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ABSTRACT. — We define the set K, . C K of quasiconvex extreme points
for compact sets K C MY *" and study its properties. We show that K,.
is the smallest generator of QQ(K)-the quasiconvex hull of K, in the sense
that Q(K, ;) = Q(K), and that for every compact subset W C Q(K) with
QW) = Q(K), K,. C W. The set of quasiconvex extreme points relies
on K only in the sense that Q(K),. C K, . C [Q(K),..]. We also establish
that K. C K, ., where K. is the set of extreme points of C(K )-the convex
hull of K. We give various examples to show that K, . is not necessarily
closed even when Q(K) is not convex; and that for some nonconvex Q(K),
K, .= K.. We apply the results to the two well and three well problems
studied in martensitic phase transitions.
© 1998 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

A basic property of compact convex sets in R™ is that they are the
closed convex hulls of their extreme points (Krein-Milman Theorem [Ru]).
Suppose K C R™ is compact and convex, then K = C(K,) where K,
is the set of its extreme points. Also, for every compact W C K such
that C(W) = K, we have K, C W. We may say that K, is the smallest
generator of the convex set K. In this paper we introduce a similar notion
for quasiconvex sets studied in the variational approach to material phase
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664 K. ZHANG

transitions, and we show that the set K, . of quasiconvex extreme points
is the smallest generator of the quasiconvex set K. It turns out that K, .
is a natural generalization of K,. For K C M!" = R", K,.= K. (see
Example 4.1).

For a compact subset K C M~ %" we may define its quasiconvex hull
Q(K) by cosets of quasiconvex functions [Sv1], or alternatively, by direct
quasiconvex relaxations of the distance functions to the set [Z2]. In fact,
the study of properties like quasiconvex hulls for sets in M~ *" goes back
to J. M. Ball [BI3]. A compact subset K C MN*" is called quasiconvex
if Q(K) = K (for more precise definitions, see §2 below). Examples of
quasiconvex sets include the level sets of quasiconvex functions, that is
K ={P e MNx" f(P) < a} where « € R and f : MY — R
quasiconvex.

Let (u;) be any bounded sequence in W' >*(Q,RY), approaching a
compact set K C M™*" in the sense that dist(Du;(z), K) — 0 almost
everywhere as j — oo. We further assume that u; —u in Wh(Q,RV)
in the weak-* sense (from now on, — denotes weak-* convergence).
Heuristically, the quasiconvex hull Q(K) of K is the smallest closed set
Q(K) such that Du(z) € Q(K) almost everywhere. This means Q(K)
is closed under weak-* convergence. A compact set K is quasiconvex if
it is weak-* closed.

Let us use the level set mentioned above as an example, that is,
K={PeM " f(P)<a}

where &« € R and f : M¥*" — R quasiconvex. We assume that K is
compact. Let u; —u in WH(Q,RY) and dist(Du;(x), K) — 0 almost
everywhere as j — 0. Let {v,},co be the family of Young measures
corresponding to (Dwu;) (see [T, BI2] and Lemma 2.6 bellow). Then we
have suppr, C K "and

| £V () 2 f(Duta)

(see, for example [BZ, KP]) for almost every = € 2. Here we have used
the fact that f is quasiconvex to obtain the inequality above. Now, from
the definition of K, the left hand side of the above inequality is less than
@, hence f(Du(z)) < @, which gives Du(xr) € K almost everywhere.
K is a quasiconvex set.

The study of quasiconvex hulls and quasiconvex sets is motivated
by the variational approach to martensitic phase transitions and material
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ON THE STRUCTURE OF QUASICONVEX HULLS 665

microstructures [ BJ1, BJ2, CK, K, Sv2, MS]. A natural question in the
study of quasiconvex sets or quasiconvex hulls of a given set is to ask
whether there exists a ‘smallest’ subset K of a quasiconvex set K such
that Q(K) = K. In this paper we show that the following set turns out to
be the smallest generator of the quasiconvex set K.

DEerFINITION 1.1. — Let K € MN>" be non-empty and compact.

P € K is called a quasiconvex extreme point of K if for every gradient
homogeneous Young measure v supported in K with [,. Adv(X) = P, then
v = bp - the Dirac mass supported at P.

The set of all quasiconvex extreme points of K is denoted by K ...

Gradient homogeneous Young measures are generated by bounded
W1> sequences, while a minimizing sequence of the functional
Jo, dist?(Du;, K)dz — 0 is appearently only bounded in W'?. However,
a result in [Z1] shows that if the a family of gradient Young measures has
uniformly bounded supports, we can find a bounded sequence in W'
which generate the same family of gradient Young measures. Intuitively,
the gradient Young measure represents the oscillation of a weakly (weak-x)
convergent sequence while the quasiconvex hull of a set consists of all
possible averages of the Young measures supported in the set {BI3, BJ1,
BJ2, KP, BFJK]. Quasiconvex extreme points are those which can only
be represented by themselves, that is, by Dirac masses. We may naturally
guess that they are the building bricks for a quasiconvex set. Theorem 1.1
justifies this. The definition of quasicovex extreme points by using gradient
homogencous Young measures is natural. As pointed out by J. Kristensen
to the author, that in an abstract setting for convex sets, Choquet points and
the Choquet boundary are defined by using positive measures [A].

We show in Theorem 1.2 below that K, . is not empty whenever K # 0.
In fact, we show that K,. D K,.

This paper answers the question what the smallest generator of a
quasiconvex set is. We do not intend, in this paper, to answer the question
of how the quasiconvex set is generated by its smallest generator. This
second question seems to be a rather deep one (see [BFJK, MS]).

THEOREM 1.1. — Suppose K C MN*" is compact and quasiconvex. Then
K, . is the smallest generator of K in the sense that

(i) K. is a generator of K, Q(K,.) = K.

(i1) Ky is the smallest generator of K, that is, if W C K is compact
and QW) = K, then K,. C W.
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666 K. ZHANG

COROLLARY 1.1. - Suppose K C M™*" is compact and quasiconvex, and
V. C K, W C K are two compact generators of K, Q(V) = QW) = K.
Then V N'W is also a compact generator of K.

Corollary 1.1 is a direct consequence of Theorem 1.1. However, I do not
know whether it can be proved directly without applying Theorem 1.1.

Remark 1.1. — Theorem 1.1 provides a ‘minimal’ representation of points
in a quasiconvex set by the closure of the set of its quasiconvex extreme
points via gradient homogeneous Young measures. More precisely, we have
that for every P> € K, there exists a gradient homogeneous Young measure
v supported in [K, ] such that

P = / Adr(X).
- U\hq.c]

For more details, see Lemma 3.1 below. Notice that K, . is not necessarily
closed (see Examples 4.1, 4.2).
The following result gives the relation between K,,. and K, for a

compact set K C MY*"_ Notice that in convex analysis, it is well known
that K, = [C(K)]. C K for any compact set K C R" [Ro].

THEOREM 1.2. — Suppose K C M™N*" is non-empty and compact. Then
K. is not empty. In fact, K. C K, .. Therefore C(K,.) = C(K), where
K. is the set of extreme points of C(K).

The following result shows that the set of quasiconvex extreme points
K, . of a compact set K depends only on the set, not on the quasiconvex
hull Q(K). This indicates that the quasiconvex extreme point is an intrinsic
property of the compact set K. At present, very few examples are known
of explicit forms of Q(K) for a given set K.

THEOREM 1.3. — Suppose K C M™*" is non-empty and compact. Then
pp ply

QK )ye C Ko CIOK )yl

Notice that for a bounded set W ¢ MY ", Q(W) = Q(W) and Q(W)
is always compact whenever W is bounded (consult the definition of
quasiconvex hulls in §2).

THEOREM 1.4, — Suppose K is compact and C(K') does not have rank-one
connections. Then K,, = K = Q(K).

In the following result, we use the supporting chains (see Definition 2.9)
to describe the structure of K, . for a compact convex set K.
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ON THE STRUCTURE OF QUASICONVEX HULLS 667

THEOREM 1.5. — Suppose K is compact, convex with more than one
element, and K has rank-one connections. Then

KQ,P = U(EF N K),

where the union is taken over all of the end planes of supporting chains {€}
of K. In particular, when K is strictly convex, K, . = K..

We also give some examples to show that (1): K, . can be non-compact;
(2) we can have K, . = K, even when Q(K) is not convex. We then apply
our results on quasiconvex extreme points to the two-well and three-well
problems in martensitic phase transitions. For the two-well case, that is,
when K = SO(n)USO(n)H, we have K, . = K. For the three well case,
we prove that K, . is either K itself or a subset of two wells. We then
make some remarks for the general case.

Remark 1.2. — Since we may define other ‘semiconvex’ hulls, such as
rank-one convex hulls, polyconvex hulls the same fashion as quasiconvex
hulls (see [Sv2]), it is natural to ask whether we can use subclasses of
probability measures to define corresponding extreme points. An interesting
question then is whether for a given compact set, rank-one extreme points
are the same as quasiconvex extreme points. We do not intend to answer this
questions here. However, I guess that the answer is negative. An example
might be constructed by using the famous counterexample that rank-one
convexity does not implies quasiconvexity due to Sverdk [Sv3].

In order to prove the results mentioned above, we use the properties of
gradient homogeneous Young measures generated by gradients (see [KP]),
the results of quasiconvex hulls, and quasiconvex functions and the basic
theory of convex analysis. In §2, some preliminary results are given. In §3,
we first establish a lemma (Lemma 3.1) to connect homogeneous Young
measures and quasiconvex hulls. Then we prove our results listed above.
Some explicit examples of K, . are exhibited in §4. We apply our results
to the two-well and three-well problems in §5.

2. PRELIMINARY RESULTS

We denote by M~*" the space of all real N x n matrices with RV"
norm. If E ¢ M~*" is a linear subspace, we write Pg and Pp. as the
orthogonal projections from M~ *" to E and its orthogonal complement
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668 K. ZHANG

E* respectively. meas(U) is the Lebesgue measure of a measurable subset
U c R" and

dist(Q. K) = inf |Q — P|

denotes the distance function from a point Q@ € M~ *" oaset K ¢ MN*",
From now on ) denotes a non-empty, open and bounded subset of R".
For a given set K C R*, intK, K and 0K denote its interior, closure and
boundary. We denote by Du the gradient of a (vector-valued) function
and we define the space C§(€2,RY), the L? spaces and Sobolev spaces
WLP in the usual way. We say that K C MY *" has a rank-one connection
if there exist A, B € K such that rank(A — B) = 1. The support of a
measure v is denoted by suppv.

Let f: MY** — R be a continuous function. f is quasiconvex (c.f.
[B11,Mo,D]) in M~ *™ if for every open and bounded subset Q of R,
every P € MY*" and every ¢ € C5°(Q,RM),

(1) f(P+ Do(x))dx > | f(P)dz.
Jo Ja
The class of quasiconvex functions is independent of the choice of €.
It is well known now that [(u) = ]Q f(Du)dz is lower semicontinuous
in the Sobolev space W °°(Q RA), in the weak—* sense if and only if
f is quasiconvex (see [Mo, Bll, AF]). Suppose in addition, f satisfies
0 < f(P) < C(1+|PJ]P) for P € MN*", for some constants C' > 0 and
p > 1, then I(.) is weakly lower semicontinuous in W?(Q,RY) if and
only if f is quasiconvex (see [AF] for the general statements and proofs).
For a given function, we can consider its quasi-convexification
(quasiconvex relaxation):

DerNITION 2.1. — ([D]). Suppose f : MN*" — R is continuous. The
quasiconvexification of f is defined by

sup{g < f: g quasiconvex }

and will be denoted by Qf.

PropOSITION 2.2. — (see [D}). Suppose f : MN*™ — R is continuous, then

(2.1) Qf(P) = inf / F(P + D¢(x)) da

ECE (RN meas(Q

where Q) C R™ is a bounded domain. Q f is quasiconvex. In particular the
infimum in (2.1) is independent of the choice of (1.
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ON THE STRUCTURE OF QUASICONVEX HULLS 669

In the variational approach to martensitic phase transitions, the integrand
f is sometimes in a special form where f > 0, and f(P) = 0 if and only
if P € K, where K C MY*" is a compact set (see [BJ1, BJ2, K, BFIK,
CK, K]). Such functions are in general not quasiconvex. Suppose (u;) is a
bounded sequence in the Sobolev space W1»(Q, RY), such that I(u;) — 0,
as j — oo, we are interested in the oscillating behaviour of the sequence
(Du;) and the possible ‘microstructures’ it may generate. The following
concept of quasiconvex hull for a set K ¢ M™N*™ is naturally introduced.

DEFINITION 2.3. — ([SV2]). For a subset K of MN*", the quasiconvex
hull Q(K) of K is defined by
QU(K) = {X e MM f(X) < sup f(Y),
YeEK
for every quasiconvex f : MY *" — R}.

Clearly, if K is bounded,
(2.2) K c QW(K)=Q¥(EK) c C(K),

C(K) being the convex hull of K.

In [Sv2], the above definition of quasiconvex hull is given for all
K C M™% For a compact set K, Q*)(K) is independent of the choice of
the growth of quasiconvex functions in the definition (see Proposition 2.5
below). However, for unbounded K, if we restrict the choice of quasiconvex
functions to satisfy a particular growth condition at infinity, then the
quasiconvex hulls thus defined may depend on the growth rate of the
quasiconvex functions [Y, Z2, Z3]. Therefore we define the quasiconvex
hull here in a different way. However, they are equal when K is compact.

DEFINITION 2.4, — ([Z2]). Let K C M™*™ Then the p-quasiconvex hull
of K for 1 < p < oc¢ is defined by

(2.3) Qu(K) = {A € MY*", Qdist"(4, K) = 0},

Qdist? (-, K') being the quasiconvexification of the p-distance function
dist? (-, K) 10 K.

It is easy to see that Q,(K) = Q,(K), and Q,(K) is closed. For a
compact set K C M™V*" we have

PROPOSITION 2.5. — (see |[Z2] and the Appendix of this paper). Suppose
K c MYN*" is compact. Then

QWY(K) = Qp(K)
for all p € [1,00).
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670 K. ZHANG

Because of this result, we may define the quasiconvex hull of K as
Q(K) = QW(K) = Q,(K) for all p € [1,00) when K is compact. The
advantage of Definition 2.4 is that to study the quasiconvex hull of a compact
set K, we need only to deal with one particular function, say Qdist’(-, K)
or Qdist(-, K'). We will show the advantage of this quantitative description
of quasiconvex hulls in the proofs of Theorem 1.1, 5.1 and 5.2.

LemMA 2.6. (Young measures). — (see, for example [T, B12]). Suppose (Uy,)
is a bounded sequence in L>(Q; RY), and for some compact set K C R",
meas({x € Q : Up(x) ¢ G}) — 0 as k — o< for every open set G D K.
Then there exists a subsequence (still denoted by U,.) and an associated
Sfamily of probability measures v, on I8 such that (i) v, is supported on K
Jor almost every x € ). (ii) for any continuous function » on R, ¢(Uy)
converges in the weak-x sense to the function 1 — [R (N dv,.(A).

In the above definition, if the sequence U/} has the form U, = Duy.
where €} C R" is open and bounded, and (wy) is a bounded sequence in
W1oe(Q, R¥), then the corresponding Young measure v, is called Young
measure limit of gradients or gradient Young measure (see [KP, BFIK]).
The Young measure is trivial if v, is a Dirac measure for a.e. x. In this
case there exists a function w such that v, is the Dirac measure at Du(x),
and up to a subsequence, Duj — Du almost everywhere. In general, the
Young measure may be nontrivial.

One of the restrictions of Young measure limit of gradients is that for
every quasiconvex function f : MV*" — R,

(2.4) / fNde,. > j</ /\dl/,,,,>
Jsuppr, Jsuppv.,.

for almost every = € Q (see for example, [BZ, KP, BFJK]).

LemMa 2.7. (gradient homogeneous Young measures). — (see [KP] for
a more general statement). Let {v,}.cq be a family of gradient Young
measures {v, }rcq with bounded supports, that is suppr, C K, where K
is a compact subset of MN*" and [, Adv,,(A\) = Py for almost every
xo € S Then for almost every xy € €1, there exists a bounded sequence
(¢r) in Wy™(D,RN) such that the corresponding family of gradient Young
measures {0, } of the squence () + Do) satisfy v, = v, for almost every
y € D, where D is the unit open hypercube in R". U, is called a gradient
homogeneous Young measure.

From now on, we mean by homogeneous Young measures as gradient
homogeneous Young measure (we write HYM for simplicity) by » and
write its integral average on its compact support K as g := [, Adv(A).
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ON THE STRUCTURE OF QUASICONVEX HULLS 671

The following is a collection of facts from finite dimensional convex
analysis (cf. [Ro, Th 2.4, 6.3, 11.5, 11.6 18.8]),

ProrosiTioN 2.8. — Suppose K C R" is a compact convex set with more
than one element. Then

(1) K has a dimension m < n, (m > 1) and K is contained in a

m-dimensional plane E,, C R";

(i) with the subspace topology induced from R" on E,,,, K is the closure
of its interior points intK, that is, K = intK;

(iit) for every convex subset D C OK ( D may consists of a single
point) there exists a ‘supporting hyperplane of K containing D (an
m — 1-dimensional hyperplane E is a supporting hyperplane of K
ifECE, and ENK = ENOK # W, a supporting half-space
of K in E,, is a closed half-space with F as its boundary and that
contains K);

(iv) K C F,, is the intersection of all its supporting half-spaces.

(v) P € K is called an extreme point of K if P cannot be represented as
a convex combination of other points in K. P is called an exposed
point of K if there exists an supporting hyperplane Ep of K such
that Ep N K = {P}. We denote by the set of all extreme points of
K by K..
Notice that for every compact set W C R™, [C(W)]., € W. Therefore
we write [C(W)], as W..

DEFINITION 2.9. (the supporting chain). — Suppose K C M™*" is compact
and convex. Suppose the dimension of K is my > 1 and K is contained in
a plane Ey C MN*" with the same dimension.

If 1 does not have rank-one connections, or K consists of only one
element, we define & = {E,,, }.

If Iy has rank-one connections and F N K has more than one element,
let &£ = {Ejyi =1,..., k} be a collection of planes with dimensions m,;,

0 < mp < mp_1 < ... < mq, such that

(1) Ej+1 C E]', for y = 1....k—1,

(i) F; has rank-one connections for i = 1,...,k — 1 and E; N K has
more than one element, while E}, does not have rank-one connections
or Fy 0 K consists of only one element.

(iii) for each i < k, E! is a supporting plane of E; N K with dimension
m; — 1, such that E. N K is of dimension m;.y and EINK C E;,,
so that EiNK = E; .1 NK.
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672 K. ZHANG

Then we call £ = {Ey.---. Ey} a supporting chains of K, and call E,.
the end plane. For simplicity we denote the end plane Ey, of € by E¢.

It will be shown in Theorem 1.2 below that every extreme point of K
must be contained in one of the supporting chains of K. It is easy to see that
if E¢ consists of only one point, that point must be an extreme point of K.

The following is a result for quasiconvex hulls of sets contained in a
plane without rank-one connections. It is a consequence of [BFJIK, Th. 4.1}

ProOPOSITION 2.10. — Suppose K C E C M™*", where K is a closed set
and E is a plane without rank-one connections. Then

Q(K) =K.

Since in this proposition, we do not assume boundedness of K, we use
Q2(K). If K is bounded, Q(K) = K.

Proof. — Notice that quasiconvex hulls are translation invariant, that is,
if we define K+ P = {A+ P, A € K} for a fixed P € M™*", then
Qy(K + P) = Q,(K) + P for all p € [1,0¢). Therefore, without loss
of generality, we may assume that £ is a subspace of M~ *" without
rank-one matrices. It was established in [BFJK] that there exists a constant
¢ > 0, such that

/‘ |Pe(Dg)|Pdx > ¢ / |D¢|*da:
Ja Q

for every open set £ C R" and every ¢ € C°(Q,RY).

Suppose P € QQ2(K), we see that P € E and we have, from Proposition
2.2 that there exists a sequence ¢; € C3°(D.R™) such that

0 = Qdist*(P. K) = lim / dist>(P + D¢j(2), K)dz,

= I p

D being the unit hypercube in R™. Since K C E, we then have, from
the fact

dist?*(A, K) > |Pp (A)?

that [, |Ppe(De;(x))|?de — 0 as j— co. Therefore, lim;_o. [}
|Dé;(z)|?dz = 0. Hence dist*(P, K) = 0 which implies P € K. O
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ON THE STRUCTURE OF QUASICONVEX HULLS 673
3. PROOFS OF MAIN RESULTS

We need the following lemma for the proofs of our results.

LemMa 3.1. — Suppose K C MYN*" is compact and let P € Q(K). Then
there exists a HYM v supported in K such that vy, = P. In particular,
when P € Q(K)\ K, v # ép.

Proof. — For every fixed P € Q(K), we have, from Proposition 2.5,
Qdist( P, K) = 0. Then Proposition 2.2 implies that there exists a sequence
(¢;) in C(D,RY) such that

lim / dist(P + D¢;(x), K)dx = 0,
i—o Jp

where D C R™ is the unit cube D = (0,1)". Since K is bounded, D¢, is
equi-integrable in D). Therefore, from Dunford-Pettis theorem (see [ET)),
up to a subsequence, ¢; — ¢ in Wy'(D,RY) weakly as j — co. We
extend ¢; periodically to R" and then define

zj(x) = %%(iw)'
It is easy to see that z; — 0 in W' (D,RY) weakly, and
jlim / dist(P + Dz;(x), K)dx = 0.
—JD
Applying a result in [Z1], up to a subsequence, we may have a bounded

sequence (g;) in WH(D,RY) such that,

lim / |Dz; — Dg;|dz = 0,
D

joo

so that

lim / dist(P + Dg;(z), K)dx = 0.
D

J oo

Let {v,}.ep be the family of gradient Young measures corresponding to
(P + Dg;). It is easy to see that suppy, C K and [, Ay, = P for
almost every x € ID. We then have, from Lemma 2.7 that there exists a
HYM v, such that suppr C K and vx = P. The second claim is a direct
consequence of the fact v = P. So, v = ép implies P € K. O
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674 K. ZHANG
Proof of Theorem 1.1. — We prove (i) by contradiction. Suppose

K\ Q(K,.) # 0, we have, from Definitions 2.3, 2.4 and Proposition
2.5 that Qdist(P, Q(K,.)) > 0 whenever P ¢ Q(K,.). Let

a = max{Qdist(P, Q(K,.)), P € K}.
We have o > 0. Let

K, ={P e K, Qdist(P,Q(K,.)) = o},
then K| C K is nonempty and compact. From the definition of quasiconvex
hulls, we see that Q(K;) C K. Let P, be a quasiconvex extreme point of
K. It is easy to see that ) € K,. We seek to prove that I, € K, . to

reach a contradiction. Let v be a HYM supported in K such that vy = .
Since Qdist(-, Q(K,.)) is quasiconvex, (2.4) implies

/ Qdist(A, Q(K .0 ))dv > Qdist(FPy. Q(K,)) = .
J K
On the other hand,

' Qdist(\, Q(K,.))dv
JK

= Qdist(A, Q(K,.))dv + / Qdist(A, Q(K, . ))dv
J K| JE\[Q(K 4. )UR]
= [l + 12-,
I, = Qdist( N, Q(K,..))dv = av(Ky).

J K,

Since v(K) = 1, we see that

I = / Qdist(A, Q(K,.))dv = 0,
K\(Q(K, .UKy)

which gives v(K \ K1) = 0. Otherwise, I» < av(K \ K1) so that
a < av(Kp)+ a(K\ Ky) = a.

Contradiction. Therefore v(K;) = 1 and hence suppr C K. Since Fy is
a quasiconvex extreme point of K;, v = ép,. This contradicts to the fact
that P, ¢ K, .. The proof of (i) is complete.
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ON THE STRUCTURE OF QUASICONVEX HULLS 675

Now we prove (ii). Since Q(W) = K, let P € K, . C K, we have, from
Lemma 3.1, there exists a HYM v supported in W, such that oy = P.
Since W C K, we conclude from the definition of K, . that v = 6p. Hence
PeW, O

In the proof of Theorem 1.1, we used the fact that Qdist( P, Q(K,.)) > 0
whenever P ¢ Q(K, ). In fact, a stronger result was established in [Z3]
that for all K ¢ MN*™ and all p € [1,00),

Qdist?(-, K) = Qdist* (-, Q,(K)).

Proof of Theorem 12. — Let Fy € K. and suppy C K, such that
P = Py. We use a dimension reduction argument and try to find a
supporting chain with the end plane containing F;. Suppose the dimension
of C(K) is m; and C(K) is contained in a rmn;-dimensional plane F,
1 <wmy < Nn (if m; = 0, the set K consists of only one point, and the
claim is then trivially true). Let F] be a supporting hyperplane of C'(K) in
E containing Py. Since C'(K) is on one side of the supporting hyperplane
E,. _1,suppr C K C C(K), fK Adv = P,, and v is a probability measure,
we see that suppr C K N Ef. Notice that C(K) N E] = C(K N EY). Let
the dimension of C'(K N E{) be ma and let C(K N E}) be contained in
an mo-dimensional plane E,. If Es does not have rank-one connections, or
mo = 0, we have, from [BFJK, Th. 4.1] that v = §p,. If E has rank-one
connections, notice that F; is also an extreme point of C'{ KN FEs). Repeat the
previous step, we have a finite number of planes Ey D Ey_1 D -+ D Ey,
with 0 < my < gy < --- < myp < nN, such that suppr C Er, N K. We
see that either F; does not have rank-one connections, so that we conclude
the proof, or the dimension of C(K N E}) is zero so that £, N K = { Py}
and the conclusion follows, that is, suppr = ép,. ]

As pointed out to the author by the referee, there is a much simpler
proof of Theorem 1.2 by using measure-thereotical description of extreme
points (see [A]). P € K is an extreme point of C(K) if and only if
for any probability measure v supported in C(K), such that vogy = P
implies v = dp. Since the set of gradient homogeneous Young measures is
a subclass of all probability measures, the conclusion follows. However, the
proof of Theorem 1.2 by using the supporting chain & = {E,, -+, E}} with
the end plane E, containing P, is more suitable for the study of quasiconvex
extreme points as we will see again in the proof of Theorem 1.5.

Proof of Theorem 1.3. — We prove this results by three steps.

Step (1). - [Q(K)],. C K.
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Since K C Q(K), we need only to show that for every P € Q(K) \ K,
P ¢ [Q(K)]q.. This follows from Lemma 3.1 that there exists a HYM
v such that suppr C K and 0x = P. Since P ¢ K, v # 6p. Step (1)
is proved.

Ster (2). — [Q(K)], C K.

Suppose P € [Q(K)],... We see from Step (1) that P € K. For any
HYM v, such that suppr C K and by = P, we notice that K C Q(K).
By the definition of [Q(K))],.. we have v = 6p, hence P € K.

Ster (3). - K, C [Q(K),.]

Let P € K, .. From Theorem 1.1 and Lemma 3.1, we see that there
exists a homogeneous Young measure v, suppr C [Q(K),..| (notice that
Q(K),. is not necessarily closed) such that ][Q(K Adv(\) = P. Since
[Q(K)y.] C K, we see that v = 6p. Hence P € [(Q(K)q,e]. The proof is
complete. O

Theorem 1.1 is crucial for the proof of Step (3) of Theorem 1.3, because
it provides a representation of P in Q(K) by the closure of its smallest
generator [Q(K), ], that is,

P = / Adv(A).
* [Q(K’)q.f]

However, Theorem 1.1 does not provide any further information on the
HYM v. It can happen that for some P € Q(K), there are many different
HYM supported in [Q(K), ] with integral average P. We can easily find
examples of compact convex sets in M1*" = R™ such that this happens.

Proof of Theorem 1.4. — Proposition 2.10 implies that K = Q(K). Let
P € K and let v be a HYM supported in K such that v, = P. [BFJK,
Th. 4.1] implies that v = 6p. O

Proof of Theorem 1.5. — The idea of proof is similar to that of Theorem
1.2, though it is more complicated. Let m; > 1 be the dimension of K.
There exists an rri;-dimensional plane £, which contains K and which has
rank-one connections. We prove this result in three steps.

Step (1). - K,. C OK, where 0K is the relative boundary of K
in El.

Since for every P € intK, there exists a rank-one matrix B € M~ *"
and ¢y > 0, to > 0, such that P+ 4R € K, P—t;R € K. P is a
convex combination of these two matrices. A classical result on two-well
problem in [BJ1] by a direct lamination construction shows that there exists
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HYM v supported in Ky := {P + #;R, P — {2R} such that pg, = P.
Hence P ¢ K,..

SteP (2). - Ko CUe(Ee NK).

Let P € K, .. From Step (1), we see that P € K. There is a supporting
hyperplane E] in E;, P € K N EY. Suppose the dimension of K N E] is
my and K N FEY{ is contained in a plane Fs.

If E, does not have rank-one connections or consists of only P, we
see that K N E; C K,. and P € E¢ with £ = {Fy, E5}. The proof of
Step (2) is then finished.

If £ has rank-one connections, we see from Step (1) that P € 9(KNE>)
- the relative boundary in F,. Then we repeat the previous argument. We
obtain a supporting chain £ = {E\, F», ..., E;.} with the dimensions of the
planes satisfying Nn > mq > mg > -+ > my > 0. We have P € KN E},
and F; either consists of only one matrix P or does not have rank-one
connections. In both cases, P € [J.(Es N K).

SteP (3). — Us(Be N K) C K.
Let P € J:(Es N K). There exists a supporting chain

E={E, - By = Eg}
such that
PeEsNKCE,_,NnKcC---CENK=K.

Let v be a HYM supported in K, 7y = P. If k =1, £ = {E,}. Then
£1 does not have rank-one connections, K C F;. Theorem 1.4 implies
that K = K, = KN E,, hence v = 6p, P € K, .. If k£ > 1, we have
suppy C K N E{ because E] is a supporting plane of K passing through
P. Since K N E| = K N E,. Repeating this we see that suppr C K N E},
while either F; does not have rank-one connections or K N Ey, = {P}. In
both cases, we have v = ép, thus P € K. O

4. EXAMPLES

Example 4.1. — When K C M"™ = R", the gradient Young measures
are generated by sequences of gradients of scalar-valued functions. In
this case K,. = K. because for all A,B € M" A # B, we have
rank(A — B) = 1. Therefore we can embed all examples of compact
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convex sets from [Ro] into this case. In particular, there exists a compact
convex set in R3, such that K, is not closed [Ro, page 167]. Therefore
there exists K € M'*3 such that K, . is not closed. We consider this as
a trivial example of non-compactness of K, ..

Recall Theorem 1.4 that another extreme case of K, . is when K is
contained in a plane £ ¢ M™*" without rank-one connections. In this
case for every compact subset K C E, K,. = K = Q(K). Yet another
example is K = SO(n)H, the so-called one-well structure. We have
K,. =K = Q(K) (see for example [Re, K, BJ1, BJ2, BFIK]).

Example 4.2. — We show that there exists a compact set K C M?*? such
that Q(K) # C(K), K,. # K. and K. is not closed.

Let
K= {A(f,s) € M**?,

At,s) = (:f (f]) 1<s<1,0<t< 1, ts:()}.

Obviously, K. = {A;. A_. Ay}, where

1o -1 0 0 1
A+_<0 0)‘ ‘4_<0 0)‘ A““<—1 o)'

We show that
(i) K,. = {Ay. A tAg, 0 <t < 1},
It is easy to see that A,, A_, A € K,.. Notice that
rank(A,; — A_) = 1. Following from Theorem 1.2, we see that

{8A, +(1-8)A_, 0<s<1}NK,.=0.

We need to prove that tAy € K,. for 0 <t < 1. Let P = tAy
and let v be a HYM supported in K, such that v = P. We
use a method in [Sv2] to show that an approximate sequence is a
Cauchy sequence. Notice that for any A(ty,s1), A(ts.s2) € K with
-1 S S1. 82 S 1,0 S f,l, fQ S 1, Slt]_ = 0 Sf_)tg = 0,

(41) det[A(tl,.sl) - A(tz, 82)] = (tl — t2)2.

Let (P+ D¢;) be a generating sequence of ~/ such that ¢; converges
to 0 in Wy *(D,R?) in the weak-+ sense, where D is the unit
square in R?. Since

lim / dist(P + D¢;, K)dx — 0,
D

j—roo
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we see that for any A € suppr, we have as; = ~ay2 where ao;,
being the (1,2) and (2,1) entries of matrix A. We can also see,
for any € > 0, that

lim meas({x € D,dist(P 4+ D¢,(x), K) > ¢}) = 0.

1=

Let )
I ;= / det[(P 4+ D¢;(x)) — (P + D¢;(x))]du.
Jp

On one hand, we see from the weak-* continuity of Jacobians [BI1],
that

(4.2) lim lim I; ; = 0.

J00 i—00

On the other hand, from (4.1) and (4.2), we have
(4.3) lim lim [; ; = / [/ (A2 — T12)%dv(\) |duv(7) = 0.
JHK LJK

J—oc i—oc

Let ¢; = (QSSI), ¢5~2>). A similar argument to that in [Sv2] gives

0,

0¢51) &¢§2) 0¢§-2)
— 0. - -0 — —
Oz C Oay X2
almost everywhere in D up to a subsequence. From the fact that
ljn(l) meas({z € D,dist(P + D¢;(z),K) > €}) = 0,
G
and the special structure of K, we can also conclude that
gt
0.’1,’1

almost everywhere. Hence v = ¢p, P € K, ., K, . is not closed.

(i) K = Q(K).
Let P € Q(K). Since Q(K) c C(K), we may assume that

a b
()

with 0 < b < 1. From Lemma 3.1, we see that there exists a HYM v
supported in K, such that P = 7. We can use a similar argument
as in (i) to show that a = 0, hence P € K. The proof is left to
the reader.

— 0
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Example 4.3. — We show that there exists K C M?*? such that
O(K) # C(K), K,. = K,.
Let

S, = {‘4 e M2, 4 = (’(L ;}) a>0,b>0, detA = 0}.

S, can be parameterized as

72 212 g 9
S+:{A€M2X2; A:( eyt y > T, yeR}.

Yy Vi +y? -

be a plane in the subspace of all 2 x 2 symmetric matrices. Define K be

the set of symmetric matrices in S, such that they are on the same side
of L as the zero matrix. We can prove that
(1) Sy N Lis acircle. K, consists of the zero matrix and S, N L. This
is easy to see.

(i) K, . = K,.. To see this, we have, for every P ¢ K., there exists
some t > 1 such that tP € S N L. Since P is a rank-one matrix,
P is a convex combination of the zero matrix and tP, we see that
P ¢ K, .. Hence K,, C K,. Theorem 1.2 implies K, . D K. The
conclusion follows.

(iii) K = Q(K). Suppose P € Q(K), we have P € C(K) and there
exists a HYM v supported in K . (notice here that K. is closed)
such that I = g . Since Jacobians are weakly continuous ([BI1]),
we see that

Let

/ detAdr()) = detvg, = detP.
J R,

Since detA = 0 for A € K, we see that detl” = 0, hence P € K.
The proof is finished.

Example 4.4. — Suppose f : MN*" — [0, +00) is quasiconvex, satisfying

f710) # ® and
K(w = {P € MNX"'J f(P) S (Y}

is compact for some « > (0. We see that K, is quasiconvex and that K,
contains some interior points of M *". We may claim, following the same
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argument of proof of Theorem 1.2 or that of Theorem 1.5, Step (1), that
(K4 )4 is contained in 0K, which is a subset of { P € M¥*" f(P) = a}.
Therefore, for every P € K,, there exists a HYM v supported in 9K,
such that

P = ’701\’“ :/ )\dV(/\)
oK,

5. APPLICATIONS TO TWO-WELL
AND THREE-WELL PROBLEMS

In this section we use results established in previous sections and some
properties of special quasiconvex functions to find quasiconvex extreme
points for the sets K, = SO(n)U SO(n)H and K; = U}_,[SO(n)Hy],
where H and H, are distinct positive definite matrices in M"*", and
SO(n) is the set of all orthogonal matrices in M"*" with determinant 1,
n > 1, SO(n)H = {RH, R € SO(n)}.

The quasiconvex hull Q(SO(n) U SO(n)H) is not known except for a
few special cases [Ma, Sv2, MS].

Let 7,, be the identity matrix in M™*". We have

THEOREM 5.1. — Let H # 1, be positive definite. Then for K; =
SO(n) U SO(m)H, (K3)q. = K.

Remark 5.1. — A direct consequence of Theorem 5.1 is that SO(n) U
SO(n)H is the smallest closed generator of Q(SO(n)U SO(n)H).

The following example shows that a similar statement is not true in
general for three or more wells.

Example 5.1. - Consider SO(n), SO(n)Iy, SO(n)I,, where

_ In~1 0 _ Infl 0
IA”( 0 /\>’ L‘( 0 T)

with 1 < A < 7.

Let K3 = SO(n) U SO(n)I\USO(n)I,. It is easy to see that for every
R € SO(n), RI, is a convex combination of R € SO(n) and RI,, and
rank(R—RI.) = 1. Hence Rl ¢ (K3),,. so that [SO(n) )N (K3),.. = 0.

The following result provides some information for (K3),., where
K3 = U;_,[SO(n)H,].
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THEOREM 5.2. — (K3),.. equals either Ky or SO(n)Hy, U SO(n)H; for
some fixed k # j, 1 < k, j < 3.

This result implies that if for some P € SO(n)H, and some Fk,
P € (K3)q,., then the whole set SO(n)H is contained in (K3),., and
(K3),.- 1s always compact.

Proof of Theorem 5.1. — It is well known now that
Q(SO(n)) = 50(n) = [SO(n)]y.e.

Q(SO(n)H) = SO(n)H = [SO(n)H], .
(see, for example [Re, K, Bi3]). From Proposition 2.2 and Definition 2.4,
we see that

f(P) = Qdist*(P, SO(n)) and fa(P) = Qdist*(P, SO(n)H)

are quasiconvex, nonnegative and vanish on SO(n) and SO(n)H respec-
tively. Another property of f and fy is that they are rotation invariant
in the sense that

f(RP) = f(P).  [fu(RP)= fu(P)

for every fixed P € M"™*" and all R € SO(n). Therefore, there are two
constants cv; > 0, ap > 0, such that f(P) = «; > 0 for all P € SO(n)H,
and fg(P) = as > 0 for all P € SO(n).

Now, for P € SO(n)H, let v be a HYM, suppr C Kj, such that
vk, = P. Since f(-) is quasiconvex, we have, on one hand,

fAdv(A) = f(ow,) = f(P) = .
JK,
On the other hand, a; = max{f(A), A € Ky}. Therefore
suppr C {A € Ks, f(A) = a1} = SO(n)H.
Hence v = ép. This shows that SO(n)H C (K»),.. The case when
P € SO(n) is similar if we use fy instead. O

Proof of Theorem 5.2. — We will prove that
(i) if SO(n)H; N Q(SO(n)H; U SO(n)Hy) = 0, for all © # j # k,
1 <4, 4,k <3, then (K3),. = Ks;
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(ii) if for some ¢, j, k,
SO(n)H; N Q(SO(n)H; U SO(n)Hy) # 0.

Then (K3),. = SO(n)H; U SO(n)Hy.

For case (i), notice that f;(P) = dist®(P,SO(n)H; U SO(n)H})
is rotation invariant for every fixed P € M™ " in the sense that
f(RP) = f(P) for all R € SO(n). Then it is not hard to see by applying
Proposition 2.2 that @ f; is also rotation invariant. Now, if we follow the
same argument for P € SO(n)H; by using Q f; as in the proof of Theorem
5.1, we see that SO(n)H; C (K3),.. Hence (K3),. = K.

For case (ii), without loss of generality, we may assume that i = 1,
j =2, k = 3. We prove this claim by three simple steps.

Step (1)
(K3)g.e C SO(n)H, U SO(n)H;.

In fact, we prove that SO(n)H; C Q(SO(n)H2U SO(n)Hs3) so that every
point in SO(n)H; can be represented by nontrivial HYMs supported in
SO(n)H,USO(n)H; by Lemma 3.1. Therefore SO(n)H,; does not contain
any quasiconvex extreme points of Kj, that is, SO(n)Hy N (K3),. = 0.
Hence the conclusion of Step (1) will follow.

By a similar argument to that in case (i), we see that
F\(P) = Qdist*(P, [SO(n)H, U SO(n)Hs))

is quasiconvex, rotation invariant and vanishs on Q(SO(n)H,USO(n)H;).
From the assumption, for some Py € SO(n)H,, F\(P,) = 0. Since F} is
rotation invariant, we see that Fy(P) = 0 for all P € SO(n)H;, hence

SO(n)H; C Q(SO(n)H, U SO(n)Hy),
so that SO(n)H, N (K3),. = 0.
SteEP (2)
SO(n)H, N Q(SO(n)H, U SO(n)Hs;) = 0,
SO(n)H; N Q(SO(n)H, U SO(n)H,) = {.
We prove the first equality only. If the claim were not true, that is,

SO(n)Hs N Q(SO(n)H, U SO(n)Hs) # 0,
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a similar argument to that of Step (1) would give
SO(n)Hy C Q(SO(n)H, U SO(n)Hs),

so that SO(n)Hy N (K3),. = #. Since (K3),. C K;, we see that
(K3)q.e C SO(n)Hs. However, it is known that Q(SO(n)H3) = SO(n)H;
which does not contain K3. Contradiction.

STeEP (3). — (K3)4.e = SO(n)H2 U SO(n)Hs;.

Notice that

Fy(P) = Qdist?>(P. SO(n)H, U SO(n)Hs).
F3(P) = Qdist*(P. SO(n)H, U SO(n)H,)

are quasiconvex, rotation invariant, F»(P) = as > 0 for P € SO(n)H,,
F3(P) = a3y > 0 for P € SO(n)Hj;, where . vy are constants. Just as
in the proof of Theorem 5.1, we may conclude that SO(n)H, C (K3),...
SO(n)H; C (K3),.. Combining these with the conclusion of Step (1),
we see that

(K,})q‘y = S()(’IL)HQ U S()(?I)Hg, O

Remark 5.1. — For the multi-well case, we may obtain similar results
as those of Theorem 5.2. Let K,, = U SO(n)H;, where H;’s are
distinct positive definite n X n matrices and m > 3. We see that
(Kin)ge = Ui_ SO(m)H;, for some k > 2 (k < m). An interesting
observation from this is that (K,,),. either contains the whole well
SO(n)H; or does not intersect with it.
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APPENDIX

Proof of Proposition 2.5. — (see [Z2]) Let K; = {X € MMxn,
Qdist? (X, K) = 0}. Obviously, Q®)(K) C K,. Let f : MV*" — R
be any quasiconvex function. Let

ay = sup f(X)
XeK
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and
fo, (X) = max{f(X) — ay, 0}.

It is easy to see that f,, is quasiconvex, QK C f(,_fl(()) and QW (K) =
Ny f5}(0). We may assume that f;'(0) is compact, otherwise take the

convex function
g(-) = distQ(-, C(K)),

which is the squared distance function to a convex set. Therefore f,, +g is
quasiconvex. We claim that (f,, + ¢)~'(0) C C(K), hence it is compact.
This is easy to see because f,, > 0 and ¢~*(0) = C(K). We have, for
any fixed 1 < p < oo,

Qdist” (X, f1(0)) < dist”(X, f71(0)) < dist’ (X, K)
for all X € M™>". Since Qdist”(X, f;'(0)) is quasiconvex, we have

Qdist” (X, £71(0)) < Qdist”(X, K).
From {Z1, Th. 1.1] and its proof, we see that for a compact zero set
f(:f,l(O) corresponding to a nonnegative quasiconvex function f, ., and for
any 1 < p < oo,

!f?

S 0) ={X e MM Qdist? (X, f71(0)) = 0}.

x f

Hence, K; C f(jfl(()) for every quasiconvex function f, thus K; C Q) (K).

The proof is complete. O
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