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ABSTRACT. - It is known that sequential weak lower semicontinuity 
and weak-strong convergence (in the scalar case) properties of integral 
functionals may be characterized by means of their integrands. In this paper 
we introduce a Young measure approach obtaining both these results and 
the characterization for the second property in the vector-valued case. We 
discuss also motivations for the definition of strict quasiconvexity, and 
point out that the characterization of the classes of functionals having 
weak-strong convergence property everywhere is not a trivial problem in 
the general case. 0 Elsevier, Paris 
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RBsuM!~. - On sait que les proprietes de semicontinuite sequentielle faible 
et de convergence faible-forte (dans le cas scalaire) pour les integrales 
fonctionnelles peuvent Ctre caracterisees au moyen de leurs integrants. 
Dans ce papier nous introduisons une approche pour la mesure de Young 
et nous obtenons ces resultats ainsi que la caracterisation de la seconde 
propriete dans le cas a valeur vectorielle. Nous discutons Cgalement les 
motivations pour definir la quasiconvexid stricte, et remarquons que la 
caracterisation des classes de fonctionnelles ayant partout la propriete de 
convergence faible-forte n’est pas un probleme trivial dans le cas general. 
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756 M. SYCHEV 

1. INTRODUCTION 

In this paper we will consider integral functionals 

where L(z,u:II) : R” x R”’ x R”“’ -+ R is a Caratheodory integrand, 
u E Wl;l(R; p). We define I(U) as the integral in the right-hand side if the 
composition of L and u lies in L1. and let 1(~) = x if only the negative part 
of this composition is integrable. We will suppose that R c R” is a bounded 
open set with the boundary having zero Lebesgue measure unless otherwise 
stated. In this case W1,“(12: Rn) is the space consisting of measurable 
functions with finite norm IIU~~~~,~.~‘(~~:~,,,):=IIU~J~,,(~~~,,’)+IIC?~~I~~(~;~,,“‘), 
Wi’“(02; R”‘) is the closure of G’(F(62: R”‘) in W’.J’(R; R”). 

The main purpose of the paper is to obtain a characterization by means of 
integrands of two basic properties of these functionals. The two properties 
are: sequential weak lower semicontinuity (swlsc) (lim irlfh.i30 I(Q) > 
I(uo) for U~C - Q in W1,“(b2: R”‘)) and so-called weak-strong convergence 
property (the convergences ~(uL.) + I(Q) < DC and Us - ~~~~ in 
Wl,p(R; R?“) imply strong convergence of ‘ILL to ~0 in Wl.l(R; A?“)). 
Here and further we will denote weak and strong convergence by - and 
+ respectively. 

When the first property is basic for establishing existence results in a 
minimization problem (cf. [4], [ 1 I], [ 121) the second one is relevant for 
investigation of stability of solutions, convergence in numerical schemes. 
etc. 

The basic conception ,for de$nitions and results in this paper is the 
observation that an integral functional I(U) admits one of the discussed 
properties at a function ~0 if and only iffor a.e. ;y E R the functional with 
the integrand L( y , uo (:y ) . U) (‘y is fixed and determines the integrand) admits 
the same property at the linear function with gradient VU”(~). 

Following this way we unify previous background on these problems 
both in sense of conceptions and proofs, introduce definition of strict 
quasiconvexity which turns out to be responsible for the weak-strong 
convergence property, and partially characterize the class of functionals 
having this property everywhere. The basic tool in this work will be 
results from gradient Young measure theory that is motivated by recent 
contributions of Kinderlehrer & Pedregal [18]-[20] in this area. 

It is well known that the following definition of Morrey [27] is relevant 
for lower semicontinuity results. 
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DEFINITION 1 .l. - A function L(V) : R’““’ + R is quasiconvex at 
wo E R’““” if 

J(U) = L(wo + V(P(Z))dZ > L(q)) mea3 R 

A ,function is called quasiconvex if it is quasiconvex everywhere. 

Here and further for a zio E R”‘” we suppose that II: + ‘URIC: is a function 
R” i Rm given by action of ug as an element of W’Lx”, which is the 
space of all m x n matrices with real components, on :I: E R”. 

Further we will also use the notation J(U) for integral functionals with 
integrands L = L(Vu) depending on Vu only for to distinguish this case 
from the general one, for which the notation I(U) has been reserved. 

It is well known that quasiconvexity at a fixed point does not depend 
on a choice of 0 [6]. Moreover, arguments of Proposition 2.3 from [6] 
let prove also. 

PROPOSITION 1.2. - A continuous integrund L(U) is quasiconvex at 110 if 
und only if the corresponding functional J(u) is sequentially weakly” lower 
semicontinuous in Wl>“(R; R,‘) at the function uo with Q,(X) = UOX. 

The following result of Acerbi & Fusco [I] is a characterization of 
the class of functionals having the sequential weak lower semicontinuity 
property everywhere. 

Recall that 

L(z, U, u) : R” x R”” x R’““” -+ R is a Caratheodory integrand if 
and only if for any E > 0 there exists a compact subset 52, of R such that 
rr1eas(I2\R,) 5 E, and the restriction of L to 0, x R”” x R”“” is continuous 

THEOREM 1.3. - Let L(z, u, U) be a Caratheodory integrand such that 
0 5 L(:l;;u, U) 5 A~u/” + B(A> B > 0). Then the functional I(U) is swlsc 
in W’.p(R; R”‘) if and only if for a.e. :I; E II and all u E R”” L(z, IL, 71) 
is a quasiconvex .function of 11. 

In the case p = cc it is enough to demand boundedness of L on compact 
sets instead of growth conditions at infinity [27]. 

In the scalar case min{m> r~} = 1 both sequential weak lower semicon- 
tinuity and weak-strong convergence properties may be characterized even 
by means of pointwise properties of integrands. 

DEFINITION I .4. - A continuous function L(V) : Rt -+ R is convex (strictly 
convex) at a point 110 E Rt if C; ciL(v;) > L(uo) (> L(v0)) for any 
w; # WO,C~ > 0 (% = l:.. . : q) such that C, c;‘u; = uo, C; c; = 1. 
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Convexity of a function L at a point *uug is equivalent to nonemptiness of 
the subgradient at this point. Strict convexity at ~0 holds if and only if for a 
.f E i3L(uo) the convex hull of the set (II E R”! II # u,, : L(u) - L(v~)- < 
f. 11 - ‘~0 >= 0) does not contain ~0 (as a consequence the same is true 
for any element of the subgradient). All these results are the contents of 
PO, 5 21. 

In Theorem 1.5 a more general situation will be considered, in which 
gradients are replaced by arbitrary integrable functions. In this case 

’ I(1L.Q = J L(:c, U(X). <(X))dX, L(x,u.u) : 52x RrrL~R1 + R. 12 c R”. 
0 

THEOREM 1.5. - Let L(z:: %I,, II) be a Curutheodory function, I/,~. + TL 

in L1(R; RY’), CL. - $ in L1(O: R’), and ,for a.e. .c E R ussume 
that L(x,u(z). u) is convex at $0 = E(z). Let also negative parts 
of L(:c; uk(:c), <k(z)) be equi-integruble. Then liminf~.,, J(u~. <k) > 
I(,//,. 0. 

[f additionallyfor a.e. :c E 12 L(x. U(X), ,u) is strictly convex at u = [(XI:) 
and I(u,<) < x then the convergence I(uk.. &) + I(u, E) implies 
convergences [k + < and L(r, uk(:r:), &(:I.)) -+ L(:r:, u(z). <(:I:)) in L1. 

Equi-integrability of a sequence ,fk. : ft + R’ means that for any E > 0 
there exists 6 > 0 such that for any measurable subset fi of R, for which 
mcas (1 5 h, the inequality ./ii I,fk 1 < E holds for all k:. 

The first assertion of the theorem has been first proved in [3], the second 
one in [30] (see also [31] for a slightly different proof, and [32] for a 
very elementary proof of a weaker assertion). For L = L(x. 71) convex in II 
an optimal condition implying the weak-strong convergence property had 
been obtained in [33]. 

In the scalar gradient case (& = VTL~:. min{n, rrb} = 1. 2 = u/ut) the 
converse result is valid. 

THEOREM 1.6. - Let L(:r:, 1~. *u) : R” x R x R” 4 R be a Carutheodory 
integrand, %I,O E W1+(62), p E [l, ‘os[. Suppose that IL(:c, u.v)I < AluJ”+LI 
A. I3 > 0. 

Then the validity of the inequality liminf~,,l(u~) > I(TLO) (the 
convergence uh. + TL~ in w’,‘(n) under additional condition I(Q) -+ 
I(u~~))for all ‘uk - 110 in W1JJ(b2) such that uk E 1~0 + C?(n) and IVuk IP 
ure equi-integruble implies that for u.e. :c E S2 L(z. uo(:l:), II) is convex at 
‘II = Vuo(z) (either L(z, uO(:r;), 1)) or -L(z. uO(:);.), 1)) is strict1.y convex ut 
‘~1 = Vuo(x) for a.a. :c E 0). 
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In the case p = 3c1 “ug. - uug in WIJ’ (a) ” should be replaced bj 
“7Lk. -* ILO in W l.L~ 12) ” equi-integrabilitv of [OII,~. IP by equi-boundedness ( 
ofICu~.l. In this case it is Enough to require’that IL(:I:. *u. u)I 2 g(:r, Iul. ITI/), 
where ,q is nondecreasing in the last two arguments and integrable in :I: ,fbr 
any ,fi.seci 71,. II. 

Remark. - Theorem 1.6 was formulated in [30] in a weaker form, but 
a slight modification of the proof proposed there can be used to obtain an 
analogous result even in a wider class of integrands: at least for IL] < 0(!(l). 
where H(U) satisfies AZ-condition [22] (in this case ‘~0 E W1,1(12) satisfies 
,I’ H(VU(~) 2 cc). 

As for the vector-valued gradient case we can hardly hope to obtain a 
pointwise characterization for the weak-strong convergence property not 
having it for swlsc one. Therefore the following definition seems to be 
reasonable in the context of previous background and in accordance with 
the general scheme of the results introduced at the beginning. 

DEFINITION 1.7. - A function L(V) : R”“’ + R is strict!y p-quasic0nve.x 
at a point aunt E R”“’ if it is quasiconvex at this point and for any c. E > 0 
there exists h = h(c. E) > 0 such that the inequalities 

imply i~i~:its {:c : lV~$(:r:)l > E} 5 E. 

It is worth mentioning that strict p-quasiconvexity does not depend on 
the choice of 0. This may be established by arguments from Proposition 
2.3 from [6]. 

The above definition just means that for any sequence 4~. E Cr(0: W), 
which is bounded in Wl+‘(O; R”‘) and for which 

04,. converges to zero in measure. It is easy to see (cf. Proposition 3.4) 
that for integral functionals of particular form J(U) strict p-quasiconvexity 
of the integrand L(U) at ljo is equivalent to the weak-strong convergence 
property of the functional at the function ‘Us. at least for p > 1 (the same 
is not proved for the case 1) = 1). 

Strict p-quasiconvexity characterizes the weak-strong convergence 
property in the same fashion as quasiconvexity characterizes swlsc. There 
exist also possibilities to utilize other similar characterizations (e.g. in 
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terms of Young measures), but in this paper we make preference for the 
above one keeping in mind that swlsc has been also characterized through 
behaviour of integral functionals of particular form J(U) on linear functions 
(quasiconvexity). This explains also our preference for terminology in this 
paper. 

THEOREM 1.8. - Let L(:r:. ‘IL. 11) : R” x R”’ x R1’I’j + R be a 
Caratheodory integrand, /L(:I:~ ‘u,v)/ < Al@ + B, p E [l, K~[. il, B > 0; 
‘u. E W’+(R: R”‘). 

I. Let IQ - ‘(10 in W1,“(G: R”‘) and negative parts of 
L(:c, Use VU~(:I:)) be equi-integrable. Zf fb- a.e. .I’ E 12 L(.r:, IL(X). II) 
is quasiconvex (strictly p-quasiconvex) at 71 = Gu~~(:I~) then 
lini iufktoc I > I(Q) (the convergence I(uk) + I(,uo) implies 
convergences V~J,. -3 C,uo, L(:r:, 16k(:1:), ol~k(:~)) + L(.x:. IQ(:I:), CTI.(~(:I.)) 
in Ll). 

2. Conversely, if for any sequence ‘~1; E IIQ + C’z (12; R”‘) with equi- 
integrable IVU~I~ the convergence ILL. - 1~ in W1.“(12; R”‘) implies the 
inequality lim inf+% I(uk.) > I(‘ug) then for a.e. .I: E R L(x:.~~(x:). u) 
is quasiconvex at II = Vu()(:r). !f also ‘UL. + ‘~1~ in W1.1(f2:R’“) 
under additional requirements of’ boundedness below of L, p > 1, and 
I -+ I(uo) then,for a.e. :I’ E R L(. c’, fug ( .I:). 11) is strictly p-quasiconvex 
at 71 = V~o(:r:). 

In the case J) = x “s~k - ‘~0 in WIJJ( <I; R”‘) ” should be replaced 
by ‘<ILL -* YL~ in W1,“(12; R”‘) “, equi-integrability qf’ IVU# by equi- 
boundedness of (Vzrk 1. In this case it is enough to require that I L(.r, U. S(I) I 5 
g(:r. 1~1, Iuj), h w ere 9 is nondecreasing in the last two arguments and 
integrable in :I: for any jixed U. 71. 

The previous results on the weak-strong convergence property concern 
sufficient conditions for this property to hold at a fixed function 
(everywhere). Such condition‘had been proposed in [14] and later has 
been improved in [20], [21]. Moreover, “sufficient” part of our theorem is 
equivalent to results from [21] in view of Proposition 3.4. 

The article will be organized the following way. In $2 we include the 
basic notations and results from Young measure theory. We prove also 
some auxiliary results which will be used later on. 

In $3 we give new proofs to Theorems 1.5, 1.6 through results from 
Young measure theory and prove also Theorem 1.8. We will not consider 
the case p = cx: in the proofs because this case may be treated by arguments 
analogous to ones proposed for p < CXJ. 
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In 54 we discuss the definition of strict p-quasiconvexity utilized in this 
paper. The term strict p-quasiconvexity may seem quite odd. We make 
preference for it because the property from the definition characterizes 
weak-strong convergence property in the same way as quasiconvexity 
characterizes sequential weak lower semicontinuity. Moreover, this property 
coincides with strict convexity from Definition 1.4 in the scalar case. 
Anyway we do not insist that our terminology should be of common use. 

It may seem natural to suppose that it is enough to demand only strict 
inequality for $ not equal identically to zero in the defining inequality for 
quasiconvexity (this property has been also named as strict quasiconvexity 
in [24]) or to hope at least that validity of this inequality at every point 
leads to validity of the weak-strong convergence property. We disprove 
these hypotheses by counterexamples. 

In the same section we consider the problem of characterization of the 
classes of functionals having sequential weak lower semicontinuity or weak- 
strong convergence properties everywhere. When it is known (cf. Theorem 
1.3) that quasiconvexity of L(:r:, ‘IL, II) in ‘II for a.e. :I: E R and all ‘II is 
precisely a necessary and sufficient condition for the corresponding integral 
functional to be sequential weak lower semicontinuous everywhere the 
situation is not analogous in the case of weak-strong convergence property. 

It is an easy consequence of results of Alberti [2] and the arguments 
introduced in the proof of Theorem 1.8 that for integrands of the type 
L = L(:r:. II) strict p-quasiconvexity (which is strict convexity in the scalar 
case) in YJ for a.e. :c E 0 is both necessary and sufficient condition for 
the weak-strong convergence property to hold at each function. But in 
the case of dependence of L on u there exist counterexamples. We will 
introduce an integrand L(u, ‘II) : R x R2 + 8, which is convex, but not 
strictly, in U, in spite of validity of the weak-strong convergence property 
everywhere. Therefore, the complete characterization of the integrands 
having the weak-strong convergence property everywhere is quite subtle 
problem. 

2. BASIC RESULTS IN YOUNG MEASURE THEORY 
AND SOME AUXILIARY PROPOSITIONS 

Further we will denote by C,(R’) the set of continuous functions Q, on 
R’ for which linil,,l,co a(w) = 0. We will denote the set of all probability 
measures on R! as &rc following [21]. In order to distinguish the scalar 
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product and the action of a measure on a function we will use notation 
< .;. > in the second case. 

We will use the following definition of Young measures generated by 
sequences of functions. 

DEFINITION 2.1. - Let 12 be a measurable bounded subset of I?“. 

A family qf probability measures {v,,.}~.~o is said to be the Young 
measure of the sequence zJ : 12 + R’ c.f measurable functions (f 
@b,) -*< CD; v(.) > in L” as ,j + 00 .for every Q E C,( R’). 

A Young measure { I/,.}~~Q is named homogeneous if it does not depend 
on :I:. 

In propositions 2.2-2.5 we will assume that 62 is a measurable bounded 
subset of R”. 

The following result due to Balder [3], Ball [5] improves the original 
contribution of Young [34], [35]. 

THEOREM 2.2 (Existence theorem). - For any sequence of measurable 
,finctions zJ for which 

there exists a Young measure ( v.,.)~~R generated (possibly) by a subsequence. 
[f additionally dist (zj ( :I:), K) -+ 0 for a.e. :c E 12 and a closed set K then 
suppv,,. c K for a.e. :r: E 52. 

It is well known that 

PROPOSITION 2.3. - 1. If {v,.}~:~R is generated by a sequence 2.: and 
23 - zJ’ + 0 in measure then 23 generates the same Young measure. 

2. A sequence zJ generates a family of Dirac measures if and only if z,, 
converges in measure. 

The next two propositions demonstrate how Young measures may be 
involved in studying the behaviour of integral functionals on weakly 
convergent sequences. 

PROPOSITION 2.4 ([3], [5], [7]). - Let 21, be a sequence with associated 
Young measure {v,T},.n. If L( :c, 71) is a Caratheodory integrand and the 
sequence L(:c. zJ (x)) is equi-integrable then L(z, zj(X)) - Jn, L(:c. ~)dt/,, 
in L1. 

PROPOSITION 2.5. - Let L(x. 71) : 62 x R’ + R be a Caratheodory integrand 
and zj(z) : 62 -+ R’ be a sequence, which is bounded in L1 and such that 
the negative parts of L(x, zj(z)) are equi-integrable on II. 
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If Zj generates the Young measure (v,),.r2 then 

Moreover, the convergence 

holds if and only if L(z, Zj(X)) are equi-integrable. 

The inequality stated above is a result of Balder [3] which is valid also 
for normal integrands (cf. also [21, p. 171). The second assertion may be 
obtained as a consequence of the first one. 

Proof. - By Proposition 2.4 equi-integrability of the sequence L(:c, zj(:x)) 
implies that 

. !  

L(X: Zj(X))dLC + 
.I’J 

L(xJ, v)d~,.dx: < x. 
61 12 R’ 

To prove the reverse implication we notice that in view of equi- 
integrability of negative parts of L(z. ~~(3;)) 

lim sup 
J’ 

L(Z, Zj(Z)) > 
J’J 

L(z; *u)dv,.dx < CO. 
j+= 0 R R’ 

Moreover, lack of equi-integrability of L(x: Zj(X)) leads to the strict 
inequality. Otherwise, there exists a subsequence z; and R; c R such 
that meas Q; + 0, but 11 L+( z,z~(x)) (Ill> h for some 6 > 0. There 
exists a function za(z) for which Jo L(z, za(z))d:r: < cc (for example 
z~(:L:) = zj (x), where j is sufficiently large). If Si = za(z) for x E R;, 
i, = Z;(X) - otherwise, then because of Proposition 2.3 and the first part 
of this proposition we obtain 

that gives a contradiction with the assumption of equality of left and right 
hand sides. 

The proof is completed. 

Vol. IS. no 6-1998. 
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The following definition of gradient p-Young measures (p E [ 1. ~11) will 
be a working tool in this paper. In the case p = x we will omit “p” in 
accordance with the tradition. 

DEFINITION 2.6. - A family ofprobability mea.sures (u,.),~~$~ is a gradient 
p-Young measure provided there is a sequence YL,, E W1%“(b2: R”‘), which 
converges weakly in W’+(lt; R”‘), .such that [Vu, IJ’ are equi-integrable 

(II vpLj IIL, are equi-bounded in the case p = M) and (71,.).~~~2 is generated 
bv ‘FJsOj. 

The weak limit of 7~) is called underlying deformation. 
The crucial result of Kinderlehrer & Pedregal [ 181, [20] is a 

characterization of gradient p-Young measures. 

THEOREM 2.7. - Let { 71,r},rEIl be a fami1.y of probability measures such 
that the function < @; 71(.) > is measurable for each Cp E C,(R”“‘). Then 
{ I/,,,}.~~~~ is a gradient p-Young measure if and only ij 

(i) there is a u E W1+(12; R”‘) such that 

in 0 a.e. 
(ii) Jensen’s inequality L(V*u(z)) 5 JR,>,,, L(a)dv,. holdsfor a.e. .I‘ E 12 

and any continuous quasiconvex function L(U), which is bounded 
below and sati$es the inequality 

(in the ca.se p = x L(U) is an arbitraq continuous quasiconvex 
function). 

(iii) the function Q(X) = JR,,!,, I$‘~u,~ lies in L1 (in the case p = (X 
there exists a compact set C, such that .s~pp{7~,.}~~~ c 6’). 

Remark 2.7. - Another important fact from [18], [20] is the observation 
that in the case p l ]l,‘x[ a family of probability measures (II~),,.~c), which 
is generated by gradients of a sequence bounded in W1,J’(R, R”‘), satisfies 
all requirements (i)-(iii) of Theorem 2.7. Therefore (v,.)~,=~I is generated 
also by a sequence VU,, with equi-integrable IVukI”. In the following we 
will utilize this result often. 

This result may be also obtained as a consequence of stability in the 
Hodge decomposition [16] (see [21], Theorem 3.10). 
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It is worth mentioning that analogous assertion is not valid for the case 
p = 1 as it was demonstrated recently by 0. Kalamajska [ 171. 

One should mention that here we suppose measurability of the function 

for any @ E CO(R’LT’L) (later on we utilize notation (I/,,.).~~R E CO(R’L”L)’ 
in this case). 

In this case we have automatically that the function 

is measurable for any Caratheodory integrand L(:c. U) [3], [21, $3.21. In the 
following we will utilize one more result, which is a simple consequence 
of Theorem 2.7. 

PROPOSITION 2.8. - Let p E [l, CYJ] and let (z/,.),~~c~ be n Young measure 
sntisfiing conditions (i)-(iii) of Theorem 2.7 with this p. If IL~ E W ‘JJ (0; R”’ ) 
is an underlying deformution for (u~),~~o then there exists a sequence 
u,] E Cr(62; R”‘) such that uj 2 0 in Wt”(S-2: R”‘), jVuj IP are equi- 
integrable (]VU~ 1 are equi-bounded in the case p = K), and (VTL~ + VUj) 

generates (v,).,EQ. 

Proof. - By Theorem 2.7 there exists a sequence vu.; such that 
VU, generates (I/,,.)~~~R as a gradient p-Young measure. By standard 
approximation arguments (cf. [ 13, Ch. lo]) there exists a sequence 
1Lj E CT(0; R”‘) for which 11 ‘“j - vj + ~0 [)~L.L p-+ 0. Automatically 
‘(Lj 2 0 in W1’“(<2: R”‘), IOU,I” are equi-integrable. By Proposition 2.3 
ClLj + Vll0 generates (V,.),rEc2 also. 

It completes the proof. 
Further we will need also two more remarkable results on gradient 

p-Young measures in accordance with which homogeneous measures with 
the same local or average action as a gradient p-Young measure are also 
gradient p-Young measures (see [18], [20]). 

THEOREM 2.9 (The localization principle). - Let p E [l; DJ] and let 
(I/,.).~~Q be a gradient p-Young measure. If u E WT1+(R; RI”) is an 
underlying deformation for (v,),,~ then for n.e. :I: E i2 the measure v,, 
is a homogeneous gradient p-Young measure with the center of mass at 
Vu(x:). 

Vol. IS. 11' h-1998. 



766 M. SYCHEV 

By definition the averaging operator iz~ : (J/,.),~~J i ~u(J~.,.),~.~~~ gives a 
probability measure having the same action on every function Cp E C:O( fl’!“t ) 
as the family (J/,,.),~~Q, that means 

THEOREM 2.10 (The averaging principle). - Let 12 be (I nonempty, 
bounded and open subset of R” with II~WS (862) = 0. Let (J/,~),,+o he 

n grudient p-Young measure and assume thLlt its underlying dqfkmation 
‘/I>() E &) +y;qs2; I~“‘) (<,, E N”‘x” ). Then the werage L~u(~/,,.),rE~~ is (I 

homogeneous gradient p-Young measure with the centre of mass nt Co. 

Further we will need two more auxiliary results based on general results 
from Radon measures theory. 

It is well known that the space C&(1?‘) with uniform norm has dual space 
isomorphic to the space of all Radon measures with total variation 11 ll:1I 
as a norm, where duality is given by 

By Banach-Alaoglu theorem a set of all Radon measures, total variation 
of which does not exceed a fixed value, is weakly” compact. Since (&(R’) 
is separable any such set with the topology induced from weakZK one is 
metrizable (cf. [29], Th. 3.1 S-3.17). It is clear also that the total variation 
is lower semicontinuous functional with respect to weak* convergence of 
sequences of Radon measures. 

PROPOSITION 2.11. - Let p E] 1. x], J/A. (k: E N) be homogeneous gradient 
p-Young measure.s ,fnr u,hich 

(supports of VA. are uniformly bounded in the case p = x,). 
Then, possibly for u subsequence, J/k. -* II and 11 is also a homogeneous 

gradient p-Young measure. 
A similar assertion has been proved in [20; Pr. I .3, Pr. 2.41 in the case 11 

is a probability measure and I+ converges to I/ over all functionals of the 
form < @: . >, where lim,,,, @(u)/\@ exists. 

Proof. - Obviously 11~. contains a weak* convergent subsequence (not 
relabelled) and its limit I/ is a nonnegative measure. Moreover, II II llAqf< 1. 
In order to prove that 11 is a probability measure it is enough to obtain 
that 11 I/ IIAI= 1. 
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Otherwise for some 6 > 0 we have that 11 11 Il,lr< 1 - n. From (2.1) we 
inferthat II,(I?‘“‘\I~(O,*~)) 5 C/P’, h: E N. Hence 74(B(O.r)) > l-h/2 
for sufficiently large 7’ and all k. Consider a nonnegative continuous function 
CT> : I?““’ + R with compact support and such that @ < 1 everywhere, 
+ = 1 on L1(0, 1.). Then 

This contradiction proves that 71 is a probability measure. 
Let (2 be an open bounded set with ul(:its (X2) = 0. For any k there 

exists a sequence ,I,,; E CVIJ’(O; R”‘) (A, is fixed) such that VU;’ generates 
74 as gradient p-Young measure. Consider a countable set of measurable 
subsets X of 12 which is dense in the following sense: for any F > 0 and 
a measurable subset E of S2 there exists G E X such that the inequality 
I~EIS {(E \ G) U (G \ E)} < F holds. Consider also a countable dense 
subset I’ of Co(Rr”“). 

We may isolate a sequence li’ = ,u:(~) (,?(A:) + 3~ LLS Ii -+ x), which 
is bounded in 11’1.“(c2; I’“‘), such that 

(boundedness of ‘0~. in W1sf’(O; I?“) follows from (2.1) in the case 
1) E] 1. x[, and from Theorem 1.5 of [ 181 if 11 = x). 

Hence 

Therefore 71 is generated by gradients of a sequence equi-bounded in 
W1J1(f2; I~“‘). By R emark 2.7’ 71 is homogeneous gradient p-Young 
measure. 

Proof is completed. 

PROPOSITION 2.12. - Let 0 be a compcuzt set in R”, V : :I’ + V(x) he 
a multivalued mapping, where V(x) (:I: E 12) are subsets of a set of Radon 
measures over R’ with equi-bounded total variations. Suppose also thcrt the 
mapping V satis$es the ,following requirements: 

I. For each :I: E 12 V(x) is nonempty set, which is closed with respect 
to weak”; convergence, 

2. 1,; is upper semicontinuous with respect to weak” convergence: ,fbr 

any .I:A. + :I’() and 74. E V(xk.) such that 7~ -* I+) we have that 
74 E  1” (:l:(J ) .  

Then V admits a selection (I~,,.)~.~Q E C(j( Xl)‘. 
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Proof. - Consider a set c of all Radon measures, total variation of 
which does not exceed a fixed value. such that V(J) c 1; for all .I’ E 52. 
As it was mentioned above p is a complete metric space in the topology 
induced from weak”: one. 

Therefore I/’ is a closed, nonempty and upper semicontinuous multivalued 
mapping with values in a complete metric space. By Theorem on measurable 
selection [23] there exists a measurable selection of V, where measurability 
means that the preimage of any closed set is measurable. It is clear that 
such a family of measures has measurable action on elements of G’,,(f?!). 

It completes the proof. 

3. NEW PROOFS OF THEOREMS 1.5, 1.6. 
PROOF OF THEOREM 1.8. 

We start this section with the proof of Theorem 1.5 which may be 
obtained through results from nongradient Young measure theory mentioned 
in 52 (Propositions 2.2-2.5) and Lemma 3.1 stated below. The proof of the 
theorems 1.6, 1.8 is more complicated and will involve some additional 
auxiliary results and the results on gradient Young measures from 52 . 

LEMMA 3.1. - Ler L(r)) : R’ I R De CI continuous ,function, 11 bc II 
probability nzeasuw with the centre of rnmss at ‘v() E R’. 

1. (f L(U) is conv,ex at ‘~0 then ,/A, L(u)d7/ > L( u(l). 

2. ZfL@) is strictly con\‘ex at ~0 and 11 # n,.,, then ,f’, L(v)dr/ > L(q)). 

Proof. - In view of convexity of L at q) there exists g E iSL( (IO) (cf. 
Lemma 2.1 from [30]). Therefore 

I {L(U) - L(~rlo)}dV 2 
I 

< y. ‘0 - 110 > dv = 0. 
R’ . R’ 

Let L(U) be strictly convex at ‘~0 and v # h,.,, . Denote by M(V) the 
affine hull of supp II and suppose that dim M(V) > 1. The restriction of 
L(V) to M(V) is strictly convex at ?~a on M(V). By Lemma 2.2 from [30] 
there exists e E {II - ‘q) : I’ E M(Y)} (It:1 = 1) such that 

if ‘0 E M(V) and < ‘!J - ‘q).e > < 0. 
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Hence the equality .LRl L(U)& = L(Q) implies that 

Because TJ~ is the centre of mass for 11 we get also that 

suppv c {‘II E M(z/) :< ‘U - U().C >= O} 

It contradicts the definition of M(v). 

Hence dimkf(v) = 0, that is 11 = 6,,,. 

It completes the proof. 

Proof of Theorem 1.5. - Without loss of generality we may suppose 
that lim infk.--tm I(u~, &) < CQ. In view of Theorem 2.2 we obtain that 
any Young measure generated by a subsequence of (Q. &.) is of the form 
(c?,,,,,,.) x ~/,,.),,.~o. By Proposition 2.5 the inequality 

holds. 

If for a.e. :c E 62 L(:e, PLO(X), ‘u ) is convex at ‘II = Eo(:r:) then by Lemma 3.1 
we have that 

L(:r:. U(,(Z), <o(x)) < J’ L(:c. uo(:c)~ u)dv,, for a.e. z E 12. 
R’ 

Hence 

that proves the first statement of the theorem. Moreover, the convergence 
I(u~~, &) + I(u~J. [a) < 00 implies equality 

An additional condition of strict convexity of L(z. u~(:G).u) at II = <o(.~.) 

for a.a. :1: E R gives that in this case u,,. = bC,(,.) for a.e. :C E 12 (see 
Lemma 3.1). Hence & -+ <O in L ’ by Proposition 2.3. The rest is a 
consequence of this fact and Proposition 2.5. The proof of the theorem 
is completed. 

Vol. 15. no 6.1998 
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COROLLARY 3.2. - Let L : X” --+ R be a continuous.function and ho,, E R”. 

The integral functional 

is weak slsc in W”‘(O) and weak’” slsc in W1>” at the function < v,), . > 
simultaneously. Moreover any of these properties holds if and only (f L(U) 
is convex at 710 in the sense of Definition 1.4. 

Let L(U) be convex at ‘11~. The weak-strong convergence property at the 
function < 410. . > over W1)l (62) and W1 .w (0) holds simultaneously and 
is equivalent to strict convexity of L(a) at I:(~ given by De$nition 1.4. 

The second part of the assertion is a result of the paper [lo]. 

Proof. - If L( ) ‘u 1s convex at uo then for a 9 E aL( (,=(,,, 

L(v) - L(u~)- < !/.‘(I - ‘~1~ >> 0. ‘ti E R”. 
The functional .I, < ~1, VU(X) > d:t: is continuous with respect to weak 

convergence of sequences in W1.1(12). These observations together give 
the lower semicontinuity result. 

Let us prove now that weak* sequential lower semicontinuity in WI,” ((2) 
of the functional at the function < ‘/I~, . > implies convexity of L(U) at 
~0. Otherwise we may introduce (:i 1 0,‘~; E R” for which xi c, = 1. 
c; CiL(lii) < L(v0). c onsider the probability measure 11 = C; cj&., This 
measure is a homogeneous gradient Young measure with the underlying 
deformation < UO, . >. Actually, the requirements (i). (iii) from Theorem 2.7 
are satisfied automatically (case p = 30) (ii) holds because in the scalar 
case quasiconvexity is just convexity implying, as a consequence, validity 
of Jensen inequality for any probability measure [ 13, Ch. lo]. Hence, the 
functional is not lower semicontinuous on a sequence associated with n. 

We proved that convexity at me is necessary condition for an integral 
functional to be sequential weak* in W1~“(12) lower semicontinuous at 
the function < 11~. >. 

The proof is similar for the weak-strong convergence property. 
Strict convexity of L(l)) at 110 provides the weak-strong convergence 

property at < ‘(10: > by Theorem 1.5. The lack of strict convexity of 
L(V) at v. leads to the lack of the weak-strong convergence property at 
< ‘~a,. > by arguments analogous to ones introduced above. Actually, 
in this case c; c;L(lii) = L(,r!o) f or some c; 2 0, U, # ‘110 such that 
c; c, = 1, c; C;‘U; = v() Hence xi c;h,.? is a gradient Young measure with 
the center of mass at ~0, and for a sequence associated with this measure 
the weak-strong convergence property does not hold. 
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The proof of the corollary 3.2 is completed. 

The arguments of the proof to Theorem 1.8 will involve some intermediate 
constructions which have been introduced as objects of independent interest 
in [20, $6.31, [28], [21]. 

DEFINITION 3.3. - Let L(U) : R”“’ + R be a continuous ,function. L( 11) 
is closed p-quasiconvex at a point 110 E R”“” if 

J L(u)dv > L(v0) 
R” ,?I 

for any homogeneous gradient p-Young measure u with underlying 
deformation ~10. . 

L(v) is strictly closed p-quasiconvex at ~0 ifadditionally the strict inequality 
always holds for II # 6,.,. 

There exist direct connections between quasiconvexity (strict p-quasi- 
convexity) and closed p-quasiconvexity (strict closed p-quasiconvexity). 

PROPOSITION 3.4. - Zf L : R’““” -+ R is continuous, lL(u)[ 5 A]v/~ + B, 
A,I? > 0,p E [I, m[ (L IS only continuous in the case y = 30) then 
L is quasiconvex at vg if and only if it is closed p-quasiconvex at this 
point. Moreover, strict p-quasiconvexity at a point implies strict closed p- 
quasiconvexity at the same point, and the converse is true at least under 
additional requirements of boundedness below qf integrands and y E] 1, CO]. 

Proof. - If 11 is a homogeneous gradient p-Young measure with the 
underlying deformation ~0’ then by Proposition 2.8 it is 
gradients of a sequence vg . +4k where $k E Cr(Q; R”‘) 
IV$!Q (k E Iv) are equi-integrable. Having the inequality 

generated by 
are such that 

I . L(lJo + Vd%)dz > L(?kl) 111ex 62 
.n 

for any k we come to the inequality JkTc,,1 L(t~)dv 2 L(Q) meas R through 
Proposition 2.5 in view of the growth conditions on L and equi-integrability 
of IV$rcI”. Hence quasiconvexity implies its closed analogy. 

If L is strictly p-quasiconvex at ~0 then the equality 

holds for a sequence ~~ bounded in W,‘“(fl; Rn’) only if V4k, + 0 in 
measure. It proves that strict p-quasiconvexity implies its closed analogy. 

Vol. 15, no 6-1998. 
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Conversely, if L is closed p-quasiconvex at ‘Us) and 0 E wi,“(l2: I?“) 
then 

s 
L(u(j + Vfqdx = 

I 
/,(l’)nA’rl(;1,.,,+~,~, ) lllCx3 it 1 L(u,,) 111C1RS 6-L. 

I 61 R”“’ 

that means quasiconvexity at ~1~. 

Let L(u) be strictly closed p-quasiconvex at u(, (p > 1) and bounded 
below. Assume that L(U) is not strictly p-quasiconvex at Use. Then for a 
sequence $k E C(y(f2: R”‘) bounded in W11”(!‘2; R”‘) and some c > 0 
we have that 

where meas {x: E 12 : IVC$~.(:I:)J > c} > E meits 62. 

The averages l/k, of ~5,.,,+,,,;, have the properties 

A weak” limit v of a subsequence of z/k is a gradient p-Young measure 
with the centre of mass at ~~~~ due to Proposition 2.11. Hence the inequality 

is valid. The converse inequality together with the inequality 

are direct consequences of weak* convergence and boundedness below of L. 
We come to a contradiction, which completes the proof. 

Remark. - It is clear from arguments of the proof that strict closed 
p-quasiconvexity still implies strict p-quasiconvexity if 

The same is not clear if 7’ = p (probably here exist counterexamples; see 
also Remark 3.5). 
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Proof of Theorem 1.8. - 1. We will reduce proof of “sufficient” part of the 
theorem through Proposition 3.4 to arguments introduced in [20, 56.31, [28], 
1211. Let L(:c, U(X). ,(I) be quasiconvex at v = V~a(:r;) correspondingly for 
a.e. :r E 12, and IQ be an arbitrary sequence weakly convergent to u() 
in W1J’(12; I?“), for which negative parts of L(:c.u~, VU+) are equi- 
integrable. Without loss of generality we may suppose that the limit of 
I( ILL) exists, and that the sequence (U,+(X), VU~(:Z:)) generates a family of 
measures (S,,,,,,, x r/,,.).,.Eo, where (~,.),,.~o satisfies all requirements (i)-(iii) 
of Theorem 2.7. 

By Proposition 2.5 

In view of the localization principle 2.9 and Proposition 3.4 the term in 
the brackets in the right-hand side is minorized by L(:r., U,,(X). VU~(X)) for 
a.e. :I: E S2. It gives the lower semicontinuity result. 

Moreover, if UA. does not converge to ~0 in W1*l(f12; R”‘) and for a.e. 
.I’ E 62 ,C(.c. Us, U) is strictly p-quasiconvex at *U = VU~(:I:) then for every 
:I: from a set of positive measure u.,. is not Dirac mass (cf. Proposition 2.3) 
and, as a consequence, the strict inequality 

holds for these CC. Therefore the convergence 1(uk) --+ I(Q) implies strong 
convergence of uI; to ‘~0 in W1;l(12: A?“), By Proposition 2.5 we obtain 
also that in this case L(z, Us., VUU~,(:I:)) ---f L(:r:, Q(X), VU,,(X)) in L1. 

The “sufficient” statement of the theorem 1.8 is proved. Let us prove 
the “necessary” one. 

2. Suppose that I(U) is swlsc in W’J’(R; A?“) at ~0 for all ‘uL E 
‘~0 + Cr(0: R”‘) with equi-integrable IV,uk 1”. 

By Lusin theorem there exists a sequence of compact sets $2~. such that 
meas (0 \ ok.) --+ 0, restrictions of ~0 and VUO to !J,+ are continuous. We 
may assume also that the restriction of L(:c, U, ‘II) to Rk x RT’, x R’L7’t is 
continuous. Let k: be fixed. If for a Lebesgue point x0 E 62k L(:co. uo(:co), II) 
is not quasiconvex at ‘II = Vuo(zO) then by Proposition 3.4 for some 
homogeneous gradient p-Young measure with the centre of mass at VU” (L,,) 
and E > 0 we obtain that 

Vol. IS. II" 6.1998 
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The same inequality holds for all :I: E 62k. sufficiently close to ,I:,, with 
V(X) obtained from 11 only by exchanging the center of mass from CU(J,,) 
to CU(:I:) (if VU, generates 11 as a gradient p-Young measure then the 
measure 71(x) is generated by V,,r, + Vrt~(:/.) - r~,,(.ro)). Denote this set 
as 12,.,,. Define 71,. as hrt,,,!,,.) for all .I: E i? \ 12,1.,,, and as //(:I.) otherwise. It 
is easy to verify that all conditions (i)-(iii) of Theorem 2.7 hold. that means 
(7/,.),a is a gradient p-Young measure. In view of Proposition 2.8 there 
exists a sequence (i,k, E Cy,T (52: I~“’ ) weakly convergent in lV’.“( 62; X”’ ) to 
zero and such that V( (~0 + 5’)~) generates (v,.).,.,=~~ and the functions lV(/‘b II’ 
are equi-integrable. Hence linik., \- I( 7~~~ + (Jo. ) < I( ./ljo). A contradiction 
by which we prove that for a.e. .I’ E 12 L(J. ,r/,,l(./.). (1) is quasiconvex at 
1’ = X--l~~(.r:) correspondingly. 

3. We will prove now the last claim of the theorem. Consider the set 
(1 = {:I: E 0 : L(.I:. llg(.f.). 0) is not strictly p-quasiconvex at 7% = t~,(:l,)}. 
Our purpose is to prove that meas (1 = 0. 

Let 12~. c iutb2 (X, E 1%‘) be an increasing sequence of compact sets 
for every of which the restrictions of 1/,,). VU,, to $2~. are continuous, 
the restriction of L(.r,. 71. l:) to <tn. x R”’ x I?‘“’ is also continuous and 
niws (S2 \ 12~ ) - 0 as I,, i x. 

For given X: E N. f > 0 consider a set 12k,, c 12k. of .I:. for every of 
which there exists a gradient homogeneous p-Young measure I/ with the 
centre of mass at K?l,,(.r) and such that 

I L(:r. ‘tL[)(:r). U)d7/ = L(x. U()(X). VU(,(X)). (3.1) 
I~““’ 

I 
~‘47’dV < l/F. (3.2) 

R”“’ 

74B(O’U~~(.I~). c)) < 1 - t. (3.3) 

We will prove that $?A.,, is a closed set. Moreover the multivalued mapping 
I/- : :I: + V(X), where V(X) is the set of all probability measures satisfying 
the above requirements, admits a selection (I/(:x:)),~~~~~,, E C,,( R”“‘)‘. These 
results are enough to complete the proof. Actually, if I~X:XS ilk.., > 0 then 
the parametrized measure (11,,.).,.~~2, which is equal to I/(X) for :I’ E ilk,,. 
and to 6~-,,,~(,,.) for other :c E S2, satisfies all requirements of Theorem 2.7. 
Therefore (~,.),.~a is a gradient p-Young measure. In view of (3.3) this 
measure is not a Dirac mass for a set of positive measure, and by (3.1) 
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In view of Proposition 2.8 the weak-strong convergence property fails on a 
sequence ‘ILL. corresponding to ( I/,~). rtcz. It gives a contradiction. Therefore 
um~s Ct~~.F = 0 for any X:. F. Hence meas (1 = 0 too. 

Start now the proof of the desired properties of I’ with closedness 
for V(X), where :I: E 12j,.,, is fixed. Consider a sequence 74 E 1.(:I.) 
weakly” convergent to 71. By Proposition 2. I 1 71 is a homogeneous gradient 
(I-Young measure, obviously with the centre of mass at CUE. Let 
Q,(U) E <~,~(R”“’ )(j E N) be nonnegative functions such that for any 
‘/I E I?“” Q,, (11) # 0 only for a finite set of ;j E iii and c:, a,,( I)) = 1, 

Then 

Therefore 71 satisfies (3.2). Moreover, 71 satisfies also (3.3). Otherwise 
for some i < c we obtain v(B(VQ(.G): F)) > 1 - (. For a nonnegative 
function @(II) : R”“’ + R with the support in B(V,t/,,J(.~.). F) and equal to 
1 on n( CUE. i) we obtain that 

The last step is to prove validity of (3.1) for 71. The right hand side 
does not exceed the left one because 71 is gradient p-Young measure and 
L(x, Use, U) is quasiconvex at ‘(1 = VU~ ( :I:). Converse inequality may 
be proved by the same arguments as (3.2) has been proved in view of 
boundedness below of L. 

We have proved that V : f2k,F + 2”‘1~ IS closed multivalued mapping. In 
order to obtain upper semicontinuity for V and closedness for 0~..~ we need 
to prove that for :/:k. + :I;,,, uk -* 71 such that l/h. satisfy (3.1)-(3.3) (with XL. 
instead :I:) the same is true for 71 (with ~;cg instead :I.). But the proof is nothing 
more than repetition of the arguments utilized in the proof for closedness 
of V(J) in view of continuity of the restriction of I, to (IL.,, x R”’ x R”“‘. 

It completes the proof. 

Remark 3.5. - One should mention that the last assertion of the 
theorem 1.8 is valid under a less restrictive assumption on L(:c, u,. 1~): 

-AIYI” - B < L 5 Al+ + B. A. B > 0, 7’ > p. 

Vol. 15. n’ 6-199X 
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Actually, under this requirement the right hand side inequality in (3.1) 
still holds for the limit measure 11. The same is not clear for 7’ = p (see 
also Remark to the proof of Proposition 3.4). 

In the general case (IL/ < AIIII” + 19) it is possible to prove that the 
weak-strong convergence property at ‘U(~ E kV1.” (12: R”‘) implies that either 
for a.e. :I: E 62 L(:r:, u~~(.I.). ‘J:) is strictly I,-quasiconvex at ‘(1 = V/ro(.l) for 
any I’ > p or the same property holds for the family -I,(./:. ,uo(:I.). t,). 

Actually, in this case the weak-strong convergence property implies 
that either for a.e. :I’ E 12: the function I,(.r:. ~u,,(.I.). 0) is quasiconvex 
at 71 = ~,u(,(x) or this property holds for the family -L(.r:. u~~(.I:). t:). 
Otherwise, following arguments from Part 2 of the proof, we may introduce 
~‘1 # ~2, which are Lebesgue points of 12~. for some XI, such that for their 
neighbourhoods B ,,., . B,,., in lI1,. (II,, , n f?,., = fl) there exist nontrivial 
p-Young measures 11.f. I/,:, with the centers of mass at GL”(.I.), satisfying 
conditions (ii), (iii) of Theorem 2.7 and the inequalities 

Exchanging, if necessary, neighbourhoods U,., . 13,.1 we may achieve also 
the equality 

I 
i I B,, . R”” 

I L(:r:. U"(X), v7/,()(:1:))d:l:. 
. B.r,uBr~ 

Consider a p-Young measure (v,.).~~R which is equal to ~,j on D,r,, ZIP 
on B,,, and k,Lo(,r) for other points of 0. It is easy to verify validity 
of conditions (i)-(iii) from Theorem 2.7 that means ( II.,.),.~Q is a gradient 
p-Young measure. 

By Proposition 2.8 there exists a sequence ‘UA. E u() + G’(y(12: R’“) 
such that IOU,~, Ii1 are equi-integrable and V%L~ generates (I/,.),,~R. Then 
I + I(Q), ok. converges to ~0 in W1+(O; RI”) only weakly. The 
weak-strong convergence property fails at this sequence. A contradiction. 

Therefore either L(:c, ,u~(.I:). ,(I) is quasiconvex at u = CU~~(:I:) for a.a. 
.I: E R or the same holds for -L(:r:.u~(x);u). Without loss of generality 
we may suppose that this property is valid for L(z: ,~a( :I;). ,u). Then strict 
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r-quasiconvexity for T > p may be proved by the arguments from Part 3 
of the proof because in this case the equality (3.1) holds automatically for 
any measure, which is weak* limit of measures nk satisfying conditions 
(3.1)-(3.3) and the inequality ,\ Iu]~~v~: 5 C < X. 

Proof of Theorem 1.6 may be obtained as a consequence of the results 
of the above remark. By this remark either for a.e. :I’ E 12 L(x. U,(X), 11) 
is strictly m-quasiconvex at ‘u = VQ~(X) or the same property holds for 
the family -L( :I:. ‘U”(Z)! u). But in the scalar case quasiconvexity and strict 
xj-quasiconvexity are correspondingly convexity and strict convexity given 
by Definition 1.4 (cf. Propositions 1.2, 3.2). It gives the required result. 

Remark 3.6. - Propositions 1.2, 3.2 let us assert that in the scalar case 
quasiconvexity at a point is equivalent to convexity given by Definition 1.4 
and, as a consequence, implies swlsc in any space I@+(n) without any 
conditions on growth of integrands L(VU). 

The situation does not have analogous character in the vector-valued case. 
Actually, by results from [6] the functional with the quasiconvex integrand 
1 det VU] (here m = 71,) is not sequential weak lower semicontinuous over 
W1~“(C2: R”) if p < ’ II see also 1261 for additional information). ( 

4. REMARKS ON THE DEFINITION 
OF STRICT QUASICONVEXITY. 

SOME RESULTS ON CHARACTERIZATION OF CLASSES 
OF FUNCTIONALS HAVING THE WEAK-STRONG 

CONVERGENCE PROPERTY EVERYWHERE 

As it was mentioned in Introduction the definition of strict p- 
quasiconvexity may seem quite odd. One may suppose that it is more 
natural to demand only strict inequality 

for all $(z) E Cr(0: RrL) not equal identically to zero. 

We have explained some reasons for our choice in Introduction. 
Moreover, our definition coincides with strict convexity in the scalar 
case. Actually, due to Corollary 3.2, in the scalar homogeneous case 
(L(,u) : R’” + EL) the weak-strong convergence property holds at the 
function < 7io, . > (this is equivalent to strict p-quasiconvexity of L(‘u) at 
‘00 by Proposition 3.4) if and only if L(a) is strictly convex at rjo. 
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Simultaneously strict inequality in the defining inequality for 
quasiconvexity does not imply the weak-strong convergence property at 
< ~0, >, and, as a consequence, strict convexity for L(U) at ‘Y+). To 
demonstrate it we will utilize recent results of Cellina-Friesecke [8]. [9]. 
[1.5] which give precise conditions on an integrand L(U) for a minimization 
problem 

I’ L(Vu(2)) d:r: + mm, ,YL/~)~~ =< !1(). >, ‘II E W1.‘(S2) 
.R 

to have a solution. Here L(U) : R” + R is a nonnegative continuous 
function. The matter is that for an integrand L(U), which is convex at ‘oo, 
the problem has more than one (which is obviously < ‘uQ.. >) solution if 
and only if for 1 E aL(~l)/~,~,,,~ the convex hull of the set 

U,.,, = {u E R” : L(v) - L( u,~)- < 1.7: - I:~~ >= 0) 

contains ~(1 as an interior point. It is clear that in this case i)L(aO) contains 
only one element. Hence, there are no solutions of the problem different 
from the linear one if dim{ I/,,,, } E { 1. . .‘rj, - I } (as a consequence 
the strict inequality in the defining inequality for quasiconvexity holds), 
but the weak-strong convergence property fails at < 11~~. > in view of 
Corollary 3.2. 

A simple example 

of the function L(1)) : X2 -+ R just gives a convex integrand of 
such type. The function L(v L. ‘11~) is not strictly convex at any point II, 
for which 1~~ 1 < 1, and is strictly convex at other points. The above 
mentioned necessary and sufficient condition for existence of more than 
one solution to the minimization problem is not satisfied for all affine 
boundary conditions in view of strict convexity of L(v) in ~2 everywhere. 
Therefore, in spite of validity of strict inequality in the defining inequality 
for quasiconvexity for each ~1~) and each nontrivial function $ E IJV,:.~(~~). 
the weak-strong convergence property fails at affine functions < ‘u(),. > 
such that i(~ < 1. 

It is well known that an integral functional 1(~,) of the general type has 
sequential weak lower semicontinuity property at each function if and only 
if L(z, ‘u, 71) is quasiconvex in II for a.e. 2; and each u (cf. Theorem 1.3; see 
also [25] for a simpler and selfcontained proof in the case L = L(Vu)). 
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Moreover, 

THEOREM 4.1. - Let JL(*. .I>,u,‘II)~ 5 A(+ + I3 (A:B > 0;~ E [I; x[) be 
a Caratheodory integrand such that 

,for every affine,function uo and every sequence ‘& E ~0 + c,y ($1; RI”) such 
that I~‘&[” are equi-integrable and UA, - ~0 in W’+(R; R”‘). 

Then L(z, U, II) is quasiconvex in 71 for a.e. .?: E 12 and all II, E R”‘. 

Proof. - Let 0~. be an increasing sequence of compact subsets of int0 
such that the restrictions of L(z, U, 11) to 01, x R”’ x R”“’ are continuous. 
nleas (51 \ ftk) + (1 as k + m. 

Let :I:~ be a Lebesgue point of flk (k is fixed). Consider the affine 
function U(X) such that ~(20) = ~0, VU(X) = ~0. By arguments of Part 2 
of the proof to Theorem 1.8 we obtain that L(x, U, .) is quasiconvex at 
oo. Therefore L(x:? U, II) is quasiconvex in v for any 1~ E R2’” and any 
Lebesgue point .?: of ok. 

This proves the theorem. 

In spite the situation does not have analogous character for the 
weak-strong convergence property (cf. Example 4.3 below) similar 
characterization holds for integrands independent on u. 

THEOREM 4.2. - Let L(:c, II) : R” x R”“’ + R be a Caratheodory 
integrand quasiconvex in II, -I? < L(x:~ II) 5 A[u[” + I3 for some 
A. B > 0.p ~11. x[ (in the case p = cc IL(.c,u)I 5 .(I(:E~ ]?I[), where .(/ 
is nondecreasing in the last argument and integrable in :I; for a fixed II). 

The weak-strong convergence property holds over W1+(lt: R”‘) if and 
only if L(:r; 71) is strictly p-quasiconvex in 21 for a.e. :I’ E $2. 

Proof. - The fact that strict p-quasiconvexity implies the weak-strong 
convergence property was proved in Theorem 1.8. To prove the converse. 
Consider an increasing sequence of compact sets 0k. c intlL such that the 
restriction of L(:c: U) to 611, x R’““” IS continuous for every A: E N and 
mf:itS ((2 \ u&k) = 0. 

For fixed /G E N, E > 0 consider the set of all (:I:~, ~~~~~ V) satisfying 
requirements: :co E 62k., ~~~~ E R’““’ , 1~01 5 l/~, and u is a homogeneous 
gradient p-Young measure with the centre of mass at 1~~ such that 

I 
L(z0. V)&/ = L(Q). ‘110). (4.1) . X”“’ 

Vd. 15. no h-1998 
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i/(I?( 7![,. c)) < 1 - &. (L3) 

Denote the projection of this set on (2~. as ilk,,. Consider the multivalued 
mapping V : :I:~ E RI,.,, -+ (11,). 71) defined by (4.1)-(4.3). By arguments 
analogous to ones introduced in Part 3 of the proof of Theorem 1.8 we 
establish that (21;.: is closed set and the multivalued mapping V is upper 
semicontinuous: the convergences .I’/~ - .I’~), 71~ + v[). and vI. -* 74) of 
(,t:k~, Q) E V(.CA.) imply that (~~~~).7+) E I’(:c,,). 

By Proposition 2.12 there exists a selection (v(:I.), v(:~.)),,.~~~~ I of 1T 
such that ,v(:c) is measurable function, (v(:I:)).,~~~~ I E C&(R”“‘)‘. If 
meas f2k.,E > 0 then, after restricting (if necessary), we may suppose 
that V(X) is continuous function defined on a compact subset h7 c int,l2 
of positive measure. 

By [2] there exists a function ,~L(:K) E W1+(62: I?“) such that V~L(:C) = 
,II(:I:) on a compact subset K1 c K of positive measure. In view of validity 
of (4.1)-(4.3) for any :r E h’l with *(‘(I = (J(J), 7) = I/(X) we obtain 
that for a sequence generating the gradient P-Young measure (1/,,.),~~~7 (see 

Proposition 2.8). where I/.,. = I/(J) for :I’ E KI and 71.~ = hrc,(.r) - otherwise. 
the weak-strong convergence property does not hold. 

This contradiction proves that meas 12~.,, = 0 for any h:, c‘. It completes 
the proof by Proposition 3.4. 

Consider the integrand L(u. ~IJ) : R x R” + l? (here 7) = (v~.‘oz) E R*) 

PROPOSITION 4.3. - The ,functional 1(u) : 1471,“(12) + R cvith the 
above introduced integrand admits the weak-strong convergence property 
everywhere in spite of lack of strict con\>exity qf L(u. 11) in 11 ,for ‘Y/, = 0, 
‘II = (u1/u2) ~]1.3[xR. 

Prooj: - It is easy to see that for any fixed (1~. 1)) E R x R” such that 
either TIC # 0 or ‘~1 $11, ;J1[ the integrand L(w, II~. 11~) is strictly convex as 
a function of ‘0 = (‘ol. l:?) at 1’. 

Suppose that there exists a function ‘(1, E W1,‘L(b2) at which the functional 
does not have the weak-strong convergence property. By Theorem 1.5 we 
obtain that for any .c from a set K c 12 of nonzero measure I/,(L) = 0. 
Vu(x) E [X3] x R. 

Using the theorem of almost everywhere differentiability of Sobolev 
functions (cf. [36, Th. 3.4.11) we obtain that V~r~,(:r:) = 0 for a.e. .I’ E K. 
This contradiction with the inclusion O,U,(X) E [l, 3] x R completes the 
proof. 
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