
( > 

~w40) \I, 
2x2 > 

UL (5) 

for QO, = -gl o Go + DDo. ql, and ~~(2, Y) = (z? 2Y). Now, if u E C“, 
the last operator can be extended to a bounded operator F, defining Fu as 
the right term of (5). The associated operator F, is 

F3 = IXI-211(D+o 0 A)A(l’H 0 @,J o A + IXl’llA-lD+o o a0 o AllH o A 

LEMMA 2.4. - The spectral radius of F, converges to 0 when T goes 
to injinite. As a consequence, there exists TO large enough such that the 
spectral radius is smaller than 1. 

Pro05 - The spectral radius is bounded by the norm of the operator F,. 

D~o(z, y) = 

( 

2L7$‘(zZo- a . y> -f’by Q: . Y) 
> 

As we have 2zf’(zr2) = y?(z) and the derivative of the Feigenbaum map 
cp in dimension one is smaller than 1X1-l for z E [--X,X], we have for cy 
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small enough that IID&oAll < a < 1X1-l. Then, lIFTI/ 2 IXl’(~‘lXl-~+b), 
where b = su~(~,~)~o (Ih-lD@O o +a o A(x, Y)ll, proving the lemma. n 

Remark 2.5. - We can bound a < (1 - X)/(1 + X) < 2.3312; X = 
-.3995 . . . ; b < 6.2657. So, r. can be taken equal to 27. 

We recall the proposition 1.5 of the analytic theory in the subsection 
1.1. In Ho, the spectrum of D.F( @c) has eigenvalues 1, X-l, Xe2 and S 
with respective spectral invariant finite dimensional subspaces SO, Si , S’s 
and U. In particular dim U = 1. Let us define Eo, El, E2 and J the 
respective spectral projections in ‘HD. Now we prove that these projections 
can be extended to C’. 

LEMMA 2.6. - For r su.ciently large, the projections Eo, El, Ez and J 
dejined in 7-t~ can be continuously extended to C’, to C-l, and to Cm2 
as bounded linear operators. Moreover, given E > 0, there exists a positive 
integer N as large as wanted such that 

llFN - fiNJ - E. - A-“E1 - X-2NE211 5 e 

where the norm II . 11 of the linear operator can be -taken either in C’, in 
CT-‘, or in C’-2. The spectrum of F has 1, X-l, A-’ and S as the only 
eigenvalues with modulus greater or equal to 1, and the respective spectral 
invariant subspaces are SO, SI, S2, and U. 

Proo$ - Due to the lemma 2.4, for r sufficiently large the spectral radius 
of F,, F,-l and of FT-2 are smaller than 1. Let us take any p, 0 < p < 1, 
bound of these spectral radii. Using the lemma 2.2 with E = &, c defined 
in the lemma 2.3, there exists N > 0 sufficiently large, and n > 0 such that 
IIFN(~)llj,n < gllullj for all u E Cj, j = T - 2,r - 1,~. We will work 
with j = T, observing that the proof also works for j = r - 2 and j = T - 1. 

In 7-t~ we define Q = F - S J - E. - X-l El - Y2E2. As J, Eo, El 
and E2 are spectral projections on the eigenspaces U, So, Si and Ss with 
the eigenvalues of modulus greater or equal to one, we have that, if N 
is large enough, then Q N = FN - SNJ - E. - XNE1 - X-2NE2 has 
norm in tie smaller than $. 

The unitary ball of C’ is compact in C’-l because the Arzela-Ascoli 
theorem asserts that any sequence of maps bounded in the C’ topology has 
a convergent subsequence in the C’-’ topology. The density of analytic 
maps in C’ allows us to construct, given E > 0, a finite set of analytic maps 
fi, . . . , fi in the unitary ball of C” such that the balls in the C’-l topology 
centered at fi, . . . fl with radius E > 0 covers the unitary ball of C’. In 
other words, given u E C’ with Ilullr 5 1 there exists f;, E {pi,. . . , fi} 
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analytic such that Ilfi,ljr < 1 and 11~ - fiIllT--l < E. Working with N 
chosen at the beginning of the proof, 

where M is the norm of FN considered as a linear operator of C’-l. Now 
we have that IIFN(u - f;l)llr,l, 5 cl/u - fi,llr 5 c because llullr and 
Ilfi,llr are less or equal to 1. Applying the lemma 2.3: 

IIFN(u - fi,)lL- I 2cmax {$;ME} 

For E 5 vpN/(4M ) c we have (jFN(u - fi,)llr 5 pN. We have proved 
that given u E C’ with llullr < 1 it is obtained fi, analytic such that 
FN(u) = FN(fi,) + pNul with llulIlr 5 1. Applying to u1 the same 
decomposition we have F2N(~) = F2N(fi,) + pNFN(fi,) + p2N~2. After 
j steps: 

FNj(u) = F”j(&) + pNFN(j-l)(fi2) + . . . + pN(+)FN(fiJ) + pN&j 

with IIu~I(~ 5 1. Now, for an analytic map f we have 

FN(f) = QN(f) + sNJ(f) + Eo(f) + X-“&(f) + X-2NE2(f) 

Substituting we obtain 

F”‘(u) = Ao + Al + A2 + B + c 

where 
-40 = Eo(fi,) + pN~o(fi,) + . . . + pN(j-l)~o(ji,) 

Al = A-“-%(fiJ + pN~-N(j-l)~l(fi,) + . . + ,~J(~-~)x-NE~(~~,) 

A2 = X-2N%(fi,) + /II~X-~~(+%~(~~,) + . . . + pN(j-1)~-2N~2(fi,) 

B = QN%fil) + pNQN'j-l'(fi,) + . . . + pN’j-“QN(fi,) + pN&, 

c = sNqfi,) + pNSN(j-l)J(fiz) +. . . + pN(+l)g”J(fiJ) 

We will prove that ~$2 (u) = limj+W XzNj FNj (u) exists in the C’ topology. 
We Will see later that & is the wanted extension of E2. 

X2NjFNj(~) = X2Nj(Ao + Al + A2 + B + c) 

Let us show that all the terms at right converge to 0 with j -+ 00 except 
X2NjA2. There exists h > 1 such that for i = 1,. ,I, IIQNj(f;)llr < h/2j. 
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This is because f; E ‘HO and the norm of QN in tiD is smaller than i. 
Therefore, 

because p < 1 and 1x1 < 1. 
As the set of maps where the fi is chosen is finite, take K a constant 

boundi% IIJ(fi)llr~ ll~o(fi)llr~ ll&(fi>llr, ll&(fi)llr, for i = 1,. . . ,Z. 
Thus 

IlA2N%ll, 5 (X26)NJ K + $K + . . . + 

Ni 
5 cx2’) K 1 _ pN/(jN 

1 - (pN/5N)i --‘j,, o 

because X26 < 1 and p < 1 < 5 

IIX2NjA& 5 XBNj (K + pNK + . . . + pN(j-l)K) 

IIX2N’A~llT 5 lAINj (K + (plX\)NK + . . . + (plXl)“(j-‘)K) 

I K/Xl 
Nj 1 - (pNIAIN)i 

1 _ pNl),lN ‘+-- ’ 

X2NiA2 = E2(j-ifil) + pN~2N~2(fii,) + . . . + pN(~-1)~2”(~-1)~2(f~) 

This series is majored by 

llX2NjA211r 5 K+P~X~~K+. . .+pN(j-1h2N(+)K 5 K1;-$;;’ 

which is convergent because p < 1 and X < 1. Then, we define 

I!?~(u) = lim X2NjFNj u 
j-m ( ) = j&XZNjA2 = &I~X’~)~E,(~~~+J 

k=O 

It is clear that fiz(u) is an analytic function because S2 is closed and 
formed by analytic functions (S2 is a finite dimensional space). 
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Then, we define j, (which will be the extension of J, corresponding 
to the eigenvalue 6). We apply the same method to show that 
J(u) = limj-, SpNj(FNj(u) - XezNj&(u)) exists. We must study 
fi-W(A, _ A- N’ - ’ J&(u)) + SeNj(B + C + A0 + A,). The first term is 

j-1 

6-Nj~--aNj 
~(PN~2N)k~2(fi,+,) - 5p”X2’\‘)‘E2(.fir-,) 
k=O k=O 

= -s-Njx-zNj 
&3N~2N)k~2ui,+,) 

k=j 

Thus, the r-norm of the first term is bounded by 

because pS-’ < 1. 

The second term is decomposed. I( SPNjB llr is treated as XZNj B above, 
substituting X2 by 6-l, proving IjS-NjBII, --+j,, 0. 

Analogously are treated IIS-NjA,II, and l16-NjA,ll, +j+= 0. Now, 

II~-N’Ctl, 5 IIJLfi,)IIr + ~~S-~IIJ(,fi,)llr 

+ . . . + (P~S-~)~-~II J(f& < K F(pN6-N)k 
k=O 

Thus j(u) = ~~zo(pN6-N)kJ(f~,+,). As before, J(U) is analytic. 
With the same procedure we define 

El(U) = jiIiI x NqFyu) - Pv3,(U) - pqu)) 

= fyP”X”)kafi,+,~ 
k=O 

Eo(u) = Jim FNj (94) - X-2N~E2(U) - sNqu)‘- rNc!z,(u) 
3-a 
co 

ZZ c PNkJwfik+I 1 
k=O 

l?r’lu and gou are analytic functions. 



HOMOCLINIC TANGENCIES OF PERIOD DOUBLING BIFURCATIONS 279 

We have 

5 KX-2Nj ~(P~X~~)” + KGNj x(pNS-N)le+ 
k=j k=j 

+K,X,-Ny F(pN,AIN)’ + K 2 pN” + ; ~&II”)’ < E (6) 
k=j k=j k=O 

for j large enough uniformly for all u with ]]u]]~ 5 1. We know that 
Ei(Cr) c Si for i = 0, 1,2, and j(C’) c U. In particular, if u is analytic, 
from (6) we conclude that &(u) = Ei(u), i = O,l, 2 and J(U) = J(U). 
The formula (6) ends the proof of the lemma. n 

From now on we will take T sufficiently large to apply the lemma 2.6. 
The projection J on the one-dimensional space U of the eigenvectors 

with eigenvalue S can be written as 

J(U) = a(u)v 

wherev= ~~~~~~o~Uanda(u)~Rforallu~C~,j=~,~-l,~-22; 
a is linear and bounded. 

The sum of the eigenspaces of F corresponding to the eigenvalues 1, 
X-l, and Xe2 is S = So @ Si @ S2. The same proof of the proposition 1.5, 
part c) shows that for any u E C’ there exists a[~], the unique analytic 
map in C” such that $,lU1 = Eu E 3, where E = Eo $ El $ E2. The 
transformation u H g[~] is linear and bounded. We remark that Irnc is a 
finite dimensional space. For G E C’ in a neighborhood ZAi of @o, we define 

T;(G) = (I - c++(G) - ao])-’ o p(G) o (I - c+(G) - fBo]) 

where 3i was defined in (2) at the beginning of this section. When 
restricted to ‘MD the transformation T; and 3’ are Frechet differentiable. Its 
derivatives at a0 can be extended to C’, T 2 1 as bounded linear operators 
pi and Fi respectively, which will be called the formal derivatives at +o. 
Let us observe that Fi = d3i (Q) = (d3(@o))i = Fi. We also have 
F;.ZL=~T~(~~)-~=F~~.+~[F~~]O~O-D~O.~[F~~]=(I-E)(F~.~). 

LEMMA 2.7. - Given E > 0, there exists N as large as wanted such that 

II& - SNJll 5 & 

where the norm II . 11 of the linear operator can be taken either in C’, in 
CT-‘, or in CrP2. 
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PF-OO$ -We will make explicit computations in C’, but the same argument 
is valid in C’-l and CrP2. Using the density of 3-10 in C’ it can be seen 
that Eu, El, EZ and J commute with F in C’. Thus 

llFN . u - SN J(u)& = [I(1 - E)FN . u - SN J(u)111 
= llFN . u - EFN . u - 6NJ(u)llT 

= ((FN . u - E*(u) - X-NE1(~) - X-2NEz(u) - lTNJ(u)llr < +/I, 

The last inequality is due to the lemma 2.6. n 
Now, let {b;}i=0,...2~--1 be a finite set of maps in Cl with hi(D) C D. 

Let {u~}~=~,.,,~N -r be a finite set of matrices n x n depending Co of 5 E D. 
We define a bounded linear operator on CO(D, &(Rn, R”)) by 

2”-1 

Let 

OH(x) = c u;(x). b;H(x) 

i=o 

2N-1 

Then, we have 

LEMMA 2.8. - Given E > 0, there exists C > 0 such that if &(x) E 
C(Rn,Rn) dependi_ng Co on 2 E D, and b; E C1 with IJbi - bill1 < <, 
[(ai -&II0 < 5 and b;(D) c Dfor i = 0,. , . 2N - 1, then the corresponding 
operator fi on CO(D, C,(Rn, R”)) satisfies IIfi - RI1 < 2(A4 + E). 

ProoJ: 

2N-1 2N-1 

flH - RH = c a$;H - &HI + c [ui - C&H 
i=o i=o 

The second term has Co norm bounded by ~~$‘KIIHllollai - 61110 for 
some constant K. Taking c small enough this term is smaller than EJJ HIlo. 
The first term can be written as 

2N-1 

c ai[H o bi - H o &] . [Dbi. , . . . , Dbi.1 
i=o 

2N-1 

+ c aiHobi.[(Dbi-D~i).,...,Dbi.]+...+ 
i=o 

2N-1 
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As [lb; - bi 11 i < c the last’ terms of this sum can be treated as the former 
second term and proved to have Co norm smaller than EIIH~~~. The first 
term of this sum evaluated at a point z E D is in C,(P, R”) and has 
norm bounded by 

2N-1 

1 Il~~~~~llll~~~~~~ll’~ll~llo I 2WI~llo 
i=o 

Hence, the lemma is proved. n 

LEMMA 2.9. - For all N > 0 large enough there exists [ > 0 
so that if t E R and u -E C’ with ItI < < and llullr < <, then 
llT~(@t + u) - TN(%) - FN . 2111, 5 +IIr. 

ProoJ: - For given E > 0, let us take N such that (FT)” has norm less 
than E as an operator on Co (lemma 24). After some computations we find 
that the functional derivative of TN at a point G E ‘J?D, considered in the 
set of analytic functions is 

~TN(G). u =(I - DcJ[F~(G) - +o] 0 (J - a[FN(G) - +o])-’ 

o TN(G) o (I - o[F’“(G) - (a,]))-‘. 

.{ [,,~,(~(~~G(G”.o*N,,)) -~L(G~~-~o*N,G)) +o.t.] 

o (I - o[F’“(G) - @‘o])+ 

E DG(G2N-s o I&) . U(G2K-k 0 AN,& 
s=l 

o(1 - o[F”(G) - @o])-1 o TN(G) o (I - o[FN(G) - @‘a])- 

-DFN(G) o (I - a[FN(G) - $-J). 

E DG(G2N-” o AN,~) . u(G~~-” o AN,G) + o.t. 
s=l 

where o.t. represents terms in which u appears evaluated in some point of 
the space. If G is analytic dTN(G) can be extended to a bounded linear 
operator in C’. We recall that ImcT c ?LD and is finite dimensional. 
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Let us define a bounded linear operator A(G) on Co@, &(R”, R”)) as 

d(G).w = (I-Da[F'(G)- Qo]o(I- a[F'(G)- ao])-' 
o TN(G) o (I - @'"(G) - (a,]))-'. 

((G2”-” o RN,G o (I - o[F”(G) - @o]))*w))} 

If G is analytic and u E C’, we define B, C, . . . , M as 

D'(~TN(G).u) = d(G).D"u+B(G).D'-1u+C(G).D'-2u+...+M(G).7L 

depending nonlinearly on G and its first r + 1 derivatives. 
Let us compute the spatial derivatives of TN(G) for G E C’. 

DTN(G) = I - Da[F”(G) - (a,] o (I - c7[FN(G) - (a,])-’ 

> 

-1 

o TN(G) o (I - c[FN(G) - Qo]) . 

2N 

+tG n DG(G2”-‘” 0 AN,G 0 (1 - @“(G) - @,I)> 
k=l 

X AN,G(~ - WFN(G) - @o]) 

When computing the spatial derivative of TN(G) of order T 2 2 we 
are interested into separating the terms depending on D’G. In D2T~(G) 
the term having D2G is 

(I - Do[FN(G) - a01 o (I - c+.‘“(G) - Qo])-’ 

o FN(G) o (I - o[FN(G) - fPo]))-‘. 

o AN,G 0 (I - g[FN(G) - Qo])) 

. G2N-k o AN,G o (I - a[FN(G) - @o]))*D”c: 

In general for r > 2, D’TN(G) has a term depending on D’G that 
is d(G) . D’(G). 
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Take ‘u E C’. When computing D’(TN (at + U) - TN (at)) we obtain a 
term depending on D’u that is precisely A(Qt + u)Dru, plus other term 
P(at, U) depending on @t and its first T derivatives and on u and its first 
r - 1 derivatives. It is a sum of compositions and multiplications of these 
maps. Thus P(Qpt, .) is a transformation from C’ to C1 that is null for u = 0 
and has at ‘u. = 0 Frechet derivative when looked from C’ to Co. That is 

with &V(Qt,~)/o < E((u(/, if ((u(I,. is sufficiently small. 
P(Qt)u. is linear on u and its first r - 1 derivatives. It is the linear 

part on u obtained from D’(TN(@~ + u) - T’ (Gt)) taking away the term 
A(@, + u)D’u. As 

D'(~TN(QL) = d(&)D'u+ B(Q&+u +...+ M((a,)u 

we have 

P(@,)u = B(@t)DT-lu + . . . + M((a,)u 

Thus 

o'(TN(~'t+~)--~(~'t))=d(~t+u)DTu.+D(~t)DT-lu 
+ c(~,t)DT-2u + . . . + M(%)u + N(%, u) 

where ~lN(~t,~)~~o 5 E~[u[]~ for any given E if Ilz$ is sufficiently small. 
Provided that It) is small enough, 

II - C(@o>) 1 DT-2410,. . . , llWPt> - M(@o)) .4lo 
will be all less that ~IIuIIr. 

We must study d(G). We observe that 

Now, we apply the lemma 2.8 to d(Qa), the corresponding 111 is 
IIPNI I IKWII < E. We conclude that if ItI and IIuII~ are small 
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enough, then d((a, + U) - d(+Da) h as norm less than 4~ as an operator on 
Co. Putting everything together, and noting that 

DT(& . u) = d(ao) . D’u + a(Go) . Dr-% + . . . + M(@) . u 

we obtain 

llWCv(% + 4 - TV(%) - 8~ .4llo 5 64I4lr 

TN as a transformation from C” to C’-l is differentiable Frechet, so, 
for ItI and llullr small enough: 

IITN(S + ~1 - TN(%) - r’~ . 41,. 5 ~ll~llr n 

Remark 2.10. - At the beginning of the proof of the lemma 2.9, we 
have computed the derivative dTN (G) for G E 3-10. The right term of the 
equality (7) defines for any G of class C’ a bounded linear operator in 
C’-l and also in Cre2. This operator will be called the formal derivative 
of TN at G. We do not have continuous dependence of this operator at 
G E C’. But, arguing as in the proof of the former lemma and using the 
lemma 2.8 with jU < II(FT)NII we obtain the following result: 

Given E > 0 there exists N large enough and C > 0 such that if 
IIG - @ollr < [, then ~TN(G) - dT~(a~) has norm less than E as linear 
operator on C-l. 

Proof of the proposition. 2.1 . - We apply the lemmas 2.7 and 2.9 to 
obtain 

IITv(@t + ~1 - TN(%) - @%4IIv I ~ll4r 
We have TN (at) = @ 6~t and J(U) = a(u)v where ‘u = &Q’sls=O. So 

llTv(% + ~1 - +~t - ~“4+ll, I $llr 

for +‘t is a curve of class Cl of maps in C’, thus (P6~(t+a(U)) - Q~N~ = 
&+Sls,6Nt6Nu(~) + A where llAllr 5 iIIuIIT if IIT& and ItI are small 
enough. Moreover if (t I is small then 

We obtain 

and we deduce that ~JTN(~~+u)--CP~N(~+~(~))~~~ 5 $[Iu&-, as wanted. n 
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3. THE STABLE MANIFOLD 

In this section we prove the existence of the stable manifold of the 
renormalization in the space C’ and deduce the theorem 2. 

We recall that the projection J on the one-dimensional subspace U 
corresponding to the eigenvalue 6 is written as J(u) = a(u)v, where 
‘u = &qt=o E U and a is linear and bounded from C’, (7-l or C’-’ to 
R. Thus U(U) = 1 and $u(@~ - QO)lt=a = a(~) = 1. We denote llallr the 
norm of a as a linear operator from C’ to R. Analogously Ilallr-i, Ilallr-a. 

Let < as in the proposition 2.1 and also verifying that Iu(@~ - @a) - tl 2 
ItI/ for ItI < <. 

Now we are ready to define the stable set for TN. Choose positive 
numbers E and E’ smaller than one so that 

E max(l,30)lal),) < E’ 

Define the set W = {@a + U, u E C’, [Jr& < E}. Given @a + u E IV, 
we define recursively the finite or infinite sequences {tk}k2a and {ul~}k2a 
by the relations 

to = 0; uo = u 

T#bo + u) = @p,, + Uk 

tk+l = SN(tk + a(uk>> if ltkl < c 

They are defined as long as ltkl < <. By the proposition 2.1 we have 
llUkllr < 2-k~. Moreover, if Ii&l < E’, then 

jtk+ll 5 SN(&’ + Il’+&> 5 2~5~&’ < < 

There are three mutually exclusive possibilities: 
i) for some k, E’ < tk < C and ltjl 5 E’ for j < k. 

ii) for some k, E’ < -tk < < and ltjl 5 E’ for j < k. 
iii) Ii&l 5 &’ for all k 2 0. 
We denote IV+, IV- and IV0 the subsets of W where respectively i), ii) 

or iii) holds. The map u H tk is continuous on w, so IV+ and I%‘- are 
open. Moreover Q’t E IV+ (I&-) for all t > 0 (resp. t < 0) small enough. 
Hence IV0 is a relatively closed subset of W disconnecting it. 
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If @a + u E IV,, then there are infinite sequences 
We assert that 

(8) 

In fact, suppose that there exists k such that l&l > E]]cL]]~~-~+~. As tk+i = 
JN(tk + a(uk)) and ]]uk]lr < 22” E, we obtain ]tk+i] > SN]]a]lT~2-‘” > 
E]]u]]~~-~+~. Repeating the argument (tk+j] 2 &]]~]]~2-~+j+’ for all j > 0, 
and this contradicts the inequality ]tk+jl 5 E’ for all j. 

Therefore, for Go + u E I+‘,, Tk(Go + u) + cPo as k + oo and 
IIT;(ao + u) - @lllT = 0(2-“). w 0 is thus the local stable set for TN. 
To prove that IV0 is locally a C1 submanifold of codimension one we need 
some previous lemmas, obtained from [4]. 

LEMMA 3.1. - For G1 E W+ U W-, if E’ < ltkl < < then 

(4Tj$5 - @o>l 2 &‘/4 

Pro06 

la(T$% - %)I = l@‘t, - %I) + +k)l > l@‘t, - +o)l - l[t-+#kllr 1 

LEMMA 3.2. - There exists a continuous mapping G H UG from W. to 
(CTd2)* = L(CVB2, R) such that 

(IdT;(G)u - SNkuG(~)w(~,-2 2 CSNk2-kl(ulJ,-2 

for all G E Wo and u E Crp2, k = 1,2,. . ., where C is a constant. 
Moreover a~, = a. 

ProoJ - Fix G E Wo and let Rk = SpNkdT$ (G). Rk acts as a bounded 
linear operator on CrP2. We have Rk+lu = 6-NdTN(Gk)Rku where 
Gk = TiG. For ]]u]]~-~ < 1 We Write &u = (Ilk’u + $k where ck!k E R and 
$,k E CT-2 are linear on u, defined recursively as follows: a0 = 0, $J~ = IL 
and if ak and ?+!& have been defined: 

&+lU = ~-NdTN(Gn)(akv + $k) = 

=akZf + t&6 -N(dTN(Gk) - &+ + a-N(dTN(Gk) - FN)$k 

+ a($k)v + ~-NQN$‘k 

Ann&s de i’lnstitut Hem-i Poincart! - Analyse non h&tire 



HOMOCLINIC TANGENCIES OF PERIOD DOUBLING BIFURCATIONS 287 

where QN$~ = pivr/jk - 6Na(~~)w and FN = dTN(fh)). Now Rkflu = 
akflw + $r~+~ where we define 

$k+l = akSpN(dTN(Gk) - FN)W -t SpN(dT,v(Gk) - FN)$% + SpNQ~ll,k 
Since IIGI; - @a(ll = 0( 2-‘“) and the mapping from C’ to C’-2 

given by G y d&(G) . w is differentiable at @,, we have that 
lb%&%) - FN) . 74-2 i K2-” f or some constant K which can be 
taken independent of G E Wa. If E and E’ are chosen small enough we have 
that the norm of the operator dTN(Gk) - & on C’-’ is smaller that JN /8. 
By lemma 2.7 also the norm of QN on CrP2 is smaller than 6N/8. Then 

Il7/h+1Ilr-2 5 ~ll7bllr2 + KS342-” (9) 

As cxk+i = C~=oa($~), we obtain 

lI~3~+1llr-2 L &M-2 + 2-kK~-Nl,41,-2 2 ll$jllr-2 
j=o 

Let Ji~a be such that Kllallr-2S-N ($)-” < i for all ,4z > Ice. Define cl a 
constant, independent of G E IV0 and of ‘u in the unitary ball of Cre2, 
such that l($,l~ll~-2 5 cr ($)” for Ic = 0, 1, . . . ,/cc. Then, by induction in Ic, 
it is easy to show that (Ir,!411r-2 < cl ($)” for all k > 0. Therefore 

bk+l - akl = Ia( = 0((3/4)“) 

Thus ok converges to a limit UG(U) linear on U. From (9) it is obtained that 
[[‘&l/r-2 = O(2-k). Therefore IQ~ - uG(u)( = O(22”) and we conclude 

II&u - 447111,-2 L C2-IcI141,-2 

for some constant C, for any u E CrP2 and any G E Wo. 
To show that G I+ aG is continuous, note first that the mapping 

G H a o RI, E (CT-‘)* is continuous on IV0 for any k~. For any ‘u. E Cre2 
we have 

bGb) - a( = b(uG(+ - &u)l 5 ‘34lr-22-7l4lr-2 

SO that a o RI, + aG uniformly on k&, whence the mapping G H eG is 
continuous. Note also that uao is the projection a because for G = Go we 
have Rku + u(u) . u. n 
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For later purposes we will need the following lemma that implies a 
convexity property for the C’ norms: 

LEMMA 3.3. - There exists a constant K such that for all C2 map 
w : D H LC,-2(R”,R”) 

II~4lo I Km4l2ll4lo) 112 

Proo$ - Let c > 0 be a real number such that for any P E L,- 1 (R” , R”) 
determined by its nr real components {Pj ,,,,, l,m}lli,j ,.,., l,mslL 

IIPII F c mm Z,J ,..., l,m IPj” ,._., l,m,l 

Let y be the length of the smallest side of the parallelepiped D and define 

K = F + cy 

Take w : D H .CTP2(Rn, R”) of class C2, and by contradiction suppose 
that for some ~0 E D, IIDw(za)ll > K(~~w~~~~~w~~o)~/~. Thus, there exist 
i,j,. . . ,I, m such that 

I I awL..>~(xo) > ~(I,wl1211Wl,o)l:2 

h7l C 

As IIWz) - Dw(x~)ll I II4(21111: - x011, we deduce 

aw; l(X) > 1 aw; ,..,, 1(x0) - 
d&L %TL I lMl2rl 

for all z E D in a ball centered at ~0 at radius q = rdw < y. 
Therefore for such x: 

j “w;;y ( > (; - 4 ~Ilwl1211w,lo~1~2 = ~pwl12,,wllo~‘~2 

Integrating respect 2, along a segment in D with extremities y1 and y2 
and length Q 

I4,...,dYd - wg,...,l(Y2)1 > ~ll(llwl1211wllo)l~2 

But the left member of the inequality above is smaller than 211 w 110 
contradicting the definition of 7. n 
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LEMMA 3.4. - There exists a constant co such that if G and G1 E 
{at + w E C’ : ItI < E’, llulllr < E} then 

IITNG - TNG - dT~(G)ull.-2 I ~o~~~~~~!~ 

where u = G1 - G. 

Proofi - In what follows K stands for a constant that may vary in the 
different formulas. First we assert that 

E(q) 

IITdG+ u) - TN(G) - dTN(Gh(l,-z 5 K c II~ll~lluII~-~-1 (10) 
j=o 

where E(s) denotes the greater integer smaller or equal than 2. 
We have that 

TN(G+u)-TN(G)-dTN(G)u= ‘(dT~(G+tu)-dTN(G)).udt 
J’ 0 

and so it is enough to prove that 

ll(dT~(G + tu) - dTN(G)) * ulIv--2 I K C ll~ll~ll~ll~-~-1 
j=o 

for t E [0, I]. 
Computing explicitely dTN (G) as in the proof of the lemma 2.9 we see 

that dTN(G) . u is the sum of compositions and multiplications of u with 
maps depending on G as follows: 

dTN(G) . u = c a;(G) . @i(G)) 

where ai( hi(G), c;(G), ei,j(G), h;(G) are maps in C’ that depend non 
linearly on G E C’. The transformations G H ai( G), etc. have FrCchet 
functional derivatives respect to G when looked from C’ to Cre2. 

Thus 

(dTN(G + tu) - dTN(G)) -u = A.u+B~u+C.u+P~u+E.u+H.u 
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where 
A. u = x(a(G + tu) - a;(G)) . u(bi(G + tu)) 

B . u = c ai . (u@(G + tu)) - u&(G)) 

C.U = C(ci(G+tu) -G(G)) j$I(G+t~)(e~,~(~+t~)) +,(G+h)) 
i .i 

44 

i ( 

j-1 

P. u = c ci(G) c n DG(ei,k(G + tu)) . tDu(ei,j(G + tu)). 
i j=l k=l ) 

( 

s(i) 

. n D(G + tu)(ei,k(G + tu)) . u(hi(G + tu)) 

k=j+l )} 

s(i) 

( 

j-1 

E . u = cc;(G){ c n DG(ei,k(G)) 

i j=l k=l 1 

. (DG(e;,j(G + tu)) - DG(e+(G))). 

( 

44 

. n DG(ei,k(G + tu)) 

k=j+l )I 

. u(hi(G + tu)) 

If. u = C G(G) nDG(ei,j(G)) . (u(hi(G + tu)) - u(hi(G))) 
i ( j ) 

The hypothesis on G and G1 gives bounds for llGllr and llullr and hence 

IIA4-2 = II c 1’ dUi G + StU) . t?Lds. u(bi(G + t~))llr-2 ( 
i 0 

E(q) 

I K t: lI4ll4+-2 
j=O 

IlBullr-2 = II c ai(G) 1’ Wbi(G + stu)) . dbi(G + stu) . tudsII,-2 
i 0 

E(q) 
I K c II4lAl4I~-~-1 

j=o 
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So II-4 .41,-2 and IIB .4--2 are bounded by the second term of the 
inequality (10). In a similar way are treated C . U, P . U, E . u and H . U, 
obtaining the inequality (10). 

From (10) and the lemma 3.3 the thesis is obtained: in fact, applying 3.3 
to w = DTe2u we have 

IIDp-1410 5 JWIl$4~-2>1’2 

As II4 is bounded we obtain 

II4lr-1 5 4w4i/-“2 , 

Substituting in (10) and using llullj 5 IIullr-2 for j = 0, 1,. . . , T - 2 we 
obtain the inequality of the lemma. n 

By lemma 3.2 we can find EO < E such that if G E Vo = {G E WO : 
IIG - @OIL < ~01 th en aG(v) > l/2 and l/aGllr-2 5 2114-2. 

LEMMA 3.5. - There exist positive numbers p, r and c such that, if 
k is a sufJiciently large positive integer and G E Vo, G1 E W with 
l/G1 - Gllr-2 5 ,L?FNk then 

ProojI - By lemma 3.4 there exists a constant cl > 1 such that if G E WO 
then the norm of dTk(G) as an operator on Cre2 is bounded by clSNk 
for any positive integer k. 

Let 
v = (1 - 6-N’2)2/(8~;~;) 

where co is as in the lemma 3.4, and let c2 = ~(1 - ENj2). 
Let fi = min(v,5/(411allr-2),c2/C) with C as in the lemma 3.2 and < 

as in the proposition 2.1. 
Fix G and Gi satisfying the hypothesis and let u = Gi - G. Let lo 

be the first positive integer value of 1 such that either 1 > k or I&I > E’, 
with T~GI = COtl + UZ. 

We now define a sequence xj inductively by 

TAGI = TAG + dT$(G)u + 2 dT;j(T;G)xj (11) 
j=l 

Let us prove by induction that Ilxjllr-2 5 c2~3N(j-k)/2 for j < lo: 
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First, for j = 1: llxlIlr-2 = IIZ’NG~ - TNG - clTp~G(Gl - G)llr-2 2 
collGl - Gll;!z2 5 c~P~‘~~- 3Nk/2 < cou 3/26-3Nk/2 

~-N/2)/(2,-1)3/2 < u(l _ s”I”)@N(I-k)I2 

= ,,ij-3Nk/2(1 _ 

= ,2~W-“)/2. 

By induction, we suppose IIx~/~~-~ < c~S~~(~-‘)/~ holds for j = 
1 > . . . , 1 < lo. Applying (11) at 1 + 1 and substituting TLbG1 - ThG, 
we obtain: 

xl+1 = T;lGl - Tjj+lG - dTN(T;G)(T;G, - TAG) 

By lemma 3.4 we have 

and so, for all 1 < lo: 

llxl+ll(r-2 5 coI,dTf,(G)u + 2 dT;3(T$)xjllf!22 5 

j=l 

1 3/2 

5 co Clzd N(l-k) + ClC2 c ,yV-dgW-“l/2 I j=l 
< co - cluSN(“-“) + qc2s 3W-W/(1 _ @V2) 3’2 = 

> 

= co 
( 

ClUS N(l-k) + ,+,,j3N(~-“)/2 )3’2 5 Co (2clvS”(‘“))3’2 = 

= C2,j3N(~-k)/2 < C2@N(l+l--k)/2 

It now follows that, if 1 5 lo then 

JIT~GI - T;G - dT&(G)ujl,-2 = k dT$j(T;G)xjii 
II 

< 
j=l r-2 

WdC2@N(j-k)/2 I ,1,2S3N(l-“)/2/(1-S-N/2) = ,1,~3N(“-“)/2 

j=l 

By lemma 3.2 

)ldT:,Gu - S1Na&)~~~,-2 5 CSN12-“(~~~~,-2 5 c22-‘SN(“-“) 
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In what follows K denotes a constant whose value may change in the 
different inequalities. Since G E Wa: [IT&G - XDOllr 5 K2-“. Thus, for 
1 5 lo: 

[ITAG - Go - SzNaG(u)vIIr-2 5 K2-1 + ,1,S3N(z-“)/2 02) 

Let m be the nearest integer to 3Nk log S/(2 log 2 + 3N log S), therefore 

We now assert that la(Z$Gr - @a)[ < e//4, for k large enough and 
1 5 min(Za,m). In fact if 1 2 la we have 

IIT;G1 - Tj,,G - SzNuc(u)vllr-2 5 c~vS~~(~-~)‘~ + c~S~(‘-~) 

As 

we deduce 

I(T;G1 - TfvGII,-2 5 KcYN(“-“) 

and so 

lu(Z’;G1 - ao) - u(T;G - Gio)l 5 KSN(“-‘“) 5 K6N(“-“) 
< ,5-N((2”log2)/(2log2+3Nlog6)-1/2) 
- < d/8 

if k is large enough. 
To prove our assertion it is enough to show that la(Z’~G - $,)I < &/8. 

By proposition 2.1 we can write TAG = asl + ul. By (8) we have 

bC%G - +o>l = I+&, - +o> + 441 L $ + ll~llrllwllr I: 

Thus: 

2 $ll&2-’ + llull&2-z 5 5f < g 

lu(ThGr - @a) 1 < : for 1 < min{la, m} 

Using lemma 3.1, the definition of lo and the fact that m < k, we deduce 
that min{ lo, m} < lo. So, m < Eo. Applying the inequality (12): 

llT;Gl - Q. - SmNaG(~)~II,-2 5 KS3N(“-“)/2 
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and by proposition 2.1 we have for some t 

I(T;G, - @+/jr < c2-” < KS3N(“-k)/2 (13) 

Writing so = KmN UG (?L) we deduce that 

IIf& - a0 - s~vII,-~ 5 K63N(“-“)‘2 

and so 

It-sol 2 WV@so IL-2 5 KII~~-~o-so~~I,-~+K~~~~~-~~-s~~~~,_~ : 

5 K@N(“-“)/2 + KS; 

As 

S; = (6”Na&))2 5 (SmNllaGllr-21(UII,-2)2 5 KcS~~(‘“-“) 

we obtain It - soI < Kc?~~(“-‘“)/~ and Il@t - %‘,,/I, 5 KS3N(““-k)/2. 
Using (13): 

I(T;G1 - Qs,,II, 2 Kc?~“(“-“)‘~ 

By proposition 2.1 we can write, for j = 0, 1, . . . , k - m: T;+jG1 = 
@,, +~j, with SO = firnNa~(u), ~0 = TEGl -as,,, Sj+l = aN(sj +u(u~)) 
and 

Ilyllr I 2-311uoJ(r I 2-3Kc5 3N(m-k)/2 

We have Sk-+ = ~JW-)sO + c;z-l SN(k-nL-j)u(,j), from which 
we deduce that 

k-m-l 

[Sk--m - 6 NkuG(ql < c SN(k-“-j)K2-jS3N(m-k)/2 5 K@‘+-k)/2 

j=o 

Thus llQSk-,,, - @G~kaG(U)IIT 5 K6N(“-k)/2 and 

llT.&G - F P’“a&)llr = Il@‘y,-,,, - %N”aG(u) + Uk-rnlll 

5 KbN(-“)/2 + Kfi”N(“-“)/2 5 ,iybN(““-“)/2 

From the definition of m, we have that 

m-k< 
-2k log 2 

2log2 + 3NlogS 
+1 

2 

so IIT;G1 - @6~~aC~u+ 5 cSENTk with T = log2/(2log2 + 3Nlog6). 
n 
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THEOREM 3.6. - The local stable set of the renormalization TN is a C1 
submanifold of C’ of codimension one. Its tangent subspace at Go is 

{u E CT : CL&) = O} 

where aGo is dejned in the lemma 3.2. 

Proof - Let us prove that the local stable set VO = {G E W, : 
IIG - @I$ < a) is a C1 submanifold of codimension one. 

Consider Go E VO and Gr = Go + tv for t a small real number. By 
lemma 3.5: 

where s(t) = SNktaG,(v), if k is chosen so that ,0/(6NIIwIIT-2) < SNkItl 5 
PIIbIIr-2. 

So TiG1 is in a small neighborhood of @S(t) with 

DaGo(v) < Is(t)/ 5 PaGo [VI 
@y74-2 - ll4lr-2 

As @s(t) E IV+ if t > 0 and IV+ is an open set, we have that, for t small 
enough and positive TAGI E IV+. Therefore Ga + tv E IV+ if t > 0 and 
small enough, say 0 < t < 8’. Analogously Gc + tv E W- if 0 > t > 4’. 

By continuity, if we fix Go E V, then for G in a small neighborhood of 
Go the lines {G + tv, t E (--&I’, 8’)) have one and only one intersection 
with V,. Let H = {u E C’; aGo (u) = 0). It is a codimension one subspace 
of C’. For u E H with Il~ll~ sufficiently small, there exists an unique small 
real number x(u) such that Ga + u + X(U)V E V,. We will show that x 
is of class Cl and dx(0) = 0. Thus V, is locally diffeomorphic to H and 
is a C1 submanifold of codimension one. 

x is continuous: in fact if uj + u with Ga+uj +x(uj)v convergent, then 
it converges to a point in Vo because VO is a relatively closed set, and so 
x(u~) -+ X(U). Let US prove that x is of class Cl. Let Gi = Ga+ui+X(ui)v 
for i = 1,2, so Gr, G2 E VO. Let k be the largest integer number so that 
IlG2 - G1 Ilr-2 I PS- Nk. Then @VN(“+l) < IIG2 - Glllr-2 5 llGz - Gi llr 
and by lemma 3.5 

IIT$Gz - @‘,)I, 5 &FNrk 

for s = SNkac,(G2 - Gi). Also by lemma 3.5, 

IIT;G:! - %&. 5 cKNTk 
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Therefore 
IsI 5 KII@, - (PO/IT 5 2cKEN’” 

for some constant K and hence 

IuG,(G:! - &)I i 2cK(S- Nk T-+’ = O(llG2 - G1ll;+l) ) 

so: 

aG,(UZ-~l)+aG1(V)(X(U2)--X(U1)) = 0(ll~2-~l+(x(~2)-x(~l))~~~~+1) 

We assert that Ix(z12) - x(ui)l = O(llu2 - uillr). In fact, by contradiction 
if it were sequences {‘zL~,~} and {u2,j} such that IIu~,~ - z~ll~ -+ 0 and 
IIm,j - w,jllr = o(x(qj> - x(w,j)), then 

aG(‘U)(Xb2,j) - Xh,j)) = o(k(%) - x(%,j)17+1) 

which is absurd because (lG1(V) # 0. 
Then 

aG1 (v)(x(uZ) - x(%)) + aG1 (u2 - ‘h) = 0( llu2 - %[I,‘+‘) 

and x is differentiable at u1 with dx(ul) = -(e&(v))-l@&. 
From the continuity of G1 H oG1 we deduce the continuity of do and 

hence V. is a C1 submanifold in a neighborhood of Ge. n 
For u E C’ we have defined Ju = u(u)v the projection on the subspace 

[w] = U of dimension one tangent to the unstable manifold IV” = {Qt} 
at @e. Thus I - J is the projection on the subspace S = {ker u} tangent 
to the stable manifold IV” at @a. 

Let us consider the decomposition in C’: u = (~1, ~2) where ~1 = Ju E 
U and u2 = u - u1 E S. In a neighborhood of @a the unstable manifold 
W” is diffeomorphic to a neighborhood B” of 0 of its tangent space 77. We 
have a C1 map e2 such that @a + ( ul, &(u~)) E IV” for all ~1 E B” c U. 
Moreover, e,(O) = 0 and d Q,(O) = 0. Analogously, for the stable manifold 
we have a C1 map 81 such that +a + (0, (us), up) E IV” for 74 E S in a 
neighborhood B” of 0 and 81(O) = 0, d 81(O) = 0. 

We define the C’ local change of coordinates 0 from B” x B” c c” 
to a neighborhood of @e in C’: 

d(Ul, u2) = @o + (w + h(u2), u2 + @2(w)) 

Thus 0 is of class Cl, 0(0,0) = Qo, and dcY(O,O) is the identity. 0 is a local 
C1 diffeomorphism in C’. Observe that r9 transforms B” c U and B” c S 
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onto respectively the local submanifolds IV” and IV”. Now consider the 
expression of the transformation TN in the new coordinates: 

It has 0 as fixed point, B” c U and B” c S as local unstable and stable 
manifolds. 

Increasing T if necessary we can consider the local stable and unstable 
manifolds in CT-l which contain respectively those in C’. As before, 
we can define the local diffeomorphism 0 in C-l. The formal derivative 
dTN(G) for any G E C’ has been defined in the remark 2.10 as a bounded 
linear operator from C’-l to-C’-‘. So we have dpN(u) E L(C_T-‘, CT-‘), 
and dTN(fPO) = d TN (0) = FN. As U and 5’ are invariant by FN we have 

~N(W ~2) = (Am, A2~2) 

where Alul = SNul and by lemma 2.7 

1 
II442~2IIr-1 I -IIu2lIv-1 2 

Let us write 

We have Ai(0, u2) = A2(u1, 0) = 0 because U and S are invariant by iN. 
Considering the formal derivative of TN as a bounded linear operator 

from C’-l to CT-l, we have bounded linear operators d Ai (u) and d A2 (74) 
on C-l. For u in a neighborhood of 0, ]JdAi(U)Jlr-i and IldAa(U)]]r-i 
are smaller than a given positive number if N is large enough (see the 
remark 2.10). 

LEMMA 3.7 (The inclination lemma). - Given E > 0, there exists N such 
that if {GP} is a C1 curve of maps in C’ intersecting transversally W” 
at Go and DI, is the connected component through ThGo of {ThG,} in 
B” x B” c CT, then there exists Ice > 0 such that for k > lco, DI, is C1 
E-close to B” in the space C’-l. 

Proofi - We have to repeat the same arguments of the proof of the 
inclination lemma of [14] for hyperbolic fixed points, using the C’-i norm 
of vectors in C’, and the bounded operator dpN on C-l, with the bounds 
given above. n 

We recall the remark 1.8. Arguing in the space C’-’ instead of lie we 
deduce that the codimension one submanifolds C, are transversal to the 
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unstable manifold {+,},<a in C-l. Any curve of maps {GCL} c C’-l 
that has a transversal intersection with C, presents a period doubling 
bifurcation of period 2” to 2m+1. 

We also recall the definition of homoclinic bifurcation with unavoidable 
tangency (definition 1.9 and proposition 1.10). A version of the lemma 1.15 
in the C’ space can be stated with the same proof 

LEMMA 3.8. - There exist an interval [a, b] with b > a > 0 and open 
sets N, NI and N2 in C’ containing respectively {Qt; t E [a, b]}, ap, and 
+b such that any continuous arc {G,} in N with extremities in Nl and N2 
exhibits a homoclinic bifurcation with unavoidable tangency. 

Taking preimages of NI, N2 and N by a sufficiently large iterate of TAT, 
we can consider that they are as near Cpa as wanted. 

Proof of the theorem 2. - Let us take W the stable manifold W” of TX. 
As {G,} intersects transversally W” at Go we have that &GP is not 

p=O 
contained in the tangent subspace T&W’, that is, by theorem 3.6, 

=h#O 

Let us suppose h > 0. As {GP} is differentiable respect CL: ]]GP -Gu]lr-2 5 
c3]p] for some constant c3 and for all 1~1 small enough. For any large 
integer k > 0 

Thus, by lemma 3.5: 

for s(p) = SNk@O(G@I~k,P - Go) for all 1~1 5 p/es. Now 
s(p) = fiNkaG,,(G6-NkbL - Go) = SNkhSwNkp + o(p) = h,u + o(p) 

Thus T&Gg-“kP converges when k -+ oz to @hP++) uniformly 
in h E [-,f3/cs, P/Q]. Using the inclination lemma 3.7, the arc 
{T~GG-N”~}~E[-P,~~,o~ exhibits, for all k sufficiently large a period 
doubling bifurcation for a parameter value of p E [-p/es, 01. That is, 
there exists pk E S-Nk[-/?/~s,O] -+ 0 where G,, presents a period 
doubling bifurcation. 

Using the lemma 3.8 the arc {T~G6-NkP}PE[o,~,~s~ will have a subarc in 
N, with extremities in NI and Ns and thus, it exhibits a homoclinic 
tangency for some value of p E [0, /?/c3]. Therefore, there exists 
fik E fi-Nk[0,P/C31 -+ 0 such that G,, exhibits a homoclinic tangency. 
n 
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