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ABSTRACT. - We study the time-dependent Ginzburg-Landau model for 
type I superconductivity in a cylindrically symmetric setting. We show 
that under appropriate monotonicity properties for the initial data, the 
singular limit (as the penetration depth tends to zero and the Ginzburg- 
Landau parameter is kept fixed) is a classical one-phase Stefan problem 
for the magnetic field H. We combine energy methods with monotonicity 
properties obtained via maximum principles. 0 Elsevier, Paris 

RBsuMB. - Nous montrons, sous l’hypothese de symttrie cylindrique, 
que le champ magnetique H satisfait le probleme de Stefan a une phase, 
en prenant la limite singuliere des equations de Ginzburg-Landau non 
stationnaire qui modelisent la supraconductivite de type I. Nous supposons 
que les conditions initiales sont << monotones D et nous nous servons de 
methodes d’energie combinees avec des proprietes de monotonicite obtenues 
via des principes du maximum. 0 Elsevier, Paris 
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372 L. BRONSARD AND B. STOTH 

SECTION 1 

In this paper, we study asymptotic behaviour of the dimensionless time 
dependent Ginzburg-Landau equations for superconductivity, 

-X2 curl 2A = X2(&A + Vq5) + ~$($*V$J - T/IV+*) + 1$12A. 

Here 11, is a complex order parameter, whose squared modulus measures the 
density of superconducting electrons, A is the magnetic vector potential and 
4 the electric scalar potential. From Maxwell’s equation it follows that the 
potentials determine the magnetic field H and the electric field E through 

H= curlA and E=-At--Vd. 

The coefficients Q, X, and t are positive material constants. The parameter X 
is called the penetration depth while the parameter [ is the coherence length, 
and both parameters are small. The ratio of these length scales K = $ is 
called the Ginzburg-Landau parameter. We shall consider the asymptotic 
behaviour X + 0 while keeping K fixed and prove, in a cylindrically 
symmetric case, convergence to a classical one-phase Stefan problem for 
the magnetic field H. 

Next we briefly describe certain aspects of the Ginzburg-Landau theory 
of superconductivity. We refer to the overview papers [CHO: 1992, DGP: 
19921 and the reference therein for a broader introduction to this theory. 
Ginzburg and Landau, in their fundamental paper of 1950 [GL: 19501, 
introduced a phenomenological theory for (steady-state) superconductivity 
based on the Ginzburg-Landau energy density 

wtd) + IH - fLpp,12 + toll, - ;A$ 2, 

where the typical W(]$]) = $(l - ]$]“)“, and Happi is the applied 
magnetic field on the boundary of the superconducting device. Their theory 
was largely’ accepted when Gor’kov [G:1959] showed formally that the 
Ginzburg-Landau theory can be derived in the limit of the microscopic 
BCS theory [BCS: 19571. 

Later, the time dependent Ginzburg-Landau equations were written 
down by Gor’kov and Eliashberg [GE: 19681 using an averaging of the 
microscopic BCS theory. These equations are not obtained directly as the 
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THE GINZBURG-LANDAU EQUATIONS 373 

gradient flow for the Ginzburg-Landau energy of superconductivity because 
they must satisfy gauge invariance, due to the coupling with Maxwell’s 
equations. This means that if $, A and 4 are solutions to the above 
equations, then 

lead to the same evolution for the electromagnetic fields E, H and electron 
density ]$]2. By choosing different gauges, Chen, Hoffman and Liang [CHL: 
19931, Du [D:1994] and Elliott and Tang [ET] have proven independently 
the well-posedness of the time dependent Ginzburg-Landau equations using 
different methods. 

Quite different asymptotic behaviour (for small A) is expected for different 
values of the Ginzburg-Landau parameter K. In type II superconductors 
(6 > -&), one expects that vortices of “normal phase” penetrate the 
superconducting matrix as the strength of the applied magnetic field 
]HaPPtI is increased through some critical value. In contrast, for type 
I superconductors (K < -&), one expects a region of normal phase to 
penetrate the superconducting device as ]HaPpt( exceeds the critical value 
H, = 5, and that a smooth interface separates the two regions. Keller 
[K: 19581 studied superconducting materials of “cylindrical” form, R x R 
where R is a bounded set in R2, with the applied magnetic field parallel to 
the cylinder. Using physical reasoning based on Maxwell’s equations, he 
predicted that the interface separating the normal from the superconducting 
regions should evolve according to a classical one-phase Stefan problem 
for the magnetic field H. In the general case in R3, Chairnan [C] used 
asymptotic expansion to show formally that as X + 0 and for lHapplI bigger 
than H,, the time dependent Ginzburg-Landau equations approximate the 
following “vectorial” one-phase Stefan problem 

{ 

&H = AH in the normal region, 
H=O in the superconducting region, 
IHI = K on the interface r, 
curlH x n. = -v,H on l?, 

where r is the interface separating the superconducting and the normal 
phases. Here n is the unit normal to r (which we choose to point towards 
the normal region) and V, is the normal velocity to l? (negative when 
the superconductor region is shrinking). We note that in a superconducting 
material the electric field E = 0 and the magnetic field is expelled, i.e. 
H = 0; this later fact is known as the Meissner effect [MO: 19331. This 
vectorial Stefan problem can also be derived from Maxwell’s equations 
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374 L. BRONSARD AND B. STOTH 

(see [CHO: 19921) and reduces to the classical one-phase Stefan problem 
derived by Keller in the “cylindrical” case. The existence, uniqueness and 
long-time behaviour for this system has been studied by Friedman and Hu 
[FH:1991] under the assumption that H depends on one variable or that 
it satisfies radial symmetry. 

In this paper, we present a rigorous justification of Chapman’s 
asymptotics in the cylindrically symmetric case, that is we prove 
convergence of the time dependent Ginzburg-Landau equations to the 
classical one-phase Stefan problem derived by Keller. We assume that 
the superconducting device is an infinite round wire (i.e. of the form 
Bl(O) x R with Bl(0) the open unit ball in R2), that the external applied 
field is constant and parallel to the wire, and we impose appropriate 
monotone initial data (see (Al) to (A5) of Section 4). This monotonicity 
assumption ensures that the one-phase Stefan problem is well-posed, or 
stable, in the sense that the normal region expends into the superconducting 
region (see e.g. [MI). In particular, our result shows rigorously that the time 
dependent Ginzburg-Landau equations are in fact a valid approximation of 
the well established free boundary model for type I superconductors. 

To our knowledge there are few methods available at the present time to 
prove convergence of systems in general settings. However, energy methods 
have been quite successful in studying systems in radially symmetric 
settings. These methods have the important advantages that they are direct, 
give clear explanation and rigorous justification for the formal asymptotic 
results in special settings. Some examples are vector-valued singular 
perturbation problems with potentials vanishing on concentric circles [BS] 
or the phase-field equations [S]. In these papers, energy estimates are 
combined with error estimates on the approximation by the first order 
terms in the asymptotic expansion. Here, the method is even more direct 
since it only relies on energy estimates and maximum principles. More 
precisely, the major difference to those results obtained in [BS] and [S] 
is that compactness cannot be obtained by energy bounds, but has to be 
derived from structural properties such as monotonicity. This reflects the 
fact that the surface tension is of order X for the present system of equations 
and thus vanishes in the limit. We combine the energy bounds with the 
monotonicity properties to directly pass to the limit in the equations. In 
particular, we do this without using the first order expansion and thus the 
arguments are less technical. 

In Section 2, we implement the gauge transformation originally done 
in [C] (cf [CHO: 19921) in which the time dependent Ginzburg-Landau 
equations admit a Lyapunov functional. In this gauge, we obtain coupled 
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equations with real coefficients for some new vector potential Q, some new 
scalar potential @ and for f = ]$I. We then derive the equations we shall 
study in the cylindrical symmetric setting. 

In Section 3, we derive the energy estimates (cf Lemma 3.6 to 3.8) 
and using maximum principle and invariant region arguments, we prove 
that the solutions stay monotone for all time (cf Lemma 3.1 to 3.5). In 
particular, this means that the system of Ginzburg-Landau equations has 
the same stability properties as the well-posed Stefan problem. As a first 
by-product of our energy estimates and monotonicity properties, we show 
that the radial problem (GL) of Section 3 is well-posed. 

In Section 4, we prove the convergence to the classical one-phase Stefan 
problem (cf Proposition 4.1, 4.2 and Theorem 4.9). In particular, we must 
show that there is no “indetermined region”: that is a normal region where 
the limiting magnetic field is zero (cf Propositions 4.6 and 4.8). 

Finally, we note that our results hold true even when 6 > -& (type II 
superconductor). This reflects our assumptions of cylindrical symmetry and 
monotonicity. Indeed, in the radial case, vortices can only be at the origin, 
which we rule out by the monotonicity assumptions on the initial data. We 
note however that even for type II superconductors, phase transformation 
has numerically been observed, when a very strong field is applied to 
a superconducting device. At the beginning of the process a normally 
conducting phase develops at the boundary, penetrates into the wire, and 
eventually decomposes into the mixed state, 

SECTION 2: THE RADIAL EQUATIONS 
OF SUPERCONDUCTIVITY 

If 141 # 0 we may write $ = feix, and following [C: 19921 and 
[CHO: 19921, we let Q = A’- X,$0x and + = 4 + X(&x, so that the 
time-dependent Ginzburg-Landau equations become 

at2&f - t2Af + W’(f) + +~I’ = 0, 

A2 (&Q + V@ + curl ‘6) + f”Q = 0, 

af2@ + div(f2Q) = 0. 

Here W(f) = i(l- f2)2, so that W’(f) = f3 - f and W(f) 2 0. Suitable 
boundary conditions are: 

a, f = 0, v . (fQ) = 0, v x curl & = v x tiD. 
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_ As we saw in the introduction, this is a well-posed problem for f, @ and 
Q, if suitable initial values are imposed. From these quantities the physical 
fields ,?? and g may be calculated, since we have H = curl A’ = curl & 
and l? = -&A’- 04 = --a,& - <X&Ox - 04 = -&Q - V@. 

In this paper we assume that the domain is an infinite wire 

and that the external field go is parallel to the wire. In this situation 
we seek a soluti;of the form (f, Q,@)(t,z,y) = (f, &, @)(t,z), with 

& = Q(t, 1x1) $ 
( ‘1 

> and f = f(t, 1x1). We put r = 1x1 and denote 
0 

differentiation with respect to x and T by V and ‘, respectively. Due to this 
choice of gauge we find + E 0 and Q and f solve 

+ $fQ2 = 0, 

+ ff2Q = 0, 

0 
and l? = i ) 0 with H = $(rQ)‘. We remark that H’ = 

H(t, r) 
($-Q)‘)’ = Q”+ ;Q’- $Q. W e c h oose the boundary values (see Section 
3 (BC) and the explanation below) 

f’lr=O = f’L.=l = 0, +QJ’i = HD, &Iv=,, = 0, 
r=l 

where Ho 2 3 = H,. In this case the associated energy is given by 

Ex(f> Q) := I’ [ 2 (f’)2 + W(f) + $f2Q2 + f (Q’ + fQ - Ho 2 )I rdr 

Our method applies as well to the following one-dimensional problem 
corresponding to an infinite wall: 
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0 
If all quantities only depend on z and & = Q(t,a) 1 0 , then @ E 0 

0 
and Q and f solve 

;(a&f - f”) + W’(f) + ffQ’ = 0, 

(&Q - Q”) + ;f2Q = 0, 

0 
and l? = 

( ) 
0 with H = Q’. The boundary values are 

H(t, x) 

f’lz=o = f’lz=l = Q’lzco = 0, Q’L = HD. 

SECTION 3: THE RADIAL EQUATION; EXISTENCE, 
MAXIMUM PRINCIPLES, ENERGY BOUNDS 

In the situation of an infinite wire we study the solution of the radial 
Ginzburg-Landau system 

VW ; + $ f Q2 = 0, 

+ $f2Q = 0, 

for T E (0,l) and t E (0, T), together with the boundary conditions 

(BC’) f’(t, 0) = f’(t, 1) = 0, Q(t, 0) = 0, (Q + Q’)(t, 1) = HD. 

We will refer to the last boundary condition as the mixed condition. This 
choice of boundary values is good for the following reason: we want the 
magnetic field H = b (r-Q)’ = Q’+ :Q to be a smooth radial function. Thus 
H may attain a nonzero value at the origin, but its derivative has to vanish. 
Once H is given, any representation of H in terms of Q is unique up to the 
addition of a term k. If we impose Q(0) = 0, we render this representation 
unique and at the same time, through the differential equation, we impose 
that H’ = Q” + :Q’ - -$Q vanishes at the origin. In addition Q is bounded, 
but its derivative at the origin does not vanish necessarily. 

We show that a solution of this type exists by the following approximation 
procedure. For some fixed p > 0 we solve the system of differential 

Vol. 15. no 3-1998 



378 L. BRONSARD AND 8. STOTH 

equations (GL) in (p, 1). This corresponds to solving (GL) in an annular 
domain. We impose the boundary data 

f’(t,P) = f’(t, 1) = o, Q(t,p) = 0, (Q + Q’)(k 1) = HD. 

For any Cm-initial data that satisfy the compatibility conditions we obtain a 
C”-solution of this evolution problem. We will prove the following energy 
relation and maximum principles: 

0 = l x2 J( P 

--@a,f)* + @t&J” t-d7 

> 

d l x2 +z p J[ G(.f')2 + W(f) + &J’Q’ + ; (8’ + ;Q - HD 
If the initial data satisfy 0 < f 5 1 and 0 5 Q < HD, then the same 
remains true for all positive times. If furthermore the initial data satisfy 
f’ 5 0 and Q’ 2 0, then the same remains true for all positive times. Finally, 
if in addition the initial data satisfy i&Q = Q” + :Q’ - SQ - + f 2Q > 0 
and a&f = f” +,$f’ - $(W’(f) + $zfQ2) < 0, then &Q 2 0 and 
8,f 5 0 for all positive times. Using these facts, we may pass to the limit 
p --i 0 and obtain a solution of the system (GL), subject to the boundary 
conditions (BC). 

We now proceed with this program. 

MAXIMUM PRINCIPLES 

LEMMA 3.1. - Assume that (f, Q) is a C”-solution of the radial Ginzburg- 
Landau equations in (p, 1). A ssume that initially f and Q are nonnegative. 
Then f and Q remain nonnegative for all positive times. 

Proofi - Assume that Q attains a negative minimum at (to, ~a). Since 
Q’ + Q = HD > 0 at T = 1, we find r. < 1. Since Q = 0 at r = p, we find 
TO > p.Thus&Q-Q”-bQ’+&Q < Oattheminimalpointandf2Q 5 0. 
This contradicts the differential equation for Q and consequently Q 2 0. 

For f we proceed as follows. Choose p > & and assume that 
21 := ezp( -pt)f assumes a negative minimum -4 at some point (to, TO). 
Then o&~ - V” - bv’ 5 0 and vQ2 2 0 at (to, ro), and thus the differential 
equation for f implies that e~p(--CLtO)W’(-Sezp(~to)) 2 SC&. Since 
W’(f) = f3 - f, this implies that -S2ezp(2&) 2 gap - 1 > 0 by 
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the choice of p. This is a contradiction and consequently ‘u 2 0 which 
implies f > 0. 

LEMMA 3.2. - Assume that (f, Q) is a C”-solution of the radial 
Ginsburg-Landau equations in (p, 1). Assume that initially 0 < f 5 1 
and 0 5 Q 5 HD. Then f < 1 and Q 5 HO for all positive times. 

ProojY - Since f is nonnegative by Lemma 3.1, f is a subsolution of the 
differential equation $ (&$f - f” - :f’) + W’(f) = 0. Since W’(f) > 0 
whenever f > 1, the classical maximum principle implies f 5 1. 

Since Q remains nonnegative by Lemma 3.1, we have 
i&Q - Q” - +Q’ 5 0. Thus the maximum principle implies that Q 5 Q, 

where Q is a solution of i&Q - Q” - $Q’ = 0 with &(t,p) = 0 and 
with the mixed condition at r = 1 and the same initial data as Q. But Q 
attains its maximum on the boundary T = 1, and thus at the maximum 
point Q’ > 0. Thus the mixed boundary condition implies that the maximal 
value of Q is less than Ho. This implies the lemma. 

LEMMA 3.3. -Assume that (f, Q) is a C”-solution of the radial Ginzburg- 
Landau equations in (p, 1). Assume that initially f is strictly positive and 
0 5 Q 5 HD. Then f(t, r) 2 minf(O,r) exp (-- 5;’ t). 

Proof - By Lemma 3.1 and Lemma 3.2 we have 0 5 Q 5 Ho and 
0 1. f 5 1, and thus W’(f) < 0. Consequently -5 (&‘,f - f” - $f’) + 
$fHi > 0. By the maximum principle f 2 f, where f is a spatially 
constant function with ~cx~~J+ +fHk = 0 and 0 < f(0) < min f(0, r). 

LEMMA 3.4. - Assume that ( f, Q) is a C”-solution of the radial Ginzburg- 
Landau equations in (p, 1). A ssume that initially f and Q are nonnegative 
and that Q 5 HD. Furthermore assume that initially f’ is nonpositive and 
Q’ is nonnegative. Then this remains true for all positive times. 

Proof - We show that {(t, r) : f’(t,r) < 0, Q’(t,r) > 0} is an 
invariant region. First we differentiate the equations (GL) with respect to 
r and find 

; a&f’ - f”’ - ;f” + ;t;f’) + W”(f)f’ + &‘Q” + 2fQQ’) = 0, 

&Q’ - Q”’ - f Q” + $Q’ - $Q) + +(2ff’Q + f”Q’) = o. 

Next we define w := exp(-pt)f’ and u := ezp(-pt)Q’ for 
some positive number ,u. Then (w, II) satisfies the same system of 
differential equations as ( f’, Q’), with the right hand side substituted 
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by - $cupw and -pv respectively. We show that for any S > 0 the 
set {(t, r) : w(t, r) < 6, v(t, r) > -S} is an invariant region. Initially and 
on the boundary T = p or T = 1 the pair (w, v) lies strictly in this set. Thus, 
if (w, v) leaves the region under consideration, then either w = 6 with 
a&w - w” - kw’ 2 0 and v 2 -6, or v = -6 with &v - v” - tv’ 5 0 
and w < 6. In the first case the differential equation for w implies that 
-W”(f) + $fQ 2 gap, and in the second case the differential equation 
for v implies that $fQ 2 p. This implies a contradiction if we choose 
p = p(X, HD, (Y, 6) big enough. Thus we conclude that w 2 6 and v 2 -6 
for all times. Letting 6 converge to zero, we conclude that v > 0 and 
w < 0, which is the assertion of this Lemma. 

LEMMA 3.5. - Assume that (f, Q) is a C” -solution of the radial Ginzburg- 
Landau equations in (p, 1). Assume that initially f and Q are nonnegative. 
Furthermore assume that initially 8, f is nonpositive and &Q is nonnegative. 
Then this remains true for all positive times. 

ProojI - We differentiate the system of differential equations with respect 
to time and obtain 

In addition we have the mixed condition &Q + (a,&)’ = 0 on the boundary 
r = 1, and the Dirichlet condition &Q = 0 on the boundary T = p. For 
a,Jp we have a Neumann condition on the boundary. This implies that 
{a,f 5 0, &Q > 0} is an invariant region, following the lines of the proof 
of Lemma 3.4. 

ENERGY ESTIMATES 

LEMMA 3.6. - Assume that (f, Q) is a C”-solution of the radial 
Ginzburg-Landau equations in (p, 1). Then 

O= + (at&)” 

d l x2 +z p J[ s(f’)2 + W(f) + &f2Q2 + f (4’+ ;Q - HD 
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ProoJ: - The result follows by multiplying the equation for f by r&f 
and the equation for Q by r&Q and integration by parts. 

LEMMA 3.7. - Assume that (f, Q) is a C”-solution of the radial Ginzburg- 
Landau equations in (p, 1). Assume that 0 2 f 5 1 and 0 5 Q < Ho 
initially. Then 

Proofi - We multiply the differential equation for f by -(rf’)’ and the 
differential equation for Q by -(b (rQ)‘)‘r, integrate over r E (p, 1) and 
add the results. This implies that 

Id ’ -- 
{S ( 2dt /, 

(Q’)“r + Q2.f + $(f’j2r) dr + (Q - H&l} 

+ .I (I ( ;(rQ)‘)‘i2r + $~(d’)‘~2;) dr 

+f f2(Q')2r + (f')2Q2r + ;f2Q2) dr 

= $f2Q(Ho - Q)(t, 1) - $1’ ff’QQ’r dr - /’ W”(f)(f’)2r dr 
P P 

5 ff2~6 - cm 1) + & 
J 

1 

( f’)“Q2r dr 
P 

J 

1 

f”(Q’)“r dr + max (-IV”) 
P s 

pl(f’)“r dr. 

Since f 5 1 and Q 5 HO and max(-IV”) = 1, this proves the assertion 
in combining the first integral term of the right hand side with the 
corresponding term of the left hand side. 
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DEFINITION. - In view of Lemma 3.7 we define the weighted Sobolev-spaces 

V := 
C 

(f,Q) E (H1(O, 1))’ : (Q’)2r + 4 + (f’)2r 

and 
W := (f,Q) E (H2(0, 1))2 : 

C 

Remark. - Any (f, Q) E V necessarily satisfies Q E C1/2(0, 1) with 
Q(0) = 0. 

LEMMA 3.8. - Assume that (f, Q) is a C”-solution of the radial Ginzburg- 
Landau equations in (p, 1). A ssume that f, Q 2 0, 8, f 5 0 and &Q > 0 
initially. Then (Q’ + +Q)’ = Q” + :Q’ - +Q > 0 and 

Prooj - By Lemma 3.1 and Lemma 3.5 both &Q and Q remain 
nonnegative. Thus the differential equation for Q implies that (Q’ + b Q)’ = 
Q” + ;Q’ - fQ 2 0. Thus Jk’ j(Q’ + ;Q)‘ldr = (Q’+ fQ)l; = 
Ho - Q’(t, p). Since Q attains its minimum at T = p, we have Qi,=, 2 0, 
which implies the result. 

LEMMA 3.9. - Assume that (f, Q) is a C” -solution of the radial Ginzburg- 
Landau equations in (p, 1). Assume that f, Q > 0, &f 5 0 and &Q > 0 
initially. Then 

1 l 
xz J’ 

f2Qdr 5 HO. 
P 

Proo_f: - By Lemma 3.1 and Lemma 3.5 both Q and &Q remain 
positive. We integrate the differential equation for Q in space and find 
J,‘&Qdr + + Jp f2Qdr = HD - Q’(t,p) 5 HD. 

PROPOSITION 3.10. - For any initial data (fin, Qin) E V with 0 5 fin 5 1 
and 0 5 Q+, 5 Ho there exists a solution 

(f, Q) E L”(O, T; V) n L2(0, T; W) n L”((O, T) x (&I)) 
Annales de I’hstirut Henri PoincurP Analyse non lindaire 
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with 
(W, hQ>J;; E L2((0, T) x (0, 1)) 

of the radial G&burg-Landau equations (GL) satisfying the boundary 
conditions (BC). 

The claim follows from the estimates of Lemma 3.6 and Lemma 3.7. 

Remark. - Via approximation all the preceding Lemmata hold true in the 
limit p t 0 under the weaker regularity properties given in Proposition 
3.10. The hypothesises and the assertions have then to be satisfied or are 
then true, respectively, in the almost everywhere sense. 

Remark. - The physical situation we have in mind is the following: an 
external magnetic field HO > -& is applied, and a normally conducting 
region penetrates the originally superconducting wire. 

We may construct initial data as follows: choose a real number ,0 with 
max(l/K, 2~) 2 ,8 5 00 and a smooth, increasing function h on the real 
axis with h(z) = 0 for all z 5 0 and h, := lim,,, h(z) E (0, oc). Then 
define for 0 5 r 5 1 the initial data 

where z := (r - ra)/X with some fixed 0 < TO < 1, and where (fo,QO) 
solves the system of ordinary differential equations 

fh = --~foQo> Qb = Pdm+ h 

on the real axis with fo(O) = 1 and Q,,(O) = 0. 
Such a solution exists and has the following properties: fa(z) = 1 and 

Qo(z) = 0 for all z 5 0, fa(z) > 0 for all z (since once &a is locally 
given, f. solves an ODE with a Lipschitz continuous right hand side which 
has 0 as equilibrium value), QO(z), Q;(Z) 2 0 and f;(z) 5 0 for all Z. 
In addition Qo(z) 2 si h(E) dJ > 0 for all z in the nonempty interior of 
the support of h. Next we find that limZ+m fa(z) = 0, since otherwise f; 
would be strictly negative for large Z, and thus f. would attain negative 
values. Using this, we may determine limZ+m Q;(Z) = i/3 + h,. The 
main point is now that 

;f: - w’(.fo) - fo&: = -W’(fo) (1 - ;) - ifoh 5 0, 

Qd’ - f:Qo = f,2Qo(~P - 1) + h’ 2 o 

by the assumptions on the parameter ,B and on the function h. 
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As a consequence of these properties of fa and &a and by definition, 
(f, Q) satisfies 

l 0 < f 5 1 and 0 5 Q 5 Q(l), 
l f’ 5 0 and Q’ 2 0, 
l ~(f”+9f’)-w’(f)-~fQ” 5 OandQ”+bQ’-$Q-hf2Q 2 0. 
In the last inequality, we have used that Q”(T) = ~Q:(z) > 0 and that for 

some [ E (~0, T), we have Q’(r) - ~Q(T) = i(rQ’(r) - (r - rO)Q’(<)) 2 
Q’(T) - Q’(E) 2 0. 

Concerning the boundary data we find by this construction that 
l Q(T) = 0 and f(r) = 1 for all 0 < T 5 r-0, 
l HO := Q(1) + Q’(1) -+ [,f?/2 + &](a - TO) and f(1) and f’( 1) are 

exponentially small as X + 0. 
Since h, may be arbitrarily small and 2 -TO may be arbitrarily close to 1, 

the range of boundary data Ho that may be attained using this construction 
is given by 2H o 1 ,4, and is thus restricted by the conditions on p. In 
addition we remark that the Neumann condition for f at r = 1 is only 
attained up to an exponentially small negative term. We may remove this 
defect by adding an exponentially small term to f with support only close to 
the fixed boundary. In addition we point out that Lemmata 3.1 to 3.5 remain 
true if constant negative Neumann data are imposed for all times at r = 1. 

We finally mention that the energy of these initial data is uniformly 
bounded in X and that Q attains some nontrivial limit as X tends to 0. For 
this last claim we point out that 

-&Q(T) = &o(z) - yQ;(z, = y(Qb(t) - Q;(4) L 0 

for some [ E (0, a). Thus Q attains a pointwise limit, which is nontrivial 
as long as HO # 0. 

SECTION 4: PASSAGE TO THE LIMIT 

We assume that (fA, Qx) is a solution of the radial Ginzburg-Landau 
equations (GL) with r ranging in (0, l), with time t ranging in [0, T] and 
with the boundary conditions (BC) in the sense of Proposition 3.10. 

We recall that we use LI: for the spatial variable ranging in Bt(0) c R2 
and T = ]rc] for the radial variable ranging in (0, l), and that we denote 
differentiation with respect to z and T with V and ‘, respectively. 
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We assume that the initial values satisfy the following: 
(Al) 0 I fx(O, .) L 1 and 0 5 Qx(0, .) 5 HD, 

WI .fi(O, .) I 0 and Qi(O, .) 2 0, 
(A3) a,f~(O, .) < 0 and &Qx(O, .) 2 0, i.e. 

and 

Q; + ;Q:, - $&A - $-~Q+;., 2 0, 

(A4) there exists a constant Cc such that for all X the initial energy 
satisfies Ex(fx,Qx)(O) 5 Co. 

In addition we assume that as X + 0 

WI Qx(O, -1 + Qo 
W&(O)). 

’ in Ll(Br(0)) with Qg $0 and Hi := div(QEfi) E 

Remark. - We say that a constant only depends on the data if it can be 
determined a priori from the above constant Co, the Dirichlet value HD, 
the time T as well as the parameters 6 and a and is independent of X. 

PROPOSITION 4.1. - There exists a subsequence X = A, --+ 0 (n + co) 
and some Qo E H1>2((0,T) x Bl(0)) such that &A --- QO weakly in 
H112((0,T) x &(O)) d 1 an a most everywhere in (0,T) x Ill(O). 

Furthermore &A - Qo strongZy in LP(O, T; C’([O, 11)) for all 
1 < p < co and Q’, ---+ Qb strongly in L2( (0, T) x (0,l)) and almost 
everywhere in (0,T) x Bl(0). 

In addition Q. E L”(O,T; Hl>“(O, 1)) and (Qb + b&o)’ E 
(Lp(O, T; C”(P, ll>>>*, with 0 < Qb + b&o 5 HD and (Qb + b&o)’ > 0 
as well as Qb, &Qo 1 0 in the distributional sense. 

Pro05 - The energy estimate of Lemma 3.6 and assumption (A4) imply 
that &A is uniformly bounded in H132((0,T) x &(O)), and therefore a 
subsequence is precompact in the weak topology of H1,2( (0, T) x I31 (0)). 
We denote its limit by Qo. Lemma 3.8 together with the assumptions (Al) 
and (A3) imply that Ql,l+$QI,-$&A = (Qi+tQx)’ 2 0. Thus Ql,+$Q, 
is increasing and thus bounded by the boundary data Ho. Since both Q’, 
and &A are positive by Lemma 3.1 and 3.4 and the assumptions (Al) and 
(A2), this implies that Qi 5 Ho. By Lemma 3.2 and assumption (Al) we 
have as well that QX 5 Ho. Thus &A is bounded in L”(0, T; H1+(O, 1)). 

Now we apply the following compactness result (cf Lions [L]): if a 
reflexive Banach space Ba is compactly embedded into a Banach space 
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B, which is itself embedded into another reflexive Banach space B1, then 
the embedding from W := {U E LPo(O,T; B,); 3+v E Lpl(O, T: B,)} into 
LPo(O, T; B) is compact for all 1 < po,pl < cc. 

We choose B. = H1+z(B1(0)) with q > 2, and B = C’(B,(O)) 
and B1 = L2(BI(0)). Th ese spaces satisfy the assumptions. We choose 
pl = 2 and 1 < p = ~0 < 30 can be arbitrary. Since Qx is bounded in 
H1>2((0,T) x Bl(0)) and L”(O!T; H1+(B1(0))), the compactness result 
implies strong convergence in LJ’ (0, T; Co ( B1 (0))). 

By Lemma 3.8 together with the assumptions (Al) and (A3) 
we know that (Q’, + ~QA)’ is bounded in L”(O,T; L1(O, 1)) c 
(LP(0, T; C’([O, l])))*. S’ mce Lp(O, T; C”( [0, 11)) is separable, this implies 
that (Qi + ~QA)’ converges to some /” in the weak * topology 
of (LP(O,T; C’([O, l])))*. Since Q/, and Qx converge weakly in 
L2((0, T) x (0, l)), we obtain that ~1 is the distributional derivative 
of Q; + :Qo: < <;/L >= - ,IoT J% (Qb + ~Qo) <’ dr dt for all < E 

LP(O, T; C”([O, I])) n L2(0, T; &l,‘(O, 1)). Thus we may calculate 

T 1 

= JJ lQbl”( dr dt 
0 0 

for all smooth < .with compact support in [0, T] x (0,l). Since Qi is 
uniformly bounded we can derive the same result for C G 1, and thus the 
L2-norm of Q’, converges to the L2-norm of Qb. This together with the 
weak convergence in L2 implies the strong convergence. 

PROPOSITION 4.2. - There exists a further subsequence X = X,1 -+ 0 
(n’ --+ WJ and some f. E BV((0, T) x (0,l)) n L”((0, T) x (0, l)), such 
that fx A f 0 zn t h e weak * topology of BV((0, T) x (0,l)) and fx - fo 
strongly in LP( (0, T) x (0,l)) f or any 1 5 p < cc and almost everywhere 
in (0,T) x (0,l). 
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Furthermore XVfx converges to 0 in L2((0,T) x Bl(0)) and X2Af,j 
converges to 0 weakZy in L2( (0, T) x I31 (0)). 

In addition a, fo, f; 2 0 in the distributional sense. 

Proo$ - By Lemma 3.1, 3.2, 3.4 and 3.5 and the assumptions (Al), (A2) 
and (A3), the sequence f~ is bounded in L”((0, 2’) x (0,l)) and IS’,~X < 0 
and fi 5 0, so that fx is bounded in BV((O,T) x (0,l)). Hence fx is 
compact in the weak * topology of BV((0, T) x (0,l)) and compact in 
LP((O, T) x ((41)). 

The first equation of (GL) together with Lemmata 3.6 and 3.7 and 
assumption (A4) imply that X2Afx is bounded in L2((0,T) x Br(0)). 
Thus a subsequence of X2Afx has a weak limit go in L2( (0, T) x B,(O)). 
But for any smooth < with compact support in the unit ball 
JT J’nICoI x2Afx< = - JT JBICoj X2Vf~.VC - 0, since XVfx is bounded 
in L2((0, 7’) x B1 (0)) by the energy estimate of Lemma 3.6. This implies 
that go vanishes. Now we may calculate 

T . 

I/ 
T 

X2pf~12dx = - 
0 IS 

~2A.fxfx dx 
BI (0) 0 h(O) 

T . 

---+-- 

II 
gofo dx = 0, 

0 BI (0) 

since fx - fa strongly in L2((0,T) x E+(O)). 

Remark. - We restrict all further discussions to the subsequence selected 
in Propositions 4.1 and 4.2. 

LEMMA 4.3. - There exists a constant C, that only depends on the data, 
such that 

Vol. IS. no 3-1998 



388 L. BRONSARD AND B. STOTH 

f'root - We estimate (f~&~)'(t, r)r I: 2 Ji I(~A&x)(~A&x)'~s ds + 
Ji(fxQ~)" ds. Integration in time and the Holder inequality then implies 

1 3 I(fxQx)'l"s ds dt + 

J’J 0 T 0 I(f*c2h)12~ ds dt . 

Now, since Jur Ji I(fxQx)‘12r dr dt 5 
+2 JOT Jo1(f;)2Q$- dr dt, 

2 Jc Ji f,“(Q/,)“r dr dt 
th e energy estimate of Lemma 3.6 and the 

estimate of Lemma 3.7 imply the first assertion. 

The differential equation for fx implies that 
hx = -$&&fx - &fx) - W’(fx). 

9 = Xhx, with 

The energy estimate of Lemma 3.6 and the bound of Lemma 3.7 imply 
that hx is bounded in L2( (0,T) x B1 (0)). We estimate Ji $$ fi dr 5 

su~,(fxQx~) .I; “‘A -$-- dr. We apply Lemma 3.9 and the first part of this 
lemma to obtain the last result of this lemma, 

PROPOSITION 4.4. - The limit fo attains the values 0 or 1 almost everywhere 
in (0,T) x (0,l). 

Proofi - The sequence f~ converges to fo pointwise and thus for 
all E > 0 there exists A, c (0,T) x Bl(0) such that f~ converges 
uniformly to fa in A, and I(0, T) x B1 (O)\A,I < E. For any positive 
number c we consider the set B,,, := A, n {f. > c}. We integrate 
the differential equation for f~ over this set. Since Xa,fx is bounded in 
L2((0, T) x Bl(0)) by the energy estimate of Lemma 3.6, and since X2Afx 
converges weakly in L2((0, 7’) x Bl(0)) to zero by Proposition 4.2, we 
find that the terms involving time or spatial derivatives of fx converge 
to 0. Since f~ converges uniformly in B,,,, the IV’ term converges to 
sB W’(fa)r dr. We estimate the remaining term: we have f~ > s in B, 
and thus sB w dx 5 $ JB f\Q2 + dx, which converges to 0 by Lemma 
4.3. Consequently sB W’(fo) dx = 0, and thus f0 = 1 almost everywhere 
in B,,,. Letting c converge to 0 implies that fa = 1 almost everywhere in 
A, n {f. > 0). Letting E tend to zero implies f. = 1 almost everywhere 
in {fa > 0). 

PROPOSITION 4.5. - The limit foQO vanishes identicazly and in addition 
*fxQx converges to 0 in L2((0,T) x Bl(0)) as X -+ 0. 
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Proo$ - The energy bound of Lemma 3.6 implies that f~&x converges 
to 0 in L2((0,T) x B,(O)). S ince by Propositions 4.1 and 4.2 both fx and 
&A converge pointwise to their respective limits, the first result is obvious. 

Next we multiply the differential equation for fx by f~ and integrate 
over(O,T)xB1(0).Thisimplies~Sf,2dzl~+~~~~SIVfX12~~dt+ 
Jc J W’(fx)fx dx + + Jz JfzQi dx = 0. Since f~ I 1, and 
~‘(fdfx --+ W’(fo)fo = 0 in Ll((O,T) x Bl(0)) and XV~A -+ 0 
in L2((0, T) x B1(0)) by Propositions 4.2 and 4.4, this implies 
limx+o $ JOT ./B1coj f,“Q”, dx = 0. 

DEFINITION. - We define the free boundary TO : [O,T] -+ [0, l] by 
ro(t) := ess sup {r E [0, l] : Qo(t,r) = 0) and its extinction time by 
T* := inf{t E [O,T] : q(t) = 0). 

Remark. - Since &Qo > 0 (cf (A3) and Proposition 4.1), the free 
boundary TO is decreasing in time, lim,,, TO(T) = TO(~), and TO(~) = 0 
for all t 2 T*. Since Qb 2 0 (cf (A3) and Proposition 4.1), we have 
Qo(t, r) = 0 for T 5 ro(t) and Qo(t, r) > 0 for T > TO@). 

We may as well define the free boundary for fo by so(t) := ess sup {T E 
[0, l] : fo(t, r) = 1) and its extinction time by t* := inf{t E [0, T] : so(t) = 
0). Following Proposition 4.4 and 4.5, we always have so(t) < TO(~) and 
t* 5 T*. We will show later that they agree. 

PROPOSITION 4.6. - For almost all t E (0, t*) we have so(t) = To(t) 
and there exists a constant C only depending on the data and a function 
D E L2(0,T), such that 

for almost all t E (0, t’) and T > To(t), and 

for almost aZE t E (t*,T*) and T > q(t). 

Proof - We multiply the differential equation for &A by Q’, and the 
differential equation for f~ by f;, integrate over p E (s, r) C (0,l) and 
add the results. This yields 
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According to Propositions 4.1, 4.2 and 4.5, IQLI” -+ IQbl” and W(fx) -+ 
W(fa) for almost all (t, T), and possibly selecting a further subsequence 
X’ we may assume that (A’)” IfA! I2 --+ 0 and &f&Q;, -+ 0 for almost 
all (t,r), as well as ~SV(x’)2&f~lf~,dp --) 0 and JS’(X’)21fL,(2dp -+ 0 for 
almost all t and all T, s. In addition, since Qi and QX are bounded by Ho 

We now choose a further subsequence /\” of X’, which might depend on 
the time t, such that 

1 1 

$yJ J 0 
IdtQx,, 12pdp = lip%f J l&Qx/j2pdp =: D2(t). 

0 

By lower semicontinuity and the energy bound of Lemma 3.6 we have 
that D E L2(0,T). 

Now passage to the limit X” -+ 0 in (*) implies 

Now assume that t* 5 t 2 T*. Then by the definition of t* and Proposition 
4.4 we have fo E 0 and hence (~ht) implies 

1 IQbl”@, r) - lQ&12(t, s)j L CT + zD(t)dy, 

We now choose a sequence of points s,(t) < r-a(t) with s,(t) --+ To(t) and 
use that Qb(t, s,(t)) = 0 by the definition of ro( t), to prove the second 
claim of this proposition. 
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Next assume that 0 5 t 2 t* and that so(t) < q(t). Then we 
choose two sequences of points 0 < sn(t) < so(t) < r,(t) < rg( t) 
with r,(t) - sn(t) -+ 0. Since Qb(t, sn(t)) = 0 and Qb(t, r,(t)) = 0 as 
well as fo(t,s,(t)) = 1 and fo(t,r,(t)) = 0 we conclude from (M) that 
I = 0. Since this is impossible we find that TO and SO agree in (0, t*). 4 

To finish the proof, we now choose a sequence of points sn(t) -+ TO(~) 
with sn(t) < rg(t) = so(t). S ince then (-W(fo) + ilQbl”)(t,sn(t)) = 0, 
the identity (+A) implies the first claim of this proposition. 

PROPOSITION 4.7. - The free boundary TO is locally Hiilder-continuous of 
exponent + in {t 1 0 < To(t) 5 1) fI [0, t*]. 

Proqf: - We choose t* 2 t > 7 and use the identity ~~~C~’ Qo(t, r)r dr = 

J:;;;’ Qo(T> r)r dr + J,” SC;;) &Q,(n, r)rdr da. Since r. is decreasing, 

J--$;’ Qo(r,r)rdr = 0. S ince d,QoJ;; E L2((0,T) x (0, l)), the bulk 
integral of the right hand side is estimated by C[ro( t) - To(T) 1 t It - 
Tjtro(t)$. Since (b(rQo)‘)’ 2 0 by Proposition4.1 and Qb(t,ro(t)) = -& 
by Proposition 4.6, it follows that (Qo(t,r)r)’ 2 &r 2 &ro(t) 
for r > rg(t). Thus for r > rg(t) integration yields Qo(t, r)r 2 
?jgil;, ro(t))- H ence the integral of the left hand side is bounded below 
by -(To(t) - ro(T))2. This implies the assertion. 

24 

PROPOSITION 4.8. - The limit Qo statisfies the differential equation 

&Q. - Qb’- ;Q; + $Qo = o 

in the open sel 

R ymal := {(t,r) I t E (O,T), rg(t) < r < l} 

together with the (natural) mixed boundary condition 

Qb(t, 1) + Qo(t, 1) = HD for all t E (‘AT) 

and the Dirichlet condition 

Qo(t, 0) = 0 for almost all t. 

The initial data are given by Qo(0, .) = Q$ 
In addition t* = T* and SO = rg. 
Furthermore the limit Qo is analytic in the open set flyrmal. 
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Proo$ - For t E [0, T] we define the c-level-sets r, : [0, T] -+ [0, l] of 
Qo by Qo(Q-c(t)) = ‘f h c, I WC an r,(t) exists, or else by r,(t) = 1. Since 
Qb is nonnegative this is well defined. In addition, since &a is continous 
for almost all t, we have r,(t) + ro(t) almost everywhere as c -+ 0. 

We now prove that JOT Jd (tj ;fiQx dr dt -+ 0 for a subsequence 
X + 0. According to Proposition 4.5, we know that for a subsequence 
A,!( (7~” + co), the integral ,I; $f,“Q:(t,r) dr + 0 for almost all t. 
(This is a further subsequence of the subsequence X,f selected in 
Proposition 4.2. Choosing this further subsequence does not alter the 
limit but helps to identify the limit equation.) Since QX is increasing we 
have Jrict, &f?Qx(t, ~1 dr 2 jrtct, $.f,“Qi d~QA~t~Tc~t~~ and according to 
Proposition 4.1, Qx(t,r,(t)) -+ Qo(t,r,(t)) for almost all t, and thus 
.I; &f;Qx(t, r) d T + 0 for almost all t. But Lemma 3.9 implies a uniform 
bound for ji $fijQx(t, r) d T, and the Dominant Convergence Theorem 
implies the assertion. 

We now consider the set (0, t*]. Arguments similar to those in the proof of 
Proposition 4.7 imply that 0 5 r,(t) - ra( t) 5 2&z. Thus r,(t) converges 
uniformly to r,,(t) for t E [0, t*] as c -+ 0. Now we choose a smooth test 
function < with compact support in {(t,r) 1 t E (0, t*], To(t) < r’ 2 l}. 
Then due to the uniform convergence of T, as c --f 0 we may conclude that 
supp < c {(t, r) 1 t E (0, T*), r,(t) 5 T 5 l} for some positive c. We use 
< as a test function in the differential equation for &A, integrate by parts 
and pass to the limit, making use of the strong convergence of Qx and Q’, 
and the weak convergence of &Qx. The limit of the nonlinear part of the 
equation is 0, as shown in the first step of this proof. We obtain 

1%’ (&Qo<+ (Q~+~Qo)C’)drdt-~THD((t.l)dt=O. 

Thus we have obtained a weak formulation of the differential equation for 
Q. in the set {(t, r) ] t E (0, t*], To(t) < r 5 1) and the mixed boundary 
condition at T = 1. 

Next we assume that t* < T* and derive a contradiction. We define ~6,~ 
to be a continuous cut-off function with 

7&(t,r) = f if r,(t) I T I r,(t) + 6, 

q&t, r) = 1 if r,(t) + 6 5 T. 
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We choose a smooth test function < with compact support in [t* , T*] x (0, l] 
and use <~s,~ as a test function in the differential equation for &A, integrate 
by parts and pass to the limit as above and obtain 

Now, since r, converges to r. as c -+ 0 in any LP, we may substitute c 
by 0 in the above equality. 

By Proposition 4.6 we know that Q&(t,ro(t)) = 0 in [t*,T*), 
and due to the Holder-type estimate for Qb of Proposition 4.6, 
we may let 6 converge to zero. For this we note that supp C C 
[t*, T*] x [co, l] for some positive co, and thus the most difficult 
term JOT Ji Qb~i,~< dr dt = JOT J~~~~‘+’ iQb< dr dt is estimated by 

11~11~ .Lo(t)~co ( 
C&7--& + 6114mh) dt and converges to zero. 

Since &Q. and Qb vanish almost everywhere in r < r,,(t), we finally obtain 

This implies that &a satisfies a regular parabolic differential equation in 
the strip [t*, T*] x (0, I]. Then the strong maximum principle implies that 
Qo is strictly positive in the interior of this strip. This in return implies 
that q(t) = 0 for all t in [t*, T*], and thus t* = T*. This in particular 
implies that so E rg. 

In the time interval t > T*, we proceed in a similar way to obtain the 
differential equation and the mixed boundary condition at r = 1. 

Thus we have shown the first part of this Proposition. We have found that 
Q. is a weak solution in the open set flyma’ of a differential equation with 
analytic coefficients. Thus due to parabolic regularity theory Q. is itself 
analytic in this open set and is a strong solution of the differential equation. 
In addition &a satisfies the weak equation up to the fixed boundary, and 
is thus regular up to the fixed boundary. 

Obviously Qo(t, 0) = 0, since QX converges to Q. in 
Lp(O, T; C(B,(O))). 

Since &Qx is bounded in L2((0,T) x Bi(0)) and Qx(O, .) + Qi in 
L’(Bl(0)) by assumption (A5), the attainment of initial data is immediate. 

Vol. 15, no 3-1998. 



394 L.BRONSARD AND B. STOTH 

Remark. - We have derived two conditions on the free boundary, 
namely Qo(t,ro(t)) = 0 and Qb(t,ro(t)) = 5. Formally differentiating 
the first equation with respect to time, and then substituting the second 
relation, implies &Qo(t, TO(~)) + $&C,(t) = 0. Formally assuming that the 
differential equation for Qo holds up to the boundary TO(~) implies that 
-&t”(t) = (;(rQ)‘)‘(t,ro(t)). W e recall that b(rQ)’ = H, and we have 
thus formally derived 

H=l and H’=-l+o onr=ro(t). 
\/z Jz 

Differentiating the differential equation for Qo implies in addition, that 

&H-H”-iH’=O in{r>Tg(t)}={H>O}. 

We now turn this formal argument into a rigorous proof. 

THEOREM 4.9. - Let f~ and &A be the solution of the radial Ginzburg- 
Landau equations with boundary condition (BC) in the sense of Proposition 
3.10. Assume (Al) - (A.5) for the initial data. Then (fx, Qx) converges to 
(fo, Qo) in the topology of Proposition 4.1 and Proposition 4.2. In addition 
we may define the limit magnetic field Ho := Qb + t&o = div Qo 5 and 
the limit order parameter cp() := 1 - fo. With UU~ := Ho - -&(o~~ we have 

and uo = 0 in {(t,z) : cpo(t,z) = 0} and ~0 > 0 in ((t.2) : cpo(t,:r) = l}. 
In addition the pair (~0: cpo) is the unique distributional solution of 

quo + -&Do) - Au0 = 0 in (0,T) X Bl(0) 

with Dirichlet condition uo(t, .)18171(o) = Ho - 5 for almost all t and 
initial values 7~0 + Lcpo = Hi. Moreover ‘po(O, ‘) is the characteristic 
function of {Qi > $. 

Remark. - The above Theorem implies that uo is the solution of the 
classical one-phase Stefan problem. In terms of Ho it implies that Ho = 0 
in the superconducting region, and that ?&Ho - AH0 = 0 in the normal 
region, with interfacial condition Ho = 5 and VHO . v = --&I’ on the 
interface separating normal and superconducting regions. Here v denotes 
the normal to the interface pointing into the normal region, and V is the 



THE GINZBURG-LANDAU EQUATIONS 395 

normal velocity of the interface. The boundary data for Ha are given by 
HD and the initial data by Ho0 (see (A5)). 

Proo$ - Under the hypothesis of this theorem we may select a 
subsequencs X, -+ 0 and a limit order paramater fa and a limit magnetic 
potential &a such that (f~,, , Qx,,) converge to (fo, &a) in the topology 
made precise in Proposition 4.1 and Proposition 4.2. In addition the whole 
analysis of this section applies to this subsequence and these limits. 

In particular, by Proposition 4.1 we have 0 5 Ho 2 Ho. In addition 
Ho = 0 in {(t,~) : T < ra(t)} and HA = &QO in {(t,r) : (po(t,r) = l} 
by Proposition 4.8 and Ho(t,ro(t)+) = 5 by Proposition 4.6 for almost 
all t E (0, T*). Now we may calculate 

.T -1 

JJ 0 0 

C(t, To(t)) dt 

for all smooth test functions < with compact support in (0, T) x (0: 1). 
Thus Vu0 E L’((O,T) x &(O)) and Vu0 = &Qo&. Next we calculate 
for any smooth test function with compact support in [0, ‘7) x Bl(O) 

T 

II 
T 

VOLE . V< dx dt = 
.o n J’s 0 R 

&Q. i . V< dx dt 

s 
H:<(O, x> dx 

cl 

&<dxdt+ /:<(O,x)dx. 
.I 
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In addition ug attains the boundary data Ho - & following Proposition 4.8. 
This is the distributional formulation of the assertion. Uniqueness follows 
by the weak maximum principle for the one-phase Stefan problem (cf [O]). 

Thus ua and cpa are uniquely given. In return Ho and fo are uniquely 
given. Again as a consequence &a is uniquely given via the differential 
equation by HO = Qb + :&a if we impose in addition that Q is bounded 
and that Qo(t, 0) = 0. Thus the limit (fo, &a) is uniquely given. But this 
in return implies that the whole sequence converges to this limit in the 
topology of Proposition 4.1 and Proposition 4.2. This finishes the proof. 

5. CONCLUSION 

We have shown that the solutions of the radial Ginzburg-Landau equations 
in R2 approximate the solution of the classical one-phase Stefan problem, as 
the penetration depth converges to 0 and the Ginzburg-Landau parameter K 
is kept fixed. We have shown this in the stable situation of a normal region 
growing into a superconducting wire. We have established energy-type a 
priori estimates and used invariant region principles to obtain compactness 
and suitable bounds. To deduce the free boundary problem we have shown 
that the system of equations behaves to leading order like a Hamiltonian 
system. 
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