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Nested axi-symmetric vortex rings 

by 
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ABSTRACT. - In an inviscid and incompressible fluid, we prove the 
existence of nested co-axial vortex rings moving at the same speed. 

R~TUMI?. - Pour un fluide ideal, nous montrons l’existence de tourbillons 
annulaires concentriques se deplacant a la mCme vitesse. 

1. INTRODUCTION 

In this note we are concerned with steady flows in an ideal fluid 
(inviscid and with uniform density) consisting of co-axial vortex rings 
(sets homeomorphic to solid tori) moving along their common axis at the 
same propagation speed W E W* = R\(O). They are nested in the sense 
that two consecutive rings R; and R;+i are such that R;+i c co(&) (the 
convex hull of R,;) but %!++I n’Ri = 0. In a referential frame attached to the 
vortices, the equations of motion are given in cylindrical coordinates (T; 6’) .z) 
on the domain II = {(T; 8,~) :r>O,+r<<<7r>-x<z<+x}by 

li, is independent of 0, 
-2L7j is constant on level sets of $, 

z + 0, rpl$,,. + -IV as r2 f z2 -+ cc: 
(1) 

where L$J = ~-(r-~&.)~ + Gzz ( see [ 18, 21, 7, 81). The so called Stokes 
stream function $J is in cl@) f’ C”(II\E($)), where the set E(G) is a 
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finite union of non-degenerate level sets of 41~. In cylindrical coordinates, 
the velocity field (1 is then simply given by ( -I,~“$:. 0. ‘rP1$, ) and the 
amplitude of the vorticity by [curl (11 = ~I,~~L$]. As the H component does 
not appear in Equation (I ), the vortices described in this way are without 
swirl 1201. The core of ,J, is the set of points where Lo # 0. In what follows. 
we shall restrict our attention to z-symmetric ~0: $(I.. z) = ,$(,I,. -z). The 
existence of non z-symmetric positive solutions has been ruled out in many 
situations [ 16. 31. Hill discovered in 1894 the following explicit solution 
propagating at speed K’ = 1: 

where p2 = fly2 + 2’. Its second derivative is discontinuous and 

The problem admits a simpler formulation [25]. Working in R”, we 
set r2 = :I;: + . + :c:, z = .I:~, $ = rE + z’ and +(,I,. z) = 
(l/2)r271(r, z) - (1/2)iv?. We denote by A the usual Laplacian in R”. 
We seek 71, axi-symmetric in R”, satisfying on {:I. E Iw’ : 7’ > 0} 

i 

a11 constant on level sets of Y~V - IV?. 
~7’71, i 0. 11 + (1/2)1~1,. i 0 as /J 1 X. (2) 

Moreover ‘(I is in Cl(@) fl C’({X E R” : ‘I’ > 0,~ 6 E(a)}), where E(l)) 
is a finite union of non-degenerate level sets of 1~‘~ - Wr”. The Hill’s 
vortex is simply expressed as 

which is radially symmetric in W’. 
We now introduce a functional setting suited to the case Mi = 1. 

For F > 0, let iLJc be the set of functions ‘Y! E C,+!,,,,,(2l?) such that 
l,fJ - 7~H IC’ (28) - < F, B being the closed unit ball in’ R”. The notation 
5:(/rn means that we restrict ourselves to functions that are both axi- 
symmetric and z-symmetric.’ We endow h& with the Cl-metric and define 
S : 2I? x iMe x R+ i R by 
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where H is the Heaviside function and w is the volume of B. The Newtonian 
potential -15-1w-1/~1: - :?I-” is the fundamental solution of Laplace’s 
equation in W” (see [22]). 

The choice of the functional space is crucial. We can mention C1 spaces 
[ 181 and W1,2 Sobolev spaces, preferred in the variational approach [21, 21. 
A comment on the respective advantages of these spaces may be found in 
[4]. Let us just point out that, as a function of II, S(.. V. X:) E CT,t1,71, (R”) 
is continuous on IV,, but not FrCchet differentiable. The constant k > 0 
is related to the flux between the axis of symmetry and the core. The 
description of the level set 7.2~~j - r* - X: = 0 for X: > 0 is one of the key 
issues in the work of Norbury [26]. See Fig. 2 in [4] for a nice picture. 
Norbury proved that a branch of solutions parametrized by X: > 0 small 
emanates from Hill’s vortex, their cores being homeomorphic to solid tori. 
Amick and Fraenkel [4] showed a uniqueness result for Norbury’s vortices 
and Amick and Turner [5] extended Norbury’s local result to a global one, 
working in the Sobolev space W1,“. 

Let us translate in our framework some essential features. There exist 
t > 0 and i: > 0 such that S(., PI, X:) is compact as an operator from 
M, x [O. k:[ to C,;&R”). F or :I: E 2s, we set &(U)(X) = S(:I:, II, 0). By the 
uniqueness result of Amick and Fraenkel [3], ‘UH is the unique fixed point of 
SC, in Me and, as shown by Amick and Turner [.5], dcg-(l- So. Y’H, 0) = -1. 
We shall sketch the proof in the next Section. 

Clearly, for a > 0 and W E R*, the dilatation of Hill’s vortex 
v(7.; 2) = IvQ+/a, z/ ) . n is a solution of (2) with -a~ = IIVn-‘15 on the 
ball cl,B. We can also dilate the whole Norbury’s family. Each of the nested 
vortex rings we shall construct in Section 3 is near some dilatation (here the 
term “contraction” would be more appropriate) of some Norbury’s vortex. 
The asymptotic speed W of an inner vortex ring should be interpreted as a 
relative velocity with respect to the flow created by the outer vortex rings. 
However, on the whole, the vortices move at speed 1. The main point is 
to check that the constitutive vortex rings do not interact too much. This 
kind of arguments was introduced for PDE by Angenent in [6], extending 
previous results by Palmer [27] on ODE. This method is also central in 
the recent work of Bessi [9] and in [lo], both dealing with homoclinic 
chaos in Hamiltonian systems via variational methods. See also [ 141 and 
the references therein. In [9, lo], a non-degenerate “primary” homoclinic 
solution is found variationally, for example by the mountain-pass lemma, 
and time-translations give a whole family of homoclinic solutions. The 
interaction between them is proved to be small if their mutual distances 
(in the time coordinate) are large enough. Finally degree theory and a 
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homotopy argument allow one to deduce the existence of a whole family 
of “multibump” solutions. Going back to vortices, Norbury’s family plays 
the role of the primary homoclinic solution and dilatation the role of time- 
translation. Our result on vortex rings may be regarded as establishing 
some kind of spatial chaos. The reader interested in homoclinic chaos via 
variational methods should consult the fundamental paper by S&-C [28] and 
[ 1, 1.5, 241 for extensions to PDE. For the definition and basic properties 
of the degree of a nonlinear mapping in an infinite-dimensional space, see 
for example Chapter 7 of [ 171. 

This work is one among many on the co-existence and multiplicity of 
vortices. We refer to the book by Lamb [23], and especially to section 164. 
For a recent account of the phenomenon of leapfrogging of vortices. see 
the book by Berger [8]. Other results obtained via rearrangement theory 
(for example vortices in dumb-bell-shaped regions) may be found in the 
work of Burton [ 11, 121. As pointed out to the author by Dr G.R. Burton. 
explicit steady two-dimensional co-existent vortices are given in Lamb [23], 
section 165, formula (10) (.ser also [ 131). 

2. SOME PROPERTIES OF S( :I;, ‘c’, k) 

The following lemma is intended to state some basic properties of 
S(:r, U, k) which will be used subsequently. For the proof, see [26, 4, 221. 

LEMMA 1. - There exist c. ,& > 0 such that for all ‘u E Me and X: E [0, &[ 
1. {:I; E 2B : U(X) - 1 - x:r-’ > 0) c {:K E Iws : /, < 3/2 and r > 

ad+}: 
2. (2: E 2B : 7‘ > 0 and U(X) - 1 - kr-2 = 0) is a non-degenerate level 

set; for k > 0, its projection on the (7.. z) half-plane is a Jordan curve; 
3. S(..v. k) E Cl(@) and 

4. S(., 21, k) is C” at z E R5 satisfying u(z) - 1 - kr-’ # 0;for In:] > 2, 
la,“S(z; IL, k)I < Const(zl-“. where the constant is independent of 71 and k; 

Considered is a mapping from AI, x [0, &[ to C1(R5) endowed with the 
norm /lull = sup{/u(z)~(l+~z~“)+~21’(~)/(1+~~~4) : :c E W5}, Siscompact. 

The next result is crucial for the third section. Its proof closely follows 
Amick-Turner [5], the main difference being the functional setting. 



NESTED AXI-SYMMETRIC VORTEX RINGS 791 

LEMMA 2. - Hill’s vortex VH (restricted to 2B) is the uniqueJixed point 
of SO in MC and deg(1 - SO, VH, 0) = -1. 

Proof. - The unique solution in C’(W”) of u = S( . . II, 0) vanishing at 
infinity is r/H [3]. For po ~]0,30], we introduce the Green function of the 
Laplacian on the ball paB with Dirichlet conditions at the boundary (see 
section 2.5 in [22]): 

and G,(z,Z) = Iz - ?:I-” , 2 # 2. Note the inequality 

for 1x1 2 pe, 2 E 2s and p. large enough. For 6 > 0, let fh E C(W) be the 
increasing function such that fs(zr) = 0 if :r < 0, f6(:c) = X/S if 0 5 .7: 5 n 
and .fb (z) = 1 if II; > 6. Set fa = H and 

&,/&a4 = /‘- w-l G,,, (x, ?J).fn(u($) - 1)&Z. 
2B 

II E Me, 6, pi1 > 0. The previous So is now identified with Sa.03. We have 

Again S6,P0 is a compact operator from iVIE to Cl(2B) for h. ~0’ small 
and the dependence of S6,P0 E C(k!fE, C1(2B)) with respect to 6,&i > 0 
is continuous (in the uniform topology). Moreover, for 6 > 0. S6,P0 is C1 
with respect to u and the derivative at any u is the compact operator 

w -lG,,,(~, ?)f;(u(i) - l)rr(:i)d:Z. 

This can be obtained by approximating fh by smooth functions. 
For 6, pi1 > 0, any fixed point v E I& of Sh.po may be extended to 

all p,$ such that 

-Au = 15fh(v - 1) a.e. on poB, I/= 0 on a(&). (3) 

It is proved in [5], Lemma 2.2, that for some t > 0 and all small 6, p;i > 0, 
equation (3) has a unique solution ‘u~,~,~ near UH in Cl (poB), the estimates 
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being uniform in h and /‘o. The eigenvalue problem for S~,,,,,(~J/~L~) with 
II = l!* ) .,(, is equivalent to the equation 

-XA~I, = 15,fj(ob,,,, - 1)71, a.e.. 

( ii 

In Theorem 2.3 of [S]. it is shown that for a set of h. /j;l > 0 whose 
closure contains h = &’ = 0, equation (4) has only one eigenvalue 
X larger then 1 (counting multiplicity), the others being smaller then I. 
As a consequence, deg(/ - SA,,~~, M6, 0) = - I and. by homotopy, 
&+&(I - S”.VH.O) = -1. n 

3. NESTED VORTICES 

We are now ready to construct u > 1 nested axi-symmetric vortices 
moving at the same speed. The %th vortex ring R, is strongly affected by 
the flow generated by the outer rings R1. . R,-I, which is described, up 
to some scaling, by G, introduced below. However. if ‘R, is small enough. 
its strength increases. This is the reason why we have to take account of 
Gi only near the axis of symmetry. where we try to fit R,. As R, is to 
move at speed I, its relative velocity I&‘, with respect to the flow G, near 
the axis of symmetry is in principle entirely determined. On the other hand. 
if R, is small enough, its influence on the outer rings is insignificant. 

In the sequel, F and k: are supposed to be sufficiently small positive 
constants. First we introduce II positive characteristic lengths (/I = 1. 
(1,2, . . . . n,,,. The fact that the vortex rings are nested is reflected in the 
condition 

(I,,+~ 5 (1/3)nj& if I + I 5 I). 

We define recursively G,(:r. 01. . . vpl) and lI;(/l,. (‘, -L) E R’ for 
1 < r 5 71, with :I: E 2D and ‘1.j E fLf, (1 5 ,j < i). We set (:I (.I.) z 0. 
IV1 = 1 and 

G,(a:.vl.. . .u-~) = c W,(u,. . .“,,-l)S(c~,,.r./c~,. I:,. A,). 
/=1 

W;(,.Q . . . . . ‘v-l) = 1 -G,(t). /jl . /I,-~). 

Note that (S/4)‘-1 < (-1)‘-‘117, < 2’+l for all ol., . I’,-~ E 121,. This is 
easily proved by induction once we have observed that S(0. (‘. X:) is near 
5/2 = r)H(o) for II E &rF and f. k small enough (independently of II. i, (I,). 
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We have in mind to solve the system 

/I; = T,(..‘/!l.. . ,?I,,). 1 = 1,. . .I/. (5) 

where 

T;(:r:, ‘111. . . . ‘U,,) = (6) 
Wi(Tll.. . ,7!,-1)~1(GI(:f:.‘lil~. . . ,TJ,-~) - G,(C). .)) (7) 

+S(%J, ‘11i, k:) (8) 

+<(I:f:I)wT!(7113.. . .lii-l)-l 2 lVj(. . .)S((J,,:I:/(LJ.2iJ. k). (9) 
,j=i+l 

The function < is smooth and such that ((2:) = 1 for (Z/s)fi 5 :I: 5 2 
and <(:I:) = 0 for :I: < (l/2)&. 

THEOREM 3. - Equation (5) admits a solution (u,,,~, . . . . II,,,,,) in (A,)” 
if the (I,j/O,,, .i > %, are small enough. 

Proof. - AS I(i)/a:C)S((L;~I:/U,j. Vj. k:j)] 5 CL;/CJ,jlS(.,Uj, k~)IC~(2~~ < 

Cort,st rLi/nj for :c E 2B, where the constant is independent of :I:, rLi> u,, 
we easily deduce that (7) goes to 0 in the C’(2s) topology, uniformly in 
?‘I, . . . T Y~-~, when the ni/(~,,, % > j, tend to 0. To estimate (9), we observe 
that S(a;cr/“j) + 0 in C1(2D\(l/2)&B) when rLT/‘rJ,j + co, thanks to 
the last statement of Lemma 1. Hence (9) goes to 0 in C1(2B) uniformly in 
‘111,. . . . II,, if aJ/ai, j > i, tend to 0. As (7) and (9) are small with respect 
to (8) in C1(2B), a homotopy gives a solution of (5) in (ME)“. More 
specifically, we compose two homotopies. The first on% is at fixed X: and 
suppresses the terms (7) and (9). The second homotopy decreases the value 
of k to X: = 0. Taking k, (7) and (9) small enough, this can be achieved 
without creating any fixed point on the boundary of (A,,)“. The conclusion 
follows from the equality dog ((I - Sa)7L. (Mc)n. 0) = (-1)“. n 

From now on, we choose a sequence (pi : % E N) converging quickly to 
0 in such a way that Theorem 3 holds for ((I~. . . . : CL,, ) and all 71 E N. 

THEOREM 4. - For each n > 1, equation (2) admits some solution 
w,, consisting of n nested vortex rings. Moreover the total kinetic energy 
corresponding to UI,~ is unt$rmly bounded in n if the .sequence (ai, % E NJ) 
converges quickly to 0. 

Proof. - Let us fix 71 2 1. To obtain a solution of (2) from the ‘r:,,,, 
given by the Theorem 3, we set 

~,,,;(~t/) = I~,,~I,,.,(:~//(J,;) +G;(O. ‘11,,,1. . . . PJ,,.;-1) = w,Il,,,;(:l//ui) + 1 - IVi. 
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for ?J E 2n,B\(2/3)a;&i? and 1 5 % 5 76. We get successively 

= c J w, W-l/7J/Uj - i-“H(7,,,,j(Z) - 1 - kF”))di 
j=l 28 

Z c .I w, *- WplIIJ/Uj -  i-” 

j=l 

X H(Sgn;:d,)(‘~,,,,j(Uj~) - 1 - WjkF2))& 
,, 

=c 
W@,” . 

I 
w-l ly - q” 

j=l * 2a,B 

X H(SgIl(W,)(‘l-,,,,j(:i) - 1 - n~WjlcF2))dLi 

Hence w,, E C.&,,(R”) defined by 

x H(sgn(W,)(G,3,(Z) - 1 - c~,2~,k?-~))dZ ,l = c WjU;2 w-l/:I: - rj-” 
.j=l I . 2”,B 

x H(sgn(Wj)(w,(%) - 1 - c~~W~kT-*))d? 

is a solution of (2). Its core has exactly one component in each 
3a;/2B\2ai&/3B, i = 1,. . n, and the vorticity has opposite sign 
on consecutive components. By Lemma 1, Part 2, each component is 
homeomorphic to a solid torus. 

The total kinetic energy corresponding to w,, is simply given by 

I pW,~2dZ/(27r2). * F%’ 
By roughly estimating the gradient of the right-hand side of 

w,,(x) = -jy wj . 
I 

W-‘IX/UJ - :iTI-3H(tl~~.j(CE) - 1 - /rCF2)dZ:, (10) 
j=l . 2B 
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we obtain, for 2 5 1 1. 7~ and 2ni 5 1x1 < 2a+-1, the upper-bound 

I Co7lst(lW~~ll/a~l + IW;l/lxI) 

if the aj/ai, j > i, are small enough and where the constants may be 
chosen independently of rb. This also holds for 1: = YL + 1 if we set 
W n+1 = G+1 = 0. In particular the total kinetic energy is uniformly 
bounded by 

C012.stfjaf-,(W~-, + W;) + C 
i=2 

onst(~ lwjla;)2~z,>2 Izlr8dx: 

which is finite if the sequence (ai, % E fV) converges quickly to 0. n 
Our result in the case n = 1 (unsurprisingly) gives Norbury’s vortex 

rings. In the limit 7~ + 00, the following theorem holds. 

THEOREM 5. - Taking an infinite sequence (ai, i E N) tending sujjiciently 
quickly to zero, the solutions with r~ rings converge (up to a subsequence) 
in C,‘,,({:c E IF!’ : r > 0)) to a solution consisting of a countable set of 
nested co-axial rings moving at the same speed and with finite total kinetic 
energy. In the moving frame, the cores accumulate to the origin, which is 
a point of discontinuity of the velocity. 

Proof. - We have 

‘4, I = W,(7&J.. . . > ~n,;-l)-~(G;(z, ~n.1,. ., ~r,.;-l) - Gi(O; . . .)) (11) 

+ S(z, u,,, , k:) (12) 

+ I(I~l)W(%.l,~~~ > %,i-1 )-’ 2 W,(. . .)S(Uilc/Uj,U,,,j, k). (13) 
j=i+l 

For fixed i, the sequence (v,,i : 71, > i) converges, up to a subsequence, in 
A& to some ~l,,~. This is proved by induction on i, using the compactness 
of (12) and the fact that the sequence { (13) : 7~ > i} is a Cauchy sequence 
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if (~1. I E N) converges quickly to 0. By (lo), we deduce the convergence 
of ‘lil,, in C:O,({:r; E Iw” : 7’ > 0)) to II’, satisfying 

II!, (:r:) = -g yj I’ w-l jX/f/,,j - :Fl-“H(,rL&:?) - 1 - X:‘t--*)tl.f;. (13) 
.j=l I *u 

For a fixed compact set in {.I: E Iw” : 7’ > 0}, the convergence of (14) is 
even in C*, by Part 4 of Lemma 1, if we omit the terms (finitely many) 
in the series that have discontinuous second derivative. The behaviours of 
Iw,~, [r&, and Iw&] f or 1 arge 1x1 are like respectively O( I:I:~-“), O( IX-‘) 
and O(I:c/-“). n 

4. CONCLUSION 

For some sequence (u< : % E fW) of positive numbers converging quickly 
to 0, we have established, for all n E fW, the existence of w,,, which 
corresponds to 7l vortex rings moving at the same speed, as well as a 
solution 70, consisting of an infinity of vortex rings accumulating to the 
origin. The physical interpretation of ‘~1, itself is not clear, because the 
corresponding velocity field has a point of discontinuity. However, I!;, 
may have some interest as the limit of the w,,. 

More generally. we could argue analogously for every finite subset 
and every subsequence of (CL; : % E tW), obtaining in this way a family 
{w, : CT E (0. I}“} of solutions of Euler equation. 

The main restriction lies in the fact that the consecutive vortex rings 
are near dilatations of Hill’s vortex. As a consequence, the case with all 
velocities W+ of one sign is precluded. More complicated steady solutions 
could probably be constructed using vortices of small cross section [ 18, 191. 

REFERENCES 

[I] S. ALAMA and Y. Y. LI, On multibump bound states for certain semilinear elliptic equations. 
.I. DifJ: Eqns, Vol. 96, 1992, pp. 89- 115. 

[2] A. AMBROSETTI and M. STRUWE, Existence of steady vortex rings in an ideal Ruid, Arch. 
Rut. Mech. Anal., Vol. 108, 1989, pp. 97-109. 

[3] C. .I. AMICK and L. E. FRAENKEL, The uniqueness of Hill’s spherical vortex, Arch. Rut. 
Mrch. And., Vol. 92, 1986, pp. 91-I 19. 

[4] C. J. AMICK and L. E. FRAENKEL, The uniqueness of a Family of Steady Vortex rings. Arch. 
Rat. Mech. Anal., Vol. 100, 1988, pp. 207-241. 

[S] C. J. AMICK and R. E. L. TURNER, A global branch of steady vortex rings. .I. rrine arr~e~. 
Murh., Vol. 384, 1988. pp. l-23. 



NESTED AXI-SYMMETRIC VORTEX RINGS 797 

[6] S. ANGENENT, T/w shudowing lrmmu ,fbr rlliptic PDE, Dpumics cf Injinitr Dimrnsiontrl 
S?.sterrzs, S. N. Chow and J. K. Hale eds., F37, 1987. 

[ 71 M. S. BERGER, Norzlineurity unrl,finctionul anulysis, Academic Press, 1977. 
[ 8J M. S. BERGER. Muthrmuticul .strncttrrrs of‘nonlineur sckncr. Kluver Academic Publisher\. 

Dordrecht, 1990. 
[9] IJ. BESSI, Homoclinic and period-doublin g bifurcations for damped systems, Ann. Iast. 

Henri Poincurl : unu!\se non lirzc’uire, Vol. 12, 1995, pp. l-25. 
[IO] B. Bu~;~;~NI and I% SBR~, A global condition for quasi-random behaviour in a class of 

conservative systems, Commun. Purr Appl. Math., Vol. 49, 1996, pp. 285-305. 
[ I I] G. R. BUKTON, Rearrangements of functions, maximisation of convex functionals, and 

vortex rings, M&h. Ann., Vol. 276, 1987, pp. 225-253. 
[ 121 G. R. BURTON, Variational problems on classes of rearrangements and multiple confi- 

gurations for steady vortices, Ann. Inst. Hrnri PoincarP: Annlysr non lin., Vol. 6. 1989. 
pp. 295-3 19. 

1131 G. R. BURTON. Uniqueness for the circular vortex-pair in a uniform flow, f’mcrrdings of 
the Royal Society of London Srrirr A, Vol. 452, 1996, pp. 2343.2350. 

[14] A. V. BURVAK and N. N. AKHMEDIEV. Stability-criterion for stationary bound-states 
of solitons with radiationless oscillating tails, Physicul RL’L.~CW E. Vol. 51. 1995, 
pp. 3572-3578. 

[ 151 V. COTI ZELATI and P. H. RABINOWITZ, Homoclinic type solutions for a semilinear elliptic 
PDE on R” , Comm. Pure Appl. Math.. Vol. 45, 1992, pp. 1217- 1269. 

[ 161 M. J. ESTEBAN, Nonlinear elliptic problems in strip-like domains: symmetry of positive 
vortex rings, Nonlineur Analysis TMA, Vol. 7, 1983, pp. 365-379. 

[ 171 I. FONSECA and W. GANGBO, Degree Theo? in Analysis and Applications, Oxford University 
Press, 1995. 

[IS] L. E. FRAENKEL, On steady vortex rings of small cross-section in an idea1 fluid, Proc. Roy. 
Sot. Len. A. Vol. 316, 1970, pp. 29-62. 

[ 191 L. E. FRAENKEL, Examples of steady vortex rings of small cross-section in an ideal fluid. 
J. Fluid Me&, Vol. 51, 1972, pp. I 19-135. 

[20] L. E. FRAENKEL, On steady vortex rin~.~ with swirl und u Soholev inryuulity, C. Bandle et 
al. (Editors), Progress in Partial Differential Eqns: Calculus of Variations, Applications. 
LONGMAN, 1992. 

[2l] L. E. FRAENKEL and M. S. BERGER, A global theory of steady vortex rings in an ideal 
fluid, Acm Math., Vol. 132, 1974, pp. 13-51. 

1221 D. GILBARG and N. S. TRUDINGER, Elliptic Prrrtinl Dijfbrentiul Equations oj’Second Order. 
Springer, 1977. 

1231 H. LAW, Hydrodynumics, Cambridge University Press, 1932. 
[24] Y. Y. LI. On -I/L = k(.r)fi’ in R8:‘, Comm. Pure Appl. M&h.. Vol. 46, 1993, pp. 303.340. 
[25] W.-M. NI, On the existence of global vortex rings, J. d’AnuI~.vr Muth., Vol. 37, 1980. 

pp. 208-247. 
[26] J. NORBURY, A steady vortex ring close to Hill’s spherical vortex, Proc. Cumhridge Philos. 

Sot., Vol. 72, 1972, pp. 253-284. 
1271 K. J. PALMER, Exponential Dichotomies and Transversal Homoclinic Points, JDE, Vol. 55, 

1984, pp. 225-256. 
1281 8. SERB, Looking for the Bernoulli shift, Ann. Inst. H. PoincurP, Awl. Non Linluiw, 

Vol. 10, 1993, pp. 561-590. 

(Mnnuscript received Nolvmher 20. 1995; 

RrlG.wd Mtrrch 25, 1996.) 


