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ABSTRACT. - It is shown that in the class of smooth real-valued functions 
on n x m matrices (n 2 3, m 2 2) there can be no “local condition” which 
is equivalent to quasiconvexity. 0 Elsevier, Paris. 
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RWJMB. - On demontre qu’il n’existe pas de condition locale qui dans 
l’espace des fonctions regulieres est equivalente a celle de quasiconvexite. 
0 Elsevier, Paris. 

A continuous function f : IF’” H R is called locally quasiconvex if at 
every point X E IF!“‘” there exists a neighborhood in which it coincides 
with a quasiconvex function. In this note we show that a C2-function 
satisfying a strict Legendre-Hadamard condition at every point is locally 
quasiconvex. Using SverWs (cf. [21]) example of a rank-one convex 
function which is not quasiconvex we show that in dimensions n > 3, 
m > 2 there are locally quasiconvex functions that are not quasiconvex. 
Indeed, for any positive number T > 0 we give an example of a smooth 
function, which equals a quasiconvex function on any ball of radius T, 
but which is not itself quasiconvex. As a consequence of this we obtain 
that in dimensions n 2 3, m 1 2 there is no “local condition” which 
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2 .I. KRISTENSEN 

for C”-functions is equivalent to quasiconvexity. In particular, we confirm 
the conjecture of Morrey (cf. [12]) saying that in general there is no 
condition involving only f and a finite number of its derivatives, which is 
both necessary and sufficient for quasiconvexity. However, it might still be 
possible to find a “local condition” which is equivalent to quasiconvexity 
in e.g. the class of polynomials. 

The proof relies heavily on Sverak’s example of a rank-one convex 
function which is not quasiconvex, and the main contribution here is 
contained in Lemma 2. Lemma 2 provides an extension result for 
quasiconvex functions, and is proved by use of Taylor’s formula, a slight 
extension of Dacorogna’s quasiconvexification formula and the equivalence 
of rank-one convexity and quasiconvexity for quadratic forms. 

In the last part of this note we consider rank-one convexity and 
quasiconvexity in an abstract setting. We hereby prove that in the class 
of CcY)-functions, any convexity concept between rank-one convexity and 
quasiconvexity, which is equivalent to a “local condition” is in fact rank-one 
convexity. 

For convenience of the reader and to fix the notation we recall some 
definitions. The space of (real) r~ x m matrices is denoted by R” ’ “I. We 
use the usual Hilbert-Schmidt norm for matrices. 

A continuous real-valued function f : W” Xm H R is said to be rank-one 
convex at X E RVsx “’ if the inequality 

f(X) I tf(y) + (I- t1fc-q (1) 

holds for all t E [0, 11, Y, 2 E R’“xlli satisfying rank(Y - 2) 5 1 and 
X = tY + (1 - t)Z. The function f is rank-one convex if it is rank-one 
convex at each point. 

The space of compactly supported P-functions cp : R” H R” is denoted 
by 27(R”; R”), or briefly, by D. The support of cp is denoted by sptcp, and 
the gradient of ‘p at z, Dq(z), is identified in the usual way with a n x m 

matrix. 
A continuous real-valued function f : IVxT” +-+ R is said to be 

quasiconvex at X E R”‘” if the inequality 

I 
. @(f(X + Dp(x)) - f(X)) dn: 2 O (2) 

holds for all cp E D,. The function f is quasiconvex if it is quasiconvex 
at each point. 
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If for X E WXm there exists a positive number S = S(X) > 0, such that 
the inequality (2) holds for all cp E D satisfying supz I&(z)] < S, then f 
is said to be weakly quasiconvex at X. As above, f is weakly quasiconvex 
if it is weakly quasiconvex at each point. 

The concepts of quasiconvexity and weak quasiconvexity are due to 
Morrey [ 121. A concept of quasiconvexity relevant for higher order problems 
has been introduced by Meyers [ 1 l] (see also [5]). 

It is obvious that quasiconvexity of f implies weak quasiconvexity of f, 
and, as shown by Morrey [12], weak quasiconvexity of f implies rank-one 
convexity of f. Hence it follows in particular that quasiconvexity of f 
implies rank-one convexity of f. 

In the special case where f is a quadratic form the converse is also true. 
Hence for quadratic forms the notion of rank-one convexity is equivalent to 
the notion of quasiconvexity (cf. [ 131). A famous conjecture of Morrey [ 121 
is that in dimensions n > 2, m > 2 there are rank-one convex functions 
that are not quasiconvex. In dimensions n 2 3, m > 2 this was confirmed 
by Sverak in [21] giving a remarkable example of a polynomial of degree 
four which is rank-one convex, but not quasiconvex. In the remaining non- 
trivial cases, i.e. n = 2, m > 2, the question remains open. The problem is 
discussed in [3], [4], and more recently, in [15], [17], [26], [27]. 

It is not hard to see that for a C2-function f : R’““” H R rank- 
one convexity is equivalent to satisfaction of the Legendre-Hadamard (or 
ellipticity) condition at every X E WnXm, i.e. for each X E WXTr’ 

D'f(X)(a @ b, a @ b) L 0 (3) 

for all o, E R”, b E UT”. 

If for some X E lWx” the inequality (3) holds strictly for all a # 0, 
b # 0, then we say that f satisfies a strict Legendre-Hadamard (or strong 
ellipticity) condition at X. This is equivalent to the existence of a positive 
number c = c(X), such that 

o”f(x)(u 8 b, a @ b) 2 c1421b12 (4) 

for all a E R”, b E R”. By using the Fourier transformation and the 
Plancherel theorem it is easily seen that (4) is equivalent to 

for all cp E D with sptcp c f3, where B := {z E R” : 1%) < 1). 
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4 J. KRISTENSEN 

By using Taylor’s formula and the equivalence of rank-one convexity 
and quasiconvexity for quadratic forms it can be proved that a C*-function 
f satisfying a strict Legendre-Hadamard condition at every point is weakly 
quasiconvex. The same kind of reasoning was used by Tartar [22] in proving 
a local form of a conjecture in compensated compactness. 

DEFINITION. - A continuous real-valuedfunction f : WX”” I-+ R is said to 
be locally quasiconvex at X E R” ’ m if there exists a quasiconvex function 
9 : wLxTrL H R, such that f = g in a neighborhood of X. 

The function f is locally quasiconvex if it is locally quasiconvex at each 
point, 

One could define a similar concept of local rank-one convexity. However, 
by using a mollifier argument and the Legendre-Hadamard condition it is 
easily proved that this concept coincides with the usual concept of rank-one 
convexity. It is obvious that there is no need for a local concept of weak 
quasiconvexity. 

If f : llVx7n t-+ R is a locally bounded Bore1 function, then we define its 
quasiconvexification, Qf : IV’“” H [--00, +30], as 

&f(X) := sup{g(X) : g quasiconvex and g 5 f}. 

Notice that if at some X, Qf(X) > -00, then Qf is quasiconvex. 
The following result is a slight extension of a similar result due to 

Dacorogna [6]. We refer to [8] for the proof of this and for some extensions 
along these lines. 

LEMMA 1. -Let f: W’““” H R be a locally bounded Bore1 function: Then 

&f(X) = inf 
(f 

’ f(X + Dp) dx : cp E V with sptp C I3 
t3 

For a C*-function f : RnXnL I-+ W we have by Taylor’s formula 

j-(X + Y) = f(X) + Df(X)Y + gPf(X)(Y: Y) + R(Xr Y), 

where the remainder term R(X; Y) is given by 

R(X; Y) = 
.I’ 

l(1 - t)(D*f(X + tY) - D2f(X))(Y; Y) dt. 
0 

For notational reasons it is convenient to introduce an auxiliary function, 
which essentially is a continuity modulus for the second derivative of f. 
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For each T E (0, +ce) define R, : (0, +cc) H [0, +cc) as (the norm being 
the usual one for bilinear mappings) 

cl,,(t) := sup { ]D”f(X + Y) - D2f(X)] : 1x1 5 r, IY] < t}, 

Obviously, fit,. is non-decreasing and continuous, and since D2f is 
uniformly continuous on compact sets, C&.(t) --t 0 as t + O+. Furthermore 
we notice that if 1x1 5 T, then 

lW; VI 5 gw~I’ (6) 

for all Y E R”‘“. 

LEMMA 2. - Let f : lWnXnL H R be a C2-jiazction, and assume that there 
exist numbers c, r > 0, such that 

s D2f(X)(Dp, 44 dz 2 c IDv12 CLT ?3 .I 23 (7) 

for 1x1 5 T and cp E 2) with sptp C B. Put 6 := (1/2)sup{t E (0, r) : 
c 2 Q.(t)}. Then there exists a quasiconvex function g : II”‘” t-+ Iw of at 
most quadratic growth, such that 

f(X) = g(X) whenever 1x1 I 6. 

Remark. - Being quasiconvex g is necessarily locally Lipschitz 
continuous (cf. [6]), however, I do not know whether it is possible to 
obtain a quasiconvex extension g of f which is as regular as f is. 

Proof. - Define the function g := QG, where 

f(X) if IX] 5 S, 

G(X) := sup (f(Y) + Df(Y)(X - Y)) 
IV56 

+;D2J(Y)(X - Y, X - Y)) otherwise. 

Then obviously g is quasiconvex, of at most quadratic growth and 
g(X) 5 f(X) for 1x1 5 S. We claim that g(X) = f(X) for 1x1 5 S. Fix 
X with 1x1 < S. Let E > 0 and find cp = (Pi E D, such that 

lBl(g(X) -I- E) > 
J 

G(X + Dp) dz. 
B 
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6 J. KRISTENSEN 

Using Taylor’s formula, (6) and (7) we obtain 

where the last inequality follows from the definition of S. 0 

PROPOSITION 1. - Let f : Wx7” H 03 be a C2-function satisfying a strict 
Legendre-Hadamard condition at every point. Then f is locally quasiconvex. 

Proof. - This follows easily by applying Lemma 2 to the functions 
f*y(Y) := f(X + Y), Y E RnxnL, where X E Wxm is fixed. q 

According to Sverak [21] there exists a polynomial p of degree four on 
Iw3x2, which is rank-one convex but not quasiconvex. A closer inspection 
of the proof in [21] reveals that we may take p so that it additionally 
satisfies a strict Legendre-Hadamard condition at every point, hence by the 
above result p is locally quasiconvex. 

Recall that a continuous function f is polyconvex if f(X) can be 
written as a convex function of the minors of X. A polyconvex function is 
quasiconvex, but not conversely (cf. Ball [2], and [ 11, [20], 1241, [25]). If one 
defines a concept of local polyconvexity as done above for quasiconvexity 
it is possible to prove that there are locally polyconvex functions on R”X”” 
(n, m 2 2) that are not polyconvex. In higher dimensions, i.e. II 2 3, 
m > 2, there are locally polyconvex functions on WXnL that are not 
quasiconvex (cf. [9]). 

PROPOSITION 2. - Assume that n 2 3, rn 2 2. For any T > 0 there exists 
a Cm-function fr : WTLx’f’ I-+ W with the following two properties: 

(I) fr is not quasiconvex; 
(II) for all X E WXT” there exists a quasiconvex function g-y, such that 

g,y(Y) = fr(Y) holds for IY - XI < 7’. 
In particular, local quasiconvexity does not imply quasiconvexity. 
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Proof - Let p : EPX”” H R be a polynomial of degree four which is 
rank-one convex, but not quasiconvex (cf. Sverak [21]). Take for each 
s > 1 two auxiliary functions &, ES E C”(W) verifying 

<s(t) = { 1 if t<s 
0 if t>s+l, 

Es(t) = f2 C 
if t<s-1 
if t>s+l, 

and IS non-decreasing, convex and E:(t) > 0 for t E (s - 1, s + 1). 
It is not hard to see that we may find s > 1 and k > 0, such that 

is rank-one convex, but not quasiconvex (cf. Sverak [19] remark 3.4 
and [20]). Next take E > 0, so that 

s(X) := P(XKs(lXl) + kls(lXI) + EIX12 

is not quasiconvex. Notice that g satisfies a uniform Legendre-Hadamard 
condition: 

.I 
D2g(X)pfT W) c&E 2 E IhI2 d?J 

r3 I .B 

for all X E WnXm and all cp E D with sptcp c t3. 
Notice also that if R(X, Y) denotes the remainder term in the Taylor 

expansion of g about X, then for some constant C > 0 

IW,Y)I I 3 
I .O 

;1- t)2 c Id”g(X + tY);l dt 5 CIYI” 
/al=3 

for all X, Y E WnXm. In the notation of ‘Lemma 2 (see (6)) this corresponds 
to C&(t) = 2Ct, t > 0, independent of T > 0. 

Fix X0 E IFP’“. We claim that there exists a quasiconvex extension 
of g from the closed ball IX - X0] 2 E/(~C). Indeed, define gx,(X) := 
g( X,, + X) and notice that by Lemma 2 we may find a quasiconvex function 
Gxyi,, such that g(X + X0) = gxO(X) = Gx,(X) for IX/ 5 e/(4C), or 
equivalently, such that 

S(x) = GA-,(X - XO) for IX - X,,] < &. 
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8 J. KRISTENSEN 

This proves the claim. Finally we define the function fr as 

f,.(X) := g gx . x E RnxTn ( > 
This finishes the proof. 0 

Let Coo(RBll.xl’L) denote the space of all real-valued P-functions 
f : WX” H R and let 3 denote the space of all extended real-valued 
functions F : WX7” H [-x.+co]. 

If we define the operator Prc : C” (Rnx m ) H .? as 

P,.<.(f)(X) := inf {D2f(X)(a@3b.a@3h) : fzEIY, bEUP}; XERrrxm. 

then f E Coo(R1Lx7’1 ) is rank-one convex if and only if P,.c(f) = 0. 
Furthermore, the operator 7?,.c is local in the sense that if f, g E C” (R’“’ “I) 
are equal in a neighborhood of X, then also IP7.(.(f) equals Pr(.(g) in a 
neighborhood of X. Thus: 

f =g in a neighborhood of X + P,,(f) = P,,(g) in a neighborhood of X. 

It would be interesting if one could find a similar condition for 
quasiconvexity. That is, a local operator Pclc. : Crx,(KPX”‘) H F with 
the property 

(*) Pqc.(f) = 0 * f is quasiconvex 

for .f E CE(R”XT’L). 

THEOREM 1. - In dimensions n 2 3, m > 2 there does not exist u local 
operator 

p: Cc=(p-) H F 

with the property (*) 

Remark. - The proof will show that the operator P cannot satisfy (*) 
and the following locality-type condition: There exists a number r > 0, 
such that for f, g E P(IPx~) and X E R”‘“’ 

f(Y) = g(Y) for IY - XI I r * P(f)(X) = P(S)(X). 

Proof. - We argue by contradiction and assume that it is possible to find 
a local operator with the property (*). 
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By Proposition 2 we may find a Cm-function f : Ran’, H iw which is 
not quasiconvex, but agrees with quasiconvex functions on all balls of, 
say, radius one. 

Let aE E C”, E > 0, be a non-negative mollifier with support contained 
in {X : 1x1 < E}. Put fE := f x (P,, i.e. the convolution of .f and (PE. 

We claim that if E E (0, l/2), then fE is quasiconvex. 
Fix X E (WrLXrn. By the assumption on f we may find a quasiconvex 

function g-y : R” Xm H IF& such that 

f(Y) = gs(Y) whenever IY - XI < 1 

Now if g-v+ := g-y * (P,, then gdy,E is a quasiconvex (?-function. 
Furthermore, if IY - XI < l/2, then 

hence by the locality of P and the quasiconvexity of gS,E 

WE)(X) = 779x,,)(x) = 0. 

Therefore it follows from the assumption that fi is quasiconvex if E < l/2. 
If we let E tend to zero we get a contradiction. 0 

Before we state the next result we need some additional terminology. Let 
C”(WXnL), h p t e s ace of continuous real-valued functions, be endowed with 
the usual metric making it a Frechet space. The dual space, C(R”Xm)‘, is 
identified with, M comp (UVxm), the space of compactly supported Radon 
measures. The space M conLp (R” x “) is endowed with the weak* topology. 

Let A be a non-empty set of compactly supported probabilities on R”x” 
all of which have center of mass at 0. Then we say that a continuous 
real-valued function f : R’“‘” I+ R is A-convex if 

J ix + Y) WY 2 f(X) 
for all p E A and all X E IVx”. 

Obviously, A-convexity is equivalent to con-convexity, where coA 
denotes the closed convex hull of A in Mcomp(RnX7’L). 

This convexity concept also captures the concept of directional convexity 
(cf. [lOI, [141, [181, G'W. 
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Let V be a non-empty subset of C”(R” ““). We say that the concept of 
h-convexity is local on V if there exists a local operator P : V ++ 3, such 
that for ,f E V we have 

,f is h-convex @ P(p) = 0. 

Let A,.,. denote the set of probabilities 11, of the form 

where t, E [0, I], -Y; E R ‘I “‘I satisfy the (HI\-) condition and c;“l, t;, .Y, = 0. 
We refer to Dacorogna (cf. [6]) for the definition of the (H1v) condition. 

We notice that 11,.,.-convexity is rank-one convexity. 
Let A,, be the set of probabilities 1) of the form 

/A, :=i; 4qDp(:r)) dr:. @ E C~yW”x”‘). 

for some p E D with sptp c W. 

We notice that ,4(,, -convexity is quasiconvexity. 
The probabilities in cob,.,. and co&,,. can be interpreted as certain 

homogeneous Young measures (cf. Kinderlehrer and Pedregal [7] and [ 161). 
However, we shall not use this viewpoint here. 

THEOREM 2. - Let 11 be II set of compactly supported prohahi1itie.s with 
center qf mass at 0. Assume that 

If A-convexity is local 071 Cz(R”x”‘), then c%h = c%h,.,.. 

For the proof of Theorem 2 we need the following result which is 
essentially contained in [7], 1161. We outline the proof for the convenience 
of the reader. 

LEMMA 3. - Let 11 he a compactly supported probability measure on 
R r’Xrr’ with center of mass ji, = 0. If for all rank-one convex COCTfunction.s 

.f : wLx”l t-+ R with supr lD”f(X)l < 1 the inequality 

.I 
f h 2 f(O) (8) 

holds, then p E c3&,.. 
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Proof. - It is easily seen that if f is a rank-one convex function, then 
it follows from (8) that also 

Let T be a weakly* continuous linear functional on Mcor,rl,(R’r’x”r) 
satisfying 

T(v) > o (10) 

for all v E co&., where 0 E R. By Hahn-Banach’s separation theorem 
it is enough to show that also T(p) > a. A weakly* continuous linear 
functional is an evaluation functional. Hence 

T(u) = 
J 

i dv. 71 E M~,,,,11(R7Lx”‘). 

for some Cp E C”(Rr’Xrn). Now (10) gives that 

R@(O) = inf 
CJ 

@ $71 : u E COA,.,. 

I 

> 0, 

where RfD is the rank-one convexification of @ (cf. Dacorogna [6] and [S]). 
We end the proof by applying (9) with f = RQ. 0 

Proof (of Theorem 2). - Let P : C~(R”x”l) H ZF denote the 
local operator detecting A-convexity. Let /L E A, and fix a rank-one 
convex C”-function f with sups iII”f(X)l 5 1. For y > 0, put 
,f-((X) := f(X) + yIX1’. X E lFPx”“. Notice that 

for all cp E 27 with sptcp c I?, and that sups lO”f,(X) / 5 1. Hence by 
Lemma 2 .f? coincides with quasiconvex functions on balls of radius y/4. 
Take E E ((AT/~), put f-,,E := f-, * QE. Here @, is the mollifier from 
the proof of Theorem 2. Obviously, f7,E equals quasiconvex C”-functions 
on balls of radius y/8. Consequently, by the locality of the operator 
P, P(fy,E) = 0, and therefore by the assumption, f-,,E is A-convex. In 
particular, 

/’ 
fw dP 2 fY,C(O) 

for y > 0, E E (0, y/8). Now let y tend to zero and apply Lemma 3 to 
finish the proof. q 
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