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Complete blow up and global behaviour 
of solutions of ut - Au = g(u) 

Yvan MARTEL 
Laboratoire Analyse NumCrique, UniversitC Pierre et Marie Curie, 

4. place Jussieu, 75252 Paris Cedex 05. 

ABSTRACT. - For u. E L”(R), ua > 0, we study the global behaviour of 
solutions of the nonlinear heat equation (1). The domain R is smooth and 
bounded and the nonlinearity g is nonnegative, nondecreasing and convex. 

We show in particular that any nondecreasing solution blowing up at the 
finite time T,,, blows up completely in R after T,,,. We apply this result 
to the description of all possible global behaviours of the solutions of (1) 
according to the value of A. We show similar results when we introduce a 
notion of complete blow up in infinite time. 0 Elsevier, Paris 

RESUME. - Pour ‘1~~ E L” (0)) ‘u. > 0, on Ctudie le comportement global 
des solutions de l’equation de la chaleur non-lidaire 

{ 

~~~ - AU = Xg(u) dans (0: 7’) x 12, 

IL = 0 sur X2, (1) 
u(0) = ua dans 12. 

Le domaine 62 est borne regulier, et la nonlinearit g est positive, croissante 
et convexe. 

On montre en particulier que toute solution croissante explosant au 
temps fini T,,,,, explose totalement dans 62 apres T,,,,. On applique ce 
resultat a la description des comportements globaux possibles des solutions 
de (1) en fonction de A. On montre des resultats similaires pour une notion 
d’explosion totale en temps infini que l’on introduit. 0 Elsevier, Paris 
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1. INTRODUCTION 

Let 62 C RaV be a smooth, bounded domain, and let g : [O, ‘x8) -+ [O. GG) 
be a C2 convex, nondecreasing function. For ‘~0 E L”(R), ‘~0 > 0, we 
study the global behaviour of solutions of the nonlinear heat equation 

1 ut - Au = g(u) in (0. T) x 12. 
u = 0 on L)R, (1) 
u(O) = ‘u. in R. 

The possible behaviours of the solutions of (1) depend heavily on which of 
the following two properties is verified by the nonlinearity y, .?j 

There exists zo 2 0 such that g(:cc,) > 0 and I ds 
-<cm. (2) 

.I(, .Y(s) 

I’ 

zx 

For all x0 > 0 such that g(q) > 0, 
ds 

. ,I.(, y(s) = Oc. 

Indeed it is well known that (2) is a necessary and sufficient condition 
of existence of blowing up solutions of (1). However, we will see that 
there exists a parallel between the two cases (2) and (3) in the study of 
solutions of (1). 

Recall that if u. E L”(R) then there exists a unique maximal classical 
solution ‘U of (1) belonging to C( (0. T,,): L”(R)). When T,,, < x, we 

have IwIlL- Tut,,, -+ X, and we say that u blows up at T,,,. 

In order to define the notion of complete blow up, we consider any 
sequence (gn) such that 

{ 

(i) for all rl, > 0, ,yT1 E C([O, 00). [O: 7c)), 
(ii) for all ‘0 > 0. g7,(U) 1 g(v) as n + x. (4) 

It follows that for every n, > 0, there exists a unique global classical 
solution of 

It is well known that u,, T u on R x [0, T,,,) as ‘rJj -+ 00. 
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Let S(Z) = dist(z, dR). For 5” > 0, we say that the solution u blows 
up completely after T if 

IL,, (t, x) 
6Ca:) ,z, c uniformly on [T + E, x) x R 

for every E > 0. This means in particular that IL can not be extended in 
any sense beyond T. Note that, ua being given. the fact for u of blowing 
up completely after some time T does not depend on the choice of the 
sequence (cJ,~) (see Lemma 9). 

Our first result shows that every nondecreasing solution of (1) such that 
T,,, < x blows up completely after T,,,. 

THEOREM 1. - Let 1~0 E L” (12) fl Wi,’ (12), uug > 0 be such that 
ATLO + y(u0) 2 0. Let u be the unique classical solution of (1) de$ned 
on the maximal interval [0, T,,,). If T,,, < cc then u blows up completely 
after T,,, . 

The first step of the proof consists in showing that if u does not blow 
up completely after T,,,, then there exists T,, < T* 5 oe such that u can 
be extended by a weak solution U of (1) on (T,,,, T*) (see Definition 1 
below for the notion of weak solution). Since ‘u is nondecreasing, there 
exists r > 0 such that U verifies the following problem (in the sense of 
Definition 1) 

Ut - AU = y(U) in (7,T,,, + T) x (2, 
U = 0 on XI, 

U(7) > u. in 61 

Applying to U a parabolic variant of Theorem 3 of Brezis et al. [3] we 
prove the existence of a bounded solution ‘u of the following problem 

vt - Au = y(v) - E in (O,T,,l) x (2, 

*v = 0 on X2, 
v(0) = v. > u. in II, 

for some E > 0. Then ‘u allows us to build a super-solution of (1) which 
is bounded on (0, T,,) x R. By the maximum principle, we obtain a 
contradiction. 

Since we assume T,, < x in Theorem 1, we have necessarily (2). For 
the purposes of the parallel between the cases (2) and (3), let us introduce 

Vol. IS. no 6.1998 



690 y. MARTEL 

another notion. We say that the solution u blows up completely in infinite 
time if 

‘U( t . .r:) 
u is global and - sCZrJI tim 30, uniformly on $2. (6) 

If 9 satisfies (2), no solution has this property (see Lemma 10). On the 
contrary, when (3) holds, this behaviour happens to have a great interest 
as we will see below. 

As in Brezis et al [3], a weak solution of 

- Aw = ,q(,w) in It. 

vu! = 0 on X2. (7) 

is a function UI > 0 almost everywhere, such that 

for all < E C2(2) with < = 0 on ~90. 

The first result related to the notion of complete blow up in infinite time 
is the following. 

THEOREM 2. - Suppose (3). Let Q E L”(R) rl W,.1(f2), ~~~ 2 0 he such 
that AUO + ~(7~0) > 0. Let II, he the global solution of (1). Then either II. 
blows up completely in infinite time or ,u(t) converges to a weak solution 
of (7) as t + cc. 

Recall that in [3] Theorem 1, it is shown that when (2) holds, the existence 
of a global solution of (1) implies the existence of a weak solution of (7) 
in the sense of (8). Gathering this result and our first two theorems we 
obtain the following corollary. 

COROLLARY 3. - If there exists a solution of (1) which does not blow up 
completely (neither in ,jinite nor in injinite time) ,for some ucI E L’“(R), 
~(1 2 0, then there exists a weak solution of (7). 

We think that the conclusion of Theorem 1 fails for some ~0 E LX( (I), 
%L() > 0. We refer to A. A. Lacey and D. E. Tzanetis 161 and 
V. A. Galaktionov and J. L. Vazquez [5] for the existence of solutions 
of (1) which blow up in finite time but continue to exist after T,,, (peaking 
solutions) in the case R = R”. However, this problem seems to be open 
for 0 bounded. 

To deal with these solutions, we will see in Section 3 that if u is such that 
T,,, < cc, but does not blow up completely after T,,, < CC in the sense of 
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(5), then u can be extended after T,. Indeed, this extension is obtained as 
the limit of the sequence (7~~~) and continues to satisfy (1) until the complete 
blow up time (denoted by T*) in the sense of the following definition. 

DEFINITION 1. - Let 1~0 be a nonnegative bounded measure qf R. A weak 
solution of (1) on (0, T) is a function us 2 0 such that,for all 0 < S < T, 

u E JF((O,S) x cl), 6g(u) E L’((O;S) x 0). (9) 

and 

g(u)< = - ‘IL(Et + Al) - 
I 

* uol(O), (10) 
.R 

for any < E C*( [O. S] x n) such that t(S) E 0 and < = 0 on X2. Such 
a function u also verifies 

Su E C((0, T), Ll(R)). (11) 

The notion of weak solutions given by Definition 1 is equivalent to the 
notion of integral solutions of P. Baras and M. Pierre [2] and P. Baras and 
L. Cohen [I] (see Section 3). 

Uniqueness may fail for weak solutions of (1) in the sense of (10). 
However, if there exist several weak solutions of (I), then among them 
there is a minimal one, which is the limit of the nondecreasing sequence 
(v,,). This unique minimal solution exists on a maximal interval of time 
(O,T*), T* 5 00. 

Therefore, given ~0 E L”(n), 7~0 > 0, there exists a unique classical 
solution on [0, T,,,) and a minimal weak solution defined on (0, T*). Since 
the classical solution is also a weak solution in the sense of Definition I, 
we have 0 < T,,, 5 T* < 03. On the other hand, the two solutions coincide 
on (0, T,,,) and we will denote by ‘u the whole solution on (0. T*). 

If T* < 00, then (5) holds for all T > T”, and the solution u can not 
be continued in any sense after T* ; T* is called the complete blow up 
time. See Lemma 9 for the proof of these results. 

We turn now to the behaviour of solutions of the following problem 

i 

ut - Au = Xg(u) in (0, T) x R, 

*u = 0 on BR, (12x) 
,u(O) = ILO in $2. 

First, we assume 9(O) > 0 and g $ g(0) so that there exists 0 < A* < x 
such that the following stationary problem 

- A,wx = Xg(wx) in R. 
wx = 0 on 80. (1:3x) 
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admits a minimal classical solution XI,!, if 0 2 X < A* and no solution (even 
weak) for A > A*. For A = A*, the problem (13~ ) admits a unique weak 
solution (sometimes classical), if 

For these results, we refer to [3]. For the uniqueness of ‘t1)A., see 

Y. Mattel [7]. When lim Y(lh) ~ = CL < DG, it is shown in P. Mironescu 
IL’CX 

and V. Radulescu [8] that thik exists a solution of (13x ) (systematically 
classical) if and only if 

We distinguish three cases : 0 < X < A”, X = A* and X > A*. First, we 
present our results in the case (2). 

0 Case 0 < X < A*. For ug E L”(Q); ~~0 2 0, we investigate the 
behaviour of solutions of the following problem 

1 

ut - Au = Xg(u) in (O,T*) x Q 

u = 0 on 82, Uh,J 
u(0) = puo in 0, 

according to the value of p. In this direction we show the following result. 

THEOREM 4. - Suppose (a), let X < A*, and let ~0 E L”(R) be such that 
ug 2 0 and *uo $ 0. Then there exists 0 < ,LL* < 00 such that 

(i) 0 5 LL < p*, the solution ‘uuI, of (15~,[~) is global bounded and 
converges to ‘ui~ in L”(R). 

(ii) ,LL = p*, the solution IL,,. oj’ (15x+) does not blow up completely 
neither in jinite nor in infinite time. 

(iii) LL > /L*, the solution ~~~~~ of (15x,,&) blows up completely after some 
time T* < x. 

Under certain assumptions, like uniqueness for the stationary problem, 
we can tell more about the behaviour of ‘up,-, but this problem remains 
in most part open. On the other hand, we do not know whether or not 
T,,, = T* in (iii). 
0 Case X = A*. In view of Corollary 3, it is easy to conclude that if 
(13~ ) has no weak solution, then all solutions of the evolution problem 
(12x-) blow up completely after some finite time. 

Concerning the special case where the solution of (13~~) exists and is 
classical, we prove the following theorem. 
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THEOREM 5. - Let X = A*. Suppose (2), and that the solution WA* of (13~~) 
is classical. Let ug E L”(R), u. 2 0 and let u be the solution of (12~~). 
Then either u blows up completely after some time T* < 00, or u can be 
extended for all time by a weak solution of (1) in the sense of (10) which 
converges to 20~~ in L1(R,S(z)d2) as t --+ 30. 

Under the same assumptions, for ug 5 WA*, 1~0 $ WA and u being the 
corresponding solution of (12x-) we prove that 11~~~ - 2~(t)]]~= converges 
to 0 at the rate -$ as t --f 00 (see Proposition 12). 
0 Case X > A*. Here the situation is very simple, and the following 
result is a corollary of Theorem 1. 

COROLLARY 6. - Suppose (2) and X > A*. Then for all ~0 E L”(0), 
u. 2 0, the solution u of (12~) blows up completely after some time 
T* < x. 

When (3) holds, we have similar results where “complete blow up in 
finite time” is to be substituted for “complete blow up after some time 
T* < x0)‘. We refer to Section 6 for the statements. 

When g(0) = 0 and g’(0) # 0, the critical value X* is Xi/g’(O), where 
X1 > 0 is the first eigenvalue of -A in H;(0). When X < X*, Theorem 
4 can be stated the same way with lll~ 3 0. For X > X*, the only solution 
of (13) is the trivial one and all solutions of (12) different from 0 blow up 
completely (in finite or in infinite time according to which of (2) and (3) 
is verified). 

In this paper, we will use frequently some notions and techniques 
developed in Brezis et al. [3], which deal mainly with the relations between 
the existence of global solutions of (1) and the existence of weak solutions 
of (7). 

On the other hand, note that Theorem 1 is a generalization of some 
results of P. Baras and L. Cohen [l] with shorter proof. Recall however 
that P. Baras and L. Cohen [l] also give a sufficient condition on the 
nonlinearity to provide complete blow up after T,,, without nondecreasing 
assumption. 

Finally, note that a notion of L1-solutions also appears in W.-M. Ni, 
P. E. Sacks and J. Tavantzis [9] and A. A. Lacey and D. E. Tzanetis [6] 
but only for convex 0. In this framework, Theorem 4 can be viewed as an 
extension of Theorem 2.5 of A. A. Lacey and D. E. Tzanetis [6]. Similarly, 
W.-M. Ni, P. E. Sacks and J. Tavantzis [9] are concerned with this kind of 
results for g(u) = 1~ P. The work of P. Baras and M. Pierre [2] applied to 
parabolic equations has also a connection with the existence of a critical 
value /I* in Theorem 4. 
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In Section 2, we present the proofs of Theorems 1 and 2. In Section 3, 
we describe some properties of the weak solutions given by Definition 1. 
Then, in Sections 4 and 5, we prove Theorems 4 and 5. We state similar 
results for the case (3) in Section 6. Finally, in Section 7, we give a result 
on the convergence rate of some solutions of the parabolic problem to the 
unique solution of the elliptic problem for the case X = A*. 

2. PROOFS OF THEOREMS 1 AND 2 

We begin with three lemmas. The first one is a parabolic variant of Kato’s 
inequality, and the second one is related to the linear heat semigroup with 
Dirichlet boundary condition. The third one can be found in [3], we repeat 
it here for the sake of completeness. We denote by T(f) the linear heat 
semigroup with Dirichlet boundary condition. 

LEMMA I. - Let Q, E C2 (R) be concave, with @’ bounded and G(O) = 0. 
Consider T > 0, ‘00 E L”(O), and let .f, u be such that 

‘II E L1((o.T) x 12). .fc5 E I?((O,T) x 12), 

,for all < E C”( [O, T] x n), 6 2 0 such that c(T) E 0 and < = 0 on 82. 

Proof - The proof is similar to that of Lemma 2 of [3]. 

LEMMA 2. - For every 7 > 0. there exist c(7), c’(7) > 0 such that ,for 

all p E L:(R), cp 2 0, one has 

Proof. - Fix T > 0. By the I?’ --+ W2J1 n W,i9” smoothing effect of T(t), 
there exists cl(~) > 0 such that 
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Let cp be such that (~6 E L1(0). It follows from (16) that 

ll~-lwMIL= = Ils-'T(~/3)[T(2~/3)(]11~~ L c1(4lT(243)~&9. 

On the other hand, by the properties of T(t), there exists ca(-r) > 0 such that 

ll~(2~/3)~11~~ 5 ~~(~.)II~WQPIIL~. 
Using (16) again we find 

ll~w3MlL~ = l dYTl3)lQ 

I II~~ll~~ll~-1~~~/3~1nllL- 5 4~NbIIL~’ 
We conclude 

Turning now to the other inequality, take any ball B C (2 such that 
B c 0. There exists ~(7) > 0 such that 

T(T/2)la 2 C3(T)ti (17) 

Observe that there exists Q(T) > 0 such that T(r/2)S,., > cd(r)6 for all 
Q E B (S,., is the Dirac distribution supported by :~a). Therefore, 

T(T/2)(p(Xo) = .I' pT(r/2)S,, 2 Cd(T)/ cps. 
II n 

for all :cO E 13, which means 

7y~l2)P 2 Q(-r)llVSllLI 1Li. (18) 
Finally, by (18) and (17), 

T(r)cp 2 44ll~4l7y++B 1 ~4(+#II~PIlL~~. 
which completes the proof. 0 

LEMMA 3. - ([3]) Assume (2). There exist two constants K 2 0 and 
~0 > 0 such thatfor every 0 < E < ~0, there is afunction @‘c E C2([0, XI)), 
concave, increasing, with 

LDE(0) = 0, (19) 
0 < cp,(x) 5 5 for x.0. (20) 

1 > Q'(,&) > (dQE(Z)) - 4+ - E g(x) 
for II’ > 0, (21) 

@L(x) 2 1 uniformly on [O: M], for every M > 0. (22) 

Vol. IS, 110 6.1998 



696 Y. MARTEL 

Moreover, sup GE(x) < cc. 
T>O 

Proof of Theorem 1. - We notice first that the existence of a blowing up 
solution implies necessarily that (2) holds. 

Next, note that by Lemma 1 .l of [l] the solution IL of (1) is 
nondecreasing in t on (0, T,,, ). The sequence (ull) being defined by (1 n) 
with y,, = rnin(g: 7b), we set 

T* = SUP {T > 0 ; ,~LI; Ij?L,,(t)SIILl < CC for all t < T >. (23) 

Of course, T,,, < T*. 

We now proceed in six steps. Through steps 1 to 4 we show that 
T,,, = T*. In step 5 we prove that (5) holds with T = T,,,. Finally, in 
step 6, we show that T* and the property (5) do not depend on the choice 
of the sequence (gn) satisfying (4). 

Step 1. We suppose for the sake of contradiction that there exists r > 0 
such that T,,, + r < T”. Take also r < T,,, for later convenience. By the 
definition of T*, there exists C1 > 0 such that 

Let < E C2([~,TrrL + ~1 x 2) b e such that < = 0 on Xl. Multiplying (l,,) 
by < and integrating on (r, T,,, + 7) we obtain 

Taking E(t) = T(T,,, + T - t)S in (25) we find 

T,,t+T * 

.I .! 
s,(U7L)(T(T,,,+7-t)g) = 

7 R I’ 
w,(Tn+7) fi- ‘W(T(TM. 

. R .! n 
(2s) 

Since there exists a constant C2 > 0 such that T(s)6 > C2S for every 
0 < s < T,,, it follows from (24) and (26) that 
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Let x be the solution of 

8X 
at 

Ax = 1 in (0, T, + T) x R, 

x = 0 on Xl, 

x(Tm + T) = 0 in 0. 

Using (25) again we obtain 

There exists Ca > 0 such that x(s) < CaS for r < s < T,,, + -r, so that 
by (24) and (27) 

Tm fT 

I I 
‘1L, I ClG/C2 + Cl. (28) 

T n 

By (28) and the monotone convergence theorem, there exists U E 
L’((r,T,,,+7)~~)suchthat(11,),~~convergestoUinL~((r,T,+-r)xR) 
and almost everywhere on (7, T,,, + 7) x R. By (27) we have in addition 
g(U)6 E Ll(@,T,, + r) x 0) and (gn(u,)S),EN converges to g(U)6 in 
L1((~,Tr,, + T) x 0). Of course, U = ‘1~ on (7, T,) x 0. 

On the other hand by letting n -+ 00 in (25) it follows that 

/T”‘+T /’ g(U)< = - ynL” .I’ U(& + A<) - / U(T)<(T) (29) 
* 12 

for allT[ E C”( [r, T,, + ~1 i h, 

R . II 

such that [(Trn + r) E 0 and [ = 0 on Xl. 

Step 2. Let ‘ZLI = IL(~). Let co, Cp, and K be as in Lemma 3. Take 
u,(t) = QE(U(t + r)) for t E (O,T,,,) x R. By Lemma 3, we have 

U, E L”((O,T,) x 0). (30) 

On the other hand, by (27), (28) and (29) we may apply Lemma 1 to 
U(. + r). We obtain 

for all < E C2([0,T,,,] x iI), < 1 0 such that <(TrrL) E 0 and [ = 0 on XI. 
By a standard iteration argument and (31), it follows that the solution ‘u of 

wt - Av = (g(w) - ICE)+ in (0, T) x 0, 

2, = 0 on dR, 

w(0) = (a,(~~) in fi, 

Vol. 15, no 6-1998 
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satisfies 0 < II < tJ, on (0. T,,,) x 62 and then ?I E L” ((0, T,,) x 62) by (30). 

Step 3. Lemma 7 of [3] proves that there exists 0 < ~1 < ~0 such that 
for 0 < E < el, the solution 2 of 

Zt - AZ = --KE in (0,cc) x 0, 

2 = 0 on X2, 

Z(0) = cob/2 in (1, 

satisfies 2 > 0 on [0, T,,,] x (1. 

Step 4. There exists c0 > 0 such that u1 2 ‘uro + coS. Otherwise ‘IL is a 
stationary solution and T,,, = co. Using (22), since ?bl E L”(R), there 
exists 0 < ~2 < &1 such that if 0 < E 2 ~~ we have 

(See also [3], proof of Theorem 2, step 4.) 

Take 0 < E 5 cZ, then z(t) = <u(t) - Z(I;) verifies 

.zt - AZ > g(u) > g(z) in (O,T,) x R, 

z = 0 on X2, 

By the maximum principle we have u < z on [0, T,,,) which is absurd by 
z E L”((O;T,,,) x 0). We conclude T,,, = T*. 

Step 5. Since u. E L” ($I), for n large enough, one has gn(uo) = g(uo) 
and TL, is nondecreasing in time. On the other hand, by (23), and T,,, = T*, 
we have 

for every e > 0. From G(T, + E) > T(E/~)u,,(T,, + &/a) and Lemma 2, 
it follows that 

t-~n (L + E) --f ~ 
s uniformly on R. (32) V.-CC 

Finally, we obtain (5) by (32) and u,, nondecreasing in time. 
Step 6. Take another sequence &) satisfying (4). Consider Gu,,, the 
corresponding nondecreasing sequence of approximate solutions and r?* 
being defined as in (23). Since &a 5 y,, we have U, < IL,, and then 
?* 2 T*. 
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On the other hand, assume that ?* > T*. As in step 1, there exists 
a weak solution U of (1) on (O,?*) with ]]66]]~_1 < 00 for all t < ?*. 
By a standard iteration argument, we have u,, < U almost everywhere on 
(0, ?*) x R, for all 12 > 0. This contradicts the definition of T*. Finally, 
(5) for the sequence (GTL) is established as in step 5 (see also the proof of 
Lemma 9). q 

In the proof of Theorem 2, we will distinguish two cases according to 
whether or not g satisfies the following condition 

There exists ~0 such that g(z) > Xlz for all z 2 :cO ; g $ Xlz. (33) 

We establish two lemmas related to (33). 

LEMMA 4. - Suppose (3) and (33). Let ug E L”(R), uo > 0 and let u be 
the global solution of (1). Then either u blows up completely in injinite time 
or II~~)~IIL~ 5 C,,f or all t > 0, where C, > 0 does not depend on ~0. 

Proof. - We first prove that there exists C, > 0 such that either 
IlG)~ll~1 < Cg, or lIG)4l Ll is nondecreasing for t large and converges 
to cc as t T cc. 

Since (3) holds, the solution u is global and we can multiply (1) by 
cpl (the first eigenfunction of -A in Hi(R)), integrate on 0, and apply 
Jensen’s inequality. We find 

Since g satisfy (33) and is convex, nondecreasing, either 
(i) g(z) > Xlz, for all z > 0, g(5) $ X1z 

or 
(ii) there exist C, and A > Xi such that g(z) 2 RX:, for all z > C,. 
In case (i), all nonnegative solutions of (1) are such that Ilu(t)611L, 

converges to oc as t t cc. Indeed, suppose the contrary for the solution 
IJ of (1) with v(0) E 0. Since w is nondecreasing, it converges to a weak 
solution w of (7) (see [3], proof of Theorem 1). But taking ‘pl as test 
function for w leads to 

and we obtain the desired contradiction. On the other hand, it is clear 
from (34) that t + so u(t)cpl is nondecreasing. 
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In case (ii), if there exists ta such that .\o ~(ta)pr > C,, then (34) implies 
that t + so u(t)pl is nondecreasing for t > to and 

u(t)cpl, for all t > to, 

It is now clear that in this case Ilu(t)SIIL1 converges to 00. 

To complete the proof of Lemma 4, it suffices to show that if IL does not 
blow up completely in infinite time, then there exists a sequence s,, 1 x 
such that IIu(.s~)SII ~1 is bounded uniformly in 71,. 

To see that, let us take a constant Cl, a sequence (t,,,, II;,,). t,, 7‘ cc and 
X, E R such that 

1L(L,%) < c 

6(&z) -  l. 

(35) 

Applying Lemma 2 with r = 1, and then (35), it follows that 

C(l)llU@,, - l)Sll~IS(X:,,) < (T(l)u(t,, - l))(x,,) 5 7L(t,L,x,L) < c,n(&). 
(36) 

Setting s, = t,, - 1 in (36), we obtain (Iu(s,)S(IL1 < C. Hence the 
result. 0 

LEMMA 5. - Suppose that (33) does not hold then all solutions qf (1) with 
u. E L” (!A), u,~ 2 0 are bounded. 

Proof. - Let u. E L”(n), ‘~0 2 0, and let r > 0. Since U(T) E C1(0), 
there exists No > 0 such that ~(7) 5 N,-,(pr. 

If g E X1s then Noipt 2 u(t), for all t > 0 and ‘u is bounded. 

Otherwise, since g is convex there exist x1 > 0 and c > 0 such that 

.9(X;) 5 Xrn: - c, for all 3: > z:r. (37) 

For N > 0, let ‘&, 77,~~ 2 be solutions of 
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Note that for every 1 5 p < cm, 

1111 NA>21JIILP Nym IW~ 
so that by the properties of non homogeneous heat equation, there exists 
N1 > 0 such that for every N > N1, we have 

& 5 r& on Q. 

In addition, from g nondecreasing and (37) it follows that 

(39) 

(XlNW - C)l{Npl>.c,} + Y(~h)l{Ivql<sl} 2 g(N+%). (40) 

Setting 1c, = Nvi - r& + $-& for N > Ni, by (40) and (39) we obtain 

{ 

- WJ = XlNPl - Cl{Ivp, >zl} + Y(~b)l{Jvp,<c,) 

2 g(Nw) 2 g($) in fL 

7/i= 0 on Xl. 

In view of (38), there exists C > 0 such that &, i: C’S for all N > 0. 
Hence, there exists N2 > 0 such that $I 2 Npi - C’S 2 Na(pi 2 U(T) for 
N > N2. For N > max(Ni, Nz), d . I is a super-solution of the problem (1) 
with ~a = U(T), and then by the maximum principle <u(t) 5 $, for all 
t > 7. Hence ‘~1 is bounded. 0 

Proof of Theorem 2. - When (33) does not hold, the solution ‘~1 is bounded 
by Lemma 5 and so it converges to a classical solution of (7). 

Otherwise, when (33) is verified, if we assume that u does not blow 
up completely in infinite time, by Lemma 4 we have ]]~(t)sll~I 5 C,, 
for all t > 0. Since u is nondecreasing we can now apply the argument 
of [3], proof of Theorem 1 to conclude that u converges to a weak solution 
of (7). 0 

3. WEAK SOLUTIONS 

In this section, we prove what we claimed in the introduction about weak 
solutions. First, Lemmas 6 and 7 give some properties of weak solutions of 
the linear non homogeneous heat equation. In particular, these two lemmas 
prove the equivalence between weak solution in the sense of Definition 1 
and the notion of integral solution of P. Baras and M. Pierre [2], P. Baras 
and L. Cohen [ 11. Then, Lemma 8 proves property (11) in Definition 1. 
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Finally, Lemma 9 proves the existence of a unique minimal weak solution 
to (I), gives a characterization of the complete blow up time T* and shows 
that the classical solution of (1) and the minimal weak solution coincide 
on (0, T,,,). 

We define N(f)(t, :c) = j;: d, G(t - s: :c, y)f(s: y)dsdy where G is the 
Green function of the heat equation with Dirichlet boundary condition. Let 
L:(0) = L1(62:S(z)rlz) and Li(I x a) = L1(I:Li(b2)). 

LEMMA 6. - Let T* > 0 and let f E Li((0.T) x 62),for all 0 < T < T*. 
Then there exists a unique.function II, 11 E L1 ((0. T) x it),for all 0 < T < T* 
which is a weak solution of 

1 

u, - Au = f in (0, T*) X 62, 

‘Ii = 0 on m, 

II(O) = 0 in 62, 

in the following sense 

(41) 

for all < E C’([O;T] x 2) such that E(T) E 0 and c = 0 on 862 and jbr 
all 0 < T < T*. Moreover (f f > 0 a.e. in (0. T*) x 62 then ‘u > 0 a.e. 
in (0, T*) x R and II is given by 

II = N(f). 

Proof. - First we prove the uniqueness. Let ‘~1~ and 112 be two solutions 
of (41) and u = v1 - ‘oz. Then for all 0 < T < T* 

.T . 

II 
,l)(<t + A[) = 0 

. 0 . $1 

for all < E C”( [0, T] x a) such that t(T) E 0 and < = 0 on X2. Given 
‘p E D((O,T) x $2), let E, be the solution of 

I ., - 2 - A<, = p in (0, T) x 12. 

I, = 0 on X2, 

t,(T) = 0 in 62. 

It follows that 
.T . 

.I/ 
‘up = 0 

0 R 
forall < T < T*,cp E D((O;T)xfI), we deduce 11 = 0 a.e. on (0, T*) ~0. 

A,r,rde\ r/c /‘lnttit~rr HP/II.; Pou~crrri Analyw non hnture 
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For the existence, we may assume that f 1 0 (the equation is linear and so 
we can write f = f+ - f-). For all k 2 0, we set fk(t, 3:) = min(f(t, x;); k), 
so that f~. -+ f in Li((O. T) x R) for all 0 < T < T*. Let 

Ill; = N(f,+). (32) 

and fix 0 < T < T*. The sequence (uk) is monotone nondecreasing and 
is bounded in L’((O,T) x 0). Indeed 

where <r is defined by 

- g - A(1 = 1 in (0, T) x f2, 

i ’ I1 = 0 on 82, 
cl(T) = 0 in R. 

We define u as the limit of the sequence (vk). Then II E L1( (0, T) x 52) 
for all 0 < T < T* and 71 E D’((0, T*) x fl). Passing to the limit in 

for all < E C2([0, T] x 2) such that E(T) = 0 and < = 0 on i3R and in 
expression (42) we complete the proof. 0 

LEMMA 7. - Let T* > 0, f E L+((O, T*) x fl) and let 

v = N(f) E L,1,,,((O,T”) x 0). 

Then .for all 0 < T < T*, u and f satisfy 

II E Ll((O,T) x n), 

and 

(43) 

for all < E C”( [0, T] x 2) such that t(T) E 0 and < = 0 on X?. 
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Proof. - In view of Lemma 6, it suffices to show (43). Let 0 < 2’ < 
T’ < T* and let $J E D(0), ,$ > 0, q5 $ 0. Let C&,X) = T/(X), for 
(t. X) E [T//2, T’] x R and cp(t.:~.) = I), for (t; :I:) E [O.T’/2) x 62. We 
consider 

i 

e, - x - A<, = p in (0.T') x 0, 

& = 0 on X2, 

<,(T’) = 0 in $2, 
Using the properties of the heat semigroup with Dirichlet boundary 
condition. there exists E > 0 such that 

<,(:I~, t) 2 ~b(:r:). for (t. X) E (0, ?‘) x 12. 

For k > 0, let fk.(:r:) = min(p(:,),X:) and let ‘uk. = N(fk). Multiply 
&lk 
~ - Aok = fk by E,, 
at 

and integrate in space and time. It follows that 

Passing to the limit as k + x: we obtain (43). 0 
The function II given by Lemma 7 also enjoys another property. 

LEMMA 8. - Let T” > 0 and let 11, f he such that 

7~ E Ll((0.T) x 12), .f E L,:((O.T) x 0) 

and satisjjkg (41). Th en 7~ E C( [0, T*). L1(C12: S(:c)d:r:)). 

Proof. - Let fk, ‘CJ~ defined as in Lemmas 6 and 7. Let 0 < T < T* 
and consider the solution x of 

i 

- xt - A.y = 0 in (0,T) x 0, 

x = 0 on dl2, 
x(T) = b in 12, 

There exist two constants C > 0, C’ > 0 such that 

C’b(z) < x(t>x) 5 C’S(x), for (t,z) E (0,T) x 62. 

Therefore, for every 0 < t < T, 

.I R 
('kCt) -  71j(t))6 5 &,/l(uli(t) -  ?ij(t))X(t) 

1 .t . 
=--- 

IJ Cl.0 R 
(fk - fj)X i g iT / (fk - f,)S. 

.o R 
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By uniform Cauchy convergence, we conclude 

u E C( [O, T), Ll(R, S(x)dz)). 
0 

Returning now to the nonlinear problem (l), let ~0 be a nonnegative 
bounded measure of 0. Consider U verifying 

u(t, z) = J’ 
*t . 

G(t, 1~: Y)~o(Y)~Y + .I/ G(t - s, 2, y)g(U(s, y))dyds. 
(2 0 n 

on (0, T*) x R, i.e. U is an integral solution of (1) in the sense of 
Baras-Pierre. We have necessarily U E Lt,,,((O, T*) x 0). Indeed, thank 
to properties of the Green function, we have g(U) E L&,((O? T*) x 0). 
If there exist C > 0 and ‘~0 2 0 such that g(r)) > Cv for every ‘u > ~0, 
it is clear that U E LtO,((O, T*) x 0). Otherwise, g is constant, and then 
U is classical. 

Applying Lemma 7 to ~(t, X) = s,’ J’o G(t - s, XI, y)g(U(s, y))rlyds, we 
obtain that U is a weak solution in the sense of Definition 1. By Lemma 
8, we obtain (11). 

Conversely, if u 2 0 is a weak solution of (l), then according to Lemma 
6 applied to u, - T(.) u. = N(f), we obtain that ‘IL is an integral solution. 

REMARK 1. - From Lemma 8 it follows that a weak solution of (1) 
also satisfies 

for all < E C2( [O, T] x 0) such that < = 0 on X2, for all 0 < T < T*. 
This property shows in particular that our definition of weak solution is 

equivalent to the notion of L1-solution of [6], [9], given only for 62 convex. 

LEMMA 9. - Let ug E L”(Q), ZLO > 0 and let (u,,~) be the sequence 
given by (l,,). There exists a unique minimal weak solution U of (1) in the 
sense qf Dejnition 1, dejned on a maximal interval (0, T*). This solution U 
coincides with the classical solution of (1) on (0, T,,). Moreover T* satisjes 

T* = sup{T > 0 ; ,JFm Il~(t)~ll~~ < x for O<t<T}, 

and does not depend on the choice of the sequence (grl) satisjjCng (4). [f 
T” < oc then (5) is verijied for all T > TX. 

Prooj - Consider the sequence (‘1~~) defined by (l,,) with g,, = min(g. rl,). 
As in the proof of Theorem 1, neither T* nor (5) depend on this choice. 
We proceed in three steps. 
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Step 1. Define 

S* = sup{S > 0 ; ,@&IIu,,(~)DIILI < cc for 0 < t < S}. 

Reasoning as in proof of Theorem I, step 1, the definition of S* implies 
that there exists a weak solution U of (1) on (0. S*) obtained as the limit 
of the sequence (1~~~). 

Take V a weak solution of (1) defined on (0, S*(V)). By a standard 
iteration argument and Lemma 6, we have V 2 u,, almost everywhere on 
(0, T*(V)) x 0, f or every ~1, > 0. It follows that V > U almost everywhere 
on (0, min(S*, S*(V))) x 12. 

On the other hand, the classical solution u is a weak solution of (I) in the 
sense of Definition 1 and then u 2 U on (0, min(T,,, S*)). By uniqueness 
of the classical solution, we have S* > T,,, and u = III on (0, TTT1) x R. 

Step 2. Suppose S* < X. By the definition of S*, for every E > 0 there 
exists t E (S”. S* + 5) such that Ilu,,(t)SIIL~ ,zc;, CO. 

Fix F > 0, it follows from by Lemma 2 that 

IL,, (s* + E) 
n 

--+ oc uniformly on 12. r,-?c 
Since 9 is convex and T,, 5 S* < DC, it follows that there exist .I:~ and 
c > 0 such that for all x > :cl - 1, 

By the properties of the Laplace equation, there exist cl, ~2, CQ > 0 such 
that for all N > 1 

r,,;. < Cl 6, Nc2S < 77% 5 Nc36. (46) 

Hence there exists Nr > 0 such that for every N > Nr , we have 

Note that by (45), 

(47) 
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Setting $N = NV, - & + rl&, for N > N1 we obtain by (47), 

1 

- n$N = (xl + C)Npll{Np,>.cl} in 0. 

?)I,~ = 0 on 80. 

By (44) and (46), there exists KN such that uKN (T*(Q)+E) > Npi+& > 
$1,~. On the other hand, by (45) and by possibly choosing larger K)v, we 
may assume that for all x1 < z < jlll/N]]LX, 

It follows that 

(xl + +bll{N p,>-c,j 5 aiN 2 .YN,~(~N). in 0. 

Therefore, for N > N1, the function ?/iN is a sub-solution of the problem 
(1~‘~) after time T*(Q) + E. We conclude that uK,” (t) > GN, for all 
t > T*(Q) + E, which proves (5) for every T > S*. 

Step 3. Since T* is the maximal time of existence of the weak solution 
U, we have S* 5 T*. By step 2, it is impossible to obtain a weak solution 
of (1) after S* and then S* = T*. 0 

4. PROOF OF THEOREM 4 

We begin with two lemmas. The first one is well-known and we give it 
for the sake of completeness. The second one is a convexity result : for 
X < A* and u. E La(R), uo > 0 such that the solution of (12~) does not 
blow up completely in finite time, all ‘u. E L”(R), 0 < u() < uo, u. $ ‘u,) 
lead to global bounded solutions of (12~). 

LEMMA 10. - Suppose (a), let u. E L”(R), ~~~ > 0, and assume that 
the solution u of (1) is global. Then Il~(t)6ll~1 5 C,. for all t > 0, where 
C, > 0 does not depend on ~0. 

Proof. - Since in [3], proof of Theorem 1, there exists C, > 0 such that 
if IIu(~~)SI]L~ > C, then for every t > to we have 

(48) 

Since we assume u global, (48) and (2) lead to a contradiction and then 
II?~(tO)~IIL~ < cg f or all t > 0. (Observe that this argument does not require 
‘u. to be nondecreasing.) 0 
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LEMMA 11. - Suppose (a), let X < X*, let q, E L”(R), ‘u. 2 0 and let 
1~ he the solution of (12~). Assume that ‘U does not blow up completely in 
finite time. Then for every 00 E L” (12). 0 5 II < IL o _ 0, 910 $ 11~0, the solution 
‘(1 of (12~) with U(O) = YJ() is global bounded. 

Proof. - Let u be the minimal weak solution of (1) and suppose that 
T*(U) = co. Set ‘IU, = (a,(~), where aE is the function defined in Lemma 3. 
As in the proof of Theorem 1, we can make use of Lemma 1 to show that 
711, is a super-solution of the following problem 

{ 

wt - Aw = X(g(71l) - KE)+ in (0, X) x 12, 

tu = 0 on i312, (49) 
w(O) = +E(7kj) in 62, 

Since Cp, is bounded, we have ‘~1, E L”( (0, cc) x 12), and thus the solution 
?u of (49) is global bounded. 

Take now o. as in the statement of the lemma. Fix 0 < r < T,,, (.ILo), there 
exists CO > 0 such that ~(7) - ‘II(~) 2 T(T)(uo - ~)a) > ~06. Taking U(T) 
and *U(T) instead of u. and v. and reasoning as in the proof of Theorem 1, 
Step 4, there exist 0 < ~1 < 1 and Ed > 0 such that for every 0 < E < cl, 

Such 17 and e1 being fixed, consider the solution z of 

i 

Xt - AZ = x 
( 

KT] 
g(z) + -E 

1 - r/ > 
in (0,~) x R, 

z = 0 on X2, 

z(O) = 0 in $2. 

Since A < X*, there exists 0 < ~2 5 Ed such that for 0 < E 5 ~2, z is 
global bounded. 

We now set 0 < E < ~~ and 2 = rl~! + (1 - rl)z. Since g is convex, 
2 satisfies 

i 

Zt - AZ = X(qg(w) + (1 - rl)g(z)) 2 Xg(Z), in (0. m) x f4 

Z = 0 on X2, 

Z(0) = ry3,(uo) 2 fug in 0. 

Since Z is global bounded we deduce u global bounded by the maximum 
principle. 0 

We are now in position to prove Theorem 4. 
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Proof of Theorem 4. - Let ua be as in the statement of the theorem and 
let IL be the solution of (15~,~). We proceed in four steps. 
Step 1. We prove that there exists pl > 0 such that for every 0 2 p 5 ~1,~ 
the solution u of (15x,&&) is global bounded. 

Since uo E L”(b2) and ‘u E C((0, T,) x R) with T,, > 0, there exist 
~2 > 0 and 71 > 0 such that for 0 < b < h2 and 0 5 t 5 71, u(t) 5 1. 
On the other hand, there exists 0 < r2 < r1 such that 

72 
x 

.I 
T(T~ - s)g(u)d.s < X 

0 .I 
‘I 

T(r2 - s)g(l)$s 5 wx/2. (50) 
0 

where WA is the minimal classical solution of (13~). Such r2 > 0 being 
fixed, T(~2)uo E Cl(a) and there exists 0 < ,u~ 5 /12 such that 

For 0 5 LL I ~1, by (50), (5 l), we have 

.I’ 
T2 

47-2) = pT(72)uo + X T(72 - s)~9(u)ds 5 wA, 
0 

and then I 5 WA for all t 2 7 by the maximum principle. 
Step 2. Set ,u* = sup{p > 0; the solution u of (15~) is global bounded ). 
We have ,u* < 00, indeed by Lemma 10, for j0 puo(pl large enough, the 
solution u of (15+) blows up in finite time. 

We show that for every b < p*, the solution u of (15~;~) converges 
to ui~ in L”(R). First, since X1 (-A - Xy’(wx)) > 0, if there exists a 
sequence (tlL), t,, r cc, such that Ilu(tn) - WA[/L= --+ 0, then the whole 
sequence u(t) converges to ‘1~~. 

Suppose by contradiction that there exists no subsequence (t,,), t, 1‘ cc 
such that u(t,,) converges to WA. We can assume uo > WA. Indeed since 
u is bounded, the w-limit set of u contains a solution w of (13x), with 
w 2 WA + co&. Therefore there exists a subsequence t,, such that u(&) 
converges to ru in C’(2), and for n large enough we have u(tn) > w,,. 
On the other hand, by possibly taking u(r) instead of ~0, we may suppose 
that u. E C’(n). 

Set z(t) = u(t) - WA > 0, there exists Cr > 0 such that Ilz(t)llLm > C1 
for all t > 0. By Lemma 2, since G = IIuIIL-~~~,~,~~, < 30, we find 

Ilz(t)till~~ > ceg’(‘)(T(l).z(t - l))(z) > ~e(~‘(‘)-~)z(t, z) for every ZE R. 
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and then 

Y. MARTEL 

(52) 

Let cp’ be the solution of 

{ 

- Y:’ - APT = g’(u)$ in (0, cc) x f2, 

yT = 0 on 312. 

yT(T) = h in d2. 

We have 

6 1 y’(u(t) - WA) = & - y(wx) - g’(%1,)(11, - wx))yT 5 0. 
dt , R 

It follows from (52) that 

(53) 

Let now TI> be the solution of 

Easy calculations lead to ,I;, (i/(T)6 = j;, cp’(O)b’. By (53) and u. E C’(D), 
we conclude j;, G(T)6 > C, for every T > 0, where C > 0 does not 
depend on T. 

Let p < LL’ < /L* and let ‘v be the solution of (1.5) corresponding to CL’Q. 
Using the convexity of 9, we have 

{ 

(w - ,u)t - A(?, - u) > &u)(w - u) in (0,~) x 12. 

w - YL = 0 on 852, 

w(O) - ‘u(O) = (p,’ - p)u, > ~5 in iI. 

where K > 0. By using $, there exists C$ > 0 such that 

I (u(t) - u(t))6 2 Cs for every t > 0. 

Since CL’ < p*, v is bounded and then TJ( t) converges up to a sub-sequence to 
a classical solution W of (13~). By (54) and II > u, we have WA < ‘u < IV, 
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but the existence of a triple of ordered solutions of (13) is impossible (see 
H. Fujita [4]). The contradiction shows that t/,(t) converges to TUA as t + rx;. 

Step 3. Consider a nondecreasing sequence pIL 1‘ IL*, /I,,, < II*. For each 
71, > 0, the solution up!, is global. By Lemma 10, we have [Iu,,,, [IL; 5 C,. 
By using the technique of [3] proof of Theorem 1, we obtain 

where C depends neither on ~1 nor on T. We define u,‘. as the limit of the 
nondecreasing sequence (Us’,, ), by (55) and taking the limit in all terms of 
(lo), up,- is a weak solution of (1) and T*(u,~~) = 00. 

Step 4. We prove (iii) by contradiction. Suppose that there exists p** > I-L* 
such that T*(p**q,) = c~, then for LL* < LL’ < I-L**, the solution of (15~+~) 
is global bounded by Lemma 11, which contradicts the definition of p*. 0 

REMARK 2. - Following the argument of [6], Lemma 2.1, we know 
that IL/, does not converge to UIA b in L”(0) even up to a subsequence. 
Therefore, when there exists only one classical solution of the stationary 
problem, the solution Us,, is not bounded. However, the exact behaviour 
of ‘Us,- remains mainly unknown. 

Theorem 4 has a corollary concerning the instability of the weak solutions 
of (I 3~) different from UIA. 

COROLLARY 7. - Let X < A”. Let WA be the minimal classical solution of 
(13~) and suppose that there exists another weak solution UI~ of (13~). Let 
pug E L”(0) be such that ~0 2 WA, 0 5 ~0 $ WA. Then the solution u of 
(12,) is global bounded and converges to WA as f; + 0~. 

5. PROOF OF THEOREM 5 

lnstead of Theorem 5, we prove the following result which clearly 
implies Theorem 5. 

PROPOSITION 8. - Suppose (a), X = A* and WA- E L”(R). Let 
~0 E L”(R) be such that uo > 0 and ~0 $ 0. Then there exist p* > 0 
and /I,** > 0 such that 

(i) 0 < p < ,u*, the solution ZC~, of (15~*.~~) is global bounded and 
converges to ?ux* as t --+ 00. 

(ii) P* I P < P**, the solution u,~ of (15~~ ,+) is global and converges 
to w,j* in L;(0) as t -+ 03. 
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(iii) p = p**, the minimal weak solution qf (15x- ,,L ) converges to WA 
in L:(R) as t -+ x. 

(iv) p > /L**, the solution uIL of (15~ ,+ ) blows up completely in jnite 
time. 

REMARK 3. - We do not know whether or not p* = p**. If this is the 
case then (ii) does not occur. For IL* < /L < IL**, we do not know if the 
solution u is bounded. 

To prove Proposition 8 we will use two lemmas. The first one is a weaker 
form of Lemma 11 which holds in the case X = X*. The second one proves 
a instability property of the minimal solution of (13x.). 

For ,4 = X*, Lemma 11 can fail. However, we can prove the following 
weaker result without any restriction on X. 

LEMMA 12. - Suppose (2), let ZL(I E L”(Q), ~0 > 0, and assume that the 
solution ‘u qf (1) does not blow up completely in finite time. Then for ever) 
71(j E L”(R), 0 < 710 5 U(), ~0 $ ~(1, the solution %r of (1) corresponding 
to 110 is global. 

Proof. - The proof is just an adaptation (slightly improved) of the proof 
of Theorem 2 of [3]. 

As in the proof of Lemma 11, the idea is to use a function GD,, which is 
bounded, increasing and concave, in order to obtain a super-solution of a 
“perturbation” of (1). Here, we take @, depending also on t. For g(O) # 0 
and E < g(O), the function @.E would be 

(a,(t, u) = Jl;l(h(u)), 

where 
‘I’ h,(u) = 

.! 
‘I’ cts i&L) = 

.I 
02 

0 !I(.~) 3 () g(s) - &e-2Xlt 

If g(0) = 0, it is possible to take another function in the spirit of Lemma 3. 
(See the proof of Lemma 6 of [3].) 

Let u be a weak solution of (1) such that T*(u) = m, and let 
~,(t, z) = CDC(t, ~(t, x)). Easy calculations and Lemma 1 show that ~1~ is 
a super-solution of the following problem 

i 

wt - Aw = g(w) - EeC2’lt in (0, x8) x R, 
-w = 0 on 80, 
w(0) = cP,(O,u~) in 0, 

(56) 

Since Q.E is bounded, we have ~1, E LzC( (0, x)? L”(n)), so that the 
unique classical solution w of (56) is global. 
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Take now ~0 as in the statement of the lemma. Fix 0 < T < T,, (~a). 
There exists co > 0 such that U(T) - u(r) 2 T(r)(~o - ~0) > ~6. Taking 
U(T) and u(r) instead of u u and v. and reasoning as in the proof of 
Theorem 1 step 4, there exists ~1 > 0 such that for every 0 < E < ~1 

‘U() 5 Qc(O, U()) - q)s/a 

Denote by r > 0 a constant verifying 

(ZX L cpl. (57) 

where (~1 > 0 is the first eigenfunction of -A in H;(n), and x satisfies 

- Ax = 1 in R, 
x = 0 on dR. 

Set k(t) = (2: - ~)e-*~‘~, k is a sub-solution of the problem 

i 

2, - AZ = --ew2’lt in (0,x) x 12, 
Z = 0 on X2, 

Z(0) = 2c in Q. 
c 

(58) 

By (57), we have k 2 0 on (0,~) x R, so that the solution 2 of (58) is 
also nonnegative on (0; oo) x 62. 

Now, we set z = UI - EZ, for E small enough, we have EZ 5 caS/2 and 
z is a super-solution of the problem verified by U. Since x is global, u is 
also global by the maximum principle. 0 

When the solution wx- is classical, it is unstable from above. Indeed, 
we prove the following lemma. 

LEMMA 13. - Suppose (a), X = X* and WA- E L”(f2). Let u. E L”(O), 
u() > WA- and u() $ %u~-. Then the solution u of (12~) blows up complete1.y 
in jinite time. 

Proof. - By contradiction suppose T*(u) = +CG. In that case we may 
assume that u is global, by taking U. E L”(Q), ‘uI,,* 5 Go 2 ‘u. and 
,G) $ swA”, Go $ ua instead of u. and applying Lemma 12. As usual we 
may assume without loss of generality that there exists co > 0 such that 
the - WJ,* 2 ~06. We proceed in three steps. 
Step 1. There exists A c WA*(~), IAl # 0 such that 

g”(v) > 0, for all ‘u E A 
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Indeed, otherwise we have g(wx-) G g(0) + ~‘(O)UIX, and everything 
happens for WA- as if g were linear. Since g(0) > 0, g verifies the 
monotone case of P. Mironescu and V. Radulescu [X] and the existence of 
711~ contradicts the definition of A*. 

Therefore, there exist ~1 > 0, 0 < K1 < K2 < /IUIA- 11~‘: such that 

g”(u) > 71. for all u E [K1, K2]. 

Step 2. Since g is convex, III = 1~ - rug, verifies 

{ 

w+ - &U 2 X*g’(~~~~, )w in (O.T*(Q)) x 62, 

w = 0 on X2, 

w(0) = u. - wx- > c0b in 52, 

(59) 

(SOI 

On the other hand, we denote by QJ~ the first eigenfunction of 
(-A - X*g’(wA-)) in I&i(R), th e corresponding eigenvalue being 0. The 
function Qr being chosen such that lj*rllLi = 1, there exists C such that 

Note that by (60) and (61), UI is a super-solution of the problem verified 
by Cr’@r for some C1 > 0. By the maximum principle, we conclude that 

w(t) > ClXlf~ in (0. CC) x 12. 

Step 3. We set f(t) = ./o~(t)~rcls:. Then 

f’(i) = JJg(u(i)) - g’(?u~+L(t)]xP&. 

Since 

.! 
[g(wx* ) - g’(‘WX-)11IX.]~rd:r: = 0 

n 
it follows that 

(62) 

The idea is to u:e (59) to show that f’(t) does not converge to 0. There 
exists a subset R of R, such that lfl[ # 0 and 

UIA- (x) > K1, for all z E 5. 
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Since fi is compact in a, there exists a constant C, > 0 such that 

Next, there exists a subset 6 of 6 such that 161 # 0 and 

> 
, for all :I: E 6. 

By (62) and (63) we obtain 

K1 + C1C2 5 u(t, cc), in [0, co) x 6. (64) 

(63) 

Hence by (59) and (64) we obtain 

We conclude that f is not bounded. By Lemma 10, we obtain a contra- 
diction. 0 

REMARK 4. - This result proves that for ‘uI~* E L”(12), there does not 
exist a second solution of (13x-) even in the weak sense. 

Proqf of Proposition 8. - We define CL* > 0 as in the proof of Theorem 4. 
Similarly, for p large enough the solution IL of (1 5x> ,,,) blows up completely 
in finite time, so that we can define 

p** = inf { /s > 0; the solution u of (15x, +) 
blows up completely in finite time}. 

Of course ,LL** 2 p*. For p < p**, the solutions are global by Lemma 12. 
Then using Lemma 10 and reasoning as in the proof of Theorem 4, the 
weak solution u** corresponding to p** is obtained as the limit of the 
solutions (u,) for h T b**. Now we show that u** converges s to UIX, in 
L:(Q) as t + m. The result will follow for p* < ~1 < id**. 

Let 11 be the global classical solution of (12x*), with ~(0) = 0. We have 
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so that for every 7~ > 0 there exists sn > 0 such that for any t > H,, 

Suppose for the sake of contradiction that /I,NA- - ‘~**(t)ll~; does not 
converge to 0 as 1 ---f x1. There exist C > 0 and a sequence (f,, ) such 
that t,, > s,, and 

I I ‘ll)A - u**(t,,)llq > cr. (66) 
Since u**(t) 2 ,0(t) almost everywhere on (0: ,CC) x 62, by (65) we find 

II(u**(t,,) - wx.)-ll~,x < l/71. (67) 

Set <w(t) = IL**(~) - ‘(11~ , since 9 is convex, 111 satisfies (in the weak sense) 

{ 

‘wt - Aw > g’(wp)w in (0. 3~) x 62, 

‘w = 0 on X2, 

w(0) = ~b(j - u:~ in It. 

By (67) and (66), we have ~~(t,,) < l/r), and Il~~+(t,,)ll~~ 2 $ for 71, 
large enough. 

With c = 119’(wx )IIL,- ((o.X)X~j) < co, it follows that (in the weak sense) 

i 

%1t, - Aw > -me in (tn. ~3) x 12. 

w = 0 on di2, 

w(t,,) > w+(tTl) - l/rt, in 12, 

Fix r > 0. We claim that there exists 71, > 0 such that w(r + t,,) > 0 (a.e.). 
Indeed, consider z1 the solution of 

It is clear that z1 (r) < qO/71 where cl > 0 does not depend on 71. 

On the other hand, for z&t,) = T(t)~l+(&~), it follows from Lemma 2 
that ,Q(T) > c2S where c2 does not depend on 71,. Therefore for ‘IZ large 
enough ZZ(T) - ~~(7) > 0. Since u~(l;,~ + .) is a super-solution of the 
problem verified by z2 - zl, we obtain the claim. 

Since ~(t,, + 7) > 0, there exists rhl E L”(R) such that 7uA. < ul < 
u**(t,, + T). By L emma i 3, the solution of (1) corresponding to ~1 blows 
up completely in finite time, and we obtain a contradiction. 0 
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*DC) 
6. THE CASE .I 

ds 
__ = cc (3) 
g(s) 

We can adapt Theorems 4, 5 and Corollary 6 to the case (3). We obtain 
the following results. 

THEOREM 9. - Suppose (3). Let X < X*, and 7~0 E L” (fl), ~0 > 0 and 
1~0 $ 0. Then there exists 0 < IL* < w such that 

(i) 0 5 1~ < LL*, the global solution u,, of (15x,+) is bounded and 
converges to 111~ in L”(Q) us t + x. 

(ii) p = p*, the global solution IL,,. qf (15~,,, ~) does not blow up 
completely in injinite time. 

(iii) /J > /l,*, the global solution 1~~ oj’ (15+. ) blows up completely in 
infinite time. 

Futhermore, p* < 30 if and only if Xy satisfies (33). 

THEOREM 10. - Let X = X*. Suppose (3), and that there exists a classical 
solution WA, of (13~“). Let ~0 E L”(R), TL~ 2 0 and let u be the 
corresponding global solution of (12~~ ). Then either u blows up completely 
in infinite time, or ?l,(t) converges to wxS in Ll(ft, 6(:1:)dn:) us t + 00. 

COROLLARY 11. - Suppose (3) and let X > X*. Then for all ‘~0 E L&(12), 
~0 2 0, the global solution u of (12~) blows up completely in injnite time. 

The proof of Theorem 5 can be adapted with obvious modification to 
show Theorem 10. Note that in the case (3), Lemma 12 is useless. On the 
other hand Corollary 11 is a direct consequence of Corollary 3. 

Finally, to prove Theorem 9, we need only an equivalent of Lemma 11 
which holds for (3). This is the object of the next lemma. 

LEMMA 14. - Suppose (3). Let X < X*, let ~0 E L”(a), u. > 0, and let PL 

be the global solution of (12~). A ssume that u does not blow up completely 
in injinite time. Then for every 110 E L”(R), 0 < 11~ < uo, II() $ q), the 
solution u of (12,) with v(0) = ~0 is bounded. 

ProoJ - In view of the proof of Lemma 11 it suffices to show that for 
every v. chosen as in the statement of the lemma, there exist K > 0, 77 < 1 
and EO > 0, such that for 0 < E < E() the solution w of 

wt - A,w = Xg(w) - KE in (0, X) x R, 

w = 0 on X2, 

w(0) = 3! in R. 
(68) 

r1 

is bounded. 
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We will make use of the following continuous embeddings 

Nf2 
for all p 5 - and all 7’ < 

P 
2 1-a’ 

A +2 

for all 1) > F and 

Wl+((o, l):U(i2)) n Ll’((ot I). W*+(12)) + C([o, 11: C’(2)). (71) 

for all y > N + 2. 
For later convenience we also recall that if 

{ 

71~ - Arl = f in (0, 1) x 12, 

rl = 0 on i3R. 

~(0) = 0 in 12. 

and f E P((O, 1) x (1) for some 1 < p < cc, then 

Returning now to our problem, let us define the following functions 

Set ul = @O,E(~) and observe that by concavity of hr, 

(73) 

From h,(u) = /J,~(u~) and (73), it follows that 

Since u does not blow up completely in infinite time, by Lemma 4 there 
exists C > 0 such that 
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Multiplying (1) by (pl and integrating on (T, T + 1) we find 

ST+1 . 

I J S(7L)‘pl 5 (1 + Al)C, 
.T $1 

We now take v1 the global solution of 

7L < (2 + Xl)C; (75) 

iJVl 
__ - Au, = Xg(ul) - E in (0: cx3) x R, a 

By Lemma 1, ‘ZL~ is a super-solution for problem (76) and so vl 5 ul. It 
follows from (74) and (75) that 

where C > 0 does not depend on T. For p > N + 2, define r$ by 

- g - A$ = u:‘~(T + .) in (0,l) x R, 

VT = 0 on aR, 
7$(l) = 0 in 0. 

By (77), (72) and (71), we obtain r$ E C( [0, I], Cl(n)) and 

where C does not depend on T. Multiply (76) by 71: and integrate on 
(T,T + l), it follows that 

By (77) and (78), we conclude 

T+l . 

J J 7/y < c, 
T 0 

where C does not depend on T. 
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Iterating this argument on qil, we obtain 
.I-+1 . 

I I 
,111 5 c, 

.T . St 

for all y < s. 
Iterating this argument ,j times (and using (69)) one proves that the 

solution w,~ of 

i3Vj 
~ - Allj = X{/('flj) - jE in (0; X) X 62, 
at 

7~) = 0 on XL 
V,(O) = Qj.,(. (ai)o,,(Uo))) in 12. 

satisfies 
.‘r+l . 

J I 
II; < c, (79) 

1 . II 

for every y < ,T(Tf,,. Taking .j = N in (79) and considering I~,Y-+~ 
we obtain 

for all y < N + 2, so that we can apply 
and then (70) directly to ‘u~v+~. 

(72) with y < JJ < N + 2, 

We have proved IIv.~+~~~~“((~,~+~)~*~ 5 C. where C does not depend 
on T, i.e. v~+l is uniformly bounded. Finally, observe that for every co > 0, 
there exists EO > 0 and rj < 1 such that rl @‘N,E(. . . @O,E(~O)) > uo. The 
function 71x+1 is a super-solution for problem (68) with K = N + 1 and 
so ~1 is bounded. 0 

7. CONVERGENCE RATE 

We give a last result concerning the convergence of some solutions of 
(1) to the unique solution of the stationary problem. 

PROPOSITION 12. - Let X = A*, WA- E L”(R), and ug E L”(fI), 
0 < u. < WA-, uo $ W,Z-. Let ‘u be the global classical solution of 

‘Ut - AU = g(U) in (0, 03) X 62, 

u = 0 on cm, 

u(0) = u. in 62, 
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There exist C, C’ > 0 such that 

Proof. - Fix r > 0, for every ua as in the statement of the proposition, 
we have U(T) < wx- - co6 for some co > 0. Let u be the solution of (1) 
corresponding to v. 3 0, then u(t) converges to UJX- in Cl(a) as t ‘T X. 
It follows that there exists t such that ~(7) 5 71(t). Therefore, it suffices 
to show (80) for v. 

First we prove an estimate for I] (WA* - v(t))6]]~1. As in Lemma 13, there 
exist ~1 > 0 and 0 < Ki < K2 < ]]w~.]]L~ such that 

I” > 71, for all 11, E [Ki, Kz]. (81) 

We denote by 91 the first eigenfunction of (-A - X*g’(u/~- )). 
We set ,w( t) = ?ux- -u(t). UJ is nonnegative, nonincreasing and converges 

to 0 in L1(R,S(z)d, ) .z as t r cc. In what follows we will take t large 
enough to have 

C’(1)II~I1111L~es’(l’ulx~I’L-)l17U(t - l)XIqL 5 K2 ; K1. (82) 

where c’( 1) is defined in Lemma 2 (in which we substituted 9i for 6). 

Define f(t) = Jo w(t)Qidz. Then as in the proof of Lemma 13, 

f’(i) = /$)) - y(wx*) + s’(wx- )w(t)l%(~:~ 

= - l(l,:‘~ (rli)g”(o)do)r()i[ili17 5 0. 

There exists a compact subset 6 of 0, such that 

KlfK2 

2 
5 wX-(x) 5 Kg, for all z E 5. 

Since 6 is compact in 0, there exists a constant C2 > 0 such that 

Qi(z) > C2. for all IC E $1. 

On the other hand, by Lemma 2 (in which we substituted \I’i for S), we have 

e~‘(%(l)]]w(t - l)\IIi]]L’QJi < WA- - v(t) 

< eg’(“u?,*“~-)c’(l)llw(t - 1)9i]]L1QI1. (83) 

Vol. 15. no 6.1998 



722 Y. MARTEL 

By (82) and (83), we obtain 

We conclude by (8 1) that 

Therefore, we get 

(84) 

for a certain constant G, for every t > 0. 
On the other hand we have 

g”(n) < G, for all B E WA*(~), 

and by (83) 

Using (84) we find 

f’(f) > -c,f’(t - 1) > -g; 

which provides the result for I( w(t)91 IILl. Using (83) again we find 

which proves (80). 0 

REMARK 5. - For X < A*, and 1~~ < WA, we can prove by the same 
technique that ljwx - ~~(t)llL- converges to 0 like c”I(‘)~ as t + cc, 
where X,(X) is the first eigenvalue of (--A - Xg’(,wx)). 
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