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ABSTRACT. - We develop an equivariant Ljusternik-Schnirelman theory 
for non-even functionals. We show that if one applies a Za-equivariant 
min-max procedure to a non-symmetric functional cp, then one gets either 
the usual critical points, defined by V’(X) = 0 or an interesting new class 
of points x, defined by p(z) = cp(-XC> and (P’(X) = Acp’(-z) for some 
X > 0. We call them “Z2-resonant points”; by a “virtual critical point” we 
understand a point which is either critical or Za-resonant. We extend the 
classical existence and multiplicity results of Ljusternik-Schnirelman theory 
for critical points of even functionals to virtual critical points of non-even 
functionals. As an application we prove a bifurcation-type result for a 
class of non-homogenous semi-linear elliptic boundary value problems. 
0 Elsevier, Paris 

RlkwMl?. - Nous construisons une theotie de Ljusternik-Schnirelman pour 
des fonctionnelles non symetriques. Plus precidment, nous montrons que si 
l’on applique une procedure de minimax Za-Cquivariante a une fonctionnelle 
non paire cp, l’on obtient d’une part les points critiques habituels, definis 
par P’(X) = 0, et d’autre part des points d’un type nouveau, verifiant, 
(p(x) = p(-x) et cp’(~) = Xcp’(--X) p our certain X > 0. Nous les baptisons 
<q Za-resonants Y, et nous appellerons t< point critiques virtuels >> les points 
qui sont, soit critiques au sens habituel, soit Za-resonants. Nous Ctendons 
alors la theorie classique de Ljusternik-Schnirelman pour les points critiques 
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342 1. EKELAND AND N. GHOUSSOUB 

de fonctionnelles paires a la recherche des points critiques virtuels de 
fonctionnelles impaires. A titre d’application, nous obtenons un resultat de 
bifurcation pour une classe d’equations semi-lineaires elliptiques avec un 
second membre. 0 Elsevier, Paris 

I. INTRODUCTION 

Classical Ljustemik-Schnirelman theory tells us that any smooth and 
even functional cp on an n-dimensional sphere 5’” has at least n + 1 pairs 
of antipodal critical points. These critical points are found by considering 
for 1 5 k 5 n + 1, the numbers 

where each 3k consists of the class of all compact symmetric subsets of 
S” whose Za-genus is larger than k, and by proving that each of these 
numbers is in fact a critical level of cp. 

The key idea of the proof is that each class 3k is stable under odd (or 
72- equivariant) homotopies of the identity. Since the functional cp is even, 
its gradient flow belongs to this class of homotopies, and will not be able 
to push down the levels ck, which must therefore contain a critical point. 

This procedure, originally due to Ljustemik and Schnirelman, was 
successfully extended by many authors to the infinite dimensional setting 
in order to solve nonlinear elliptic partial differential equations of the form 

(*I 
-au = g(x, u), z E R c W”, 

u = 0, 2 E xl. 

where g(z, .) is odd for each z in the domain R. The latter assumption 
insures that the associated functional - the critical points of which are 
the solutions of (**)- is an even function on the appropriate Sobolev 
space. Lustemik-Schnirelman theory then enables us to conclude that this 
functional has infinitely many critical points, that is, that the equation (*) 
has infinitely many solutions. 

Assume now that g(z, .) is no longer odd, so that the associated functional 
is no longer even. Let us apply to this functional the same Zs-equivariant 
min-max procedure. What kind of points do we get? The answer turned out 
to be quite simple. Let us first state the problem in a general setting: 
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If D and X are two topological spaces, we shall denote by C(D; X) 
the set of all continuous maps from D into X. If Z’Z acts on both D 
and X, we shall say that a map h : D + X is odd or Za-equivariant if 
h(-z) = -h(z) f or every x E D. A deformation q E C([O, l] x D; X) is 
said to be Zz-equivariant if for any t, the function qft, .) is. 

A subset A of X is said to be symmetric if -x E A whenever x E A. 

DEFINITION I. 1. - Let B be a closed symmetric subset of a Hilbert space 
H. We shall say that a class 3 of subsets of H is a 72-homotopy stable 
family with boundary B if: 

(a) Every set in 3 is compact symmetric and contains B. 
(b) For any set A in 3 and any Z2-equivariant 7 E C([O, l] x H; H) 

satisfying $t,x) = x for all (t,x) in ((0) x H) U ([0, l] x B), we 
have that q( { 1) x A) E 3. In section II, we shall prove the following 

THEOREM (A). - Let cp be a Cl-functional on a Hilbert space H and 
consider a Zz-homotopy-stable family 3 in H with a closed symmetric 
boundary B. Suppose that 

sup v(B) < c := ,in$ ~22 (P(Z) 

and that ~(0) # c. Then, there exists a sequence (x~),, in H such that 
lim, cp(x:,) = c and which also satisjes one of the following (non-mutually 
exclusive) assertions: 
Either 

(a) lim, cp’(x:,) = 0, 
or 

(b) lim, ~p(-x~) = c and lim, ]]I+J’(x~) - X,(p’(-z~)]] = 0 for some 
sequence of positive reals (A,),. 

To derive an existence result from Theorem (A), we shall need a 
strengthening of the classical condition of Palais and Smale. Recall that 
a functional cp is said to satisfy the Palais-Smale condition at level c 
(in short (P-S),), if any sequence (xcn)n satisfying lim, cp(xn) = c and 
lim, cp’(x,) = 0 is relatively compact. 

DEFINITION 1.2. - Say that a Cl-functional cp on a Hilbert space H satisfies 
the symmetrized Palais-Smale condition at level c ((sP-S),) if cp satisfies 
(P-S), and if a sequence (x,), in H is relatively compact in H whenever 
it satisfies the following conditions: 

liFcp(x,) = liFcp(-x,) = c 
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and 

li; IId - Xnd(-x,)II =O f or some positive sequence of reals (A,), . 

We can now derive the following result, which tells us which kind of 
points we obtain by applying a Zp-equivariant min-max procedure to a 
non-even functional: 

COROLLARY 1.3. - Let cp be a Cl-functional on a Hilbert space H and 
consider a .?!a-homotopy-stable family 3 in H with a closed symmetric 
boundary B. Suppose that 

sup cp( B) < c := f:f, ~22 v(x), 

that cp satisjes (sP-S), and that ~(0) # c. Then there exists x E H, with 
q(z) = c such that: 
Either 

(4 d(x) = 0 
or 

(b) v(x) = cp(-x) = c and p’(x) = Xcp’(-x) for some X 2 0. 
As usual, we shall denote by KC the set of critical points at level c, i.e., 

K, = {x E H; (p(x) = c, q’(x) = 0). 

The points satisfying assertion (b) above will be called the 72-resonant 
points at level c. We shall denote 

K,f = {x E H; (p(x) = cp(-x) = c, q’(x) = Xcp(-x), X > O}. 

Note that the set K,f of Za-resonant points at level c is a symmetric set while 
the set KC of true critical points is generally not symmetric. We shall denote 

E,:=K,fuK, 

whose points will be called the virtual critical points at level c. Thus, a 
virtual critical point is either a true critical point or a Z2-resonant point. 

Sometimes we shall need the symmetrized version of the set E,, that is 

E,* = E, u -E, = K,f u (K, u -K,) 

We shall also consider the part of E,* that is on level c, that is: 
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Theorem (A) and its corollaries will be proved in section II. In section 
III, we shall show how the virtual critical points found in Theorem (A) can 
be localized by additional information. We first recall the following concept 
that was introduced in [A-R] and extensively studied in [G]. 

DEFINITION 1.4. - Let 3 be a homotopy-stable family with boundary B. 
A closed subset F of H is then said to be dual to 3 if it satisfies 

F II B = 8 and F n A # 0 for every A E 3. 

A typical example of a dual set to a family 3 is the set F = {‘p > c} 
where cp is a real-valued function on H and 

c = c(cp;3) := inf, ~ycp(~). 

Another more geometrical example is given by any sphere 5’ separating 
two points ‘1~ and u in a Hilbert space X. It is then dual to the class 
3 consisting of all continuous paths joining u and w. More elaborate 
examples will emerge in the sequel. We also refer to [G1,2] where this 
notion is studied at length. 

THEOREM (B). - Let cp be a Cl-functional on a Hilbert space H and 
consider a Zz-homotopy stable family 3 in H with a symmetric boundary 
B and let c := c(cp, 3). Suppose F is a closed subset of H that is dual to 
the family 3 and such that inf p(F) 2 c. 

Zf 0 $! F f? v-‘(c), then there exists a sequence (x,), in H such that 
(i) lim, cp(x:,) =‘c and lim,cp(-z,) < c, 
(ii) lim, dist(z,, F U -F) = 0, 

and which also satisfies one of the following (non-mutually exclusive) 
assertions: 
Either 

(iii.a) lim, cp’(x,) = 0,or 
(iii.b) lim, cp(-xc,) = c and lim,(cp’(z,) - X,(p’(-xn)) = 0 for some 

sequence of positive reals (A,),. 
Recall again that a functional cp is said to satisfy the Palais-Smale 

condition at level c and around the set D (in short (P-S)D,~), if any 
sequence (z~)~ satisfying lim, v(gn) = c, lim,dist(z,,D) = 0 and 
lim, (p’(z,) = 0 is relatively compact. 

We shall need the following strengthening of that compactness condition. 

DEFINITION 1.5. - Say that a Cl-functional cp on a Hilbert space H 
satisfies the symmetrized Palais-Smale condition at level c and around the 
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set F ((sP-S)F,) if ‘p satisfies (P-S)F”--F,~ and if a sequence (.‘G,,),~ in H 
is relatively compact whenever it satisfies the following conditions 

li,m (P(z~) = IiF ‘p( -2,) = c, 

lim(cp’(z,) - &(P’(--z,)) = 0 for some sequence of positive reals A,,. n 

as well as 

limdist(z,, F). 
72 

COROLLARY 1.6. - Under the hypothesis of Theorem (B), if cp satisjes 
(sp-s)F,o then there exists n: E H such that: 
Either 

(i) z E F, (P(X) = c and cp’(z) = 0, 
or 

(ii) x E -F, cp(z) = cp(--z) = c and (p’(z) = 0, 
or 

(iii) z E F, p(z) = ‘p( -z) = c and (p’(z) = Xcp’( -x)) for some X > 0. 
In other words, & fl F # 0. 

In section IV, we will be studying multiplicity. First, let us recall the 
notion of Za-index. Suppose the symmetry group 22 is acting on a smooth 
manifold X and denote by C the class of all closed symmetric subsets of 
X not containing 0. The Z2-index is defined on C in the following way: 

y(A) = inf{k; there exists f : A + W”\(O) odd and continuous}. 

If no such a finite k exists, we set y(A) = W. We also let r(0) = 0. 

THEOREM (C). - Let ‘p be a C’l-functional on a Hilbert space H sati@ing 
(sP-S), for any c E R and consider a a decreasing sequence of &-homotopy 
stable families (3j)y==, (with N possibly injinite) of symmetric compact 
subsets of H that satisfy the following excision property: 

(E) For every 1 5 j 5 j + p 5 N, any A in 3j+r and any U open and 
symmetric such that r(u) 5 p, we have A \ U E 3j. 

Suppose each level cj := c(cp, 3j) isjnite and that ~(0) < cl. Then, 
(a) EC) # 0 for each 1 5 j 5 N. 
(b) Zf cj = cj+p for some p 2 0, we have y(EzJ 2 p + 1. 
In particular, cp has at least N distinct virtual critical points. 
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II. EXISTENCE RESULTS 

The main idea behind the proofs below is the fact that the equivariant 
Ljustemik-Schnirelman min-max levels for the original functional cp and 
the even functional Q(z) = max(cp(z), cp(-z)) are the same. Therefore, 
modulo the obvious smoothness problems, the classical equivariant theory 
can apply to $J. One way to deal with this problem (at least when cp 
is positive) consists of replacing $I with the smooth and even functional 

P(z)+P-z) cpn(x> = ( 2 yzn with n large enough. However, we opted 
to give in this paper a direct proof that may have an independent interest. 
It consists of constructing an equivariant deformation that “pushes down” 
parts of-but not all-the non-critical level sets of a non-even functional. 
This is the object of this section. 

We start by stating the following quantitative version of Theorem (A). 
We use the notation Dq to describe the q-neighborhood of a set D. That 
is, if D is a subset of H and q > 0, then P = {z E H; dist(z, 0) < 77). 

THEOREM 11.1. - Let cp be a C1-functional on a Hilbert space H and 
consider a Za-homotopy-stable family 3 in H with a closed symmetric 
boundary B. Suppose that supcp(B) < c := c(cp,3) and that ~(0) # c. 
Then, for any e > 0 small enough and any A E 3 such that sup q(A) < 
c + c2, there exists x, E H such that 

(i) c - c2 5 cp(xt.,) 5 c + e2 
(ii) dist(x,, A) 5 c 

while satisfying one of the following {non-mutually exclusive) properties: 
Either 

(iii.4 IId(x,)II I 247 
or 

(iii.b) c - e2 5 cp(-x:,) I: c + c2 and (v’(~w(-~c)) > 1 _ 2& 
Il’f’(~)Il.lllp’(--zc)II - 

First, we establish the basic equivariant deformation lemmas for non-even 
functionals. 

THEOREM 11.2. - Let cp be a Cl-functional on a Hilbert space H and let 
K be a symmetric compact subset of H that is disjoint from a symmetric 
closed subset B of H. Suppose K does not contain 0 nor any critical point 
of ‘p and that there exists E (0 < E < l/2) such that for every x E K 

W(4, cp’(-4) 
IIYf~4II.II~‘(-~~ll < l- t. 
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Then, there exists rl > 0, an equivariant and continuous vector field 
V : H -+ H such that 

(i) V(z) = 0 for every z E B. 

(ii) IlV(x)II 5 1 for every z E H and IjV(z)(l = 1 on Kq. 

(iii) (p’(x), V(x)) < - min{$, 1 - 2e}ll~‘(z)ll for every z E K7. 

Proof. - We split K into two symmetric sets: 

XEK;-l-t-~< W(4, CPY-4) 
II44II&+~)II < l - E 

and 
ww cp’(-x)> 

II~‘@4II.II%+~>II L --I + t 
We first construct an appropriate vector field wr on a neighborhood of 

K1. For that, choose q1 > 0 small enough is such a way that Kf”l contains 
no critical points for cp, that 

Qr < min i dist(K, B), dist(O, K) 
> 

, (2) 

and for all z E Kf” 

(CPW, d-x:)) 
-l + t < IIrp’(x)Il.J(cp’(-x)11 < l - t. 

Now consider the set 

so that KY’ = D U (--II) and define on D the function 

IIdc4112 + WC4 d-x:)) 
p(xc> = llqJ’(-~c>ll” + (P’(Z)> @C--5)). 

Clearly, the function ,u as well as the vector field 

Wl(Z) = --(p’(x) + p(x)(p’(--2). 

(3) 

(4) 

are continuous on D. Extend w1 to KY’ in an equivariant fashion by 
setting wl(-z) = -wl(z) for any z E D. Note that the definition is 
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unambiguous on D n (-D) since ~(5) = 1 and ‘1ui(-2) = -u)i(z) for all 
z E D n (-0). We claim that for every 2 E KY’, 

(d(x), IlWl(X)ll wl(x) ) < -;llyqx)11. (5) 

To show that, set u = (p’(z), w = (p/(-x) and COST = &$$. 
If z E D, write (I’u(I = ~llull with Q 2 1. Note that 

1+cxcose 
a,u = 

a+cose 
which is necessarily between cos 6’ and 1. It follows from (3) that 

( 
Wl (4 

cp’(xc), 11~1(~>11 > 
-1+ ~a!COSO 

= (1+ ,a$ - 2/m cos @l/2 lbll 

< -l+F - “)~~u~~ 5 + - (6) 

If Q 5 1, then assertion (5) follows from the above estimate and the 
following easily verifiable identity: for all z E KY’, 

W(xt.>, 44) + Wbc>> 44) = 0. (7) 

We now construct an appropriate vector field w2 on a neighborhood of K2. 
For that, choose r/2 > 0 small enough is such a way that for all x E Ki”‘, 

W(4> PY-4) 
II~‘(~c>llw(-4ll < -l + 2E. 

and such that the set Kz”’ contains no critical points of cp. We now define 
on Kp the equivariant and continuous vector field 

w2(2) = -cp’(x) + cp’(-x). 

We claim that for any x E Kp, we have 

44 W(X:>~ llw2(x),l) I C-1 + 2+t474ll. 
Indeed, by using (8) we get that 

wc4 ~~w2(x)~~ 
u479 > = -IId(4ll” + Wb)> CP’W) 

II - cp’b:) + P’(-xc>ll 
< -lld(4II” + C-1 + ~~~Il~‘~~~II~ll~‘~-~:>II - 

II - P’W + (P’bc)ll 
5 (-1 + gJ lId( 

where a = !$$$#!. This clearly yields (9). 
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In order to glue the vector fields wi and wa, take q = 4 min{ni, r/a} and 
consider the following partition of unity: 

l,(x) = dist(z, K: \ K;) resp., e,(x) = dist(s, Kz \ KT). 

Since Ki and K2 are symmetric, Li and & are even functions and the 
vector field 

w(x) = e2 (x> Wl (x) u4 w2 (x> 
h(x) + [2(4 IlWl(4ll + 4(x) + e2(4 lbJ2(~)ll 

is therefore odd and continuous on KY U Kz. Moreover, for any x in 
K: U Kz, we have in view of (5) and (9) that llw(x)II 5 1 and 

wc4ww) < - mi*{ f, 1 - &}~l~‘(x)/l. (10) 

Now let 271 be any continuous extension of w to the whole of H and let 
G(x) = @(x) - G(-x)) b e i s t corresponding equivariant field. Note that 
6 = w on K: U Kz and hence is a continuous equivariant extension of w. 

We still need to make the vector field uniformly bounded everywhere 
and zero on B. For that, consider the set N = {XT E H; G(x) = 0). It is 
a closed symmetric set which is disjoint from Kq, since on the latter set 
P’(X) and cp’(- > x are not parallel by assumption (l), and therefore we can 
clearly assume-modulo taking a smaller n-that Nq II Kq = 0. 

Let now 

G(z) . F,(x) = IIqx)II If x 4 N 
0 otherwise 

and let 

g(x) = 
dist(x, N) 

dist(x, H \ NV) + dist(x, N) 

and 
h(x) = 

dist(x, B) 
dist(x, H \ Bq) + dist(x, B) 

It is clear that h and g are even and continuous functions and the vector field 
defined as V(x) = h(x)g(x)F( x is continuous, equivariant and satisfies ) 
assertions (i) and (ii) while it coincides with & on Kq and hence (iii) 
is also satisfied. 
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LEMMA 11.3. - Let cp be a Cl-functional on a Hilbert space H and let B be 
a given closed symmetric set. Suppose K1 and Kz are two compact subsets 
of H that are disjoint from B and such that for some E (0 < E < l/4), 

llq’(x)ll > 6 for every x E K1 U K2. (11) 

Assume further that Kz n (-Kz) = 0 while K1 is a symmetric set not 
containing 0 on which we have 

(12) 

Then, there exists 6 > 0 and a continuous and equivariant deformation Q: 
in C( [0, l] x H; H) such that for some to > 0, the following holds for 
every t E [O, to>, 

(i) a(t,x) = x for every x E B. 
(ii) Ila(t,x),x)II 5 t for every x E H. 
(iii) cp(a(t,x)) - p(x) 5 -$t for every x in K,6 U Kg. 

Proof. - We start by showing that there exists 77 > 0 and an equivariant 
and continuous vector field V : H --+ H such that 

(a) V(x) = 0 for every x E B. 
(b) IlV(x)ll 2 1 for every x E H and IlV(x)II = 1 on KY U Kz. 
(c) (cp’(x),V(x)) < ~l/‘p’(x)II for every x E K: u Kl. 
To do that, we first apply Lemma II.2 to the set K1 to find Q > 0 and a 

vector field VI that satisfies the conclusion of that lemma on KY’. 
In order to deal with K2, first note that since K2 n (- K2) = 0, we can 

take 59 small enough so that 

K;’ n -(K;‘) = 0, 

and such that for x E Kq*, we still have 

(13) 

lld(~:>II > 6. (14) 
Define on KF the (standard) vector field w2 (x) = -p’(x) and note that 
(13) allows us to extend it equivariantly and unambiguously to KT U - Kz 
by letting w2(-x) = -w2(x) for each x E Kp. It is clear that 

w(x)7 ~lw2(x)~~ w2(x) > < -IIdWIl 

for every x E Kz. 
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In order to glue the two vector fields VI and w2, we proceed as in the 
proof of the preceeding lemma: that is take S = min{ni, ~2) and consider 
an even partition of unity e,, !, associated to the symmetric sets Ki and 
K2 U - K2. The vector field 

w(x) = 
l,(x) 

K(x) + 
e1 (x) 

e1 (x) + [2(x) l,(x) + e,(x) w2(x) 

is therefore equivariant and continuous on the S-neighborhood of K1 U 
(K2 U - Kz). Moreover, for any x in Kf U K.j, we have in view of (14) 
and Lemma II.%.(iii) that 

(p’(z), w(x)) < - min 
{ I 

f7 1 IId(X:>Il~ (16) 

Now let 21, be any continuous extension of w to the whole of H and let 
G(x) = ;(tZ(x) - 6(-x)) b e 1 s corresponding equivariant field. Note that ‘t 
6 = w on the set K,6 U (K,6 U - K,6) and hence is a continuous equivariant 
extension of w. 

We still need to make the vector field uniformly bounded everywhere 
and zero on B. For that, consider again the set N = {Z E H; G(x) = O}. 
It is a closed symmetric set which is disjoint from K,6 U (Ki U -Ki) 
and we can clearly assume-module taking a smaller S-that the latter set 
is disjoint from N6. 

Let now 

6(x> F(x) = Ipqx)II if x f N 
0 otherwise 

and let 

d&(x, N) 
g(x) = dist(x, H \ Ns) + dist(x, IV) 

and 
d&(x, B) 

h(x) = dist(x, H \ B6) + dist(x, B) ’ 

Again, h and g are even and continuous functions and the vector field 
defined as V(x) = h(x)g(x)F( x is continuous, equivariant and satisfies ) . 
assertions (u) and (b) while it coincides with & on Kf u K,6 and 
hence (c) is also satisfied. 
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For any (t, x) E [0, l] x H, set cr(t, x) = 5 + tV(x) and let to = S. 
Assertions (i) and (ii) are clear. Moreover, for any z E K,6 U Kt and any 
t 5 to, we have for some 8 between 0 and 1, 

so that by (16), we have cp(o(t, x)) - (p(z) < -$, and the proof of the 
lemma is complete. 

Remark. - Note that cp is only decreasing along the deformation lines 
o(t, x) starting in a neighborhood of Ki U Ks and everywhere in H. 
Actually, cp is increasing along the flow starting on -K2. 

Proof of Theorem 1.1. - Let E > 0 be small enough so that 

supcp< c-c2 
B 

(17) 

and 
p(O) $2 [c - c2 5 c + c”] 

and let A be a set in 3 such that 

(18) 

c<supcp(A)<c+~~. (19) 

Consider the subspace L of C([O, l] x H; H) consisting of all continuous 
and equivariant deformations 7 such that 

q(t,z) = 2 for all (t,x) in Ka = ((0) x H) U ([0, l] x B) 

and sup{J]~(t,z) - z]]; t E [0,11,x E H} < +oo. 
The space L is a complete metric space once equipped with the following 

metric 

@/, d) = sup {Ilrl(& 4 - rl’(t, 411; (4 4 E P, 11 x HI. 
Define a function I : C --+ R by I(Q) = sup{cp(~(l,z));z E A}. Let fl be 
the identity in C, that is ?j(t, x) = x for all (t, x) in [0, l] x H and note that 

I(V) = su~{cp(x); z E A} < c + &2 I inf{l(q); 7 E L} + Ed. (20) 

Apply now Ekeland’s theorem to get 70 in L such that 

I(rlo) i w (21) 
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qvo,rl) I E (22) 

I(r]) > I(V0) - cS(q, 70) for all q in ,!Z. (23) 

Consider the following compact subsets of vo( { I} x A), 

C = 1:~ E VOW) x A)w(z) = QIO)} 

K1 = {X E 70((l) x A); (p(z) and p(-x) E [c - .?,c + E*]} 

and 

K2 = {X E qo({l) x A); tp(z) 2 c while cp(-zr) 5 c - c’]. 

and note that KI is symmetric and that K2 fl ( -Kz) = 0. Also, 

C c K1 u Kz (24) 

while (17) implies that 

(K,uK,)nB=0. (25) 

We shall now prove the following: 

CZuim. - If ]]#(X)]] > 2J: f F or all z E K1 U K2, then there exists 
2, E K1 such that 

This would prove the theorem since first, any point 5, in K1 u K2 necessarily 
satisfies c - E* 5 cp(z:,) 5 c + t* and dist(z,, A) 5 E in view of (22). 
Moreover, the above claim says that either ]]#(z)]] < 2J; for some 
z E K1 U K2 or there exists z, such that cp(z,) and cp(-x:,) belong to 
[c - c2, c + E*] and ,,$‘$;,‘$,~;-S;i\,, 2 1 - 2& . 

To establish the above claim, we shall assume it is false and work 
towards a contradiction. In that event, we have for every 2 E K1, 

(d(~h’(-~)) 
IIP’(” II.IIP’(-~)ll 

3-i 
< 1 - 2& and all the hypothesis of Lemma II.3 are 

satis ed. Hence, we may construct a continuous and equivariant deformation 
a(t,z) satisfying the conclusion of that lemma with a suitable 6 > 0 
and a time to > 0. For 0 < A < to, we consider the function 
qx(t,z) = a(tX, ~,(t,z)). It belongs to L since it is clearly continuous 
on [0, l] x H and since for all (t, X) E ((0) x H) U ([0, l] x B), we have 

Tjx(t, x) = a(tX, qo(t, XT)) = a(tX, x) = z 

Since S(~~X,VO) < tX 5 X, we get from (23) that I(nx) 2 I - 6X 
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Since A is compact, let ZA E A be such that cp(q~(l,x~)) = I. 
We then have 

P(w,(~,xx)) - cp(rlo(l,x)) 2 --EA for every x E A. (27) 

If 20 is any cluster point of (XX) when X -+ 0, we have from (27) that cp 
attains its maximum on vo( 1, A) at the point ~a( 1,x0) which means that 
qo( 1, x0) E C and hence it belongs to K1 U K2. 

It follows that for X small enough, qo( 1, xX) belongs to Kf U Kg. But 
for such X’s we have from (iii) of Lemma 11.3, that 

Combining (27) and (28) we get the obvious contradiction --E 5 -2~ and 
the proof of the theorem is complete. 

III. LOCATION OF THE VIRTUAL CRITICAL POINTS 

We shall now establish the following quantitative version of Theorem (B). 

THEOREM 111.1. - Let cp be a C’-junctional on a Hilbert space H and 
consider a Za-homotopy stable family 3 in H with a symmetric boundary B 
and let c := c(cp, 3). Suppose F is a closed subset oh H that is dual to the 
family 3 such that 0 $! F f~ cp-’ (c) and inf ‘p(F) 2 c - S for some S > 0. 

If 6 is small enough, then for any A in 3 satisfying sup v(A) 5 c + 6, 
there exists xg E H such that 

(i) c - 46 5 cp(x&) 5 c + 118 and cp(-xs) 5 c + 116, 
(ii) dist(xg, A) 5 3&!, 

(iii) dist(xa, F U -F) 5 5&, 
while satisfying one of the following (non-mutually exclusive) properties: 
Either 

(iv.a) [Iv’(x:~)[/ < 2P4, 
or 

(iv.b) c - 46 5 cp(-x6) and ,,$;~;;$$~:$,, L 1 - 2w4. 
Besides Corollary 1.6, it is worth noting the following consequences of 

the above theorem. 
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COROLLARY 111.2. - Let cp be a Cl-functional on a Hilbert space H and 
consider a Zz-homotopy-stable family 3 in H with a symmetric boundary 
B and let c := c(cp,3). Let F be a symmetric closed subset of H that is 
dual to the family 3 and such that 0 # F n cp-’ (c) while inf cp( F) > c. 

If cp satisfies (sP-s)~,~, then there exists a virtual critical point at the 
level c on the set F. 

Moreover, for any 6 > 0 and c > 0, there exists A E 3 such that 

sup’~(A) < C+E and A c (H\F) U (F fl &.)s. 

Proof - The first part is immediate from Theorem 111.1. Now, if the 
second claim were not true, then for some e. > 0 and some So > 0, the set 
F’ = F\(F n k$ o would be dual to the class3c, = {A E 3; sup p(A) 5 
~a}. By the first part, this would imply that F’ n l?, # 0 which is absurd. 

COROLLARY 111.3. - Under the hypothesis of Corollary III.2 on cp and 3, 
let F be a closed subset of H that is dual to the family 3 and which now 
satisfies 0 $ ‘p-‘(c) and sup p(B) < inf cp( F). 

Zf cp verifies (sP-S),. then c is a virtual critical value for ‘p. 

Proof - Indeed, the fact that F is dual to 3 implies that inf p(F) I: c. 
So we distinguish the two cases: 

(a) Either sup p(B) < c, which means that Theorem (A) applies, 
(b) or sup p(B) = inf p(F) = c, which means that the conditions of 

Corollary III.2 are satisfied and therefore we get a virtual critical 
point on F U -F. 

For the sequel we denote 

G, = {x E H; cp(x) < c} and L, = {X E H;cp(z) 2. c } 

COROLLARY 111.4. - Under the hypothesis of Corollaty 1.3, for any 6 > 0 
and any t > 0, there exists A E 3 such that 

sup’~(A) < C+E and A c G, U (EC)‘. 

Proof - If not, then for some co > 0 and some So > 0, the set 
F = L, \ (&J&O will be dual to the class 3c, = {A E 3; sup cp( A) 5 to}. 
By Corollary 1.6, this would imply that F n & # 0 which is absurd. 

COROLLARY 111.5. - Let ‘p be a Cl-functional on a Hilbert space H and 
consider a Za-homotopy-stable family 3 in H with a closed symmetric 
boundary B. Suppose that sup v(B) < c := c(cp, 3) and that q(O) # c. If 
‘p’ is uniformly continuous around the level c, then for every t > 0, there 
exist 6 > 0 and A E 3 with sup v(A) < c + S such that: 
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For any x E A satisfjting p(x) > c - 6 , we have: 
Either 

(9 IlWdll < 6, 
or 

(ii) Iv(z) - cp(-x)1 < E and ,,,$‘~~$$~~~\,, > 1 - E. 

Proof - If the claim does not hold, there exists then an co > 0 such 
that for every 6 > 0, the, set 

F =Lc-6 r-~ {x; l~d~(x)~~ L 60) 

n ( ix; I&4 - cp(-4 2 60) u C 
W(X:)> (P’(--5)) 

ll~‘~~>II.llv+4II s l- E” 1) 

satisfy the conditions of Theorem 111.2: that is F is dual to F and 
infF cp 1 c - 6. Hence, there exists x6 that satisfies the conclusions of 
that Theorem. By letting S --f 0, we construct a sequence (~6) whose 
distance to F goes to zero while satisfying the assertions (i), (ii) and (iii) 
of Theorem 111.1. This contradicts the uniform continuity of cp’. 

Here is another immediate application of Theorem 111.1. 

COROLLARY 111.6. - Let cp be a Cl-functional on a Hilbert space H and 
consider a Zz-homotopy-stable family 3 in H with a symmetric boundary 
B. Let $ be a continuous even functional such that $ 5 cp on H while 
c = c(cp,3) = c($,3). Suppose supq!~(B) < c and that cp verifies (sP-S),, 
then there exists x E H, such that 

(9 v(x) = $4~) = c 
and one of the following conditions hold: 
Either 

(ii.a) v)‘(x) = q!+(x) = 0, 
or 

(ii.b) q’(x) = G’(x) = Xcp’(-X) = -$‘( -x) for some X > 0. 

Proof - It is enough to realize that the closed symmetric set F = {$J 2 c} 
is then dual to 3 while inf v(F) = c. Corollary III.2 then applies to give 
the claim. 

Proof of Theorem 111.1. - Suppose S is small enough so that 

0 < S < max &d&(B, F); i[inf cp(F) - supq(B)]} 

Vol. 15, no 3-1998. 



358 I. EKELAND AND N. GHOUSSOUB 

and 

6 < max 
{ 

&lp(O) - cl, ~clist2(0, F)} 

Let 6 = e2/8 which implies that 

0 < E < max {i dist(B, F); J[inf cp(F) - sup p(B)]+} (1) 

where CX+ = a v 0. that 

inf cp(F) L c - c2/8 (2) 

and that 

either ~(0) $! [c - c2/2, c + 2c2] or dist(O, F) < 36/2. (3) 

We shall prove the existence of zE E H that satisfies 
(i) c - e2/2 5 cp(z,) 5 c + 11e2/8 and cp(-xc,) < c + llc2/8, 
(ii) dist(z,, F U -F) 2 3~/2, 
(iii) dist(z,, A) 5 ~/2, 

and such that one of the following assertions holds: 
(iv.a) Either ]]~‘(z~)]] 1. 2&, 
(iv.b) or (p(-ICY) 2 c - ~~/2 and ,,$(~~;~:~&-“;~~,, 2 1 - 2& 

This will clearly imply the claims of Theorem 111.1. 
Let F, = {X E H; dist(z, F) < E} and consider the subspace L of 

C([O, l] x H; H) consisting of all equivariant deformations n such that 

~(t, X) = 2 for all (t, CE) E Ko = (0) x H u [0, I] x (II U (A\ (F, U -FE))) 

and sup{]]~(t,z) - z]];t E [O,l],z E H} < +cm. 
Since ((0) x H) U ([0, I] x B) c Ka, we get that n({ 1) x A) E 3 for 

all n in ,C. The space I!Z equipped with the uniform metric 6 is a complete 
metric space. 

Set now @(XT) = max{O, &2 - E dist(z, F)} and define a lower semi- 
continuous function I : C -+ R by 

I(v) = SUP{(CP + Ilr)(rl(L z)); z E A)) 

Let d = inf{I(q);l;l E C}. S ince n({ 1) x A) E F for all 7 E L and since 
II, = c2 on F we get from the fact that F is dual to .F and estimate (2) that 

I(q) 2 sup{@ + $)(x);x E ~((1) x A) n F} L c - c2/8 + Ed. 
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Hence 
d 2 c + 7~~18. (4) 

Consider again the identity element ?j in L and note that 

d 2 I($ = sup{(cp + 4)(x); LC E A} < c + ~~/8 + &2 = c + 9E2/8. (5) 

Combine (4) and (5) to get that ?j satisfies 

I(q) < c + 9c2/8 5 d + c2/4 = inf{l(v); q E L} + e2/4. (6) 

Apply Ekeland’s theorem to get q. in L such that 

%o) I I(?9 (7) 

and 

qrlo> rl) I E/2 (8) 

I(n) 2 I(no) - ~h(q,qa) for all n in .C. (9) 

We now show that 

sup(cp + $)((A \ Fe) u B) 2 d - 3c2/4. (10) 

Indeed, since $J = 0 outside FE we get from (7) that 

sup(cp + $)(A \ FE) 5 supcp(A) < c + e2/8 5 d - 3~~/4. 

We now distinguish two cases: 
- either 0 < E < 3 dist(B, F) which means that B c A \ F, and we 

are done; 
- orO<c< &WF) - sup dB)l+ which means that the latter is 

strictly positive and sup v(B) 5 inf p(F) - ~~ 5 c - ~~ since F is 
dual to F. Hence sup(cp + q)(B) 5 c 5 d - 7c2/8 by (4). 

In both cases, (10) is verified. 
Consider now the following compact subsets of ~a( { 1) x A), 

C = b E rlo(W x A); (‘p + +)(x> = J(vo)l 

K~ = 5 E vo({l}xA);(cp+$)(z) and (9+$)(-x) E 
C 

d-T,d+% I) , 

K2 = II: E ~~((1) x A); (cp+$)(z) 2 d while (‘p + 11)(-x) I d - $$ 
> 

and let B’ = B U (A \ (FE U -FE)) be the new (symmetric!) boundary. 
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Note that K1 is also symmetric, while Kz n ( -K2) = 0. Moreover, 

C c KI u Kz (11) 

while (10) implies that 

(KluK2)nB’=0. (12) 

Also note that 0 $! K1. Indeed, otherwise we would have 

c - &2/2 5 q(O) 5 c + 11&2/8 

and 0 = ~a( 1, X) for some x which, in view of (12), must be in F, or -FE. 
We may assume without loss that dist(z, F) 5 E. On the other hand, by (8) 
we have [[z/1 = Ilna(l,z) - 511 5 S(qc,ij) 5 c/2. Hence dist(O, F) < 36/2 
which in view of the above estimate on p(O), contradicts (3). 

We shall now prove the following: 

Claim. - If ll~‘(~)l[ > 2J f E or all 17: E K1 U K2, then there exists 
5, E K1 such that 

Before proving it, let us show how it implies Theorem III. 1. Indeed, 
any point X, in K1 U K2 satisfies d - $ 5 (‘p + $)(xE) 5 d + $. Since 
0 5 $ 5 c2, we get from (4) that c - ~~/2 2 cp(rc,) 2 c+ 1k2/8 and since 
-2, E rlo({ l} x A), we have that ((p+$)(--x6) 5 I(Qo) h I($ 6 d+t2/4 
and hence cp(--zc,) 5 c + llc2/8. Assertion (i) is therefore established. 

For (ii) write 2, = qo( 1, CC) where, in view of (12), z is necessarily 
in the set F, U -F,. Hence dist(z, F U -F) < E. On the other hand, 
by (8) we have llz, - 41 = llv0(1,~) - 211 I S(rlo,ii) I 42. Hence 

dist(z,, F U -F) < 3t/2. 
Note that (iv) is also satisfied since z E A and dist(z,, A) 2 c/2 in view 

of (8). Finally, if z, satisfies the claim, then since it belongs to K1, we have 

cp(zc,) and (P(-z~) E c - 5, c + 11: and (d(Z)> cp’(-xl) 
Ilcp’(qII.Ilcp’(-411 > l- 2h. 

Proof of the claim. - Suppose it is false. This means that for every 
z E K1, ,,$$,‘:$$~~~\,, < 1 - 2& and since 0 $! K1, all the hypothesis 
of Lemma II.3 on K1, K2 and B’ are therefore satisfied. Hence, we may 
construct a continuous and equivariant deformation a(& z) satisfying the 
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conclusion of that lemma with a suitable 6 > 0 and a time to > 0. 
For 0 < X < to, we consider the function qx(t,z) = a(tX, qa(t,z)). It 
belongs to L since it is clearly continuous on [0, l] x H and since for all 
(t,x) E ((0) x H) U ([O,l] x B’), we have 

r/x(&z) = a(tX, T/&z)) = a(tX,x) = II: 

Since G(v~,qo) < tX 5 A, we get from (6) that I(vx) 2 I(qa) - eX/2. 
A being compact, we let zx E A be such that (cp+$)(~~(l, xX)) = I(qx). 

That is 

(‘~+~)(rlx(l,zx))-(cp+~)(rlo(l,z)) 2 -&X/2 for every z E A. (13) 

Since the Lipschitz constant of $ is less than E we get 

cpMl,d) - ho(l, Q)) 2 -3&x/2. 04) 
If za is any cluster point of (XX) when X + 0, we have from (13) that 

cp + $ attains its maximum on qo( 1, A) at the point qo( 1, zo) which means 
that qo(l,~) E C and hence in Ki U KZ. 

It follows that for X small enough, q( 1, XX) belongs to Ki U Kg. For 
such X’s we have from (iii) of Lemma 11.3, that 

cp(rlx(L 4) - (P(VO(L~A)) = 444 rlo(L XX)) - P(rlo(L Q)) 
< -3EX. (15) 

Combining (14) and (15) we get the obvious contradiction -3e/2 < -2~ 
and the proof of the theorem is complete. 

IV. MULTIPLICITY RESULTS FOR VIRTUAL CRITICAL POINTS 

We first recall the well known properties of the Za-index denoted by y. 
For more details, we refer to [R] or [S]. It satisfies the following: 

(11) $A) = 0 if and only if A = 0. 
(12) $Az) > I if there is an odd continuous map from Al to AZ. 
(13) If K is compact symmetric, there exists a closed symmetric 

neighborhood K6 = {qdist(z,K) 5 S} of K so that -y(Ks) = 
-i(K). 

(14) y(Al U AZ) 5 $Al) + y(A2) for all closed symmetric sets Al, AZ. 
(15) If K is compact symmetric, 0 $ K and y(K) 2 2 then K is infinite. 
(16) If K is compact symmetric and 0 $ K, then y(K) < +co. 

Here is the first multiplicity result 
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THEOREM IV.1. - Let cp be a C1-functional on a Hilbert space H and 
consider a Zz-homotopy-stable family 3 in H with a symmetric boundary 
B and let c := c(cp, 3). Suppose F is a symmetric closed subset of H that 
is dual to the family 3 and such that 0 $ F II cp-‘(c) while inf p(F) 2 c. 
If cp satisfies (sP-S)F,~, then we have 

y(E,* f? F) 2 inf{y(A n F); A E 3’). 

Proof. - Let n = inf{y(A n F); A E 3’). By property (13) of the 
index, there exists a symmetric neighborhood U of E,* n F such that 
y(u) = y(E,* n F). Let F’ = H \ U. It is clearly closed and symmetric. 
By property (14) of the index, we have for A in 3, 

$A n F) 5 64 n F \ U) + -0) 
= $A n F n F’) + y(E,* n F). 

It follows that if y( E,* n F) 5 n-1, then $AnFnF') 2 1 and in particular 
AnFn F’ # 0 for all A in 3 by property (11). In other words, the set FnF’ 
is dual to the class 3. On the other hand inf cp(F n F’) 2 inf p(F) 2 c. 
Hence Corollary III.2 applies to F n F’ and we get that E, n F n F’ # 0 
which is clearly a contradiction. 

The following multiplicity result is more reminescent of the L-S theory. 

THEOREM IV.2. - Let cp be a C1 -functional on a Hilbert space H satisfying 
(sP-S), for any c E W and consider a decreasing sequence of Zz-homotopy 
stable families (3j)yE1 in H (with N possibly injkite) with boundaries 
(Bj)y==,, that sati& the following excision property: 

(E) For every 1 5 j 5 j + p < N, any A in 3j+p and any U open and 
symmetric such that u n Bj = 8 and r(u) < p, we have A \ U E 3j. 

Let F be a closed symmetric set that is dual to 3j while sup ‘p( Bj) 5 d := 
inf p(F) for each 1 < j 5 N. 

Set cj = c(‘p, 3j), let M = sup{k > 0; ck = d} and suppose ~(0) < cl. 
Then, 

(4 Y@,*.,, n J’) 2 bf , 
(b) For very M < j 5 j + p 5 N such that cj = cj+r, we have 

Y+KJ 2 P + 1. 
In particular, if 0 E (X \ F) n {‘p 5 d} then 

(c) cp has at least N distinct virtual critical points. 
(d) cp has an unbounded sequence of virtual critical values whenever the 

sequence (3j)jN_, is injinite (N = +w). 
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Proof. - (a) Assume 1 5 A4 since otherwise there is nothing to prove. 
In view of Theorem IV.l, it is enough to show that y(A n F) 2 M for 
every A in .3~. Suppose this was false for some A in 3~. By property 
(13) of the index and since F n B1 = 0 we can find U open and symmetric 
suchthatArlFcU,??i~B1=Oandy(U)=y(AnF)~M-l.The 
excision property implies that A \ U E 3i and hence that (A \ U) n F # 0 
which is clearly a contradiction. 

(b) Suppose now A4 < j < j + p 5 N such that cj = c~+~. If we 
suppose y(EzJ ) 5 p and since sup cp(Bj) 5 inf ‘p(F) < cj, we can find, as 
above, an open symmetric neighborhood U of ETJ such that u n Bj = 0 
and r(g) 5 p. By the excision property, we have A \ U E 3j for every 
A in 3j+p, hence (A \ U) n {‘p > cj} is non-empty. It follows that 
F’ = {‘p 2 ~j+~} \ U = {‘p > cj} \ U is dual to the class 3j+p. By 
Corollary 1.6, Ezy \ U = E:J+, n F’ # 0 which is clearly a contradiction. 

(c) Follows immediately from the above estimates and property (15) of the 
index since 0 $! K,, n F when 1 5 i 5 h4 and 0 $ K,, if M + 1 5 i 5 N 
since then d < c;. 

(d) Suppose now that (3j)j is an infinite sequence of Zz-homotopy stable 
classes. We note first that M must be finite. Indeed, we have by (a) that 
y(Ei n F) 2 M . Since cp satisfies (sP - S),, E; n F is compact and 
since the latter does not contain 0, we cannot have y(Ei n F) = +co in 
view of property (16) of the index. 

The same reasoning shows that the sequence (c~)~>M cannot become 
stationary. It remains to show that c, = limj cj must be +co. Suppose 
not and consider 

Since it is symmetric, compact and does not contain 0, we have 
r(E) = Q < +CG. Let U be an open symmetric set containing K, disjoint 
from u,B, c {‘p 5 d} and such that r(u) = 4. We shall show the existence 
of a sequence (z~)~ with lim, I = c, lim, d&(x,, H \ U) = 0 
and such that either lim, cp’(zn) = 0, or lim, cp(--x:,) = c and 
lim,(cp’(sn) - X,(p’(-Xc,)) = 0 f or some positive sequence of reals X,. 

Since cp has (sP-S)c for any c, we will then get that E, \ U # 0 which 
is clearly a contradiction. 

To get the sequence of approximate virtual critical points, fix S > 0 such 
that cM+l < c - S and find j large enough so that c~+l < c - S 5 cj 5 
~j+~ 5 c. By the excision property, we have for every A in 3j+, that 
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A\UE.F~.HenceifwesetF’={cp>cj}\UwegetthatF’nA#0for 
all A in .Tj+, and F’ n Bj+g = 0, since sup c~(B~+~) 5 d < e&f+1 < c~+~. 
Moreover, inf cp(F’) > cj 2 c - 6 2 cj+q - 6. 

It follows from Theorem III.1 that if we choose 6 initially to be less than 
i(c~+i - d) 5 i[inf v)(F’) - sup (P(B~+~)], then there is zg E H so that 

(i) ~j+~ - 46 5 cp(xa) 5 cj+p + 116, hence c- 56 < (P(Q) < c+ 126 
(ii) dist(x6, F’ U -F’) 5 5&, 

and 
(iii.a) either ]]v’(zh)]] < 2S1/4 
(iiib) or ~j+~ - 4s 5 (p(-X6) 2 C’ (~,(za),p,(-zo~)+4 + 96 (hence c - 56 5 d--z61 i 

c + lob) and II~‘(~a)ll.ll~‘(-~a)ll > 1 - 2N4. 
We get the required contradiction by letting 6 go to 0 . 

We can now establish the following symmetric mountain pass theorem for 
non-evenfinctionals. We shall use the notation BR(E) (resp., SE(E)) to 
denote the ball (resp., the sphere) of radius R > 0 in the Banach space E. 

COROLLARY IV.3 (the finite case). - Let cp be a Cl-functional on a Hilbert 
space H = Y $ Z where Y is a finite dimensional subspace of dimension 
k. Assume the following conditions: 

(a) There is p > 0 and a 2 0 such that inf cp(S,,(Z)) 2 a. 
(b) There exist a subspace E,, of H containing Y with dim(E,) = n > k 

and R > p such that sup(p(S~(E)) 5 0. 
(c) ~(0) = 0 and cp verifies (sP-S), for every c E !8. 
Then, there exist levels c,, > . > ck+l > Q 2 0 such that: 
(i) If 0 < ci for some i (k < 2’ 5 n), there exists a virtual critical point 

at level ci. 
(ii)ZfO<c;=q+,forsomek<i~i+p~n,theny(E,*~)>p+l. 

(iii) Zf ck+p = Q! > 0 for some 1 2 p 5 n - k, then y(E: n S,(Z)) 2. p. 
In particular, cp has at least n - k distinct pairs of non-trivial virtual 

critical points. 

Proof. - As in the standard symmetric mountain pass theorem, consider 
the classes of functions 

C, = {h E C(BR( E,), X); h odd and equal the identity on SR(&)}. 

Write D, for Bn(E,) and S, for Sn(En) and for k < j 5 n, define 

Fj = -Fj(&,R) = {h(D, \ W; h E &,Yz,(W I n - j). 
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It is well known (See Rabinowitz [RI) that the classes 3j (k < j 5 n) are 
non-empty and they satisfy the following properties: 

(a) (Monotonicity) 3j+r c 3j. 

(b) (Stability) 3j is a Za-homotopic class of dimension n with boundary 
s 7%’ 

(c) (Excision) For any A in 3j+p, any open symmetric set U such that 
0 n S, = 0 and r(u) 5 p, we have A \ U E 3j. 

(d) (Linking) For all A in 3j, yzz (A n S,( 2)) 2 j - Ic provided p < R. 

It is now enough to set cj = c(cp, 3j) and to apply Theorem IV.2, the 
dual set F being S,( 2). 

Now we can prove the following 

COROLLARY IV.4 (the infinite case). - Let cp be a Cl-functional satisfying 
SP - S), on a Hilbert space X = Y $ 2 with dim(Y) < 00. Assume 
~(0) = 0 as well as the following conditions: 

(1) There is p > 0 and o > 0 such that inf cp(S,(Z)) 2 a. 

(2) There exists an increasing sequence (E,), of jinite dimensional 
subspaces of X, all containing Y such that lim dim(E,) = 00 and 
for each 7~, sup cp( S’R~ (E,)) 5 0 for some Rz > p. 

Then cp has an unbounded sequence of virtual critical values. 

Proof. - For each k < j, let yj = U{3j(E,, R,); dim(&) 2 j} where 

3j (E,, R,) are the families defined yn the preceeding corollary. Each 3j 
is a union of homotopy-stable classes with boundaries (SR, (E,)), that 
satisfy properties (a), -, (d) stated above. 

By the monotonicity and linking properties, we have: 

where cj = c(cp,?j). 

Property (c) above implies that (.?“)j verifies the excision axiom. 
Moreover, 0 does not belong to (H \ S,( 2)) n { cp < a}. Hence 
Corollary IV.3 apply (with F = S,(Z)) to get the result. 
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V. AN APPLICATION 

We now consider the following non-homogeneous Dirichlet boundary 
value problem 

(*b 
1 

-Au = Iulp-*u + f on 0 
u=o on Xl. 

where R c RN is a bounded domain (N 1 3), H = Hi(R), f E H-l. 
We shall deal with the subcritical case, that is when p < 2* = E, the 
limiting exponent in the Sobolev embedding. 

Weak solutions for this problem are the critical points of the functional 

defined on H. It is clear that the difficulty comes from the fact that the 
non-homogeneous term adds a linear term to an otherwise Pz-invariant 
functional. 

If f = 0, then ( * ) f is known to have an infinite number of solutions 
([R],[St]). The same is known to hold for the non-homogeneous case 
provided p < fi (See [Ba-Be], [Ba-L]). It is still an open problem 
whether this remains true for all p up to 2*. On the other hand, Bahri [Ba] 
had shown the following generic result: 

If 2 < p < 2*, then the set of f E H-l such that (*)f has an infinite 
number of solutions is a dense residual in H-l. 

The relevance of the results of this paper on this problem comes from 
the easily verifiable fact that Z2-resonant points of pf correspond to (weak) 
solutions of the following equation 

(**b 

-AU = Ju/P-*u + pf on R 
u=o on dR 

-l<fi<l and J fudx = 0. 
R 

The theory developed in the preceding sections yields the following: 

THEOREM V.l. - Assume that 2 < p < 2*, then for every f E H-l, either 
(*)f or (**)f has an unbounded sequence of solutions. 

Proof. - We shall show that ~pf satisfies the hypothesis of Corollary IV.4. 
Denote 0 < Xi < X2 5 Xs 5 . . . the eigenvalues of -A on fl with 

homogeneous Dirichlet data and let wj be the corresponding eigenfunctions. 
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Claim (i). - For Ica sufficiently large, there exist p > 0 such that 
(Pi 2 1 for all u E 2 := span{vk; k 2 k,} with 11~11~; = p. 

Indeed, by the Sobolev’s embedding H;(R) L, L2* (52) and Holder’s 
inequality, we get by setting C = II fllH-l, that for u E 2, 

where~+~=l.Inparticular,r=N(l-~)>O.Letnowp>Obesuch 
that p2 - 4(Cp + 1) = 0 and choose k. E N such that kA&r’21d)-2 5 a 
and therefore the claim. 

Let now Y = span{vj; j < ko} be its orthogonal complement. We now 
show the following: 

Claim (ii). - On any finite dimensional subspace E c Hi, there exist 
constants Ci , C2, C’s (depending on E) such that 

sup cp(u) 5 C1R2 - C2Rq + C,R. 
waBR(E) 

Indeed, for any fixed u E H,j and any R > 0, we have 

This easily implies Claim (ii). 

Claim (iii). - The functional ‘pf satisfies the symmetrized (sP-S), 
condition at any level c > 0. 

First, it is well known that qf satisfies (P - S), for any c. Now assume 
that (u~)~ is a sequence in Hi(R) that satisfies the following conditions: 

lirFvf(uh) = li7m’pf(-u?c) = c (1) 

and 

lim Ilcp&J-~,cp~( u,) JIH-~=O for some positive sequence of reals (A,),, . n 
(2) 
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This easily imply that 

J fu, dx + 0 
R 

(3) 

and that for any w E Ht (IR), 

((P&J,w) - s /- fw dx + 0. (4) 
n R 

It follows that ([Iv~(u~)[~)~ is bounded, that ((Pi, u,) + 0 and 
$%(u,) + c. Therefore, there is K > 0 such that for n large enough, 

which clearly implies that (u~)~ is bounded in Hi (0). 
Let now u be a weak cluster point for (u~)~ in Ht (0) and use the 

compactness of the Sobolev embedding to deduce that IIu, - z& 4 0. This 
combined with the fact that ((Pi, u,) -+ 0, yields that IIu,II&~ -+ I~u@. 
On the other hand (4) and the weak to norm continuity of 9; iields that 
1141; = ll”11:,,1~ which means that ll~~ll&~ --+ I\u& and therefore we have 
strong convergence of (u~)~ in Ei,l. 

Let now ,u be a cluster point for the sequence pu, = 3. It is clear 
that the limit u will then satisfy -Au = IuI*-~u + puf on R, u = 0 on 
dR, 0 5 ,LL 5 1 and so fu dx = 0. 

Remark. - One is tempted to understand the parameter p as a Lagrange 
multiplier that appears by way of finding solutions to equation (**)f by 
seeking the critical points of pf on the hyperplane: 

Hf = {u E H;(R); 
s 

fu dx = 0). 
R 

However, we cannot see how to get in this way the additional information 
-1 5 ,LL 5 1. Moreover, there may be some difficulties in constructing 
the decreasing and infinite sequence of min-max families (&)l~ inside the 
hyperplane Hf. These difficulties are more apparent when one considers 
the more general problem 

(*I 
-Au = g(x,u), x E R c R”, 

u = 0, x E xl. 
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where g(x, .) is not necessarily odd. The results of this paper yield -module 
the standard superquadratic conditions on g- that there exists an infinite 
number of solutions to the problem 

(**I 

-Au = gl(z, u) + ,uga(z, u), x E 0 c IF!“, 

u = 0, x E dR 

-l<p<l and 
./ 

G2(x, u)dx = 0. 
R 

Where g1 (resp., g2) are the odd (resp., even) part of g and where 
G2(x, t) = s,” gdx, 8) ds. 

We can also prove the following bifurcation type result, which is 
originally due to [A]: 

THEOREM V.2. - Assume that 2 < p < 2* and that (*)o has at most a 
countable number of solutions. Then, there exists a dense Gg subset G of 
H-l such that for every f E G and any integer n 2 1, there exists 6, > 0 
such that for any 0 5 a 5 S,, the problem (*)af has at least n solutions. 

Proof. - Suppose (*)c has a countable number of non-trivial solutions 
(w~)~ and consider the following dense Gs subset of H-l(Q). 

G = n,{f E H-l(R); 
J’ 

v,f # 0). 
R 

Fix f E G and any integer N 2 1 and suppose the above statement does 
not hold. This means that for any 6 > 0, there exists a, 0 < a < 6 such 
that paf has less than N - 1 solutions. 

Let Y and 2 be the subspaces associated to ‘pf in the proof of 
Theorem V.l and let {Fj; k0 5 j < ka + N} be the Hz-homotopy stable 
families associated to them in Corollary IV.4. Set q(a) = c(paf, Fj) and 
note that, since paf has less than N - 1 true critical points, then by 
Corollary IV.3 there exists at least one virtual critical point at one of the 
levels ci (a) 5 . . . 2 cN (a). That is there exists b, 0 5 b < a 5 6 such that 
(*)bf has a solution u, satisfying j’o u,f dx = 0, and paf (u,) = cj for 
some j, 1 5 j 5 N, which means that 1 5 (paf(ua) < cN(a). 

Letting 6 -+ 0, it is then easy to see that the sequence (u,),, is such that 
(Pi + 0 and (Pi is bounded above. Since cpo satisfies the (P - 5’) 
condition, we get then a solution u of (*). such that Jo uf dx = 0. This 
is a contradiction since f E G and since the fact that 1 < cpU, (u,) yields 
that u is a non-trivial solution for (*)a. 
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This is essentially a bifurcation result. It means that, for any given 
function f in G, the problem 

(**L.f 1 
-AU = IuIP-~u + af on R 

7L = 0 on dR 

has more and more solutions as a + 0, and that these solutions converge 
to the (countably many) solutions of the homogeneous problem 

(**lo C -Au = IuI~-~u, on R 
1L = 0 on f3R 
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