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1. INTRODUCTION 

In this paper we consider the class of Lagrangian systems 

-ii + u = a(t)VW(u), t E R: u E R-‘, CL) 

where we assume 
(HI) a E Cl(R,R), W E C’(R”,R), 
(Hz) there exists 6’ > 2 such that 0 < HII’ 5 VW(z):c for any 

x E R” \ {0}, 
(Hs) VW(:c):c < V2W(z)m for any :c E R” \ {0}, 
(Hd) there exist U and a > 0 such that si > cl(t) > a for any t E R, 
(H,) a = lirninf+,+, a(t) < limsup,,+, o!(t) = E and 

lim t++m (e(t) = 0. 

By (Hz) it follows in particular that V2W(0) = 0 and therefore that 
the origin in the phase space is a hyperbolic rest point for (L). We look 
for homoclinic solutions to the origin, i.e. solutions u of (L) such that 
I -+ 0 and G(t) + 0 as ItI + oc. 

In the recent years, starting with [7], [12] and [23], the homoclinic 
problem for Hamiltonian systems has been tackled via variational methods 
by several authors. The variational approach has permitted to study systems 
with different time dependence of the Hamiltonian. We mention [7], [12], 
P31, [171, W'l, [141, [281, 151, [201, [91, [Sl, [ill, [25], [22] for the periodic 
and asymptotically periodic case, [6], [29], [13], [24], [21] for the almost 
periodic and recurrent case. 

In these papers different existence and multiplicity results are obtained. 
Starting from [28], the variational methods have been used to prove 
shadowing like lemmas and consequently to show the existence of a class 
of solutions, called multibump solutions, whose presence displays a chaotic 
dynamics. Such results are always proved assuming some nondegeneracy 
conditions on the set of “generating” homoclinic solutions which are in 
general difficult to check. However we quote [5], [8], [ll], [2.5] and [22] 
where the existence of a multibump dynamics is proved under conditions 
more general than the classical assumption of transversality between the 
stable and unstable manifolds to the origin (see e.g. [30]). 

In this paper we consider a time behaviour of the Lagrangian different 
from the ones considered in the papers mentioned above (we refer to [l] for 
a first study of this kind of systems). This assumption allows us to prove 
the existence of a multibump dynamics without any others conditions. In 
fact we prove 
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THEOREM 1.1. - Zf (H, ) - (H5) hold then (L) admits infinitely many 
multibump solutions. More precisely there exists 6 > 0, a sequence of 
disjoint intervals (Qj) in R+ with I&j 1 + +cc and an increasing sequence 
qf indices (jTL) such that given any increasing sequence of indices (jn) with 
ji 2 ji (i E N) and CT E (0, l}N there exists Uj,c E C’(R, RN) solution 
qf (L) verifying: 

In addition lLj,c is a homoclinic solution of(L) whenever CT~ = 0 definitively. 
Our proof use variational techniques and it is based on a localization 

procedure related to the time dependence of the Lagrangian. In fact we note 
that even if the action functional satisfies the geometrical assumptions of 
the Mountain Pass Theorem, there are simple cases in which there are not 
Palais Smale convergent sequences at the mountain pass level. However, 
thanks to the slow oscillations of the Lagrangian at +oc, we can use 
localized mountain pass classes related to the mountain pass classes of the 
limit problems at +cxj. The use of this localization procedure with a careful 
analysis of the compactness properties of the action functional give rise to 
the existence of infinitely many homoclinic solutions. These solutions turn 
out to be well characterized from the variational point of view and in a cer- 
tain sense non degenerate. Then to prove theorem 1.1 we can use a product 
minimax construction somewhat related to the ones used in [28] and [lo]. 

Finally we point out that our construction is possible since the “masses” 
of the solutions of (L) concentrate in a suitable sense with respect to the 
slow oscillations of the Lagrangian. In very recent papers, see [2], [15] and 
[ 161, it is studied the problem of existence and multiplicity of semiclassical 
states for nonlinear Schrijdinger equations where analogous concentration 
phenomena occur. In fact with minor changes our proof can be adapted to 
study also this class of equations. 
The current paper is organized as follows. In sections 2 and 3 we state 
some preliminary results. In section 4 we define the localized minimax 
classes which we use to prove the existence of infinitely many one-bump 
homoclinic solutions. The proof of Theorem 1.1 is contained in section 5. 

2. VARIATIONAL SETTING AND PRELIMINARY RESULTS 

We look for homoclinic solutions of (L) as critical points of the action 
functional 

cp(z~) = ;~lul12 - J’ cu(t)W(zl)dt. 
R 
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defined on the Sobolev space X = H1(R, R”) endowed with the scalar 
product (u, U) = &(titi + uw)dt and the Euclidean norm ]lul] = (u.u)+. 
In fact it is standard to check that cp E C2(X. R) and 

cp’(u)w = (u, 71) - / o!(t)VW(u)wdt. vu, ‘(I E x 
.R 

so that the critical points of cp are weak and then classical homoclinic 
solutions of (L) (see e.g. [23]). 

In the sequel we will collect some preliminary properties of cp that are 
standard in almost every paper on homoclinic solutions via variational 
methods. 

First note that the origin in X is a strict local minimum for the functional 
cp. Indeed by (Hz) there results V2W(0) = 0 and so, since o is bounded, 
we can fix 8 > 0 such that Io(t)V”W(:c)l 5 i for all t E R and :I: E Ra’ 
with 1x1 5 8. In particular this implies that Io(t)Vl&‘(x)] 5 $/:I:] and 
]~(t)W(x)] 5 i]xI” for all t E R and 1: E R“’ with 1x1 5 6. Then we 
obtain 

LEMMA 2.1. - ~fllull~- < 8 then p(u) 2 -jlle~ll~ and (p’(u)u 2 ~lluJ12. 
By the Sobolev Immersion Theorem we can fix F > 0 such that if I is 

an interval in R with 111 > 1 (where 111 denotes the length of 1) then 

where ]Iu]]~ = J1(]iL12 + Iu12)dt. We denote r0 = fi. 
The functional cp does not satisfy the Palais Smale condition. However, 

thanks to (Hz), we have that 

1 

( > 
- - 1 Ilull < (p(u) - ;pt(u)u: 
2 0 

vu E x. (2.2) 

Therefore if (u,) is a Palais Smale (PS for short) sequence for cp at 
level b, i.e. (P(u,) -+ b and cp’(u,) + 0, then (u,~) is bounded in X. 
Furthermore, by Lemma 2.1, if (un) is a PS sequence and /~u,,II 5 r then 
u,, -+ 0 in X. By (2.2) this implies: 

LEMMA 2.2. - Zf(uTL) is a PS sequence for cp at level b then either b = 0 
or b 1 x, where x = (i - $)F2. Moreover if b = 0 then u, + 0. 

We recall that cp’ : X -+ X is weakly continuous. Moreover, setting 
K = {U E X \ (0) I P’(U) = 0}, arguing as in [14] we obtain: 
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LEMMA 2.3. - Zf(un) is a PS sequence for cp at level b then there exists 
v E K U (0) such that up to a subsequence u,, - v weakly in X. Moreover 
(un - v) is a PS sequence for cp at level b - p(v). 

By Lemma 2.1, in the spirit of concentration compactness Lemma ([IS]) 
it can be proved that we lose compactness of those PS sequences (u,) 
which carry “mass at infinity”, in the sense that there exists a sequence (tTL) 
in R such that It, ] -+ cc and lim infn+oo ]~,,(t,) ] > 8. 

In order to well describe the behaviour of these PS sequences, and 
therefore to obtain compactness results, it is useful to introduce the function 
T’ : X -+ R U {-m} given by: 

T+(u) = 
C 

sup{t E R 1 ]u(t)] > 6}, if /Iu,~[~== > 6, 
--oc, 1 otherwise. 

This function is not continuous in X but the following property holds (see 
e.g. [22]): 

LEMMA 2.4. - Zf(un) is a PS sequence and (T+(u,,)) is bounded in R 
then, up to a subsequence, ruu, - v E K weakly in X and T+(uTL) -+ T+(U). 

3. PROBLEMS “AT INFINITY” 
AND RELATED COMPACTNESS PROPERTIES 

In this section we will investigate the lack of compactness of those 
PS sequences which carry mass at +co, more precisely PS sequences 
(Us) such that T+(u,) --+ foe. First we note that by (H5) such kind of 
sequences can be characterized in terms of the limit autonomous problems 
at +cc associated to (L). More precisely, given ,/3 E [a,~] and considered 
the functional 

cpp(u) = ;~~u~~” - p J W(u)& vu E x, R 
we have that if (u,) is a PS sequence with T+(u,) --+ +cc then, up to 
a subsequence, u,(- + T+(u,)) - up weakly in X where up is a critical 
point for (pp, for some p E [a,E]. 

We recall some properties of the functionals ‘pp. 
First note that all the functionals (pp, as the functional cp, satisfy by (Ha) 

and (H4) the geometric assumptions of the Mountain Pass Theorem. Then, 
setting I70 = {y E C’([O, 11, X) ] y(O) = 0, cpo(y(l)) < 0}, we have 

co = inf sup cpp(y(s)) > 0. 
+ro sE[O,l] 
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We remark that co is a critical level for cpg (see e.g. [3] and [26]). Moreover, 
by (Hs), given Q E K/j = (u E X\(O) 1 cp’,(~~) = 0} and so E R such that 
cp:j(.s~‘up) < 0, if we define y!,(s) = .ssou~~ for all s E [O: l] then we have 

LEMMA 3.1. - Fur any vg E KS there results y:j E r,q and 

(‘I:) ~~laxsc[O~l] cp~(r,j(~s)) = pd(q), 
(aa) for any r’ > 0 there exists h,. > 0 such that if y,,(s) E X \ B,.(v:,) 

then (P;~(YR(s)) < q~(w) - h,, 
where &.(u,) = {U E X 1 11~ - ~11 < 7.). 

In particular it follows that the critical points of ‘ps at the level c:j are 
mountain pass critical points of (PJ. Moreover we have 

LEMMA 3.2. - For any /j E [~.i%] th ere results c,j = min,,Ekj ‘pij(‘j,). 

As shown in [I] it is easy to see that the function ,/I + cii is strictly 
monotone. More precisely: 

LEMMA 3.3. - [f /jl < ij& then C/T, > cij2. 

In particular we have 

(3.1) 

Finally note that the functionals ‘pi are invariant under traslations, i.e. 
r;ju! ; g(u(. + ~1) and Ilcp~,(u)lI = Ilcpl,(4~ + 7))II for all ‘U E X 

Using arguments similar to the ones used in [l] to characterize the 
asymptotic behaviour of the PS sequences (see also [21]), it can be proved 
the following result: 

LEMMA 3.4. - Let (u,~) be a PS sequence for cp at level b with 
T+(u,~) -+ +m. Then there exist [j E [g,(~] and vg E K,? such that, 
up to a subsequence, there results: 

(i) ~y(T+(‘u,,)) + /I and 
(ii) u,,(. + Tf(urL)) - IJ~~ weakly in X. 

Moreover ( TL,, -Q(.--T+(u,,))) is a PS sequencefor cp at level b-‘pp(~;j). 
Using Lemma 3.4 and (3.1) we obtain: 

LEMMA 3.5. - For any h > 0 there exists T > 0 such that if (u,) is a 
PS sequence for cp at level b > 0 with T+(un) 2 T for all rt, E N then 
b > cn - h. 

Proof. - Arguing by contradiction, suppose that there exist h > 0 and a 
PS sequence (un) for ‘p with T+(u,~) -+ +oo at level b less than cz - /I,. 
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By Lemma 3.4, we have that there exist p E [g, E] and sup E K$ such that, 
up to a subsequence, u,,(. + T+(urL)) - wo and (u,, - vp(. - T+(u,))) is 
a PS sequence for cp at level b - cpo(va). By ((3.1)) we have ‘pp(~up) 2 c, 
and then b - ‘pp(vp) < b - cN 5 -1~ in contradiction with Lemma 2.2. fl 

Using the previous results we obtain the following compactness property 
for cp. 

LEMMA 3.6. - There exist ho > 0 and To > 0 such that for any I’S 
sequence (u,~) for cp at level b strictly less than c, + ho with T+(u,,) > TCj 
we have: 

(i) if(T+(~rJ) b d d h 1s un oun e t en there exist [j E [(u-,E] and U,B E Ic,j 
such that, up to a subsequence, CY(T+(U,~)) --) /j, uu,, (. + T+(u,,)) -+ 
‘op strongly in X and b = ‘p,,~(vp), 

(Zi) if (T+ ( un)) is bounded then there exists u E K: such that, up to a 
subsequence, usn -+ u strongly in X. 

Proof. - Fix ho E (0, i), where 1 is given in Lemma 2.2. Corresponding 
to this value ho fix To > 0 using Lemma 3.5. 

To prove (i) suppose that T+(u,) -+ +w. Then by Lemma 3.4 we have 
that there exist /3 E [@>??I and up E K,J such that, up to a subsequence, 
u,,(. + T+(G)) - v,~. Moreover setting v,, = ?L,, - ~,j(. - T+(u,)) we 
have that (PI,,) is a PS sequence for cp at level b-cpi,(~l,,). By (3.1) we have 

and therefore by the choice of ho and Lemma 2.2 we obtain V, -+ 0 
strongly in X and b - ‘pep = 0, i.e. %L, (. + T+(urL)) -+ ~0 and (a) holds. 

To prove (ii) suppose that (T+(u,,)) is bounded and T+(u~~) 2 To for 
all n E N. Then by Lemmas 2.3 and 2.4 we have that, up to a subsequence, 
‘UT, - 21 E Ic, T+(U) 2 To and (un - V) is a PS sequence at level b - cp(,u). 
Lemma 3.5 in particular implies that cp(v) 2 c~ - ho. Then, by the choice 
of h”, we have 

b - cp(,u) 5 b - cz + ho < 2ho < X 

and therefore by Lemma 2.2 we obtain uL, + ‘LI strongly in X. 
In particular the following result holds. 

I 

LEMMA 3.7. - There exist v. > 0 and Ro > 0 such that for all u E X 
with llp’(u)ll < ~0, T+(U) 2 TO and p(u) < cc + ho we have 
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Proof. - Arguing by contradiction suppose that there exists a E’S sequence 
(‘u,,) in X such that cp(~) < CC; + 1~0, T+(~u,,) > To and there exists a 
sequence (R, ) c R such that R,, --f +CC and 

This is impossible since Lemma 3.6 implies that, up to a subsequence, 
u,,(. + T+(ull)) + II in X and then IIu,,(. + T+(u,,))II,~~>R,, --f 0. I 

Remark 3.1. -By (3.2) we can fix A& > 0 such that if cp(tr) < c,+h,a and 
IIv’(~)ll < vo then II-4 < M o, where ho and v. are given in Lemma 3.6 
and Lemma 3.7. 

4. EXISTENCE OF INFINITELY MANY ONE BUMP SOLUTIONS 

In this section we will prove the existence of infinitely many critical points 
for cp. Using assumption (H5) and Lemma 3.7 we will select infinitely many 
regions in X in which the functional cp is close to (PZ and in which we will 
look for critical points of cp near critical points of (PZ. 

First of all we need to state some preliminary properties of the functional 
‘p which are essentially due to (H5). 

Remark 4.1. - Note that by (Hs) we can select a sequence of intervals 
in which a(t) is close to Z. More precisely, fixed co E (0. 9) and any 
sequence ~j + 0 there exists a sequence (?j) in R such that rJ + +CC 
and o(Tj) -+ E as j -+ CC. Moreover there exist (T)*) and ($) sequences 
in R such that for all j E N there results: 

(1;) a? < T,: < ?j < rjf < cJ’ and rJk -+ +a,, af -+ +n~, 
rj’ - 7;: --+ +cc, 0 < a)~+~ - CJ~ + +CC and 103” - rJ”] + +co 
as J + cc’ 

(ii) u(t) 5 E i Ej for all t E [Q,,flT]; 
(iii) a(t) < 5 - &o for all t E [fly, r,:] U [~j’, a,+]. 

In the sequel we will denote Pj = [cf. Q,‘] and Qj = [rj, T,‘]. 
Moreover, considered To and Ro given in Lemmas 3.6 and 3.7 

respectively, since (Y(t) --+ 0 as t + +cc, we have that there exists 
j. E N such that for all j > j. we have cr; 2 To and a(t) < 5 - s for 
all t  E [aj - Ro7 ~~7 + Ro] U [~j’ - Ro, g: + Ro]. 

Given any h > 0 and v > 0, for all j E N define 

Aj(h,V) = {U E X I P(U) I CZ+ h, Il~‘(~)ll < Y and T+(u) E C?jI. 
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Then, using Lemma 3.7 we obtain 

LEMMA 4.1. - There exist K E (0, ho), i7 E (0, vg) and j 2 j” such 
that if IL E dJh,o) f 
II~IL-(R\Q,) < f. 

or some j 2 j then IJuJIR\Q, < 7-g. In particular 

Proof. - Arguing by contradiction, suppose that there exist h, --+ 0, 
v,, -+ 0, j,, -+ cc and U, E dj,L (h,, v,,,) such that 

ll~,Lll~\~,,, > 7’0 Vn E N. (4.1) 

Then in particular (u,) is a PS sequence for cp at level less than or equal to 
c; with T+(u~,) --+ +co. By Lemma 3.7 and (4.1), since T+(u,) E Q,j,,, 
we have 

inf{IT+(url) - tl I t E Pj,, \ Qj,,} < Ro. 

Therefore by Remark 4.1, up to a subsequence, we have ~(T+(u~)) --+ 
0 E [c~,i5-- 91 and, by Lemma 3.6 (i), u~(. +T+(u~)) + up E Kp. Then, 
by Lemma 3.3, cp(u,) --+ (pp(~up) > cg > CZZ, a contradiction. 

In particular, by (2.1), we obtain that ]]u]]L=(R\Q,) < :. I 
From now on we will denote dj = dj (FL, v). Note that it is not restrictive 

to assume v < f. Then, setting B,(dJ = {U E X ] infVEA3 ]]u-u]] < r}, 
we have 

LEMMA 4.2. - Zfu E &(dj) \ djfor some j 2 gand p(u) < ~+x then 

lldb>II 2 fi’, and II~IP(R\Q,) < 8, 

Proof. - By Lemma 4.1 if w E dj for some j > 3 then Iv(t)] < 4 
for all t @ Qj. By the choice of P, this implies that if u E B,(dj) then 
]~(t)] < 6 for all t @ Qj. In particular it follows that either T+(U) E Qj 
or T+(U) = -cc. In the first case if u $! dj, we get that ]]#(u)]] 2 Y, 
by definition of dj. In the second case we have ]]u]], < 5 and then, by 
Lemma 2.1, we obtain ]]c+J’(u)]] 1 $]]u]]. This prove the lemma since if 
‘u E B,(dj) then ]]u]] 2 f > 2~. Indeed if ‘u E dj then T+(U) E Qj 
which implies ]]u]]~ > 6. Then by (2.1) we get infa, ]]v]] 2 2~ from which 
infB,(d,) lbi 2 p. I 

Now we introduce a sequence of mountain pass classes for cp “located” 
in dj. First we fix some notation. 

Let 7~ be the mountain pass path for (PT; corresponding (as in Lemma 3. I) 
to some fixed critical point @ E ?C, with T+(up) = 0 and ‘po(vp) = c,,j. 

Vol. 16, Ilo 1.1999. 
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In the sequel we will denote by 7) the path given by yj(s) = yz( Cs)(. - rj) 
for all s E [0, I], where (Tj) is the sequence given in Remark 4.1. 

Remark 4.2. - Let M > 2Ma (Me given in Remark 3.1) be such that 
A/l > 2]]7z(.s)]] for all s E [O. I]. S’ mce IIt’ is locally Lipschitz continuous, 
we can fix PC111 > 0 such that IV(J) 5 K,zlln:12 for all ]:E] 5 M. 

We define a sequence (rj) of local mountain pass classes for p and the 
corresponding sequence of mountain pass levels (c,j) by setting 

r.j = (Y E co([O. I]- ay) / Y(O) = O, cP(Y( l)) < $%(?fiT( l)). 

and 
Cj = inf SUP $7(7(S)) 

‘El-1 .sE[O,l] 

for all j E N, where 6 is given by Lemma 2.1 and M by Remark 4.2. 
By construction we obtain that the sequence (Cj) converges to the 

mountain pass level cZ for (PG. 

LEMMA 4.3. - There results linrj-, cj = cz and in particular 

Proof. - Let h > 0 be fixed. 
By (HZ) there exists bh E (0,s) such that if ]]u]] < M then 

I 
W(u)dt < & 

. {GR I 14t)l16h) 

where a = supR a(t). 
Moreover, since y~( [0, 11) is compact in X, there exists Rh > 

sup I-&s)(t)1 i &L> v’s E [(A 11. ItlkRh 
By Remark 4.1 there exists ji = j,(h) E N such that for all 
have [rj - Rh, rJ + Rtl] c Q3 and 

(4.2) 

0 such that 

(4.3) 

j 2 j1 we 

(4.4) 
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Therefore for all j 2 jr and s E [0, 11, using (4.2), (4.3), (4.4) and Remark 
4.2 we obtain 

+ 

.I 

p  -  cx(t)pv(yj(s))dt 5 h. 

It-r, ISRh 

Then in particular (p(yj( 1)) 5 cp~(rj( 1)) + h < i(p~y(y~( 1)) if h is small 
enough, Hence by definition of rj and (4.3), we have rj E Ij for all 
j 2 jr and then 

“j I P(Yj(s)) L cPZ(“ij(s)) + h, vs E [O; ll. 

By definitions of rj this proves that cj < cz + h for all j 2 j,. 
Now to prove that definitively cj 2 G - h we introduce the following 

minimum problem. Fixed any r E R and z E R” such that ]z] < 6, we 
set R,+ = [r, +cc) and R; = (-co,r]. Define 

The minimum problem 

admits a unique solution u,i,, for any r E R and ]z] 5 8. Indeed, by the 
choice of 8, we have that (P+ is strictly convex on the convex set UTi,z. 
Note that u,+,, is the unique solution of (L) on R: which verifies the 
conditions u,f ,z(r) = z and ]]u,+,,]]~~(~:) < 6. Then, by the maximum 
principle, we infer that for any 7 E R and 1x1 5 8 there results 

It follows that there exists rh > 0 such that for any r E R and ]z] 5 6 
we have 

lw,&)l I bL, Vt E R: with It - r] 2 rlc (4.5) 

where 6h is given in (4.2). 

Vol. 16, no l-1999 
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Given any 7 E rj we denote :z*(s) = $a)(~;) and U*(S)(.) = 
IL,+ ,+tyj for all s E [0, 11. Therefore it is well defined and continuous 
the path 7 : [0, I] + X given by 

II,-(S)(~), if t 5 7;:. 
y(s)(t) = y(s)(t). if 7-J 5 t 5 77, V.s E [0, I]. 

u+(s)(t), if 7-I’ < t 

By construction cp(y(s)) 2 cp(T(s)) for any s E [O: 11. Moreover, by (4.5), 
IT( 5s h f or all t E R with t < rJ: - T/, or t 2 75’ + rh. Then, since 
IT]+ - $1 t x as j + CG, we have that there exists j, = 32(/h) >_ jr such 
that [Q-;- - ?-h. T,+ + rf,] C Pj for all j > .&. Therefore we have 

for all 7 E I‘j with j > 32. Then by (4.2) and the choice of Pj we obtain 

from which we conclude, since E,, -+ 0, that there exists .js = .ja(h) > j2 
such that 

for all s E [0, l] and y E rj with j 2 j3. In particular 

cpz(Y(l)) I P(Y(~)) + h < &ddl,, + h. 

Therefore if h is small enough we have i/ E I’z and then 

,s~g~l cp(Y(S)) L max r&q(s)) - h > cz - /L 
se[0,1] 

for all y E I’j with j > j,. Then cj > cz - !L for all j 2 ja and the proof 
is complete. I 

Remark 4.3. - Note that by the choice of 1M and Remark 3.1 we have 
Aj c {u E X ) llull 2 y}. Th ere f ore we can assume 5; so small that there 
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results &(Aj) c {U E X ] ]]u]] 5 M} for all j E N. Moreover since 
cp,(x(l)) < 0, we can also assume that yj(l) $! B,(Aj) for any j > 7. 

Now, using deformation arguments, by Lemma 4.2 and Lemma 4.3 we 
can prove the existence of infinitely many one bump solutions of (L). 

THEOREM 4.1. - There exists j E N such that K II Aj # 0 for all j > j. 

Proof. - For any j > 2, let nj : [0, 1] x X -+ X be the flow associated 
to the Cauchy problem 

1 
sT)j(t, U) = -$(T/j(t, 1L))‘““,~~I:],‘~~,l~~“‘)~‘(~~(t, U)), 
r/#‘I) = u: vu E x, 

where $ : X -+ [0, I] is a locally Lipschitz continuous function such that 
$(u) = 1 for all u E B;(Aj) and g(u) = 0 for all u E X \ B,(Aj). It 
is standard to check that cp decreases along the flow lines and moreover 
that X \ B,(Aj) is invariant under nj. By Lemma 4.2 and Remark 4.3 this 
implies in particular that the class Ij is invariant under the flow nj, i.e. for 
all 7 E Ij and for all t  > 0 we have rlj(t,y(.)) E r‘j. 
Furthermore by Lemma 4.3 if ‘u. E Bz(Aj) and there exists t  > 0 such 
that rjj(t, U) 6 B;(Aj) then 

(4.6) 

By Lemma 4.3 and Lemma 3.1 for any h E (0, ;A?), where A,? = 
min(y, “5) and 115 is given in Lemma 3.1 (‘L’L), there exists j > J such 
that for all j 2 j we have rj E Ij and moreover: 

(i) if yj(s) $ B;(Aj) then cp(yj(s)) < cj - h, 
(4 ~==sEp,ll CP(Y~(S)) 5 cJ + h. 

We claim that for all j > P there exists sj E [0, l] such that “ii E 
B$ (Aj) n { cp > cj - h} and for all t 2 0 there results: 

From the claim we derive that for all j > j there exists a PS sequence 
(r$) for cp in Bg (A,). In particular, since (~a) c B; (Aj) by Lemma 4.2 
we have that u”, E Aj, and then T+(uj,) E &j, definitively. Therefore by 
Lemma 3.6 (el:) we have that (uI) is precompact in X and then we obtain 
a critical point for cp in Aj for all j > j. 

To prove the claim, first we note that (b) plainly follows from (u). Indeed 
if vj(t, ~jYj(sj)) @ Bg (~$1 f or some t > 0 then by (4.6) and (ii) we obtain 
that dqj(t,yJ(sj)) 5 P(yj(sj)) - AP I C ,  + h - A, 5 cj - h which 
is impossible by (u). 
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To prove (a) we argue by contradiction assuming that for all s E [0, l] 
for which yj(s) E B; (Aj) n {‘p > cj - II} there exists t > 0 such that 

'P(llJ(t, Yj(S))) I Cj - h. (4.7) 

Then for any s E [0, I] set T(S) = inf{t > 0 : q(r)j(t,yj(s))) < cj - /l}. 
By (i) and (4.7) we obtain that T : [0, l] + R+ is well defined and 
continuous. Therefore setting +j(s) = rlj(T(s), “in) for all s E [0, l] we 
obtain 9; E Ij and then a contradiction, since by construction there results 
p(+j (s)) 5 cj - h for all s E [O: 11. This complete the proof. I 

5. MULTIBUMP SOLUTIONS 

In the previous section we proved the existence of infinitely many one 
bump solutions of (L). In fact, by Theorem 4.1, for any j 2 4 there is a 
homoclinic solution of (L) which has Lo3-norm greater than 6 only in the 
time interval Qj. In other words such trajectory leaves and returns in the 
6 neighbourhood of the origin in the configuration space only in the time 
interval Qj. 

In this last section we look for k-bump homoclinic solutions of(L). More 
precisely we show that there exists a sequence of indices (&) such that if 
j, < . . . < j, E N verify ji > ji, % = 1, . . . , k then there is a homoclinic 
trajectory of (L) which leaves and returns in the 8-neighbourhood of the 
origin in the configuration space only in the time interval Qjz, ,i = 1, . . , Ic. 
Considering the C&, -closure of the set of L-bump solutions we obtain a 
multibump dynamics proving Theorem 1.1 stated in the introduction. 

First of all we introduce some notation. 
Fixed Ic E N and k indices j, < . , . < j, we denote 

Ii = 
( 

TL +a, aj++ur z 32+1 
2 ’ 2 ) ’ 

i=2,...,Ic-1: 

where the sequences (af ) are given in Remark 4.1. 

Ann&s de I’hstitur Henri Poincd Analyse non lin.kire 
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Then the family of intervals { 1;) i = 1, . . . , k} is a partition of R. 
Moreover each interval Pj, is strictly contained in the interval 1i. Let M; 
be the complement of the interval PjZ in 1,. 

We also define the “truncated” functionals cpi : X -+ R by setting 

Note that p(u) = CF=, (P;(U) and cp; E C’(X,R) with cp:(u)v = 
(u, u)~, - J1 cx(t)W(~(t)) dt for all U, u E X. 

Finally, given T > 0 and J = (jl, . . . , j,) with j < j, < . . . < j, we 
consider the set 

B,(J) = {U E X 1 inAf (1~ - ~11~~ < r’, i = 1,. . . , k}. 
Jr 

By Lemma 4.1 if ‘u E dj for some j 2 7 then IIvIIL~(R\_Q,~) < g. 
Therefore if T E (O,r] and ‘u E &D,(J) then IIuII~~(~,\Q,~J < 6. In other 
words the functions in a,(J) can be outside the 8-neighbourhood of 
the origin only in the intervals Qj%. Therefore we will look for k-bump 
solutions of (L) in these sets. To this end we investigate some compactness 
properties of cp in B,(J). 

Note that the action of the functional cp on E?,(J) separates on the actions 
of the functionals cpi and, roughly speaking, that each functional cpi acts 
on B,.(J) as the functional cp acts on B,(Aj, ). Then, starting from the 
compactness properties of cp on B,(Aj) proved in the previous sections, 
see Lemmas 2.1, 3.5 and 4.2, we can obtain analogous properties of cp 
on B,(J). 

Let we fix fi = j$min{$, i - 
- 

}, h = i min{h,, , h, pro} (where h,, is 
given by Lemma 3.1 (ii) with T = 3 and p = Z) and a decreasing 
sequence (hi) such that 0 < C,“=, hi < h. We set also r1 = f, r2 = F 
and 7-3 = 5. Defining Ek = {U E X; IIu/I~~, 2 %, 1 = 1, . . . . k} and 
@k = nf=, {p; > c+ - hi} fl {‘p 5 kc, + h} we have 

LEMMA 5.1. - There exists un increasing sequence of indices (ji) E N 
suchthatgivenkENandJ=(jl,...,jl,)withjl<...<jl,andjiLji 
(i= l,... , k), then iffk n@k I-I&( J) nK: = 0 there exists a locally Lipschitz 
continuous vectorjeld 3 : X + X which verifies the following properties: 
(31) /~-;C(U)[/I. 5 1 (i = 1,. . . , k), cp’(~)3(~) 2 Ofor any u E X and 

3(u) = 0 for any u E X \ E$.,, (J); 
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(F-3) if u E B,, (J) and p;(u) 5 cc - h; then cp:(u).F(u) > 0; 
(F4) ifu E B,.,(J) \LL. then (~.F(u))~,~, > Ofirany % E (1,. .k:}; 
(F5) there exists p J > 0 such that p’(u)F(‘u) > I/J fir any 71. E 

B,,(J) n {p < AX:, + h}. 
This kind of result is classical in the multibump construction (see 1281). 

The proof is based on the use of a suitable cutoff procedure, it is quite 
technical and we postpone it to the Appendix. 

We set jk. = {(jr. . . .,jk); j1 < j2 < . -. < jk, ji 2 jf}. AS a 
consequence of Lemma 5.1 we get that if J E cJ, and &(.I) f~ K: = Q) then 
the set B,., (J) n {‘p < kcz + &} can be continuously deformed in the set 
&{cp; < cc - h;}. In fact we have 

LEMMA 5.2. - Given k: E N and J E jk, iff, n Qk n &(‘J) n K = 8 
then there exists ~1 E C(X. X) such that 

i) ‘rllX\B,,(J) = 1; 

ii) rj(Ek) c E,+; 

iii) q( {pi 2 c, - hi}) c {cp; <- cz - II;}; 

iv) if u E B,, (J) n {‘p < ICC, + h} then v(u) E U,“=, {pi < cz - h;}. 

Proof. - Let us consider the Cauchy problem 

(5.1) 

where 7 is the bounded locally Lipschitz continuous vector field given 
by Lemma 5.1. For any u E X there exists a unique solution r/(., U) E 
C(R+,X) of (5.1), depending continuously on ‘IL E X. 

By (.73), since T(u) = 0 for any u E X \ D,:, (J), we obtain that 

‘rl(s, u) = u Vu E X \ L&:,(,7)> b’s > 0. (5.2) 

By (34), if n(s,u) E X \ Ek then 

Therefore the set El, is positively invariant w.r.t. the flow q, i.e. 
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BY V3), &dv(s, u)) = -cpXv(s, u))F(q(s: u) 5 o if pi(rl(s,u)) I 
CT;; - hi. Hence also for the sets {cpi < c, - hi} we have 

v(s, {pi 5 GT - h;}) c {cp.l I es - h,i}. v’s > 0. (5.4) 

Finally note that since cp sends bounded sets into bounded sets, by (F’5) 
there exists I > 0 such that 

vu E I?,,, (J) iI.% E (0: 7) such that ~(s~~:u) E X \ a,,(J). (5.5) 

By (5.5) for all u E B,,, (J)n{(p < kcz+&} there is an index i,, E { 1, . . . . k} 
and an interval [s 1; a] C (0,7) such that i&d,t,, (]v(a,‘u) - ‘~111,~ = ~1, 

i&d,,U 1177(s2, u,) - 4I,<‘ = r2 and Tl 5 i&dJz Ilv(s, u) - llllItt, 5 7-2 

for any s E (sir s2). In particular, by (R) we ob$in 

Now, let u E B,., (J) fl { cp 5 kcz + &}. We claim that there exists 
1: E {l,...,k} such that (P~(Q(Y, u)) < c, - h; for some s E [0, s2] and 
therefore 

Pi(rl(T u)) I Gi7 - hi. (5.7) 

Indeed if not we have infi,i,.,,,k cp;(q(s,u)) > cz -_h; for any 
s E [0, sa]. Then since, by (R), cp(q(s,~)) < Icc~ + h we obtain 
that SUP~+..,~ cpdrl(s, 4) 5 cz + 2k for any s E [0, s2] (recall that 
cz1 hi < h). Then, by (T2) and (5.6), we get 

L ci(s2 - Sl) 2 LqT2 - r1) 

in contradiction with the choice of i (recall that h 5 PM). 
With abuse of notation we set v(.) - q(l, .) and the lemma follows by 

(5.2), (5.3), (5.4) and (5.7). I 
Now we are able to prove the existence of k-bump solutions applying 

the S&e’s product minimax. 

THEOREM 5.1. - There exists an increasing sequence of indices (ji) c N 
suchthatifF;ENandJ=(jl,...,jk)veriJesjl<...<jliandjiL~i 
(i = 1,. . . , k) then &k n QpI, n B,(J) n K: # 0. 
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Proof. - For all j E N consider the cutoff function xj E C(R, [0, l]) 
defined by X,j (t ) = min{l: dist(t, R\ Qj)} and the paths -7;(s) = x,jy,j(“), 
s E [O; 11, where the paths rj are given in section 4. 

It is immediate to recognize that SU~~,~~~~,~~ Il;Yj(s) - ?i-(s)ll + 0 as 
.j + 3~. Therefore since cp is uniformly continuous on the bounded sets, by 
Remark 4.3 and Lemmas 3.1 and 4.3, we can fix an increasing sequence 
of indices (j;) c N, ,jl > ji (; E N), such that: 

(71) Cj > cz - + for every ,j 2. ,i;; 
(72) -?; E I1 and i;(l) $ B,(dJ for every j > jr; 
(7s) if j > jr and Y,(s) E X \ B,.,(d,) then ~(~j(s)) 5 c;;: - $1 
(74) rllax.sEIO.l] P($,j(“)) 5 Cii + h, v.j 2 .j,. 
Let k: E N and .I = (,ji: . . . ,,jk) be such that ji < . . < jk. and 3; > j; 

for all 1 = 1. . . . . k. We define the surface G E C( [0, 11”; X) by setting 
G(H) = cfl, jjz(Hi). We have 

(GI) nlax~E[o,l]~ (p(G(H)) 5 kc, + k 
(Gz) if G(H) E X \ L3,., (J) then there exists %Q E (1,. . . . k} for which 

(PLY) (G(@)) < GT - b,,; 
(G3) G(B) E &A. for every H E [0, I]“. 
Indeed (Gi) plainly follows by (r*) since Cl”=, h; < i,. Moreover 

we obtain (G2) by (73) simply noting that if G(0) E X \ ,17,., (J) then 
there is %e E {l,....X:} such that 7’0 < rl < inf,c,EA,ZO ]]G(e) - ,u]]I,, 5 
infUEAjtO I]??,, (Hi,) - YJ]]. Finally since SUMP G(B) c Uf=lQj, we 
obtain (Gs). 

Now, arguing by contradiction assume that &k n +k n Z??(J) n K = 0. 
Then we can consider the surface G(.) = n(G(.)) where v is given by 
Lemma 5.2. By Lemma 5.2 and (Gr)-(Gs) we obtain 

(Gi) if G(B) E X \ &.,(I) then G(0) = G(0) and in particular 
&[o.~p = Gla[o,~]~ ; 

(6~) !fO E [O,l]” there exists ie E {l? . . ..k} such that cpi,(G(8)) < 
cz - hi . 

(63) G(B) E’ik for every 0 E [O,l]‘. 
Indeed (Gi) plainly follows by Lemma 5.2-(i) since by (yZ) G(d[O, 11’;) c 

X \ &a (J). Also (G’s) is an immediate consequence of Lemma 5.2-(ii) and 
(G3). 

To prove (GZ) we consider the following alternative: G(8) E X \ B,, (J) 
or G(0) E a,.,(J). 

In the first case by (G2) there exists is-such that cp;,(G(0)) < c, - /ail 
and, by Lemma 5.2-(iii), we obtain cpis (G(8)) < cz - hi,. In the second 
case by (Gr) we have that G(B) E a,,(J) n {‘p < Icc~ + ?1} and 
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therefore, by Lemma 5.2-(iv), also in this case there exists ie such that 
cpi,(G(8)) < cz - hi,. Then (6’~) holds. 

Thanks to (Gs) we can select on [0, 11” a path e joining two opposite 
faces {tii = 0} and {e; = 1) along which the function cp; o G takes values 
less than ck - % for some i E { 1, . . . , k}. Precisely: 

(G,) there exists L E (1,. . . , k} and < E C([O, 11, [0, 11”) such that 
c(O) E (19, = 0}, c(l) E (t9, = 1) and (p,,(G(8)) < cz- %, for 
any H E range< 

Indeed, assuming the contrary, the set Di = (0 E [0, 11’” : cp;(G(B)) > 
cz--+}foranyiE {l,... , Ic} separates in [0, 11” the faces FF = {Bi = 0} 
and F: = {ei = 1). For any i E { 1, . . . , Ic} let Ci be the component of 
[O,l]” \ D; h h w ic contains the face F,’ and let us define the functions 
fi : [0, 11” -+ R as follows: 

f;(O) = 
1 

dist (8, Di) if 19 E [O; 11” \ Ci 
-dist (8)Di) if B E C;. 

Then, fi E C([O,l]“,R), &IF; > 0, filF; 5 0 and fi(e) = 0 if and only 
if 6’ E D;. Using the Miranda fixed point Theorem (see [19]), we get that 
there exists B E [0, 11” such that fi(S) = 0 for all i E { 1, . . . , AY}, hence 
n; D; # 0,-which is in contradiction with the property (Ga). 

Using (G4) we define the cutoff function X E C(R, [0, 11) by setting 
x(t) = min{l, distit, R \ IL)}, an d we consider the path y E C( [0, 11, X) 
given by y(s) = xG({(s)). We claim that y E Ij,. 

Indeed since supp rj, (s) C Qj< and Qj< C {t ; X(t) = l}, we have 

y(0) = 0 and $1) = ;ij,(l). 

In paflicul= CP(Y(~)) = cp(?j, (1)) < ~~(Yz.(~)). 
Moreover if y(s) E BT(AjL) then ]]$s)]] 5 &r and, by Lemma 4.2, if 

t @ Qj, then IYCWI < 8. 
Otherwise, if y(s) q! B,(Ajt ), by Lemma 4.1, we have v 5 

i&A,, Iids) - di 2 i&A,, k?(s) - 21111, + TO = i&A,, k@:(t(s)) - 

v]]~, + ro. Therefore since G(6) E Eli for any 8 E [O,l]’ we 
obtain i&A,, IlG(t(s)) - +, L r - TO - /I(1 - x$‘:(l(s))ll~, L 

r - 2lp([(S)ll*[, 2 r - (%)” > T3. 

Then we conclude that G(l(s)) q! &(J) and, by (G,), that y(s) = 
-?;L (s). Therefore, since -I;6 E I”, we have also in this case (l?(s) ]I 5 A4 
and if t @ Qjc then [~(s)(t)] < 6. 

Then y E Ij% and if we show that cp(y(s)) < cc - %, using (rl), we 
obtain a contradiction. 
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By the choice of 6 and by (Gs) we have 

and the theorem follows. 
As a consequence of Theorem 5.1 we have 

I 

COROLLARY 5.1. - For evev k E N and J = (jl,. . :jk) with 
.i;l < . . < j, and ;j, 2 ,i; (i = 1.. . k) there exists IL E C2(R, R”) 
solution of (L) such that 

Proof. - By Theorem 5.1 there exists u E I,, n @k n a,(J) n Ic. Then 
for all % = 1. . , k consider the cutoff function xi(t) = d%sl; (t? R \ I,). 

Now, since ‘u E a,(J) if IIuIIL~(Q~,) < 6 for some % E {I.. . , k} then 
I/uIIL~(I~) 5 h‘ too and therefore llxi~llLr < S. By the choice of 8 we 
obtain (P’(x~%L)x,u > ~llxi’ul12. S ince u E a,(J) we have IIuII1, > F and, 
since ‘u E Ek, we obtain IlxiuII1, 2 IIuII~, -Il(l-x;)~Il~, > sr-2 > G. This 
implies that (P’(x~u)x;u > $. Then we have I’p’(xL,/L)xilL - cp’(~)x~ul 5 
I((1 -Xi)% xi4nr, I+ I “I,,, ~~(W~(Xi’IL) -VW(u))w4 5 5II7& < 
/J,, and we conclude that ‘p’(~)x;‘u > & in contradiction with 11, E K. 

Moreover arguing as above it is also easy to prove that since II, E arc n K 
we have I~~‘(x~u)II < I/ and cp(xiu) < cz + h for all % = I . . . . . X:. Then, 
since we have already proved that T+(x~u) E Qjz, we obtain X;U E ,A,?. 
Then, by Lemma 5.1 we obtain that I~x~uII~-(~,~~,,) < $ (Z = 1.. i k). 
This complete the proof. I 

Considering the CfO,. closure of the set of k-bump solution, using the 
Ascoli Arzela theorem, by Theorem 5.1 and Corollary 5.1 we obtain 
Theorem 1 .l stated in the introduction. 

6. APPENDIX 

In this section we prove Lemma 5.1. 
First of all we recall two properties which we will use in the sequel (see 

Lemmas 4.2 and 3.7 respectively): 
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(A) if u E B,(Aj) \ Aj and p(u) 5 cz + il. then ]]p’(u)]] 2 v 
(Annuli property), 

(S) for every h > 0 there exists jh E N and Vh > 0 such that if 
p(u) < cz - h and u E B,(Aj) for some J’ > j/L then ]]p’(u)]] 2 v!, 
(Slices property) 

Using the slices property fixed a non increasing sequence of positive 
numbers (v;) we obtain an increasing sequence of indices (j;(h)) such that: 
(S;) if u E BT(AJ) for some j > j;(h) and cp(lr) < c, - $hi then 

IIdb4l 2 0,. 
Now note that if 11, E a,,(J) then ]]u]]I~ 5 supVEA, ]]v]] + T 5 M. In other 
words the mass of the functions in k?,.(J) in each interval 1; is bounded 
independently of the number k. Then we obtain 

LEMMA 6.1. - Given any sequence of positive real numbers (Q) there 
exists a monotone increasing sequence of indices (ji (<)) for which if k E N 
andjl<j2<...<~~ENveri~j;2ji(l)(i=1:...:~)thenforany 
u E B,,(J) there exist two intervals NtLi c (o]y, TV;) and N$ c (~jt, o)T) 
such that 

Proof. - We recall that Lj = nun{ I~J - rj: 1, ]cJ’ - TJ’ I } -+ cc as 
j + y. Then we can fix an increasing sequence of indices (.j;([)) such 
that fi 2 <% for every j 2 ji(<) (where [z] denotes the entire part of z). 

Let k E N and j; E N with j, > ji(<) for all i = 1, . . . , k. If ‘11 E t3,.( J) 
we have 

and the lemma follows by the choice of $(t). I 
We fix a decreasing sequence (&) c (0,l) with & < 

i min{r0, V, Vi, hi+r} for any i E N. We will denote Jk(<) = 
{h,. . .,jlc); j, < j, < . . . < j,, j; > max{j;(h),j;(<)} } where 
ji(h) is given in (Si) and ji(<) in Lemma 6.1. 

By Lemma 6.1 if J = (jt,.. . , jk) E Jk(<) and u E B,(J) then each 
interval Pjz contains two subintervals, one on the right and one on the 
left of Qj,, over which the norm of u is controlled by &. We will use 
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this property to produce a suitable cutoff procedure controlling the errors 
via the sequence (c;). 

Then, given J E .Jk (I) and ‘~1 E B,(J) we define the cutoff functions by 

1 

0 if t < inf Ntyi 
t - inf N,; iftEN,;, ’ 

p,,+(t) = 1 if sup N,-; 5 t 5 inf IV,+, %= l....:k. 
sup N,+j - 
0 , 

1; if t E N,t’, 
if t > sup Ntzi 

We define also the “complement” functions by 

1 Pl,&) = { o - ,&i(t) - P~,i+r(t) ifrjt I t 5 rjl,., i, = 1 k _ 1 

otherwise 
1. . 

1 - /3,,,(t) Pu,&) = { o if t > 7ji 

otherwise. 
Setting &, = Ct, jjlL.i and /?,l = C:=, IjjlL,i we have that /4,(t) +,8?,,(t) = 
1 for any t E R. 
We denote B,,l = {t E R: ii,.@) # O}, B,, = uf&Bu,~, &,I = (2; E 
R; I%,&) = I}, A, = u:&A,,,L 
Note that if /3 is anyone of the above defined cutoff functions then 
[b(t)\ 5 1, a.e. on R. Then if A is a measurable subset of R, a direct 
computation shows that lj,L%/1”, 5 311~11; for any TJ E X. 

We will use these cutoff functions to study for every u E B,(J) the 
different contributions to p’(u) due to the behaviour of u(t) on each 
interval 1i. In fact, as one argues from the following lemma, if I[$(~~,,,, U) II 
is sufficiently large with respect to IL, then we get informations on both 
v’(u) and cp:(~). 

LEMMA 6.2. - If J E JIG([), u E k&(J) then vi E (1;. . . ,k} 

SUP I~‘(al.i?~)V-(P’(~)aU,;vl = SUP I~'(~,.;~)V-(P:(~)lo~,iVI 5 Xi. 
IIVll=l lI~‘ll=1 

Proof. - Note that if u E B,(J) we have I~u~(~~~~~~~=,~,~~ < 6 for all 
i = I,..., k and in particular IIuIIL-(NU,,) 5 6 where N,,; = N?;, U NL,. 
Therefore by the choice of 6 for every V E X with llVl[ = 1 we obtain 

Id~Pu,i4V - cp’b4LiVI 

a(t)(VW(Pu,iu) - VW(u)Pu.,)V dt 

II I i(ju,&ti - tiV)dt( + + 
N 11 , 7 I 

’ l,~llVldt I 2ll~ll~,,., I Xi. ’ N 
II ,7 
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Now note that if u E &.(J) we have ~~u~L(~~~~~~~~=,~,~~ < 8 and therefore - 
IliAL,u,i~~lIL~ I 6 t 00. With the agreement that lo = <i, we define for 
1 E {O....,k} 

if ll4i ), , 2 at,’ 

0’1~1= ii(&) otherwise 

and 

Then, by the choice of 6, if the mass of the function u on n/r, (which is 
always contained in 1, n A,) is sufficiently large w.r.t. <i, then W, is an 
increasing direction both for cp and cpi. In fact we have 

LEMMA 6.3. - For every J E J(r) and u E a,(J), we have 

for all i E {l,...,k}. 

Proof. - By the choice of 8 we have 

k 

P’bWu = c cL,1((ddu) - / vw(u)pu,lu dt) 

l=O 

k k 

The computation for ‘pi is analogous. 

Vol. 16, no I-1999. 



130 F. ALESSIO AND P. MONTECCHIARI 

Remark 6.1. - Note that by construction we have 

and 
(6.2) 

for all Z = 1; . . . . k. 
Now we are able to prove Lemma 5.1 with the sequence of indices 

.7i = n=x{ji(h),ji(C)}. 

Proof of Lemma 5.1. - We will show that if k E N and J = (jr 
verifies jI < . . < j, andj; 2 ji (1; = 1,. . , k) and if Ekn+ “B-(;.)n~‘~ 
8 then for any ‘CL E B,., (J) there exists F,, E X wit: IIk[& /II, < 1 
which verifies the listed properties (R)-(B). Then the existence of a 
locally Lipschitz vector field will follow with a classical pseudo-gradient 
construction. 
Given u E B,, (.I) we set 

Z*(u) = {i E (1,. . , k} ; V;(U) L CZ - i&i}. 

For % E Zr(u), we have either II,u~~~~~A, > TO or Il~ll~,~A, < 7’0. 
In the first case we have that max{ll~II~,,,._,nl,, ~~u~~~,,,,~,} > ir-0’. 

Therefore, since <I I ?j (and so every &), by Lemma 6.3, we get 

The same computation shows also that cpi(u)VV,, 2 &ri and we conclude 

min{(p’(,U)WU, cp:(u)WU} L $$. (6.3) 

In this case we set F,,; = 0, 
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In the second case, i.e. i E Z~(U) and I[u[~I,~~,, < ro, we claim that 
/Ju.iu, E B,(dj,) \ dy, and P(U) 5 cz + 6. 

Indeed we obtain easily that pU.iu E X\dj% since by Lemma 6.1 we have 

2 7’1 - (ll~4l~,,“I, + 4& > 7.1 - (7-g + ;r;, f > 0. 

On the other hand we recall that by Lemma 4.1, since Qj, c 1i, we have 
that snpAJz Il~Iln\~, < r’o. Therefore 

To prove our claim we have to show that (P(,/&~u) 5 c, f h. 
To this end we observe that since IIuIIL~~~,\~~,~, < 6, we have 

i 114?3,“1, - JB,“l, c~(t)W(~)dt 1 0. Then since (P,(U) 5 cz + 2h and 
<i < !j, we obtain 

- 
J 

a(t)W(u)dt - 
s 

u(t)W(u)dt 
I, \a,, I~,,,, 

I cpi(U) + 31; 5 c7; + 3& < cc + A>. 

Then by the annuli property there exists vL,+ E X, III&;11 = 1, such that 
p’(,&,;u)Vu,i > $. By Lemma 6.2, since 1; < [r 5 g, we obtain 

rnin{cp(u)A,iVu,i, d(u)A,iK.i) L $. 

Then if i E Z~(U) and IJuII~,,,,~,, < ~0 we set F,,; = ,h’~‘,;V~~,i. Since [; < i, 
by (6.1) we have 

min{cp’(u)(F,,; + W,), p:(~)(E~,i -t WTL)} 2 $. (6.4) 

Defining 
F,,i + W, if XI(U) # 0 

otherwise, 
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by (6.3) and (6.4), recalling that fi = i mm{ 2, i}, we finally obtain that 
if 1, (u) # 0 then 

Now we consider the case Z E &(u). 
Considered Xq = min{ %;r(:}, we have either II~ll~~,,,,l, 2 Xi or 

II&t,nr, < A. 
In the first case we set F,,-i = 0 and we observe that, replacing ~0 with 

A,, the same estimative with which we obtained (6.3), give now 

miri{cp’(,u)W,,, cp:(~)W,,} > AAT. (6.6) 

In the second case we claim that /jlL,;iu E B,(Aj,) and cp(/Y,,iu) < CT- %. 
Indeed, since A; 5 1’0 we have already prove that &iiu E B,(A,?). 
Moreover, since XT 5 2, <’ < $ and I~uIIL-~~,~~,, < 8, we have 

and since cpi(~) < c~i- - h, the claim is proved. 
By (S;) there exists e,,; E X, ~~~:l.;~~ = 1, such that (P’(P,.~u,)I/;,,, > y 

By Lemma 6.2, since <’ < & 5 % we have 

~rli~~{(P(~~)iM~L.i~r.i. cp:(~~)iL.iR,.;} 2 2. 

Then if i E &(u) and lj~ll~,“~~,, < A; we set I;‘,,,, = ijjl[!,;p,.;. Therefore, 
since [f 5 & < %, by (6.1) we have 

rnin{cp’(u)(F,,,, + W,,)! cp:(u)(F,,.; + W,,)} 2 $. (6.7) 

We define 
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and by (6.6), (6.7) and (6.2), we have that if ZTa(u) # 0 then 
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if i E Z*(Y) 

Finally we consider the case Zr (u) = Z2 (2~) = 0. Also in this case we 
distinguish between the two following alternative cases: 

::l”l;pIIz, - %-J L 0 or Iyy$l141L, - G-J < 0. 

In the first case there exists i E (1;. . . , k} for which IIuII&, > S<F-r and 
by Lemma 6.3 we have 

In the second case if u E { cp < kc%+ ;A}, since k > SE:-, (1 < 1: 5 k), we 
have that u. E &k n @k n D,, (J). Since fry n ak n B,(J) n K = 0 and since 
in B,(J) the Palais Smale sequences are precompact, there exists CJ > O 
such that for any u E &k. n @k. n B,,(J) there exists Vu E X, /IV,, II = 1 and 
such that cp’(u)V, 2 VJ. 
Setting vJ = + min{ti.J, +[z} and 

i 

W,, 
FL”) = 

if Zr(u)= Z*(U) = 0 and maxr<i<k(lluII& - S<f-r) > 0, 
V,, if Z1(,u) = Z*(U) = 0 and if n~axl<+~~(/lul~~It - &$) < 0, 
0 otherwise, 

we have that if 2r(~) = &(u) = 0 then 

Cp'(U)FL") 2 811~ (6.10) 

and moreover, if u E B,., (J) \ Ek, by (6.2) we have 

(u,F(“))nl = (U,W,)*~, 2 1 t 2 u , 
( ) 

~ 1141;1, 
2 C,“=& 

i = l,...,k. (6.11) 

We define 

obtaining our results by (6.9, (6.8), (6.10) and (6.11). We note that it is 
not restrictive to assume llFull~, < 1 choosing f smaller if necessary. 1 
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