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ABSTRACT. - We define the set K,,, c K of quasiconvex extreme points 
for compact sets K c MNxn and study its properties. We show that K,,, 
is the smallest generator of Q(K)-the quasiconvex hull of K, in the sense 
that Q(K(,,+) = Q(K), and that for every compact subset W c Q(K) with 
Q(lV) = Q(K), K,,,. c W. The set of quasiconvex extreme points relies 
on K only in the sense that Q(K),,, c K,,, c [Q(K)q.p]. We also establish 
that K, c K,,,, where K, is the set of extreme points of C(K)-the convex 
hull of K. We give various examples to show that K,;, is not necessarily 
closed even when Q(K) is not convex; and that for some nonconvex Q(K), 
K,,, = K,,. We apply the results to the two well and three well problems 
studied in martensitic phase transitions. 0 Elsevier, Paris 

1. INTRODUCTION 

A basic property of compact convex sets in I?” is that they are the 
closed convex hulls of their extreme points (Krein-Milman Theorem [Ru]). 
Suppose K c IV” is compact and convex, then K = C(K,) where K, 
is the set of its extreme points. Also, for every compact W c K such 
that C(W) = K, we have K, c W. We may say that K, is the smallest 
generator of the convex set’K. In this paper we introduce a similar notion 
for quasiconvex sets studied in the variational approach to material phase 
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664 K. ZHANG 

transitions, and we show that the set K,., of quasiconvex extreme points 
is the smallest generator of the quasiconvex set K. It turns out that K,,,. 
is a natural generalization of K,.. For K c Ml,” 2 UP. K,,,. = K, (see 
Example 4. I ). 

For a compact subset K c Ml\” “, we may define its quasiconvex hull 
Q(K) by cosets of quasiconvex functions [Svl], or alternatively, by direct 
quasiconvex relaxations of the distance functions to the set [Z2]. In fact. 
the study of properties like quasiconvex hulls for sets in M”’ ” goes back 
to J. M. Ball [B13]. A compact subset K c iVINx” is called quasiconvex 
if Q(K) = K (for more precise definitions, see $2 below). Examples of 
quasiconvex sets include the level sets of quasiconvex functions, that is 
K = {I’ E M”x”; f(p) 5 o} where N E R’ and f : &I”“’ --) W 
quasiconvex. 

Let (uj) be any bounded sequence in W1,“(R,R”), approaching a 
compact set K c M NX7’ in the sense that dist(Duj(z), K) + 0 almost 
everywhere as j + 03. We further assume that Uj 5 u in W1,“(IL, W”) 
in the weak-* sense (from now on, 5 denotes weak-* convergence). 
Heuristically, the quasiconvex hull Q(K) of K is the smallest closed set 
Q(K) such that Du(n:) E Q(K) 1 a most everywhere. This means Q(K) 
is closed under weak-* convergence. A compact set K is quasiconvex if 
it is weak-* closed. 

Let us use the level set mentioned above as an example, that is, 

K = {I’ E MNXr2, f(P) < <I} 

where CY E R and f : M”‘” + R’ quasiconvex. We assume that K is 
compact. Let Uj -5 u in W ‘aX(O. RjV) and dist(Duj(z), K) -+ 0 almost 
everywhere as j + 0. Let { I/,,.}:~~Q be the family of Young measures 
corresponding to (DIL,~) (see [T, B12] and Lemma 2.6 bellow). Then we 
have supp~,~ c K‘and 

(see, for example [BZ, KP]) for almost every z E 0. Here we have used 
the fact that f is quasiconvex to obtain the inequality above. Now, from 
the definition of K, the left hand side of the above inequality is less than 
Q, hence f(Du(z)) < CL, which gives Du(z) E K almost everywhere. 
K is a quasiconvex set. 

The study of quasiconvex hulls and quasiconvex sets is motivated 
by the variational approach to martensitic phase transitions and material 
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microstructures [ BJl, BJ2, CK, K, Sv2, MS]. A natural question in the 
study of quasiconvex sets or quasiconvex hulls of a given set is to ask 
whether there exists a ‘smallest’ subset Ku of a quasiconvex set K such 
that Q(Ko) = K. In this paper we show that the following set turns out to 
be the smallest generator of the quasiconvex set K. 

DEFINITION 1.1. - Let K c MNX’L be non-empty and compact. 

P E K is called a quasiconvex extreme point of K iffor every gradient 
homogeneous Young measure v supported in K with JX Xdv(X) = P, then 
N = b, - the Dirac mass supported at P. 

The set of all quasiconvex extreme points of K is denoted by K4,?. 

Gradient homogeneous Young measures are generated by bounded 
W1,” sequences, while a minimizing sequence of the functional 
J, dist”(D~j, K)d 1: + 0 is appearently only bounded in W1,p. However, 
a result in [Zl] shows that if the a family of gradient Young measures has 
uniformly bounded supports, we can find a bounded sequence in W1s” 
which generate the same family of gradient Young measures. Intuitively, 
the gradient Young measure represents the oscillation of a weakly (weak-*) 
convergent sequence while the quasiconvex hull of a set consists of all 
possible averages of the Young measures supported in the set [B13, BJl, 
BJ2, KP, BFJK]. Quasiconvex extreme points are those which can only 
be represented by themselves, that is, by Dirac masses. We may naturally 
guess that they are the building bricks for a quasiconvex set. Theorem 1.1 
justifies this. The definition of quasicovex extreme points by using gradient 
homogeneous Young measures is natural. As pointed out by J. Kristensen 
to the author, that in an abstract setting for convex sets, Choquet points and 
the Choquet boundary are defined by using positive measures [A]. 

We show in Theorem 1.2 below that K,., is not empty whenever K # 0. 
In fact, we show that Ky,? > K,. 

This paper answers the question what the smallest generator of a 
quasiconvex set is. We do not intend, in this paper, to answer the question 
of how the quasiconvex set is generated by its smallest generator. This 
second question seems to be a rather deep one (see [BFJK, MS]). 

THEOREM 1 .l. - Suppose K c MNxn ts compact and quasiconvex. Then 
K,,, is the smallest generator of K in the sense that 

(i) KY,? is a generator of K, Q(K,,,) = K. 

(ii> K,., is the smallest generator of K, that is, if W c K is compact 
and Q(W) = K, then Kq,? c W. 

Vol. 15, no 6.lYY8. 



666 K. ZHANG 

COROLLARY 1.1. - Suppose K c 111”” I’ 1s compact and quasiconvex, and 
V c K, W c K are two compact generators of K, Q(V) = Q(W) = K. 
Then V n W is also a compact generator of K. 

Corollary 1.1 is a direct consequence of Theorem 1.1. However, 1 do not 
know whether it can be proved directly without applying Theorem 1.1. 

Remark 1 .l. - Theorem 1 .l provides a ‘minimal’ representation of points 
in a quasiconvex set by the closure of the set of its quasiconvex extreme 
points via gradient homogeneous Young measures. More precisely, we have 
that for every P E K, there exists a gradient homogeneous Young measure 
v supported in [K,.,,] such that 

P= 
/- 

Ado(X). 
. [h-c,.< 1 

For more details, see Lemma 3.1 below. Notice that K,,, is not necessarily 
closed (see Examples 4.1, 4.2). 

The following result gives the relation between K,., and K, for a 
compact set K c Mivx7’. Notice that in convex analysis, it is well known 
that K, = [C(K)], c K for any compact set K c R’” [Ro]. 

THEOREM 1.2. - Suppose K c M lY “’ is non-empty and compact. Then 
K,,, is not empty. In fact, K,, c K,,,,. Therefore C(K,.,) = C(K), where 
K, is the set of extreme points of C(K). 

The following result shows that the set of quasiconvex extreme points 
K,,, of a compact set K depends only on the set, not on the quasiconvex 
hull Q(K). This indicates that the quasiconvex extreme point is an intrinsic 
property of the compact set K. At present, very few examples are known 
of explicit forms of Q(K) for a given set K. 

THEOREM 1.3. - Suppose K c M AYx” is non-empty and compact. Then 

- 
Notice that for a bounded set T/t’ c n/lNXT1, Q(W) = Q(W) and Q(W) 

is always compact whenever W is bounded (consult the definition of 
quasiconvex hulls in $2). 

THEOREM 1.4. - Suppose K is compact and C(K) does not have rank-one 
connections. Then K,,,, = K = Q(K). 

In the following result, we use the supporting chains (see Definition 2.9) 
to describe the structure of K,,, for a compact convex set K. 
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THEOREM 1.5. - Suppose K is compact, convex with more than one 
element, and K has rank-one connections. Then 

where the union is taken over all of the end planes of supporting chains {I} 
qf K. In particular, when K is strictly convex, K,,, = K,. 

We also give some examples to show that (1): Kp,e can be non-compact; 
(2) we can have K,,, = K, even when Q(K) is not convex. We then apply 
our results on quasiconvex extreme points to the two-well and three-well 
problems in martensitic phase transitions. For the two-well case, that is, 
when K = SO(rb) U SO(rr,)H, we have Kq,e = K. For the three well case, 
we prove that Kq,? is either K itself or a subset of two wells. We then 
make some remarks for the general case. 

Remark 1.2. - Since we may define other ‘semiconvex’ hulls, such as 
rank-one convex hulls, polyconvex hulls the same fashion as quasiconvex 
hulls (see [SV~]), it is natural to ask whether we can use subclasses of 
probability measures to define corresponding extreme points. An interesting 
question then is whether for a given compact set, rank-one extreme points 
are the same as quasiconvex extreme points. We do not intend to answer this 
questions here. However, I guess that the answer is negative. An example 
might be constructed by using the famous counterexample that rank-one 
convexity does not implies quasiconvexity due to Sverak [SV~]. 

In order to prove the results mentioned above, we use the properties of 
gradient homogeneous Young measures generated by gradients (see [KP]), 
the results of quasiconvex hulls, and quasiconvex functions and the basic 
theory of convex analysis. In 52, some preliminary results are given. In $3, 
we first establish a lemma (Lemma 3.1) to connect homogeneous Young 
measures and quasiconvex hulls. Then we prove our results listed above. 
Some explicit examples of Kq,r are exhibited in $4. We apply our results 
to the two-well and three-well problems in $5. 

2. PRELIMINARY RESULTS 

We denote by MNX” the space of all real N x 7~ matrices with R”” 
norm. If E C MNXn is a linear subspace, we write PE and PEG as the 
orthogonal projections from MNxn to E and its orthogonal complement 
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El respectively. meas is the Lebesgue measure of a measurable subset 
U c W” and 

tlist(Q, K) = jr& IQ - PI 

denotes the distance function from a point Q E M” “I to a set K c &!I’- ’ “. 
From now on R denotes a non-empty, open and bounded subset of UP. 
For a given set K c W”, intK, K and 8K denote its interior, closure and 
boundary. We denote by DU the gradient of a (vector-valued) function ‘11, 
and we define the space C,“(n, W”), the L” spaces and Sobolev spaces 
W1,” in the usual way. We say that K c M M X ” has a rank-one connection 
if there exist A: B E K such that rank(A - B) = 1. The support of a 
measure v is denoted by suppv. 

Let f : MNxlL -+ [w be a continuous function. f is quasiconvex (cf. 
[Bll ,Mo,D]) in M’yxTi if for every open and bounded subset i2 of R”, 
every P E MNX” and every $ E C,“(RR”). 

(1) 
I 

* f(P + Lq(2T))d:IJ > . f(P)dn:. 
. n I , i? 

The class of quasiconvex functions is independent of the choice of 0. 
It is well known now that I(U) = jb f(Du)dz is lower semicontinuous 
in the Sobolev space IV’,” (0, R”), in the weak-* sense if and only if 
f is quasiconvex (see [MO, Bll, AF]). Suppose in addition, f satisfies 
0 <_ f(P) 2 C(l + IPI”) for P E MNX7’, for some constants C > 0 and 
p 2 1, then I(.) is weakly lower semicontinuous in W’,p(R, R”) if and 
only if f is quasiconvex (see [AF] for the general statements and proofs). 

For a given function, we can consider its quasi-convexification 
(quasiconvex relaxation): 

DEFINITION 2.1. - ([D]). Suppose f : M”“” -+ R! is continuous. The 
quasiconvexification of f is dcjined by 

sup{g < f; g quasiconvex } 

and will be denoted by C)f. 

PROPOSITION 2.2. - (see [D]). Suppose f : MNX” -+ R is continuous, then 

(2.1) Qf(P) = . 
1 . 

~E$$;R~ j meas( Cl) J 
f(P + Dqqz)) ds: R 

where R C R’” is a bounded domain. Qf is quasiconvex. In particular the 
injimum in (2.1) is independent of the choice of 0. 
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In the variational approach to martensitic phase transitions, the integrand 
f is sometimes in a special form where f 2 0, and f(p) = 0 if and only 
if P E K, where K c MNxn is a compact set (see [BJI, BJ2, K, BFJK, 
CK, K]). Such functions are in general not quasiconvex. Suppose (2~~) is a 
bounded sequence in the Sobolev space Wtlp(R, RN), such that I(uj) --f 0, 
as j + 30, we are interested in the oscillating behaviour of the sequence 
(Duj) and the possible ‘microstructures’ it may generate. The following 
concept of quasiconvex hull for a set K c MNxn is naturally introduced. 

DEFINITION 2.3. - ([SV~]). For a subset K of MNx’L, the quasiconvex 
hull Q(“)(K) of K is defined by 

Q(“)(K) = {X E MNXn. f(X) 5 sup f(Y): 
1’EK 

for every quasiconvex f : MAi”& -+ R}. 

Clearly, if K is bounded, 

(2.2) K c Q(")(K) = Q'"'(K) c C(K), 

C(K) being the convex hull of K. 

In [SV~], the above definition of quasiconvex hull is given for all 
K c MNX”‘. For a compact set K, Q(“)(K) is independent of the choice of 
the growth of quasiconvex functions in the definition (see Proposition 2.5 
below). However, for unbounded K, if we restrict the choice of quasiconvex 
functions to satisfy a particular growth condition at infinity, then the 
quasiconvex hulls thus defined may depend on the growth rate of the 
quasiconvex functions [Y, 22, 231. Therefore we define the quasiconvex 
hull here in a different way. However, they are equal when K is compact. 

DEFINITION 2.4. - ([Z2]). Let K c MaVx n. Then the p-quasiconvex hull 
of K for 1 < p < CC is dejined by 

(2.3) Q,(K) = {A E MNxn. Qdist”(A, K) = 0}, 

Qdist”(.! K) being the quasiconvex$cation of the p-distance function 
dist”(., K) to K. 

It is easy to see that Q,(K) = Q,(B), and Q,(K) is closed. For a 
compact set K c MNX1‘, we have 

PROPOSITION 2.5. - (see [Z2] and the Appendix of this paper). Suppose 
K c j,,,,f>tTXn is cdmpact. Then 

Q’“‘(K) = Q,(K) 

fijr all p E [l,oo). 
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670 K. ZHANG 

Because of this result, we may define the quasiconvex hull of K as 
Q(K) = Q(“)(K) = Q*(K) f or all y E [l: a) when K is compact. The 
advantage of Definition 2.4 is that to study the quasiconvex hull of a compact 
set K, we need only to deal with one particular function, say QdistS2 (. . K) 
or Qdist(., K). We will show the advantage of this quantitative description 
of quasiconvex hulls in the proofs of Theorem I. 1, 5.1 and 5.2. 

LEMMA 2.6. (Young measures). - (see, for example [T, B12]). Suppose (Uk.) 
is a bounded sequence in L”(12; RV), und j;jr Some compact set K c R,‘, 
rneas({x E R : U,+(x) $ G’}) -+ 0 as k -, x,fi)r every open set G > K. 
Then there exists a subsequence (still denoted by U,) and an associated 
,jbmily of probability measures II.,. on R;’ such that (i) I/,,. is supported on K 
,fijr ulmost every :I: E $2: (ii) j2)r an>’ continuous ,functiorz *V/I OH R;‘, $( U,.) 
converges in the weak-* sense to the fimction :I: -+ ,I;,. $( X)dl/,, (A). 

In the above definition, if the sequence Cl,. has the form I;,. = DUE. 
where 12 C W” is open and bounded, and (,/AL.) is a bounded sequence in 
IV1.“(61, R”), then the corresponding Young measure 11,~ is called Young 
measure limit of gradients or gradient Young measure (see [KP, BFJK]). 
The Young measure is trivial if I).,. is a Dirac measure for a.e. .I’. In this 
case there exists a function 71. such that I/.,. is the Dirac measure at Du(LI.), 
and up to a subsequence. DUE -+ DTL almost everywhere. In general. the 
Young measure may be nontrivial. 

One of the restrictions of Young measure limit of gradients is that for 
every quasiconvex function ,f : A,fAVx ” + R. 

(2.4) / 
. h,,,,,‘“~ 

.f(xw,. 2 f(l,,, ,,,, ~ mr) 

for almost every :G E ft (see for example, [BZ, KP, BFJK]). 

LEMMA 2.7. (gradient homogeneous Young measures). - (see [KP] ,for 
a more general statement). Let {1/~},~~~2 be u family qf gmdient Young 
measures {v~}.,.~c~ with boutided supports, that is SUI)I)V,, C K, where K 
is Q compact subset of M”” ” and .I, Xdu,.,, (A) = PO ,for almost every 
:cO E Il. Then for almost every X:O E 12, there exists u bounded sequence 
(c$I;) in Wi’“(D, WY) such that the corresponding family of grudient Young 
measures {py} of the squence (PO + D$k) sati& fig = u,.~~ ,for almost every 
y E D, where D is the unit open hypercube in R”. ‘/,, is called a gradient 
homogeneous Young measure. 

From now on, we mean by homogeneous Young measures as gradient 
homogeneous Young measure (we write HYM for simplicity) by 71 and 
write its integral average on its compact support K as iih- := .I, Xdv(X). 
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The following is a collection of facts from finite dimensional convex 
analysis (cf. [Ro, Th 2.4, 6.3, 11.5, 11.6 l&8]), 

PROPOSITION 2.8. - Suppose K c R” is a compact convex set with more 
than one element. Then 

(i) K has a dimension ~1 < n, (rn, > 1) and K is contained in a 
m-dimensional plane E,,, c R”; 

(ii) with the subspace topology inducedfrom R” on E,,,, K is the closure 
of its interior points intK, that is, K = a; 

(iii) ,for every convex subset D c i3K ( D may consists of a single 
point) there exists a ‘supporting hyperplane of K containing D (an 
rrt, - l-dimensional hyperplane E is a supporting hyperplane of K 
if E C E,,, and E n K = E n 8K # fl, a supporting half-space 
of K in E,,, is a closed half-space with E as its boundary and that 
contains K); 

(iv) K c Err, is the intersection of all its supporting half spaces. 

(v) P E K is called an extreme point of K if P cannot be represented as 
a convex combination of other points in K. P is called an exposed 
point qf K if there exists an supporting hyperplane Ep of K such 
that Ep fY K = {I’}. We denote by the set of all extreme points of 
K byi K,.. 

Notice that for every compact set IV c R”, [C(W)lV c IV. Therefore 
we write [C(W)ll, as IV,. 

DEFINITION 2.9. (the supporting chain). - Suppose K c MAVx” is compact 
and convex. Suppose the dimension of K is ml > 1 and K is contained in 
a plane El c MNxn with the same dimension. 

If El does not have rank-one connections, or K consists of only one 
element, we define E = {E,,,, }. 

(f El has rank-one connections and El n K has more than one element, 
let L = {E;, i = 1. . . . k} be a collection of planes with dimensions rn,. 
0 < rnk. < rnk-1 < . . . < rrt,l, such that 

(i) Ej+l C E.7, ,for j = 1,. . . k - 1, 
(ii) E; has rank-one connections for % = 1. . . . i k - 1 and Ei n K has 

more than one element, while E,+ does not have rank-one connections 
or Ek n K consists qf onl-y one element. 

(iii) for each i < k, E: is a supporting plane of E, f~ K with dimension 
711; - 1, such that Ej n K is of dimension rtLi+l and El n K c E;+l 
SO that Et n K = Ej+I n K. 
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Then we cull Z = {E,.....EA.} a supporting chains of K, and call Ek 
the end plane. For simplicity we denote the end plane Ek qf E by Et-. 

It will be shown in Theorem 1.2 below that every extreme point of K 
must be contained in one of the supporting chains of K. It is easy to see that 
if EE consists of only one point, that point must be an extreme point of K. 

The following is a result for quasiconvex hulls of sets contained in a 
plane without rank-one connections. It is a consequence of [BFJK, Th. 4.11: 

PROPOSITION 2.10. - Suppose R c E c L4f”‘xx,‘, where K is u closed set 
and E is a plane without rank-one connections. Then 

C),(K) = K. 

Since in this proposition, we do not assume boundedness of K, we use 
C&(K). If K is bounded, Q(K) = K. 

Proof. - Notice that quasiconvex hulls are translation invariant, that is, 
if we define K + P = {A + P, A E K} for a fixed p E M”’ “, then 
Q,,(K f P) = Q,(K) + I’ f or all p E [l; ~8). Therefore, without loss 
of generality, we may assume that E is a subspace of LV’~“’ without 
rank-one matrices. It was established in [BFJK] that there exists a constant 
r: > 0, such that 

for every open set 12 c R” and every d, E Cl,- ($2: R”). 

Suppose P E Q,(K), we see that P E E and we have, from Proposition 
2.2 that there exists a sequence $j E C,F(D. Wn;) such that 

o = Qdist2(P. K) = lim 
I 

dist2(p + D&j(x). K)~x, 
.I-=. D 

D being the unit hypercube in R”. Since K c E, we then have, from 
the fact 

dist’(A, K) > jPEl(A)12 

that SD IPEI(D$j(z))12d~: -+ 0 as j -+ 00. Therefore, lirnj+, JD 
(D~$,(z)1~dz = 0. H ence dist2(P. K) = 0 which implies P E K. 0 
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3. PROOFS OF MAIN RESULTS 

We need the following lemma for the proofs of our results. 

LEMMA 3.1. - Suppose K c bl Nxrr is compact and let P E CJ( K). Then 
there exists a HYM v supported in K such that VI< = P. In particular, 
when P E Q(K) \ K, 11 # bp. 

Proofi - For every fixed P E Q(K), we have, from Proposition 2.5, 
Qdist(P, K) = 0. Then Proposition 2.2 implies that there exists a sequence 
(4j) in C;l,-(D,Wy) such that 

where D c R” is the unit cube D = (0, 1)“. Since K is bounded, D$j is 
equi-integrable in D. Therefore, from Dunford-Pettis theorem (see [ET]), 
up to a subsequence, &j + C$ in W,“‘(D, @‘) weakly as j + 30. We 
extend &3 periodically to R” and then define 

It is easy to see that zj -+ 0 in W,“‘(D. R”) weakly, and 

lim 
J j+-= D 

dist(P + Dz,~(x). K)d:r: = 0. 

Applying a result in [Zl], up to a subsequence, we may have a bounded 
sequence (gj) in W l,m( D, R”) such that, 

so that 

lim 
I’ j-00. D 

dist(P + Dgj(:r:): K)d:c = 0. 

Let {V,},GD be the family of gradient Young measures corresponding to 
(P + Dgj). It is easy to see that suppv, c K and J, Xdv, =I P for 
almost every x E D. We then have, from Lemma 2.7 that there exists a 
HYM V, such that suppv C K and VIC = P. The second claim is a direct 
consequence of the fact I/K = P. So, v = Sp implies P E K. q 
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Proof of Theorem 1.1. - We prove (i) by contradiction. Suppose 
K \ Q(K,,,) # 0, we have, from Definitions 2.3, 2.4 and Proposition 
2.5 that Qdist(P:Q(K,,,)) > 0 whenever P $! Q(K,~,). Let 

(I: = max{Qdist(P~ Q(Ky.?)). P E K}. 

We have N > 0. Let 

K1 = {P E K. Qdist(P,Q(K,,,)) = (Y}. 

then Ki c K is nonempty and compact. From the definition of quasiconvex 
hulls, we see that Q(K1) c K. Let E>o be a quasiconvex extreme point of 
K1. It is easy to see that I;, E K1. We seek to prove that PO E K,.,, to 
reach a contradiction. Let v be a HYM supported in K such that 1/~ = PO. 
Since Qdist(., Q(Kcl.e)) is quasiconvex, (2.4) implies 

I’ Qdist(X, Q(K,,,))dv 2 Qdist(Pa. Q(K,,,,)) = O. 
. Ii 

On the other hand, 

II = 
I 

Qdist(X. Q(K,,(,))dv = trv(K1) 
. Ii, 

Since v(K) = 1, we see that 

which gives v(K \ K1) = 0. Otherwise, I2 < tw(K \ K,) so that 

a < rw(K1) + av(K \ K1) = CI: 

Contradiction. Therefore v(K1) = 1 and hence suppv c K1. Since PO is 
a quasiconvex extreme point of K1, v = Sp,. This contradicts to the fact 
that PO $ K,,,,. The proof of (i) is complete. 
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Now we prove (ii). Since Q(W) = K, let P E Kq,e c K, we have, from 
Lemma 3.1, there exists a HYM v supported in IV, such that fiti- = P. 
Since W c K, we conclude from the definition of K+, that 71 = SF. Hence 
P E w. 0 

In the proof of Theorem 1.1, we used the fact that Qdist( P, Q( Kq,,)) > 0 
whenever P $ Q(Kq,,). In fact, a stronger result was established in [Z3] 
that for all K c I1I”‘” and all p E [l, oc), 

QdisP(.; K) = Qdist”(., Q,(K)). 

Proof of Theorem 1.2. - Let PO E K, and suppv C K, such that 
fiK = PO. We use a dimension reduction argument and try to find a 
supporting chain with the end plane containing PO. Suppose the dimension 
of C(K) is ml and C(K) is contained in a ml-dimensional plane El, 
1 5 rrll 5 Nn (if ml = 0, the set K consists of only one point, and the 
claim is then trivially true). Let Ei be a supporting hyperplane of C(K) in 
El containing PO. Since C(K) is on one side of the supporting hyperplane 
E ,,,, e-1, suppv c K c C(K), JI< Xdu = P 0, and v is a probability measure, 
we see that suppv c K n Ei. Notice that C(K) n Ei = C(K n Ei). Let 
the dimension of C(K n Ei) be ~12 and let C(K n El) be contained in 
an m2-dimensional plane E2. If E2 does not have rank-one connections, or 
~12 = 0, we have, from [BFJK, Th. 4. l] that v = 6~“. If E2 has rank-one 
connections, notice that PO is also an extreme point of C( KnE,). Repeat the 
previous step, we have a finite number of planes Ek > Ek,-l > . . . > El, 
with 0 2 rrzk < rr~k-~ < . . . < ml < UN, such that snppv c Ek n K. We 
see that either Ek does not have rank-one connections, so that we conclude 
the proof, or the dimension of C(K n Ek) is zero so that Ek n K = {PO} 
and the conclusion follows, that is, suppv = 6~~. 0 

As pointed out to the author by the referee, there is a much simpler 
proof of Theorem 1.2 by using measure-thereotical description of extreme 
points (see [A]). P E K is an extreme point of C(K) if and only if 
for any probability measure v supported in C(K), such that vcch-) = P 
implies u = 6~. Since the set of gradient homogeneous Young measures is 
a subclass of all probability measures, the conclusion follows. However, the 
proof of Theorem 1.2 by using the supporting chain E = {El, . . , Ek} with 
the end plane Ek containing PO is more suitable for the study of quasiconvex 
extreme points as we will see again in the proof of Theorem 1.5. 

Proof of Theorem 1.3. - We prove this results by three steps. 

STEP (1). - [Q(K)],.e C K. 
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Since K c Q(K), we need only to show that for every P E Q(K) \ K, 
I’ 6 [Q(K)],,f,. This follows from Lemma 3.1 that there exists a HYM 
I/ such that suppv c K and VK = P. Since P $ K, v # 0‘~. Step (1) 
is proved. 

STEP G-3. - [Q(K)],., C K,,,. 

Suppose P E [Q(K)],,,,. W e see from Step (1) that P E K. For any 
HYM V, such that supp~ c K and VI%. = P, we notice that K c Q(K). 
By the definition of [Q(K)],,c, we have n = 6p, hence P E K,,, . 

STEP (3). - K,,,, C [Q(W,,J. 
Let P E K,,,. From Theorem I. I and Lemma 3.1, we see that there 

exists a homogeneous Young measure II, suppv c [Q(K),,,] (notice that 

QmI.~ is not necessarily closed) such that jhXd~(X) = I’. Since 

[Q2(W,,,.l c K, we see that 11 = hp. Hence P E [(i(K)q,,]. The proof is 
complete. cl 

Theorem 1.1 is crucial for the proof of Step (3) of Theorem 1.3. because 
it provides a representation of I’ in Q(K) by the closure of its smallest 
generator [Q(K),I.,], that is, 

P= /’ MI/(A). 
’ [Q(W,(,< 1 

However, Theorem 1.1 does not provide any further information on the 
HYM 11. It can happen that for some P E Q(K), there are many different 
HYM supported in [Q(K),.,] with integral average P. We can easily find 
examples of compact convex sets in Mlxrr E R” such that this happens. 

Proof cf Theorem I .4. - Proposition 2.10 implies that K = Q(K). Let 
P E K and let v be a HYM supported in K such that I/r\- = P. [BFJK, 
Th. 4. I] implies that II = 6~. cl 

Proof of Theorem 1 S. - The idea of proof is similar to that of Theorem 
1.2, though it is more complicated. Let rrll 2 1 be the dimension of K. 
There exists an nll-dimensional plane El which contains K and which has 
rank-one connections. We prove this result in three steps. 

STEP (1). - 
in El. 

K,., c 3K, where dK is the relative boundary of K 

Since for every P E intK, there exists a rank-one matrix R E M” “’ 
and tr > 0, t2 > 0, such that P + tlR E K, P - tzR E K. P is a 
convex combination of these two matrices. A classical result on two-well 
problem in [BJl] by a direct lamination construction shows that there exists 
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HYM v supported in Ka := {P + tl R. P - tzR} such that VK~ = P. 
Hence P $ K,,,. 

STEP (2). - h’,,, C UE(& n K). 

Let P E Kq,,. From Step (I), we see that P E 3K. There is a supporting 
hyperplane Ei in El, P E K n Ei. Suppose the dimension of K fl Ei is 
1112 and K n E: is contained in a plane Ez. 

If E2 does not have rank-one connections or consists of only P, we 
see that K n Ei c Kq,? and P E EC- with & = {El. E2}. The proof of 
Step (2) is then finished. 

If E2 has rank-one connections, we see from Step (1) that P E d(Kn E2) 
- the relative boundary in E2. Then we repeat the previous argument. We 
obtain a supporting chain & = {El. E2. . . . , Ek.} with the dimensions of the 
planes satisfying N,u, > rr~i > ~1~ > . . . > ‘1111, 2 0. We have P E K n Ek, 
and Ek either consists of only one matrix P or does not have rank-one 
connections. In both cases, P E U,-( Ef n K). 

STEP (3). - UL’(Et- n K) c Kc,,,,. 

Let P E lJ,( Ef n K). There exists a supporting chain 

such that 

P E EE n K c EL-, n K c ... c El n K = K. 

Let v be a HYM supported in K, VI< = P. If k = 1, I = {El}. Then 
El does not have rank-one connections, K C El. Theorem 1.4 implies 
that K = Kq,? = K n El, hence u = bP, P E Kq,?. If k > 1, we have 
suppv c K n Ei because E: is a supporting plane of K passing through 
P. Since K n Ei = K n E2. Repeating this we see that suppv c K n Ek, 
while either EI, does not have rank-one connections or K n El, = {P}. In 
both cases, we have v = Sp, thus P E K,,,. 0 

4. EXAMPLES 

Example 4.1. - When K c M1,” GZ R”, the gradient Young measures 
are generated by sequences of gradients of scalar-valued functions. In 
this case Kq,e = K, because for all A, B E Mlxn, A # B, we have 
rank(A - B) = 1. Therefore we can embed all examples of compact 
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convex sets from [Ro] into this case. In particular, there exists a compact 
convex set in [w”, such that K, is not closed [Ro, page 1671. Therefore 
there exists K c hflx3 such that Kc,., is not closed. We consider this as 
a trivial example of non-compactness of K,.,,. 

Recall Theorem 1.4 that another extreme case of K,,,. is when K is 
contained in a plane E c M-vX n without rank-one connections. In this 
case for every compact subset K c E, h;,.,. = K = Q(K). Yet another 
example is K = SO(sr)H, the so-called one-well structure. We have 
K,,,,. = K = C)(K) ( see for example [Re, K, BJI, BJ2, BFJK]). 

Example 4.2. - We show that there exists a compact set K C iL!12” such 
that Q(K) # C(K), K,,,, # K,, and K,I,,. is not closed. 

Let 

Obviously, K, = {A+. A-. Ao}, where 

A+ = (; :I). 24p = (7; ;). A,,= ((‘1 ;)). 

We show that 

(9 K c1,c = {A+. ilk. tAo> 0 < t < l}. 
It is easy to see that A+, A-, A0 E K,,,.. Notice that 

rank(A+ - il-) = 1. Following from Theorem 1.2, we see that 

{“A, + (1 - s)A-, 0 < s < 1) n K,,,, = v). 

We need to prove that tAo E K,,, for 0 < t < 1. Let P = LAO 
and let v be a HYM supported in K, such that 01~ = P. We 
use a method in [Sv2] to show that an approximate sequence is a 
Cauchy sequence. Notice that for any A(tl, sl), A(t2. ~2) E K with 
-1 5 ‘iI. s2 5 1, 0 5 t1, t* < 1, sit, = 0. szt2 = 0, 

(4.1) det[A(tl, sl) - A(t,: s2)] = (tl - tz)* 

Let (P + D$j) be a generating sequence of 11 such that $j converges 
to 0 in Wi’“(D,R’) in th e weak-* sense, where D is the unit 
square in 88*. Since 

lirn J .i+= D 
dist(P + D$j> K)dz + O! 
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we see that for any A E snppv, we have (zzl = --al2 where a21. CL,~ 
being the (1: 2) and (2: 1) entries of matrix A. We can also see. 
for any t > 0, that 

Let 
I;.j = 

I 
ckk[(P + Dqi,(Lz:)) - (P + D~,(.l:))]d:z:. 

.D 

On one hand, we see from the weak-* continuity of Jacobians [Bll], 
that 

(4.2) ;ilI: ;iiIIg I;.J = 0. 

On the other hand, from (4.1) and (4.2), we have 
.  .  

(3.3) lim lini Ij,j = 
.j+r: i+cx 

I  [ I  

(A12 - T1*)2d7/(x) dv(7) = 0. 
.K . Ii I 

Let & .I = ($!” $!2’) A . ‘1 
J ’ .I ’ 

srmr ar argument to that in [Sv2] gives 

&p &p 
J --+o. - 

it;, &cl 
almost everywhere in D up to a subsequence. From the fact that 

jl;rueas({,: E D7dist(P + Df$j(:c), K) > E}) = 0. 

and the special structure of K, we can also conclude that 

almost everywhere. Hence I/ = &p, P E K,.,, K,., is not closed. 

(ii) K = Q(K). 
Let I’ E Q(K). Since Q(K) c C(K), we may assume that 

P= 
b 

( 1 :ll 0 ’ 

with 0 < b < 1. From Lemma 3.1, we see that there exists a HYM 11 
supported in K, such that P = 0~. We can use a similar argument 
as in (i) to show that n. = 0, hence P E K. The proof is left to 
the reader. 
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Example 4.3. - We show that there exists K c M2X’ such that 
Q(K) # C(K), K+,. = K. 

Let 

S+ can be parameterized as 

S + = A E M2x2; A= 
C 

Let 
A EM”X~; A= ‘+“’ 

YJ 

be a plane in the subspace of all 2 x 2 symmetric matrices. Define K be 
the set of symmetric matrices in S, such that they are on the same side 
of L as the zero matrix. We can prove that 

(i) S+ n L is a circle. K, consists of the zero matrix and S, n L. This 
is easy to see. 

(ii) K,,,, = K, To see this, we have, for every 1’ $ K,, there exists 
some t > 1 such that tP E S+ n L. Since tP is a rank-one matrix, 
P is a convex combination of the zero matrix and tP, we see that 
p $ K,.,,. Hence K,?, c K,.. Theorem I .2 implies K,.,. > K,,. The 
conclusion follows. 

(iii) K = Q(K). Suppose I’ E Q(K), we have P E C(K) and there 
exists a HYM II supported in K,,,, (notice here that K,.,, is closed) 
such that P = I/K (/ , . Since Jacobians are weakly continuous ([Bll]), 
we see that 

Since d&X = 0 for X E K, we see that d&P = 0, hence P E K. 
The proof is finished. 

Example 4.4. - Suppose f : M” “’ -+ [0, +ce) is quasiconvex, satisfying 
f-‘(O) # 8 and 

is compact for some CY > 0. We see that K,, is quasiconvex and that K,, 
contains some interior points of Mxx ‘I. We may claim, following the same 

.4rmdr.~ de I'lmrinrr Hcwr; Poim rrrc2 Analys non ImCaire 
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argument of proof of Theorem 1.2 or that of Theorem 1.5, Step (I), that 

FL),,c is contained in dK, which is a subset of {P E MNX”. f(P) = Q}. 
Therefore, for every P E K,, there exists a HYM 11 supported in iJK,, 
such that 

P = VijIi,x = 
.! 

Xdv(X). 
ah-,, 

5. APPLICATIONS TO TWO-WELL 
AND THREE-WELL PROBLEMS 

In this section we use results established in previous sections and some 
properties of special quasiconvex functions to find quasiconvex extreme 
points for the sets K2 = SO(n) U SO(n)H and K3 = U~,l[SO(n,)Hk], 
where H and Hk are distinct positive definite matrices in M” Xn, and 
SO(n) is the set of all orthogonal matrices in 111”‘” with determinant 1, 
n > 1, SO(n)H = {RH; R E SO(71)). 

The quasiconvex hull &(So(~r,) U SO(n)H) is not known except for a 
few special cases [Ma, Sv2, MS]. 

Let I,, be the identity matrix in MraXn. We have 

THEOREM 5.1. - Let H # I,, be positive definite. Then for K2 = 
SO(n) u SO(n)H, (K&<, = KY. 

Remark 5.1. - A direct consequence of Theorem 5.1 is that SO(n) u 
SO(rb)H is the smallest closed generator of Q(SO(n) u SO(n)H). 

The following example shows that a similar statement is not true in 
general for three or more wells. 

Example 5.1. - Consider SOL, SO(a)lx, SO(n)17, where 

with 1 < X < ‘T. 

Let KS = SO(n) U SO(n)1x U SO(~L It is easy to see that for every 
R E SO(n), RI, is a convex combination of R E SO(n) and RI,, and 
rank(R-RI,) = 1. Hence RIA $ (KS),,, so that [SO(n)IA]n(K3)q,p = v). 

The following result provides some information for (KS),,,, where 
KS = U;=,[SO(n)HI,]. 
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THEOREM 5.2. - (K3)q,r, equals either KS or SO(~L U SO(7t,)H,j for 
some fixed k # j, 1 2 k. j 5 3. 

This result implies that if for some P E SO(7b)Hk and some X:, 
I’ E (K3)q,cr then the whole set SO(~L is contained in (Ks)y.r,, and 
(KS),., is always compact. 

Proof of Theorem 5.1. - It is well known now that 

Q(SO(7b)) = SO(7L) = [SO(n)],,,. 

Q(SO(n)H) = SO(74H = [SO(~L)H],~,, 

(see, for example [Re, K, B13]). From Proposition 2.2 and Definition 2.4, 
we see that 

f(I’) = Qdist2(P. SO(7l)) and ,frs(P) = Qdist2(P, SO(n)H) 

are quasiconvex, nonnegative and vanish on SO(7t,) and SO(rb)H respec- 
tively. Another property of .f and .f~ is that they are rotation invariant 
in the sense that 

for every fixed P E 111” ‘I1 and all R E SO(n). Therefore, there are two 
constants ol > 0, o2 > 0, such that f(p) = (kl > 0 for all P E SO(71)H. 
and OH = o2 > 0 for all P E SO(71). 

Now, for P E S0(71)H, let v be a HYM, suppv c Kz, such that 
I/Ii2 = P. Since .f (.) is quasiconvex, we have, on one hand, 

I .f(X)ddX) 2 .f@iJ = f(P) = (21. 
. Ii> 

On the other hand, (kl = max{ f( A), A E K2}. Therefore 

supp7/ c {A E K2, f(A) = (I!,} = SO(n)H. 

Hence v = Sp. This shows that SO(n)H c (K2)‘,,?. The case when 
P E SO(n) is similar if we use fH instead. 0 

Proof of Theorem 5.2. - We will prove that 
(i) if SO(, n Q(SO(7L)Hj U SO(n)Hk) = 8, for all Z # ;j # k, 

1 5 ‘i; j, li 5 3, then (Ks)y;, = K,; 
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(ii) if for some i, j, k, 

SO(n 17 Q(SO(n)Hj U SO(n)H # 0. 

Then (&),.p = SO(7L)Hj U SO(7L)Hk. 

For case (i), notice that fi(P) = dist’(P: SO(n)Hj U SO(n)Hk) 
is rotation invariant for every fixed P E iVnXn in the sense that 
f(W = P(P) f or all R E SO(n). Then it is not hard to see by applying 
Proposition 2.2 that Qfi is also rotation invariant. Now, if we follow the 
same argument for P E SO(n by using Qfi as in the proof of Theorem 
5.1, we see that SO(n,)H; c (KS),,,. Hence (K3)Cl,c = KS. 

For case (ii), without loss of generality, we may assume that % = 1, 
j = 2, k = 3. We prove this claim by three simple steps. 

STEP (1) 

(It-&,, c SO(n)H2 u SO(n)H,. 

In fact, we prove that So(r c Q(SO(‘IL)H~ U SO(rb)Hs) so that every 
point in SO(n can be represented by nontrivial HYMs supported in 
SO(~L)H~USO(T~)H~ by Lemma 3.1. Therefore SO(n does not contain 
any quasiconvex extreme points of K3, that is, SO(r/,)Ht n (K,),,, = 0. 
Hence the conclusion of Step (1) will follow. 

By a similar argument to that in case (i), we see that 

Fl(P) = Qdist2(P, [SO(n)W, U SO(n)H3]) 

is quasiconvex, rotation invariant and vanishs on Q(SO(rl)Hi USO(n)H:j). 
From the assumption, for some PO E SO(n)H1, F~(P~~) = 0. Since Fl is 
rotation invariant, we see that Fl (P) = 0 for all P E SO(n)H1, hence 

SO(n c Q(SO(n)H2 u SO(~L) 

so that SO(n n (K3),,, = 0. 

STEP (2) 

S0(7r)H2 n Q(SO(n)I& u SO(n)H3) = 0. 

SO(~ n Q(SO(71,)H1 u SO(TL)H~) = 0. 

We prove the first equality only. If the claim were not true, that is, 

SO(n)Hz n Q(SO(n)H1 u SO(71)H3) # 0, 
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a similar argument to that of Step (1) would give 

so that SO(n) n (IY~),~,, = 8. Since (KS)<,.? c I&, we see that 
(KS&,, c SO(‘IL)H:~. H owever, it is known that Q(SO(njH3) = SO(~I,)H:~ 
which does not contain KS. Contradiction. 

STEP (3). - (K3)y.r = SO(n)Hz u SO(SL)H:~. 

Notice that 

Fl(P) = Qdist*(P. SU(11)Hr U SO(~L)H~). 

are quasiconvex, rotation invariant, F*(P) = 02 > 0 for P E SO(n)H*, 
&(P) = a3 > 0 for P E SO(U)& J, where ~2~. o3 are constants. Just as 
in the proof of Theorem 5.1, we may conclude that 5’0(7/,)H2 C (K3)(,.‘, 
SO(n)H:, c (KI),,.,.. Combining these with the conclusion of Step (I), 
we see that 

(K,),,,, = SO(71)H2 u SO(rb)H:+ 0 

Remark 5.1. - For the multi-well case, we may obtain similar results 
as those of Theorem 5.2. Let K,,, = U~~,SO(7L)Hi, where Hi’s are 
distinct positive definite 71, x 71 matrices and 711 > 3. We see that 
(K,,Jq.~ = u;=,SO(~H;.~ f ‘or some k: > 2 (k 5 70). An interesting 
observation from this is that ( I(,,I)y.c either contains the whole well 
S0(71)Hj or does not intersect with it. 
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APPENDIX 

Proof of Proposition 2.5. - (see [Z2]) Let K1 = {X E MivX”. 
QdistP(X, K) = 0). Obviously, Q(“)(K) c K1. Let f : n/r”“’ + R 
be any quasiconvex function. Let 
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and 
fcx, (X) = max{f(X) - trf, O}. 

It is easy to see that fclf is quasiconvex, QK c f,;,!(O) and Q(“)(K) = 
n,f<;: (0). We may assume that f(;,l (0) is compact, otherwise take the 
convex function 

g(.) = dist*(.: C(K)), 

which is the squared distance function to a convex set. Therefore f(,, + !I is 
quasiconvex. We claim that (fc,f + y)-l(O) c C(K), hence it is compact. 
This is easy to see because .f<,,, > 0 and 9-l (0) = C(K). We have, for 
any fixed 1 2 p < x, 

for all X E M*YX’L. Since Qdist”(X, f,,‘(O)) is quasiconvex, we have 

From [Zl, Th. 1. l] and its proof, we see that for a compact zero set 
,f;;; (0) corresponding to a nonnegative quasiconvex function .frr,, and for 
any 1 5 p < oc, 

f,;,‘(0) = {X E Mih-x7L. Qdist”(X, .f,-,‘((I)) = 0) 

Hence, K1 c f<;,! (0) f or every quasiconvex function .f, thus K1 C Q(“)(h’). 
The proof is complete. 0 
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