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ABSTRACT. - This paper continues the study started in [12]. In the upper 
half-plane, consider the elliptic equation -U,& - EU,E, - i (~$7.. + zUz) = 0, 
submitted to the nonlinear oblique derivative boundary condition U, = UU, 
on the axis z = 0. The solution of this problem appears to be the self- 
similar solution of the heat equation with the same boundary condition. As 
E goes to 0, the function U” converges to the non trivial solution U of 
the corresponding degenerate problem. Moreover there exists z. > 0 such 
that U vanishes for z 2 zo, is Cw on 10, za[xR+, is continuous on the 
boundary z = 0 and is discontinuous on the half-axis {z = 0, z > O}. 
0 Elsevier, Paris 

Key words: Nonlinear oblique derivative condition, degenerate elliptic problems, self- 
similar solution. 

ESUMl?. - Cet article poursuit l’etude commencke dans [ 121. Soit, dans le 
demi-plan superieur, l’equation elliptique -U& - EU=, - $ (zU, +zUz) = 0, 
soumise a la condition aux limites a dtrivee oblique non lineaire U, = VU, 
sur l’axe z = 0. La solution de ce probleme apparait comme la solution 
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692 F. MEHATS AND J.-M. ROQUETOFFRE 

autosemblable de l’equation de la chaleur soumise a la mCme condition aux 
limites. Lorsque E tend vers 0, la fonction U” converge vers la solution U du 
probleme dCgCnCre correspondant. De plus il existe un reel z. > 0 tel que U 
s’annule pour z 2 zo, est C” sur IO, za[x R+, est continue sur la front&e 
11: = 0 et discontinue sur le demi-axe (2 = 0, z > 0). 0 Elsevier, Paris 

1. INTRODUCTION AND MAIN RESULTS 

This paper continues the study initiated in [12]. Let us first briefly recall 
the problem dealt with and the main results obtained in [ 121. 

We consider a nonlinear oblique derivative boundary condition for the 
heat equation, in the half-plane R$ = { (2, X) E R x R+ }: 

Bt-AB=O w 

(l.l.NH) Bx-KBBz=O (X = 0) 
B(t, +x,X) = 1, B(t,+mX) = 0 
B(O,Z, X) = Bo(Z, X). 

The above system arises in plasma physics (see [ 1 l] for the modeling), 
and describes the diffusive propagation of a magnetic field in a uniform 
plasma, in presence of a perfectly conductive electrode which is placed on 
the axis X = 0. The non-homogeneous condition at 2 -+ -oo stands for 
a source of magnetic field. 

In some realistic physical situations, the parameter K turns out to be 
very large [4]. The aim of this part is to let K -+ +cc in these equations, 
thanks to an adequate scaling. Introduce the small parameter E = l/K2 
and let us define the new variables 

2’ := $, X’ := x; 

since we will only work in these variables we drop the primes at once. 
Equation (1.1 .NH) becomes 

Bt-Bxx-&BZZ=O Fe) 

(1.2.NH) BAY - BBZ = 0 (X = 0) 
B(t, --cm, X) = 1, B(t, +m, X) = 0 
B(O,Z, X) = B,,(Z, X). 
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NONLINEAR OBLIQUE DERIVATIVE 693 

This paper is devoted to the behaviour of the self-similar solutions of 
(1.2.NH) as E + 0. Recall that self-similar solutions of (1.2.NH) are steady 
solutions in the variables 

7 = Log(t + l), z=&, 
X 

x=m’ 

Hence the self-similar problem associated to (1.2.NH) reads 

{ 

-U& - &U& - ~(dl: + xr-g = 0 (W$) 
(1.3.NH) u; = UEU,E (x = 0) 

U’(-00,x) = 1, U”(+cxI,z) = 0. 

This system becomes degenerate as E 4 0. Hence classical existence 
and smoothness results [2] for elliptic equations cannot be applied directly. 
Nevertheless, the scheme used in [ 121 to prove the C” regularity of the 
self-similar solution is robust enough with respect to E and will be adapted 
here. 

Let formally E --+ 0 in (1.3NH). The degenerate self-similar problem 
writes 

i 

-u,, - ;(zuz + xUz) = 0 (W 
(1.4.NH) u, = uu, (x=0) 

U(-cm, x) = 1, u(+oc, X) = 0. 

We denote by G(z) the solution of 

-7)“(Z) - $$‘(z) = 0, qq--00) = 1, 7/J(+oG) = 1. 

Let us set u := U - 4; this is the solution of the associated homogeneous 
problem. The starting point of our study is the following result, proved 
in [12]: 

THEOREM A.l.l (Self-similar problem with E > 0). - There exists a 
unique solution U E C”(R:) of (1.3NH). Moreover we have the following 
properties: 

l X>OsuchthatO<U(z,z)-$(T)<Cexp -1 5+x2 
& [ 8(l )1: 

l U is decreasing with respect to z and x. 
Such a result may be classically obtained by a topological degree 

argument combined with strong enough a priori estimates, as in [9]. We 
presented in [12] an alternative method, based on estimates of (u=)~ and 
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694 F. MEHATS AND J.-M. ROQUEJOFFRE 

(zL=)~ at the boundary, which will turn out to be suitable in the present 
context. 

The main result of this paper is the following existence and uniqueness 
theorem: 

THEOREM 1.1 (Convergence to the solution of the degenerate problem). 
- (i) As E + 0, and after extraction of a subsequence, the solution U’ 
of (1.3NH) converges in Lz,,,(R:) strong and a.e. to a weak solution U 
of (1.4NH). 

(ii) There exists zo > 0 such that this function U verifies 

(1.5) UEl onIW*xlW+, 

(1.6) U 3 0 on [zo,+oo[xR+, 

(1.7) U is discontinuous along the axis 2 = 0, x > 0, 

(1.8) u E c-(]o, zo[xR+), 

(1.Y) the trace of U on {x = 0} is continuous. 

This result illustrates the rapid penetration of the magnetic field at the 
electrode: we have U > 0 on a nontrivial portion of the axis {X = 0, z > 0}, 
whereas the magnetic field does not penetrate on the part {z > 0) of the 
cathode, i.e when z = +CXL 

Because we do not know a priori what regularity property is satisfied 
by the weak solutions of (1.4NH), uniqueness is not completely trivial. A 
relevant definition of weak solution may be the following one: a function 
U(z, X) is an entropy solution of (1.4NH) if, besides satisfying the minimal 
smoothness assumptions so that a weak formulation makes sense, has a BP’ 
trace at {z = 0) , whose z-derivative is bounded from above. The solution 
constructed in Theorem 1.1 is trivially an entropy solution. 

Armed with this definition we are able to prove the following result: 

THEOREM 1.2 (Uniqueness). - There is a unique entropy solution to 
Problem (1.4NH). As a consequence, the whole sequence (U’),,,J converges 
to u. 
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NONLINEAR OBLIQUE DERIVATIVE 695 

The reason why this theorem holds is that the function V(z, x) = 

J 

$00 
U(Z’, X) dz is a viscosity solution, in the sense given in Crandall- 

I:hii-Lions [5], to the problem 

(1.10) 

i 
-I& - i(zK + XK) + fv = 0 (%> 
v- = -Ivl’ 

V(Z,X) ‘5 --z as z -+ -00, U(+ce,:c) = 0. 
(x = 0) 

A uniqueness result for the above problem will be obtained in a 
straightforward way. Uniqueness of entropy solutions in this framework is 
anything but surprising if one thinks about nonlinear conservation laws, from 
which we have obviously borrowed the terminology: for a given function 
f(x) E Ll(R), f t a uric io; U(Z) is an entropy solution of Xu + (u2)’ = f(x) 

if and only if u(x) = 
s 

u(y) dy is a viscosity solution of the Hamilton- 
-m 

s 

z 
Jacobi equation Xv + (v’)~ = f(y) dy. In this context, an entropy 

solution is precisely a BV solutionmwith bounded from above x-derivative; 
see Lions-Souganidis [IO] for more details. 

As a final introductory remark, we point out that the results of papers 1 
and 2 remain valid if the boundary condition is replaced by B, = f(B),, 
where f is a C1 nonnegative nondecreasing function. 

The paper is organized as follows. The second section is mainly devoted 
to the convergence property (i), namely stated in Proposition 2.1 below, 
with (1.5) and (1.6). Lemma 2.2 implies (1.7). Next, the third section is 
devoted to the proof of the regularity of the solution: (1.8) is stated in 
Proposition 3.4 and (1.9) is stated in Proposition 3.5. Section 4 is devoted 
to uniqueness of entropy solutions to (1.4NH). Finally, in the last section we 
show some numerical simulations that enable to visualize the function U 
and its different properties. 

2. NON-TRIVIAL WEAK SOLUTIONS 

First recall several notations used in [ 121. If u is a function defined on 
W:, yu denotes its trace on the boundary {X = 0}, when it is well defined; 
as soon as no confusion is possible, we shall also denote by 21 this trace. 

The notation 
J 

will stand for an integral calculated on the boundary and C 
R 
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696 F. MEHATS AND J.-M. ROQUETOFFRE 

will denote a generic positive constant independent of E. For M > 0, we 
denote by =A&[ the strip 

Z:nf = {(z,z) E R x [O>M]}. 

Finally, we will, as is classical, denote by C$‘(W$) the set of all compactly 
supported C” funtions from US: to W. 

Considerthe solution U’of (1.3NH) andsetu”(z,z) = U”(Z,X)-$‘(z), 
where 

$qz) = (5) = &ph. 

The homogeneous problem associated to (1.3NH) writes 

(1.3H) 

Remark that I#I” + 1 - H a.e. in F!$, where H denotes the Heaviside 
function. Hence one can define similarly an homogeneous problem 
associated to (1.4H), denoted (1.4NH), its solution being u = U - 1 + H. 

PROPOSITION 2.1. - Let ZC be the solution of (1.3H). Then zf converges 
-up to a subsequence- to a weak solution of( 1.3H), u E L2(W:) n L”(R$?). 
We have u E BV(ZM), f or every M > 0, u, E L2(W2+), yu E BV(R) and 
the convergence holds in the following sense: 

(2.1) uE -+ u in L2(R:) weak, in L&JR:) strong and u.e. in Rt, 

(2.2) U; t U, in L2(W:) weak and U: -+ U, in Mt,(Z:nt) weak *, 

(2.3) yuE + yu in LiO,(R) strong and u.e. in R, 

(2.4) y( + yu, in Mb(R) weak *, 

where Mb(Zu) and Mb(R) denote respectively the spaces of bounded 
measures on E:M and R. Moreover we have 

(2.5) \y’a > 0, UE -+ 0 uniformly on ] - 00, -a] x R,, 

Ann&s de l’lnstitut Henri Poincarl Analyse non h&ire 



NONLINEAR OBLIQUE DERIVATIVE 697 

(2.6) uE 3 0 uniformly on [4&F, +cc[xR+. 

Proof. - In [12] we remarked that $F is a sub-solution of (1.3H) and we 
constructed a super-solution for this problem, denoted r/F + A’: we have 

(2.7) q!f(x) 5 U”(.zq) 5 ?p(Z) + A’(z,2). 

In the resealed variables, the function A’ writes 

A’(z,x) = 

{ 

w(4(1 - V(4) for 2 < 0 
2$(x)(1 - r/F(x) - a’z) for 0 5 .z 5 4fi 
~$J(x)~!J”(z - 4J;; + 6”) for z > 4J;;, 

where 6” = -2cLog(&/4) and aE = & (1 - gf(4J;;) - q!f(SE)). 

Estimate (2.7) enables to obtain some informations on the behaviour of U”. 
Indeed, as E + 0, the lower bound $’ converges to 1 - H uniformly on 
each ] - cc, -a] U [a, +m[, (Y > 0. Moreover, the upper bound $J,’ + AE 
converges to a function 5 uniformly on the same interval, this limit @ 
being defined by 

Consequently we deduce (2.5) and (2.6). 
Next, (2.7) and the exponential decay of the function A” at the infinity, 

uniform with respect to E, enable to infer 

WIIL’(R2+) + Ilr~‘llL~(w, L c. 

By Theorem A.l. 1, U” is decreasing along z and z. Thus, since 
lf(Z,S) = U”(x,z) - p(z), UC is decreasing with respect to x and 
vanishes as z + +oo. Therefore we have 

Recall that EM = {(z, z) E W x [0, Ml}, for M > 0. We have 
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698 F. MEHATS AND J.-M. ROQUEJOFFRE 

and 

Consequently 

Hence, by compactness and trace theorems ([6], Chapter 5) there exists 
u E BV(S:M) verifying yu E BV(R) and such that, after extraction of 
a subsequence, we have (2.3), (2.4), and the L1, Mb, a.e., convergences 
stated in (2.1) and (2.2). Remark that since 0 5 U” 5 1, we also have, 
after another extraction, 

(2.9) $7” -+ $2 in L”(R) weak*, 

where U = u + 1 - H. 

Next, multiply (1.3H) by uE, integrate it over R: then integrate by parts. 
We get the energy estimate 

since we have 0 < uE 2 1 and U,E I 0 (Theorem A.l.l). Hence 

(2.10) II4IILV~) + WllL”(R~) + x4lu%~(R~, 5 c. 

This completes the proofs of (2.1) and (2.2). 
It remains to see in what sense u is solution of the limiting model (1.4H). 

For that it suffices to write a weak formulation of (1.3H). For all 
p E C~(W:) we have 
(2.11) 

Properties (2.1) and (2.2) allow us to pass to the limit in the three linear 

terms. To treat the nonlinear one, we write it 1 2 R (yUE)(yUEv,). Since cp J 
is compactly supported, by (2.3) we have -p?JEp, -+ yUp, in L1(R) strong. 
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Hence we can pass to the limit in this term, thanks to (2.9). The asymptotic 
problem writes finally 
(2.12H) 

vcp E c,-(Kg 
s “: 

uz(Px + f s,, ‘LL[(w)z + b&l - .I, ;a = 0. 
+ 

Remark that it is equivalent to write this weak formulation for the 
function U, which is non homogeneous at the infinity: 
(2.12NH) 

vcp E C,“(q) 
J’ 

w2 uzcpz + $ J U[(w>* + (w&c] - s, $z = 0. 
+ R: 

The following lemma shows that the solution of the limiting sys- 
tem (1.4H) is non trivial, i.e. that U is not equal to 1 - H: 

LEMMA 2.2. - The limiting function U decreases with respect to z and x, 
is discontinuous on the axis (0) x W; and u = U - 1 + H verifies 

(2.13) s 1 
u= -. 

““+ 2 

Proof. - The monotonicity properties are consequences of Theorem A. 1.1 
and Proposition 2.1. The discontinuity of U on (0) x tR; is immediate and 
comes from (2.7) and the properties of the limiting sub-/super-solutions 
1 - H and 5. 

Consider now the solution uE of (1.3H). Straightforward calculations give 

Hence (1.3H) implies 

s 1 UE = -. 
“: 2 

Thanks to (2.7) and the decay properties of RE, for every S > 0, there exists 
a compact subset ICa c R: and e. > 0 such that, for all E < eo, 
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Thus 
1 
--a< J 1 
2 

UE 5 -. 
KO 2 

By (2.1) we can pass to the limit in this integral as E -+ 0, S being fixed; 
then we let S --+ 0 to obtain (2.13). 0 

Set .zo = sup{z > 0 : yU > 0 a.e. on [O,z]}. This real number is well 
defined thanks to (2.6) and Lemma 2.2, and verifies 0 < z. < 4J;. 

3. REGULARITY OF THE SOLUTION 

3.1. Smoothness on IO, ZO[X [0, +oo[ 

To prove the smoothness of U on 10, zo[ x [0, +oc[, we mainly follow 
the scheme of [12] and alternatively obtain interior and boundary estimates 
for U” and its derivatives. These estimates pass to the limit U, after 
extraction of subsequences from U”. The main difference with [12] 
is that the equation (1.4H) inside lR$ is degenerate and the interior 
Agmon-Douglis-Nirenberg estimates [2] cannot be applied in this context. 

Let S > 0 be fixed such that 6 < zo. The function U” being non- 
increasing along z, and thanks to the a.e. convergence of yU” and to the 
above definition of zo, we can find 7 > 0 and ~6 > 0 such that 

(3.1) V& < &g v’z E [O> 20 - S] V(Z, 0) > T/. 

If S is small enough, these constant real numbers 77 and c6 being fixed, we 
define a cut-off function in z, x~(z,x) = xi(z), such that 0 < xi(z) < z, 
Xl E C” on IO, +oo[ and 

(3.2) 
C 

~~(z)zOforz<Oorz~z~-S 
~~(z)~zforO~z~z~-2S. 

If n/r is a positive constant, we also define a C” cut-off function in z, 
x2h74 = X2(4> such that 0 5 x2(2) < 1 and 

1 

x2(x) z 1 for 0 5 I(: 5 M 
(3.3) x2 is decreasing for A4 < x < M + 1 

x2(x) - 0 for IC 2 A4 + 1. 

The constants M and S will be once and for all understood to be large 
-resp. small- enough for our purpose. We have 

(3.4) 0 5 Xl(Z) I 20, 0 L x2(2) 2 1, 1x:1 L cc57 0 I -xh L (3. 
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Denote w = [0, zo - 261 and R = [0, z. - 2S] x [0, M]. We have x1 E z 
on w and x1x2 E z on 0. 

In the following lemmas, we will obtain different estimates for Q, $7” 
and their derivatives on w and R. For that we use several test functions in the 
weak formulation (2.11) of (1.3H). These test functions will take the form 

Because of the cut-off function x1, these functions cp may not be C1 along 
the axis (0) x W+. Nevertheless they are regular enough, as (2.11) will 
be written instead 

In the sequel, Q(l) or C(M, S) denote quantities which can depend on S 
and &l but are uniformly bounded with respect to E. 

LEMMA 3.1. - There exists ~6 > 0 such that, for E < ~6, we have 

(3.6) IIG-mIL+) + IMlLyn) 5 C(M,@. 

(3.7) IIGhyq I C(M, 6). 
Proof. - Let us first do the following remark. To estimate ]]yU,E]]Lz(n) in 

the regular case studied in [12], it was sufficient to plug the test function 
cp = u”, in the weak formulation. Here, it is not so simple, since we do not 
have an L2(Wt) estimate of uz independent of E. Nevertheless, thanks to 
a suitable test function, we shall obtain these two estimates by the same 
time; they are stated in (3.6). 

Setting 
(P1= x1x;uz, $72 = x1x;‘zL:, 

the idea of the proof is to take the test function ‘p = acpa - 0~1 in (3.5), 
if Q and ,f3 are positive real numbers that will be made precise later. 

l We first consider only cpi in (3.5); we treat separately the different 
terms of this expression, using (2.10), U, 5 0, r/P’ 5 0 and the properties 
of the cut-off functions x1 and x2 (3.2), (3.3), (3.4). The first term is 

s R2 ~~(cpl).z = 

+ J’ 
R2 x1x; u: urz + 2 t J’ 

x1x2x; u: uz 

R: 

= -a R* b%>“x:x; + 21 
J 

x1x2x; u: u: i 

+ “: 
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the first integral in the right hand side is 0(l) thanks to (2.10). For the 
other terms of (3.5) we write 

1 1 -- 
I 2 q 

(XUZ + zu:)pl = -5 
J’ 

x x1x; u:u: - 
l-q 

Plugging these estimates in (3.5), we obtain finally 

(3.8) J’ - xJqu:)“+~ J 2x1x; w2 R 2 w: 

1 
5 fp J 25 x1x; (4)". + 

L s ( BB” Xl 2x2x; - gx: 
> 

u”,u; + O(1). 

+ 

l Next, with the test function (p2, (3.5) can also be written 

(3.9) - l, u:&72 + & / 4((P2)t - f s, 33&92 - ; L2 .4P2 = 0. 

t q + t 

We estimate the different terms as follows: 

Annales de l’lnstitur Hem-i PoincarP Analyse non h&ire 



NONLINEAR OBLIQUE DERIVATIVE 703 

In the right hand side of this equality, by (2.10), the two integrals calculated 
over IFJt are 0( 1). The boundary integral can also be written 

To estimate the second term of the right hand side, it suffices to remark that 

(3.10) & -2 J; 0 5 --m/f' = 2J;; exp 
( 1 

4E '2J;; 

and 

Therefore we have 

The last term of (3.9) that we can estimate directly is 

1 
.I 

1 * 
-- St&92 = -- 

2 w”+ 2 
J +Q2x1x; L 

A4+1 
-220 .I w” = O(l). 

f-q R2 4 

Finally (3.9) reads 

l Let now a and p be two positive real numbers. The test function 
acpz - ,i5’pI in (3.5) gives in fact the linear combination {p (3.8)+ 0: 
(3.11)) : 
(3.12) 

where 
1, = 1 2 

s 
wz (NIX; - @xxi + ~PXZX~)XI 4 4. 

+ 
By (3.1) and (3.2), we have UE(z,O) > q on the support of x1. Hence, for 
Q large enough and E < v2, we have 

(p’ - pu” - 7) > r). 
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Let us fix such an a: there holds 

.I 
trJ -26 

(3.13) rl WJY Xl < 
0 I( .w 

SUE’ - pu’ - 7) Xl (yu,E)2. 

To estimate the integral II, we use the inequality 

v(a, b), VA>O, labl<&+$. 

Hence, if we write, for 2 I A4 + 1, 

and setting A = Co/p, we get 

21 5 - P .I GA 
4 f-4: 

2x1x; (4” + 2 
.I’ 

(4)” 
q 

2x1x; (4)” + Q(1). 

Therefore (3.12) yields 

.I 
zo -26 

77 (rW2 Xl + g R: 
.I 

zx1x; @Q2 = O(1). 
0 

Next by (3.2) it comes 

77 
J’ 

z (ru,‘)2 + p 
.I’ 

z2 (us)” = O(1); 
w 4 n 

(3.6) is proved. Remark that this estimate works because we consider only 
the z 2 0. 

The estimate (3.7) is immediate and comes directly from (1.3), thanks to 
(2.10) and (3.6), and since on R we have 0 < z 5 M. cl 

LEMMA 3.2. - There exists ~6 > 0 such that for E < ~6 we have 

(3.14) w3 YWLyw) I C(M, 6) 
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Proof. - TO prove this lemma we will show the following preliminary 
estimate: 

(3.15) 
J’( n 

z lug” + I(u;)“u;I + E)u: (u”,)‘I + ElUi,i”) = 0(l). 

For that, we use the test function 

P = x1x2 u’(u: + g) 

in (3.5). Straightforward computations lead to 

(3.16) 
s R: 

x1x2 [w” + (4)” Uz + EUj. (Uz)” -t E(U:)“] = Z2+Z3+Z4, 

where 

1, = J 82 (xix2 uE [W” - 2 Euju: - +L:,“] + x1x; UE [-(7Q2 + +:,“] } 

+ 

z-3 = 
s 

[-2& U%~U~ + x1x2 ‘LL’ (2x& + m:)(u: + g)] 
““+ 

z, = 
.I’ 

R x1 UE[-(ug2 - 2U5 u; + E(?Q2]. 

The term & is c?(l) thanks to (2.10), (3.4) and 0 5 uE 5 1. For the 
integral Z3 we recall moreover that Ixr(z)l 5 IzI and use (3.6) to get 
Za = (3(l). Next, since in fact we need a lower bound for these terms, 
for & it suffices to write 

1, = 
s 

w Xl uLle [-(UEU;)2 - ZUV,E(U,E - 7y’) + E(Tg)“] 

> - 
J’ 

x1 u’(U,“)“(U”” + 2uy 
R 

2 -c 
/ 

z(f!g2 = O(l), 
R 

thanks to (3.6). Hence (3.16) reads 

/’ . Fq 
x1x2 [w” + (4)” u; + EU; (u;)” + E(tg)“] 2 c?(l). 

The four terms of the left hand side can in fact be estimated separately 
thanks to sign considerations, if we come back to the non-homogeneous 
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functions Uz = uz + $“’ 5 0 and Uz = uz < 0. As previously in 
Lemma 3.1, we only have to take care of the fact that $J”’ is not bounded 
in L". Remark that 

vt > 0 t ct2 5 l/&G, 

thus 

(3.17) 

Therefore, from (2.10), (3.10) and (3.17) we deduce the estimates 

‘J’ x1x2 (u:)” = 
q 

<I 

ia 
x1x2 WY. 

w’: 

x1x2 (u:)” u: = 
J 

x1x2 (U:)’ [J: + Q(l), 
9: R: 

I w’ x1x2 E u: (uf )’ = 

+ 
J R2 x1x2 E u: (U,“)” + q/q + 

,I w2 x1x2 E (u:)” = 

which finally limply (3.15). 
s 

w” x1x2 & Pm3 + O(1), 

+ 

The same kind of calculations (but easier), which we shall not develop 
here, can lead to the same kind of estimate as (3.15), in which we replace 
the z under the integral by an E. We only state it here; it will be useful 
in the sequel of the proof: 

(3.18) E 
S( 

R I(uf)“u;I +Elu:13) = 0(l). 

To prove (3.14), consider now in (3.5) the test function 

p = XIX2 [(u:,” - E(PQ2]. 

After some calculations we obtain 
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In the right hand side of this equality, the integrals 
.I 

can be estimated 
R1 

thanks to (3.15) and (3.18), and the boundary integral 
1 

can be estimated 

thanks to (3.6), (3.10), (3.17) and Ui 5 0. For the left [and side, by (3.1) 
and (3.2) it suffices to take E < q2/6 to obtain 

OS- 
s 

Xl(W3 I -6 
w 

~3~XIUI(~-t)(u~)3=(7(1), 

thus (3.14) is proved. 

LEMMA 3.3. - For E small enough we have 

Denote V” = UC and vE = u: = V” - $I,“. We have 

(3.21H) 
-v& - E& - ;(zv; + xv;> - ivE = 0 (Fq) 
vj, = UV~ + VE2 (x = 0) 
v’(.z, x) -+ 0 as ]2,2] + +co. 

To prove the lemma we will again use a weak formulation of this system 
and choose different test functions. Recall that by (3.2) and for every 
integer k > 1 there holds 

(3.22) x~(z) q 2’ on [O,zo - 61, 

With the test function cp = x:x2 uE, we obtain 

.I x:x2 (a” + E 

w: J’ 
R2 x:x2 (‘u:)’ = z5 +x6 + 17 + 18, 

+ 
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where / 
15 = ; J,, (u:)2(xv’x2 

+ 

& = 1 

s[ 

2 

: 9x; - x;Fx2 - ;xgx; 
< flI I 

1 (ZXL~)” 
R x;$+ (VmmJ;)” 

17 = 
.I 

[-2U”x&jF - UExf7jY”] u; 

n1 
1s = -5 XT (Up! 

\ s w 

These four terms are 0( 1) thanks to 

- (2.10) for&j, 
- (3.22) and (3.6) for &, 

- (3.17), (3.22), 0 2 U’ 5 1 and 
.I’ 

lU,“l = 1 for I,, 
w 

- (3.14) for Zs. 

This proves (3.19). To show (3.20), similarly to (3.6), we use the test 
function 

The calculations are very close to those of Lemma 3.1; we use (3.6), (3.10), 
(3.19) and (3.22) to obtain 

where 

We just notice that the exponent of x1 in cp has been chosen to estimate, 
thanks to (3.19), the following term that appears in the calculations (in 
the right hand side): 

3P 
-4 2 % 

x4x:x; [w” - 442]. 

To conclude, it suffices to take the same a and ,8 as for (3.12), then to 
estimate 1; as 2,. 0 

Annales de l’lnstitut Henri PoincareS Analyse non h&ire 



NONLINEAR OBLIQUE DERIVATIVE 709 

From this lemma and Sobolev embeddings we deduce 

(3.23) 

for 0 5 a < l/2 and 0 5 /3 < 1. Following the same scheme, with 
appropriate cut-off functions & xz, we could prove the continuity on w 
of functions of the form .&d~(yU)d~(yU) and the continuity on R of 
functions of the form z”“~FU~$U. Nevertheless, for the sake of simplicity, 
we will not consider in the sequel the behaviour of the self-similar solution 
U near the axis {.a = 0) and restrict our study on 

W6 = [Qo - 61, Rs = wg x [O, M]. 

We define another cut-off function 0 5 x3(z) < 1 such that 

{ 

SUPP (x3) = W6, 
x3(z) = 1 for z E w26, 
x3 E C"(R). 

PROPOSITION 3.4. - We have U E Cm(]O,zo[x[O,+m[). 

Proof. - Setting 

qn, = TUEJ qn, = a,“@, U&) = U&) - qn,, 

we will prove recurrently, for every integer TJ,, the property 

(%> (ii) 
1 

(4 Ilazq,)llL~(R6) I CC% 4 w 
IlGqn) lb(%) L CC% 4 w 

(iii) lI~z+J~n~Il~2(w6) L C(n, 6 M) 

By (2.10) and Lemma 3.1, we already have (PO) and by Lemma 3.3, we 
have (Pl). We now assume that (Pk) holds for 0 2 k 5 7~ - 1, 6 > 0 and 
that n 1 2. The function utn, is solution of the system 

(3.24H) 

-azzqn) - 

a.dq,, = a,n(u”u;l)) = c %k ‘fk, u;n+,-k) 

O<k<[+] 

(w",) 
(x = 0). 

In this system we do not need the values of the coefficients C&k; we will 
only use further a,,~ = 1. Multiply (3.24H) by cp = x~(z)x~(z)u~~)(,z,x) 

and integrate over R:. After some calculations we obtain 
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where 

Since ~7~) = &u~+r), Property (7>n-r)(G) implies Jr = O(1). Next, 
Property (P,-r)(C) writes 

(3.25) IlrU;L)IlL”(wa) 5 c. 

If /C > 1 then by Property (pn-k)(iii) we also have 

(3.26) Vk L 1 llYu~,+,-k)llL~(w6) I c. 

Moreover, k 5 [T] and r~ 2 2 imply 1 5 k 5 n - 1; thus by (Pk)(iii), 
(‘%r)(iii) and Sobolev embeddings we have 

(3.27) v’k 5 n - 1 I~$$&=(wg) < c. 

From these three estimates (3.25), (3.26) and (3.27) we infer directly 
32 = O(1). Remark now that $)ilLj writes 

ti,in)b) = 
Q(z, ‘> --$- exp(-z2/4&), 

where Q is a polynomial; thus, since z > S on We, 

(3.28) II~~n)IIL-(w) IC. 
(3.26), (3.27) and (3.28) imply 33 = O(1). Finally, we integrate by parts 
the two terms of Je; thanks to (3.25), (3.27) and (3.28) we have 

1 
J-4 = 2 Jx3u;l) + x$W (u;n)>” J 

- J (Xp&) + x3ql)q,) + X3wqn+l))qL) 

= O(Y). 
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Therefore we get 

(3.29) 
s 

(&q,)>’ + E 
026 .I 

R26 G%“~J I C(n, 4 M>; 

Property (%‘n+l) (i) is proved. 
With a change of S, we can now consider (3.29) with the integrals 

calculated on Q* instead of 026. Let the test function 

p = x3x; (“a&&) - P&U&)). 

Thanks to (P,-i) and (3.29), similarly to the proofs of (3.6) and (3.20). 
straightforward calculations lead to 

where 

Let us treat the boundary term. Replacing (&u:~,)* by its expression given 
by (3.24H) leads to estimating terms of the form 

If k 2 1 and k’ > 1, by (3.26) and (3.27) we have Z(k, k’) = O(1). If 
k = 0 and k’ = 1 then an integration by parts yields 

We already know that Urn, E L2(wa) and the functions UE, Url,, ~3 and xi 
are bounded in L” (~6). Hence the second and the third terms of Z(0, 1) 
are 0( 1). For the first one, two cases have to be considered. If n > 2 then, 
by (3.27), Ut2, is also in L”(ws). If 7~ = 2 the term to estimate writes 
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Thanks to 

F. MEHATS AND J.-M. ROQUEJOFFRE 

and Gagliardo-Nirenberg inequality [I], we have thus, for every g > 0, 

since 0 5 x3 < 1. Finally we add Z(O,O) and obtain 

Set (T = 1. The other boundary integrals of (3.30) are easier to estimate 
since they contain lower order terms. We do not detail the calculations 
and (3.30) writes 

(3.31) 
.I [ 

R x3 p2 - PUE - 71 (aJJ~n))2 

We conclude exactly as for (3.12), and obtain (P,+I)(ii) and (Pn+I)(iii). 
Therefore, recurrently, (P,) holds for every integer n 2 0. 

To end the proof of the lemma, thanks to Sobolev embeddings it is 
sufficient to show that 

Recurrently it is easy to see that, for all (p, m), we have 

where Qp,m and Rp+ are polynomial in z, z and E. This formula comes 
after successive derivations of (3.24H): a term 8~8~~’ can be replaced by 
terms of order 0 or 1 in 8,. Therefore (3.32) can be deduced from the 
properties ( Pn ) . cl 
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3.2. Continuity at the boundary 

In this section we consider the trace yU(z) of the self-similar solution at 
the boundary. By Proposition 2.1, we have yU 5 0 on ] - co, 0] U [ZO, +oa[ 

and, by Proposition 3.4, this function is C” on IO, .~a[. Since yU is 
decreasing, one can define 

q(o+) = h~+~U(z), Y~(.zo-) = lim 9(z)- *-+zo- 

PROPOSITION 3.5. - We have yU E Co(R). 

Proof. - Consider again the weak formulation (2.12H) of (1.4H), with 
appropriate test functions. Remark that (2.12H) can also be written in a 
weaker formulation that does not take in account U, E L2(Iw$‘): 

Let A4 denote an arbitrary large positive constant, and define x2 = x2(z) 
by (3.3). Next, let cpa = cpa(.z) E C?(W) be such that 

1 cpo(z) = 0 for z < -A4 - 1 or z 2 zo/2 
cpo(z) = 1 for - M < z 5 zo/3. 

Let 0 < n < zo/3 and define the following three subsets of R:: 

{ 

D~=]-co,o]xR+ 
272 = [O,rl] x w+ 

273 = [q, +c+R+. 

Plug now the test function cp(z,z) = (pu(z)xa(z) in (3.33). We split the 
different integrals which appears in this formulation as follows 

Recall that, otherwise mentioned, a one-dimensional integral denotes an 
integral calculated on the axis {X = 0): 

1* J’ 
‘u := b(y)dZ. 

a 
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Denoting by [a, b] an interval of R (bounded or not), we introduce the 
notation 

A(u, cp, [a, bl) = - / U(pZT + 1 
. kbWX~+ 

2. [ 6l w+ 4bP)~ + CWLI 
I 

-i”‘vz-~fup;.” x 

Hence, Equation (3.33) writes 

(3.34) 4~ P; 1 - m, 01) + A(u, cp, [O? 71) + A(u, cp, [v, +oo[) = 0. 

l On I!&, u = 0 and U _= 1, thus 

l On 2)s fl Supp(cp), by Proposition 3.4, u 5 U is smooth; hence we can 
integrate the different terms of A(u, (p, [q, +m[) by parts: 

Moreover U is a strong solution of (1.4NH). This implies 

A(,+ ‘p, [v, +m[) = &%, 0) + o(v). 

Finally (3.34) reads 

;u’(q:o) + O(v) - ; = 0: 

thus $7(0+) = 1 = yU(O-). 

This proof can be adapted easily to show yU(zo--) = 0 = yU(z0-b). 
Consider indeed the test function cp(.z,z) = c~~(z)xz(z) in (3.33), where 
cpl E C?(R) is defined by 

cpl (z) = 0 for z 5 z0/3 or 2 2 zo + A4 + 1 
pi(z) = 1 for x0/2 5 z 5 zo + M. 



NONLINEAR OBLIQUE DERIVATIVE 715 

It suffices to split W: as follows 

R? =I - ~>ZO - 71 x R+ u [zo - rl,zo] x R+ u [zo,+m[xR+, 
then to remark that U 3 0 on ]zo, +oo[xR+ and U is smooth on 
] - DC), za - q] x R+ n Supp(cp): we can thus proceed as above. 0 

4. UNIQUENESS OF THE SOLUTION 

This part is devoted to the proof of Theorem 1.2, i.e. the uniqueness of 
an entropy solution to Problem (1.4H). Let us say that a function ~(2, z) is 
an entropy solution to (1.4NH) if and only if it satisfies the two following 
properties. 

l (El) u E SV(W2,) f? L”(Rt), yu E L”(R), u, E L’(R’$); morever 
it is a solution of the weak formulation 
(4.1) 

l (E2) There holds, uniformly in z E R+: 

lim u(z,x) = 1, lim u(z,z) = 0. 
z---co 2++00 

l (E3) The boundary measure u, is locally bounded from above. 
A few remarks are in order. First of all, notice that the above assumptions 

are trivially satisfied by the solution U that we constructed in the previous 
parts of this paper. Second, let us notice that the regularity properties of 
Assumption (El) are the minimal ones so that the weak formulation (4.1) 
makes sense. Let us recall that, by virtue of Chap. 5, Section 2 of [6], the 
fact that u belongs to BV(W$) ensures the existence of of an L1 trace; 
because we wish the term u2 to make sense, we require u to be in L”(W), 
which is not a very stringent assumption. Finally, Assumption (E3) implies 
(i) that yu belongs to SI&,,(R), and (ii) that yu has lateral limits ye- (z) 
and yu+(z); moreover, if zo is a point of discontinuity of yu we have 
w-(20) > Y’IL+(zo). 

The integrated version of Problem (1.4) reads, at least formally: 

1 

-%z 
(4.2) 

- &I, + xv,) + fv = 0 
1 

R) 
v, = --v; 
v(z, x) L --z as z -+ -03, v(+co, x) = 0. 

(x = 0) 
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Most of the results that will be needed are gathered in the Crandall-Ishii- 
Lions ‘User’s guide’ [5]. Let us recall the definition of a viscosity solution 
to (4.2). If p = (pt,pa) denotes a vector of W2, and &f = (mij)lsi,j<2, let 
H(z, z, w,p, n/r) and p(z, 2, w,p, 1M) denote the following hamiltonians: 

2 

ff(z> 2, 2),pT 111) = min 
1 

(4.3) 
( 

-rr2~l-2(zyI + zp2 - II), -pz - ‘f 
> 

2 

H(z, 2, u,p, M) = max 
( 

1 
-m11-@l + zp2 - v), -p2 - p$ 

1 

A viscosity supersolution to (4.2) will here be a uniformly continuous 
function V(z, X) such that, for all 4 E Cr (R2+), there holds 

at any local minimum point (20, ~0) of w - 4. Similarly, a viscosity 
subsolution to (4.2) will be a uniformly continuous function ~(2, X) such 
that, for all 4 E Cr (R2+), there holds 

at any local maximum point (20, 20) of II - 4. A viscosity solution to (4.2) 
will be a uniformly continuous function such that the two following 
properties hold: 

l (Vl) there holds, uniformly in z E R+: 

46 4 - --z as z -+ -x, lilim w(2, x) = 0. 

l (V2) v is a both a viscosity subsolution and a viscosity supersolution 
to (4.2). 

Once again, this definition calls for a one remark. Due to the 
unboundedness of the coefficients and the particular form of the hamiltonian, 
it is necessary to prescribe in a precise manner the growth of the solution at 
z = --cc. Indeed, for any Q > 0, Problem (1.4NH) has a solution tending 
to Q! as z --+ -cc, producing a viscosity solution to (4.2) behaving like 
-QZ at z = -co. This is to be compared with the situation presented 
in [5], Section 5.D. 

To prove Theorem 1.2, we proceed in two steps: first, we prove a 
uniqueness result for Problem (4.2); then we prove thfk for any entropy 

solution u(z, x) of (1.4NH), the function v(z, x) = 
;I 

~(2, x) dz’ is a 
2 
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viscosity solution to (4.2). Although the uniqueness result below is, striclty 
speaking, not contained in the literature, the proof that we are going to give 
is by now extremely classical. Let us concentrate on the first part of our 
programme; the most general result in this direction is due to Barles [3]; our 
situation does not completely fit in this context due (i) to the unboundedness 
of the solution and of the hamiltonian, (ii) to the quadratic growth in the 
boundary conditions. However, as is pointed out in Section 5.A of [5], 
things are considerably simpler when smooth sub and supersolutions are 
known. This is the case here; as a matter of fact there holds 

LEMMA 4.1. - Let U(z, x) be the solution constructed in Theorem 1.1. 
+oO 

Then V(z, 2) = 
s 

U(z’, x) dz’ is a viscosity solution to problem (4.2). 

Moreover, it is an’admissble test function in this problem. 

J’ 

+C= 
Proof. - Let us first recall that V(z, 0) = U(z’,O) dz’ is C1 and 

Lipschitz over Iw, and the function zVz(z, ~7 = -zU(z, x) belongs to 
C(W+, X) n C(R-, X) where 

x = Lm E UCP+), f(+w ($) E uC(W+>l 

and UC(&) denotes the space of all bounded uniformly continuous 
functions on Iw*. Recall now that the operator L, defined from 

D(L) = {u(x) E x, v(0) = 0, -?I” - +I1 E X} 

to X, and with the expression 

Lv = -v” - ;(x,! - ?J) 

is an isomorphism. Hence we have V E C1(W+,D(L)) n C’(W-,D(L)), 
and the result of the lemma follows immediately: 

l if (~0, zo) is a maximum (resp. minimum) of V - 4, then 
- if xo # 0, then K = k V,, I qkz at (ZO,XO) (resp. V,, 2 AA 

because ~4, vanishes at the points of discontinuity of V,, this is sufficient 
to get the result; 

- if x0 = 0, because yV E Cl(W), then V, = #J= and -V, > -q& (resp. 
-V, 2 -&.). This is once again sufficient. 

l Because V E Cl(W+, D(L)) n C1(W-, D(L)), V is an admissible test 
function, for zV, = 0 at the points of discontinuity of V,. 0 
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This preliminary result leads us to the 

PROPOSITION 4.2. - Problem (4.2) has a unique viscosity solution. 

Proof. - Let ‘u be a viscosity solution to Problem (4.2). To prove that 
?I = V we proceed in two steps: first, we make precise the behaviour of II 
as z + -co, then we use - a slight modification of - V as a test function. 

1. Let us prove that z- - ]J’u(.,O)]]~~(n+) 5 V(Z,Z) < x- + 
MY oh-CR,, for z < 0. Only the left inequality will be proved, the 
other being similar. To prove it we shall show that, for every CL < 1, there 
holds QIZ- - ]]~(.,O)ll LX(R+j 5 u(z,:c). On the portion of the boundary, 
(2 > 0, x = 0) this inequality is trivially true. If it were not so somewhere 
else, there would exist, because 11(x. X) N z- as z -+ ---co uniformly in z, a 
globalstrictlynegativeminimum (xa:~a) forv-az--Ilv(.,O)llL-ca+,. We 
point out that, for the same reasons as in Lemma 4.1, z- is an admissible 
test function. Therefore we have, at that point: 

max 
(  

(1 ~q) + l~(Zo,Xo) 

- - . 
2 2 )- ’ 

> o. 

this is impossible. 
2. Let us now prove that ‘u = V; for this one needs to prove that 11 2 V, 

then ‘u 5 V. Let us prove the first inequality, the other being once again 
similar. Assume the result to be false; there exists x1 > 0 and z1 > 0 
such that 

Therefore, due to Step 1, there exists a global strictly negative minimum to 
the function u - V + vLog( 1 + z1 - 2) on ] - 00, zi] x W+, provided r7 > 0 
is small enough. Let us assume Q > 0 to be indeed small enough, and in 
any case stricly less than -r$n(, - V) > 0. We have, if z. > 0: 

+ 

2(l ;z~-zo) + ;(w - V)(.w4 2 0. 

This is impossible; as a consequence za = 0. But then this point is also a 
minimum of the function v - V + vLog( 1 + zi - z) + EX, for any E > 0. This 
time we get, using the boundary condition: --E > 0, an impossibility. 0 

To end the proof of Theorem 1.2, it remains to prove the 

PROPOSITION 4.3. - Let u(z, z) be an entropy solution to Problem (1.4H). 

I 

+oO 
Then w(z,x) = u(.z’, x) dz’ is a viscosity solution to (4.2). 

z 
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Proof. - Let p(z) be a C” function, supported in [ - $, $1, satisfying 
0 2 p 5 1, and with unit total mass. Let pE be the classical mollifier 
p,(z) = $p(f). Let us denote IF(z, X) = pE *z V; we have, in the classical 
sense: 

-a,, - $az + 23, + 1) 
> 

7f = o(1) (R2,) 

(x = 0) 

with the same conditions at -oc as V. Moreover, the properties of p imply 
PE * bf)” 2 (PE * v,“J2; as a consequence .u~ is a viscosity supersolution 
to 4.2. Let us notice that V: = --pE *U is uniformly bounded, by assumption. 
Therefore yw: is bounded, hence - see the proof of Lemma 4.1 - vj. 
is uniformly bounded. Hence (v~)~ is uniformly Lipschitz, as is V, and 
the sequence (‘u~)~ converges uniformly to w. Hence u is a viscosity 
supersolution to (4.2). 

To see that it is a subsolution, let, for the last time, (~a, ~a) be a point 
of maximum for ‘u - 4. There exists a sequence (z,, z,) of minima of 
vE - 4, tending to ( x,, z,). The only nontrivial case is when Z, = 0 
for all E > 0; if za is a point of continuity of ye, = -yu, we have 
-q& 5 -WE at (z,, 0). Now, if z. is a point of continuity for ye, we have 
hmOY(PE * u)(z,) = yu(za); moreover we have yu(za) = @Z(~O,O). As a 
consequence, we have 

To conclude, we notice that z. cannot be a point of discontinuity of yu: 
if it were so, we would have 

This is clearly impossible, and the proof of the proposition is over. 0 

To conclude this section, let us point out that we have not restricted 
the smoothness assumption for the only sake of reaching the best level 
of generality. We indeed have in mind numerical approximations of this 
problem, and the convergence proofs do not rely on fine regularity properties 
of the solution: what makes things work is precisely the entropy condition 
&yu 5 Constant, even in the fully diffusive case - i.e. E = O(1): see [l I]. 
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5. NUMERICAL RESULTS 

We present here some numerical simulations which show different 
properties of the solutions of the parabolic and elliptic systems that we 
have studied in this paper and in its first part [ 121. We have computed 
an approximation of the solution of the parabolic problem (l.lNH), i.e., 
the heat equation 

Bt - BxZy - ~Bzz = 0 in the rectangle (2, X) E [0, L] x [0,1]: 

submitted to the following boundary conditions: 

BAY = KB BZ on [O,L] x {O}, 
BLY = 0 on [O,L] x {Q, 
B=l on (0) x [O,l], 
B=O on {L} x [O,Z]. 

Remark that we keep here both parameters E and K for numerical reasons. 
The parameter E of the theorical study corresponds here to E/K~. 

Scheme. - Let us describe briefly our numerical scheme. It is detailed 
in [l 11, where a stability and convergence study of a one-order version of 
this scheme is performed. We use an explicit finite difference scheme. A 
time iteration from tk to tk+l is made in two steps: first a prediction on 
[tk, tk+1,2], then a correction on [tk, tk+l] using the previously calculated 
values of B at tk+1/2. 

For the space discretization, we take a special care to the z variable. 
The scheme for the heat equation is the most simple that we can take, 
with a five points Laplacian, the difficulty lying in the boundary condition 
on [0, L] x (0). It can be seen as a Burgers equation, thus discretized 
with a nonlinear hyperbolic method [8]: we take a second order TVD 
slope-limiter scheme. 

Numerical results 

l Convergence to the self-similar solution. 
To observe the long-time behaviour of the solution, we repre- 
sent the results of the computations in the self-similar varia- 

bles Z= 
z X 

KJt+l’ z=m, 
at different time steps. We set 

BSe’f(t,z,rc) = B(t, 2,X) = B(t, K-2, -xc). This function 
is the numerically calculated solution expressed in self-similar variables: 
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it is supposed to converge to the self-similar solution U of (1.4NH), as 
t + co. The parameters of the computation are the following: 

L 1 & K AZ Ax At 

7 3 10-s 10 2.3 x 1O-2 1.7 x 1o-2 5 x 10-s 

On Figure 1, we have represented the curve at the boundary {x = 0}, 
yB”“‘f (t, z), at time steps 5000, 25000, 50000, 75000 and 100000. We 
have also represented the inital data Ba(Z, 0), in non-resealed variables. 

Fig. 1. Time-asymptotic behaviour of B”“f at the boundary Fig. 1. Time-asymptotic behaviour of B”“f at the boundary 

After 50000 iterations, one cannot distinguish the different curves: the 
curve yB”“lf (t, z) seems to converge numerically to the curve yU(z). This 
phenomenon is of course also observed on the whole surface IPelf (t, z, x). 

0 Properties of the limiting solution U(z, x) 
Let us now consider the surface obtained at the last iteration, at time 

step 100000. Let tr = 100000 At. This function B”“‘f(tl, 2,x) is an 

Vol. 16, no 6-1999 
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Fig. 2. - Bse’f(t, z, z) at time step 100000 

approximation of U(z, z) and is represented on the figure below, in the 
quarter-space (2,~) E (R+)2. 

Fig. 3. - Approximations of the self-similar solution U 

Annales de l’htitur Henri Paincar& - Analyse non IinCaire 
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We can observe on this figure the following properties: 
- U is discontinuous on the axis (0) x RF, i.e. the magnetic field B 

penetrates into the domain only through the point (O! 0). This property was 
stated in Lemma 2.2. 

- U(z, X) = 0 for z > za. This property was stated in Proposition 2.1. 
- U is continuous at the boundary {X = 0) as it was stated in Propo- 

sition 3.5. 
l Approximation of the curve at the boundary 
Let us now focus on the curve U(z, 0) M Bse’f(tl, z, 0) at the boundary, 

and specially on its derivative. It seems numerically that U, (x0, 0) = -cc. 
We are not able to prove it yet. Moreover, we notice that, on [0, zo] the 

curve yU is very close to the curve given by o(z) = 
J 

1 - z. This 
J;; 

curve o(z) and the curve B se’f(t, z, 0), computed for t = ti = 100000 At, 
are represented on Figure 3. The function ?? has the same behaviour as 
$7 but does not coincide with this function. Moreover, these two curves 
have the same slope at z = 0, which is l/J;;. This value corresponds to 
the value predicted in [7] (see comments on this fact in [l 11). It is possible 
to prove it rigourously: indeed, with the aid of Lemmas 3.1 and 4.1, we 
see that U E C((R+)t,H2((R+),). Hence yU, has a limit as .z -+ O+, 

YUZ and so has yU, = - 
YU. 

6. CONCLUSION OF PART 2 

The results obtained in this paper have allowed us to quantify the effects 
of the nonlinear boundary condition B-y = KBBz on the diffusion of the 
magnetic field B due to the Laplacian. Without this boundary condition 

(i.e. when K = 0), the field penetrates as the function 4 - - 
( > ST; . 

In self-similar variables, we have performed a resealing in z which has 
two effects, asymptotically, as K + +cc: 

- it suppresses the diffusive penetration along the x direction, since 
GE -+ 1 - H. Indeed, nothing penetrates into the domain {.z > 0, x > 0) 
through the axis {z = 0, z > 0) anymore and thefunction U is 
discontinuous on this half-line. 

- nevertheless, a propagation of the magnetic field still occurs inside 
thisdomain, since U is not reduced to the function 1 - H. This propagation 
occurs at the boundary {X = 0}, and starts at the point (0,O). 

Vol. 16. no 6-1999. 
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This penetration appears thus as the effect of the boundary condition. If 
we come back to the non resealed self-similar variables, the self-similar 
field is close to the function U $, z . 

( > 
Hence, in the initial evolution 

variables, the field penetrates similarly to the function U 
(&t~ 5). 

Therefore, the time scale of the penetration along the boundary is K2 times 
faster than the diffusive one due to the Laplacian. That is the reason why 
it is called a rapid penetration at the boundary. 

A third and final paper will deal with the singular Cauchy Problem and 
the actual convergence of the unsteady solution to the self-similar solution 
described in this paper. 
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