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ABSTRACT. - In this paper we show the existence of a plateau for the 
minimal action function associated with a model for a particle under the 
influence of a magnetic field (Hall effect). We describe the structure of the 
Mather sets, that is, sets that are supports of minimizing measures for the 
corresponding autonomous Lagrangian. 

This description is obtained by constructing a twist map induced by the 
first return map defined on a certain transversal section in a fixed level of 
energy. 0 Elsevier, Paris 

R&SUML - Dans cet article nous demontrons l’existence d’un plateau 
pour la fonction d’action minimale associee au modele du mouvement 
d’une particule sous l’action d’un champ magnetique (Hall effect). Nous 
decrivons la structure des ensembles de Mather, c’est-a-dire, les ensembles 
qui sont le support des mesures minimisantes pour le Lagrangian autonome 
correspondant. 

Cette description est obtenue en construisant une application << twist B 
induite par l’application de premier retour definie sur une section transverse 
dans chaque niveau d’energie. 0 Elsevier, Paris 
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668 M. J. DIAS CARNEIRO AND A. LOPES 

0. INTRODUCTION 

In [3], Mather’s theory about minimizing measures for the action of 
time periodic Lagrangians is developed for the autonomous case (time 
independent). Further developments were obtained by Contreras, Delgado, 
Iturriaga and Marie in [l]. 

In this work we study a special Lagrangian on the two dimensional torus 
(two degrees of freedom and periodic on each spatial coordinate). In the 
model considered here there exist a non-trivial magnetic potential vector 
but there is no eletrostatic potential. This model appears in phenomena 
related to the Hall effect. 

The objective is to study the dynamical properties of the Euler Lagrange 
field generated by the Lagrangian associated to a magnetic field. In R3 with 
coordinates (xi, ~2, zs) let us consider a C” magnetic force F = i x B, 
B = V x A, associated to a Lagrangian on the two Torus T2 defined by 

q7h,~2,~1,V2) = 
llvl12 

Yj- + (4 %52),4 

where the metric I] ]I is induced by h t e euclidean inner product and 
4x1, ~2) = (a&a, x2), a2(~1, x2)), 

The Euler-Lagrange flow associated with this Lagrangian is generated 
by the vector field 

x: 
C 

i=ll 
V = (8,a, - dla2)Jw = Y x B 

where 

It follows immediately that the scalar velocity is constant along a solution 
of X and, by Stokes Theorem and the periodicity of A, that the locus of 
inflection points diaz - &a, = 0 is non-empty. 

This set is relevant to the following problem: describe the minimizing 
measures of the action A(p) = s Ldp, among the probabilities with 
compact support invariant under the flow of X with a given rotation 
vector p(p). 
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MATHER SETS FOR LAGRANGIANS ASSOCIATED TO MAGNETIC FIELDS 669 

Let us explain the terms of this statement. First, we observe that the 
above Lagrangian is positive definite (that is for all z E T2, LJT(T2) has 
everywhere positive definite second derivative) and superlinear 

uniformly on T2. Therefore the solutions of X are defined for all t ER (is 
complete) and L satisfies the hypothesis of Mather‘s Theory for autonomous 
Lagrangian. According to that theory, for a given invariant measure Y 
with compact support on the one point compactification of T(T2), we 
define the rotation vector or homological position, P(Y) = ((~i, ~2) = u E 
Hi(M, R) = R2, the first real homology group of M, as the element p(u) 
such that for any co-homology class [w] E Hi (M, R)’ = H1 (kf, R), 

< [WI>&) >= .I wdv 

In particular, if v is ergodic, then 

.I 
T 

wz(k)dt, 
-T 

where the trajectory (x(t), k(t)) E R* (solution of the Euler-Lagrange 
equation)used on the right hand side integration is generic in the sense of 
Birkhoff’s Theorem with respect to V. 

In the case of the two torus, T2, p(v) = (aI, a~) E R2 = H1(M, R), 
means that the lifting z(t) = (~i(t),~(t)) of a generic trajectory to the 
universal covering R2 is such that zi (t) has a mean value of inclination 
CQ, that is, 

lim ~l(t> - x1(o) = Q1 
t-+m t 

> 

and 23(t) has mean value of inclination Q:! that is 

lim ~l(t> - x1(o) = (y2 
t-+30 t 

This follows from the fact that dzi and dx2 generates H1(A4, R). 
Whenever the above limits exist we say that the curve has asymptotic 

direction (c~i, ~2~). For example, if there exists a vector (m, n) E Z and a 
number T such that .z(t + T) = z(t) + ( m, n) then it is easy to see that the 
associated homological position is equal to $(m, n). 
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670 M. J. DIAS CARNEIRO AND A. LOPES 

For a probability measure V, the action is defined by A(v) = s Ldu. 
Given a homological position u = (or, CQ) , we denote by P(U) = 

inf,(,)=, A(p), (where h is assumed to be invariant for the flow X), the 
minimal action function. A measure v,, satisfying A(v,) = P(U) is called 
a minimizing measure (or a minimizing measure for u). 

The minimal action function is convex and superlinear and many 
interesting properties of the Euler-Lagrange flow can be derived from 
its behaviour, see [2], [4] and [7]. For instance, if u is an extremal point 
for p, then there exists an ergodic minimal measure with rotation vector U. 
However, in general, /3 may have non trivial linear domains (“plateau”), 
which are convex sets such that the restriction of ,B is an affine function. 

In the case of the torus it is easy to see, as [3] for example, that 
,13 can be non strictly convex only along closed intervals contained in 
one dimensional subspaces. Moreover, if the interval does not contain the 
origin, the subspace must have rational slope (rational homology). It is well 
known that by adding a gradient vector field to the magnet potential we 
do not change the Lagrangian, therefore, using the Fourier expansion and 
integration by parts, the magnetic potential can be written in the following 
form: 

with uz(21,2a) = C cos(2n~~r) C,(Z~)+S~~L(~~~Z~)D,(~CZ) and 7h 2 1. 

We can now state our theorem: 

THEOREM A. - Let us suppose that magnetic potential is vertical 
A(wQ) = (0, b( x1, x.2)) and satisfies: 

(9 b(n, 22) = c cos(2nTz$qz9 with n odd and 
~nsin(2nTx~)cn(12) > 0, for 0 < 21 < l/2. 

(ii) 4b,i,b > b,+,* + b2, where b,,,;, = min b(zl,z2) and b = 
.I; b(;, -m)dm 

Then the minimal action function is not strictly convex, and there is a 
segment of the form { 0} x I C Hr (T2 ,R), where 1 = (-b, b), such that 
if h belongs to the interior of I there is no ergodic minimizing measure 
p such that p(p) = (0, h). 

Moreover, there is a positive number (‘ such that if ]]v]]~ = E is a level 
set that contains the support of a minimizing measure, then E 2 <. 

Several examples satisfying the hypothesis of Theorem A are presented 
at the end of Theorem 3 in the next section. 

In figure 1 we show the graph of ,B(O, h) as a function of h. 
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MATHER SETS FOR LAGRANGIANS ASSOCIATED TO MAGNETIC FIELDS 671 

Fig. 1 

As it was pointed out in the beginning of this introduction, the set of 
inflection points K (defined by diaa - &a, = 0) is always non-empty. 
Under the hypothesis of Theorem A it projects onto two closed curves 
&UK+. 

Therefore any trajectory of X which projects on to a curve( homotopically 
non trivial), with asymptotic direction, must intersect K transversally (or 
coincide with K). Therefore we have naturally associated a first return 
map T : K + K. 

THEOREM B. - Lef b(xl, x2) be a magnetic potential satisfying the 
hypotesis of Theorem A. Then there is a positive number Eo such that 
if E > Eo there is an open annulus A (E) and an area preserving twist 
map BE : l\(E) + /j(E) such that any minimizing measure p, with supp p 
contained in the level set E, is described by orbits of BE. 

Moreover, there is a number cr = Q(E) E R such that if p is an ergodic 
minimizing measure with the slope of the rotation vector p(p) bigger 
then QI, then supp p is not an invariant torus. 

After Theorem 6 in section 2 we show examples where all these results 
apply. 

In this work, we studied examples with al = 0, constant . The situation, 
in general, is much more complicated. However, we believe that these 
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672 M. J. DIAS CARNEIRO AND A. LOPES 

examples serve as model cases, in the following sense: the dynamics of 
the Euler-Lagrange flow in the level set is divided in two pieces, one is 
described by the orbits of a twist map (or composition of twist maps) and 
the other, where invariant torus cannot exist, is similar to the dynamics 
near a homoclinic point, giving rise to horse-shoe type of dynamics. 

Theorem A will be proven in section 1 and Theorem B in section 2. 

1. EXISTENCE OF PLATEAU 
FOR THE MINIMAL ACTION FUNCTION 

We recall that the minimal action function /3 is convex in u and from 
Theorem 1 [3], the total energy is constant in the support of any minimizing 
measure. 

We will show that p has a plateau when restricted to vertical line 
(O,h), h E R. 

We collect some elementary facts about the solutions of the particular L 
we consider. 

It is easy to see that the total energy L - L,.v is constant on trajectories 
of the flow and is equal to 

SYMMETRY. - it is also easy to see from the symmetry of the Lagrangian 
that if z(t) is a solution then 

.qt) = Z(-t) + ( > ;:0 
is also a solution. 

PROPOSITION 1. - The minimal-action function ,6 associated to L is 
symmetric, /3(--u) = /3(u) for all u E H,(T*, 33). 

Proof. - Suppose that ,z(t) and Z(t) are solutions of the Euler-Lagrange 
flow such that 

1 
,qt) = Z(4) + ?:O . ( > 
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Then 

J 

T 1 

J 

-T 

b(z(-t))i2(--t)dt = 2E - - 
2T T 

@(t))~2(t)dt 
-T 

=2E+&, 
J 

T 

b(z(t))Li&)dt = A[2 ITT1 

-T 2T 

Suppose that z(t) is the projection of a generic solution which is contained 
in the support of an ergodic minimizing measure h so that 

A(P) = P(P(P)) = ;Fm A[z ITT] 
277 . 

One can define a new invariant measure jj on TA4 by 

Observe that the limit exists since 

l)(+t)+ (~:O)‘-i(-t))dt=~-Tf(Z+~,-io) -du= 

T 

= J ( -T f +) + f > -k(d) du. = JT ddt), 4t))dt 
-T 

where 

Considering g(x, w) = W,(V) where w is a l-differential form, we can 
conclude that p(p) = -p(G). 

It also easily follow that A@) = A(p) implies p(-p(p)) 5 A@) = 
@(p(p)). Reversing the above construction we obtain the opposite inequality 
and we finally obtain &M$.A)) = /I(---p(u)). 0 

PROPOSITION 2. - It follows from the symmetry of ,B that 

,0(O) = minp 5 0. 
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674 M. J. DIAS CARNEIRO AND A. LOPES 

Proof. -If p(U) = minp then /?(--U) = min ,B and by the convexity of ,B, 

p(O) 5 +/I(U) + fPc--U) = min/?. 

Since v = 0, z = ~0 is a singularity of the Euler-lagrange vector field, 
and L(za, 0) = 0, then min/? 5 0. Cl 

In the case of the torus, if 5’ is a supporting domain for the function ,!J, 
then S is contained in a subspace of dimension 1 (Proposition 3 [3]). 

Theorem A, that will be proven bellow, shows the existence of nontrivial 
supporting domains for the class of Lagrangians considered here. 

THEOREM 3. - Suppose the b(xl , x2) satisfies the following hypothesis 
(equivalent to the ones stated in Theorem A of the Intoduction): 

(9 b(-x1,x2) = b(xl,x2) 

(ii) b(xi + f),~) = -b(x1,22) 

(iii) for each jixed x2, b(xl, x2) is monotone decreasing on the interval 
(07 ;I 

(iv) 4b,i,b > bmin2 + h2 where bmin is the minimum of b and 
0 > 6 = Jb’ b($,x2)dx2, 

then, there is a horizontal Jlat segment for the p function in the level 
set P-l (P(O)). 

For (0, h) , h E (b, -6) there is no ergodic minimal measure with rotation 
vector (0, h) and outside this set /3(0, h) = P(h) is strictly convex as a 
function of h. 

Moreover, if b is a minimizing measure, then the support of p is contained 
on a level of energy E such that E > g. 

Proof. - It follows from b(xl + l/2, x2) = -b(xl, 22) and b( -x1, x2) = 
b(xl, ~2) that 

Therefore 

dIb(0,x2) = 0 = &b :,x2 . 
( > 

Xl :tw (0,-&m) 

and 

x2 :tk-+ 
( 1 

+Et 

are solutions of the Euler-Lagrange equation with the same mean action 
T -&ET 

A[z,I:,] = 2ET - .I b(0, -&%)adt = 2ET + 
.I 

b(0, t)dt 
-T &ET 
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and 

then 

AS 

and 

we have 

J 
ALET 

A(21 ITT) = A(.zz ITT) = ‘JET - b(0, t)dt. 
-dZET 

.,(t- &j = (0, -8zt + 1) = a(t) + (0,l) 

.,(t+&j = (0, mt + 1) = x2(t) + (0,l) 

p(z1) = -dz(O, 1) 

P(Z2) = mm 1) 

and ~1, ~2 the probabilities defined by 

are invariant under the Euler-Lagrange flow. 
We have just seen that 

J 
1 

A(/A) = A(1.12) = E - &i? b(O, 22)dx2, 
0 

and this implies that 

,B(O, h) < min 
{ 

; + hb, ; - hb , 
1 

where ?I # 0. 
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676 M. J. DIAS CARNEIRO AND A. LOPES 

We now show that the measures p1 and p2 associated to the curves 
zi and 22 with velocity m = -6 are minimizing. In order to do that, 
let us evaluate 

.I’ 

6 
b(Xl, Z2p2dt 

0 

for a solution of the Euler-Lagrange equation such that z(6) = x( 0) + (0, l), 
with 

1 -- -- 
6 

El b(4 = PL4K 

Partition the curve x(t) into pieces to = 0 < tl < . . . < tk = 6 such that 

i2l( t* >t,+, If0 
so the above integral becomes 

CJ 
L+1 

b(z2, x&2dt = x J 
ea(Gt1) 

qfdzz), 52&2 
t, 22 (ti) 

where f;(xz) in a C1 function such that the image of IC restrited to [ti, ti+l] 
is contained in the graph of f;. Of course x2(&) < x2(ti+l), if k2 > 0, 
and x2(&) > x2(ti+i), if k2 < 0. 

By assumption 

b(O,Z2) > b(Xl,Z2) > b 

so 

if x2(&) < x2(ti+l), otherwise, 

s Q(L+l) 
b(fi(X2),X2)&2 = - 

m(L) .I’ z2 (6) 
W&z), x&h > 

m(t,+1) 

J 

m(L) 

s 

22 CL) 

b(0, z2)dx2 = 
1 - b(-,x&b. 

m(tt+1) m(L+1) 2 

That is 
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;yhere. [x;,$‘] = [x2(&),x2(&+1)], if &Z > 0 on (t;,k+~) and 
x;,x;+‘] = [c~~(t~+~),~(ti)], if G < 0 on (&,&+I). 

Let 

bmin = min b(xl, ~2) = min b (;,Q) and b= ~‘b(~,xz)dxr. 

Observe that 6 < 0. 
Since x is a solution of the Euler-Lagrange equation, it is contained in 

a energy level, say E, and from the hypothesis x(t + 6) = xc(t) + (0,l) 
it follows that 

k-l 

v?%S = lenght (X ) > x(x;+’ - xi) > 1. 
o<t<s l=O 

However due to the convexity of 2 in the strips 

o<x,<; 
or 

this bound can be improved. 
Before doing that, let us suppose that the number of points with horizontal 

direction is equal to 4 (as in figure 2). The case with fewer critical points 
are treated similarly. 

By the above construction the curve x[~~,~I is subdivided into 4 pieces 
on each of one iz # 0, with the corresponding points labeled as follows: 
CZ$ < x: < xi < xi < xz and where xi = xi + 1 (xt = x2(0) is the 
smallest local minimum) 

For instance, in figure 2: min < max < min < max < mitt, therefore 
alternating minimum and maximum. 

The integral in (*) is 

b( ;, xz)dxz + 

Vol. 16, no 6-1999. 
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Fig. 2 

b + 2b,i,[x; - x; + x; - x;] = 6 + 2bmi,,[x; - x; + x; - x; - I] 

Or 

1 3 s 6 b 
0 

bk2dt > s + 

6 2b,;, 
=--- s+ 6 

Since 
p(x) = $O,l) = -t;(O, l), 

we obtain 5 = -6. 
Denote A4 = 2[xi - xt + x?j - x$. 
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Then, 
1 6 

s 0 .I 
b&dt > -5’ + 2b,i,h - b,&M. 

However, &@S =lengh (~1; ) > 1 + M, or 

E> ;(1+2M+M’). 

So we obtain the following estimate for A[x]: 

A[z] > ;(I+ 2M + M2) - 6* + 2b,;,b - bmi,bM 

that is, 

A(z) > $ + 2b,;,$ + &‘M + ;M2 - b,;,iM, 

The right hand side of this inequality, as a function of M has minimum 
value for 

M = bmin - 6 
6 ’ 

therefore 

44 > $ + 2br,& + b(bmi, - b) + 
(bm;, - b)* 2 - hni,(b,i, - b), 

that is. 

A[x] > $ _ (bmin2- ‘I2 + 2bmi,j. 

Therefore, if -5’ - b bmin2 + 4bmi,6 > 0, then A[z] > A[pl]. 

The same procedure also works if there are more critical points. If 
x(t) = [xl(t),xz(t)] E R*, 0 5 t 5 S, we denote by CC; = x2(O) the 
smallest local minimum for x2(t). 

Let 2~2” < xf < . . . < xi be the image of the critical points of 7r2(z(t)), 
0 5 t 5 S, where 7r2(2i, ~2) = 22 is the canonical projection. The lines 
x2 = x$ determine a partition of x(t) in the interval 0 5 t 5 6. Observe 
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that z$ = z$ + 1 for some 1 < k, then using this partition we obtain 

.I’ 
6 

.I 
1 

b(Xl, Q?)izdt 2 
0 0 

b(~:,,2,)dz-2b,,,+b,;, ~(zj-l)(zJ,-z;-‘) = 

= 6 - 2b,;, + bmi, C(nj - 1)(x; - CT”,-‘), 

where nj is the number of components of the intersectionn of x(t) with 
the strip X; < 22 < x;-‘. 

However, m6 = lenght(z) 2 1 + C(nj - l)(& - x”,-‘) 
Therefore, using the above estimate, and denoting by 

M = C(nj - l)(zi - z-l) 

we obtain 
A[x] = E + + &f b(q(t)),x2(t))i2(t)dt 2 w + + + byyM. 
Since + = -5, we get 

A[x] > (‘+ M)262 - &(b - 2b ) - bb M 
2 

m7.n Tn211 

or 

4x1 2 -; + M2; + Mb2 + 2bmi,b - $b,;,M. 

AS before. 

ALxl r  -“’ I  (bmi, ;-  b)2 -  -  

+ (hi,, -  b)b + 2bmin~ -  bmin(b,,i, -  b) ,  

or 

A[x] 2 -; _ !++ 
- 

+&&., _ ; _ ; _ cbmin2- b)2 + 2b,;,5 

as before. 
Therefore, if -6’ - bmin2 + 4bbmi, > 0, then A[z] > A[,u~]. 
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This shows that the vertical solutions (0, bt) and (0, -St) are minimizers 
and ,D(O,b) = p(O, -6) = -T. Therefore, the interval 

I={h(b<h<-b} 

is a non-trivial linear domain for the minimal action funcion. 
This also implies that there are no ergodic minimizing measures with 

rotation vector (0, h) with h # 0, inside the interval I. In fact, the graph 
property of R(I) (=the closure of the union of the support of all minimizing 
measures with rotation vector inside 1) implies that any solution contained 
in R(I) does not intersect the lines x1 = 0, z1 = i. This means that the 
projection must be a convex curve (nonzero curvature), but this contradicts 
the assumption that the rotation vector is multiple of (0,l). 

Also using the above estimate one can prove that the value of the action 
on a curve with vertical rotation vector (0, h) with h E 1 and h # 0 is 
bigger that - $. Now from Corollary 2 in [3], the minimum energy level 
that contains a minimizing measure is E = - T. 

We consider now the case h = 0. 

If there is a minimizing measure p with p(p) = 0, then the lift of 
the projection of supp p to R2 is a closed convex curve homotopically 
trivial. Also using the ideas of [3] we get that such curve is parametrized 
with constant speed lb/. By the graph property, if such curve comes 
from a minimizing action measure, then it can not intersect the lines 
z1 = 0, ~1 = i , ~1 = 1 (that are in the support of minimizing measures). 

We can assume without lost of generality the case where the solutions 
are on the strip 0 < z1 < i. 

Suppose that y1 and 72 are closed convex curves homotopically trivial 
contained in the strip 0 < ~1 < i with y1 contained in the interior of 
the region bounded by y2, then length y1 < length y2, so the respective 
periods satisfy rl < TV. 

Hence 
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where R is the annulus bounded by 72 - yi. Since R is contained in strip 
0 < 21 < i, where di b is negative we obtain 

4721 < 4~11. 

This shows that there are no minimizing curve which is homotopically 
trivial. 

Finally for (0, h) outside the interval { 0) x I), estimates analogous to 
the one used in the previous case show that the solutions (0, ht) and ($, ht) 
are global minimizers. 

For h not in the set 1, it is easy to see from the above that 
/3(0, h) = P(h) = $ - hb for h > -6 and p(O, h) = ,0(h) = $ + h& 
for h < ?I. 

This shows that the graph of /3(0, h) = /3(h) as a function of h has 
the shape of figure 1. 

This is the end of Theorem 3. 0 
Now we will show some examples: 
1) when b = bx = cos 27r~i(l + Xsin 27rz2), where X is a constant 

small enough: 6 = - 1 and bnLin = -( 1 + A), so the condition is 
-1 - (1 + A)’ + 4( 1 + A) > 0 or: 1 - fi < X < 1 + a, and since 
we are assuming 0 < X < 1, we always have A[z] > A[,u] = 2. 

2) when b(z1,x2) = cos2nzi(l + Xsin7r22), then 6 = [-1 + $1 and 
bmin = -[l + X] 

3) in general whem b is of the form b(xl)c(z2), then 6 = 
b(zI) Jei c(~~)cZQ = b(z)?? and bmin = b(Z1)c(Z2) (if b(%,) < 0 then 
brnin = b(ZI) max c(za)) and the above condition becomes: 

-b(j;.,)2c2 - b(fif1)2c(z2)2 + 4b(!Q2c@,) > 0 

or 
-E2 + C(32)2 + 4C(?2)c > 0 

(condition only on the perturbation term). 

2. THE TWIST MAP 

In this section we show Theorem B, that is, the existence of a twist map 
defined by the first return map associated with a certain tranversal section. 

We will need first the following proposition: 

PROPOSITION 4. - Suppose that z : IR + R2 is a minimizer with 
non-vertical homological mean position i.e, p(z) is not a multiple of (0,l). 
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Then the map t H 7r1 o z(t) = xi(t) is injective. 

Proof. -If k,(ta) = 0, since Ii?(t)1 = &!?, we have i(to) = (0, km). 
By uniqueness of O.D.E. 

z&o) # $0 

because we are assuming that the homological mean position of z(t) is 
non-vertical. 

Let us suppose without lost of generality (otherwise use the symmetry 
principle) that 

1 
z&o) E 2,1 . ( > 

By the convexity of x(t) in the strip 

1 
51 E -,l ( 1 2 

and non-verticality of the homological position, there exist two points 
ti < to < t2 such that 

or 
x(t1) = x(&) = 1. 

Without lost of generality suppose the first case happens (otherwise 
apply the symmetry of 0). 

Observe that &(ta) > 0, otherwise, by convexity of z(t) it will never 
hit the side x1 = $. 

Therefore there are two values c, d such that c < to < d with 
a(c) = a(d). 

From this follows that 

A[$!] = E(d - c) + 
.I 

@(t))h(W 2 

E(d - c) + ~~~~~(~~,il.il)h:lllli. 

The right hand side is the action of the curve (~i(c),~z(t)) with the 
same end point condition. Therefore z is not a global minimizer. cl 
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Now we will show that under appropriate conditions and using certain 
variables there exists a twist map induced by the first return on the torus 
to z1 = 0. First we will show that under these assumptions a trajectory 
beginning in ~1 = 0 will hit 1~1 = l/2. The same reasoning, after that, will 
produce a sucessive hitting in ~1 = 1. 

This procedure will induce a first return map that ,as we will show later, 
is a twist map. However, it will be necessary that the energy (velocity) of 
a solution z(t) is large enough in order to cross from ~1 = 0 to ~1 = 1. 

First we will need the next theorem. 

THEOREM 5. - Let cp(t) be the angle (with the horizontal line) of a 
trajectory z(t) of the Euler-LagrangeJEow on R2, z(t) = (xl(t)>zz(t)). 
Suppose that xl(O) = 0, 22 (0) = xi. There is a positive Eo and 00 such that 
ifthe energy E > Eo and the initial condition (xl(O), z2(0),2;(0), xi(O)), 
tancpo = $$ is such that -6’0 < cpo < do, then 3to such that 

1 

x&o) = ;. 

Proof. - The proof is by contradiction. 
Start with some initial condition 

Suppose kl(t) # 0 for t in the interval (0, S), then there is a function 
y(z) such that x2(t) = y(xl(t)). 

Let 

I 

II(t) 
X(t) = &b(xl, y(xl))dxl - J2Esin cp(t) 

0 

for 0 5 t 5 6. 

X(t) = a,b(x,(t),y(q(t)))&(t) - l/Zcoscp(t)cp(t) = 0. 

Therefore, X is constant along the trajectory z(t). 

Suppose, by contradiction, that there is no to as asserted and let tl be 
the first value such that cp(tl) = 5. 

Denote xl(tl) = x1 < $. 
As x(t) is constant 

X(h) = 
.I 

21 &b(xl, y(xl))dxl - diZ = --&Esin cpa, 
0 
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or 

s 

21 
dlb(xl,y(xl))dxl = &(l- sincpa). 

0 

Since 

s 
z1 W(x1, Y(Xl))dXl 

0 

is bounded above by some V (depending only on b), then 

V 
m 2 (1 - sincpo). 

If E is large and sin cpo bounded away from 1 the last expression is not 
possible. Therefore, z(t) has to cross ICI = l/2, otherwise the solution is 
always in a region of negative curvature and will bend until p(t) attains 
the value r/2. 

Observe that analogous argument (by taking limits) can be applied in 
the case ti = cc. 

This shows the Theorem. 0 

Remark 1. - After the hitting of the line zi = i the trajectory will hit 
the line z1 = 1 by the same argument (symetry ). This shows the existence 
of a first return map of trajectories (with large enough value of energy) on 
the torus beginning in z1 = 0 to itself. The domain of definition of such 
map is all 0 2 z$ 5 1 and ‘p. on a uniform neighbourhood of 0. 

For a better geometrical understanding of the domain of the returning 
map we describe the phase space of the Lagrangian flow in the example 1: 
b(xl,xa) = cos27rzi(l + Xsin27rza). 

For X = 0 and E fixed it is easy to see that H(si, ‘p) = cos(27rzl) + 
&Esin cp is a first integral. 

This follows from 

da hzcoscp 
T= -2x sin(27rzi) 

The critical points of H(zi, ‘p) are 

(O>@) maximum 
(0, -7r/2) saddle 
(1/2,x/2) saddle 
and (l/2, -7r/2) minimum. 
Depending of the level of energy, the separatrix of the saddle points 

prevent or not the trajectories to cross from z1 = 0 to x1 = 1. This 
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0 0.2 0.4 0.6 0.8 1 

Fig. 3 
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Fig. 4 
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property can be seen in figures 3 (parameter E = 0.1) and 4 (parameter 
(E = 20). 

A necessary condition for existing trajectories with non-vertical rotation 
vectors is E > i. 

In fact, since the equation for the separatrices are 

&( 1 - sin cp) = 1 + cos 27rsi 

and 
&(l +sincp) = 1- cos27rz1, 

if E 5 l/2, then both curves intersect the axis cp = 0 and therefore the 
saddle conection will be among saddle points that are in the same vertical 
line (X = 0 and z = l/2). 

This property prevents any trajectory of going from 2 = 0 to z = l/2. 
In the case E > l/2, the saddle connection will be between saddle points 
Iocated in the same horizontal line. 

The analysis of the dynamics of the returning map T in the case of small 
X is obtained by continuity properties of the perturbation of the case X = 0 
described above. Note that the domain of definition of the perturbed case 
is a subset of the domain of definiton of the unperturbed case. 

A geometrical picture that may help the reader is shown in figures 5 
and 6. In fig 5 we show the unperturbed case A = 0 and fig 6 shows the 
case of X # 0 but small enough. 

Fig. 5 
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Fig. 6 

Now we will show that under suitable change of coordinates the map 
defined above is a twist map. 

Fix a value E of energy such that there exist minimal solutions 

(~l(t)?~2(t>,~l(~)~~2(t)) = (~l(t)!~z(t),~l(t),v2(t)) 

with xl(t) coming from 0 to 1. 
Consider tan cp = 2. The Euler Lagrange equation can be written 
il = ‘(11 = v?z!7cosp 
LJ& = v2 = @sincp 
‘& III -JZsincp+ 
ti2 = &izcoscpcp 

(P = K(%52), 

because $ + ~2” = 2E. 
Expressing the last two equations in terms of 51 (cp), and za(cp) we obtain 

Let the variable w be v%!?sin cp. 
The last two equations in terms of w can be read as (remember that 

z2 is a function of x1) 

Anna1e.r dr I’lnstiiut Henri P&car& Anaiyse non IinCaire 



MATHER SETS FOR LAGRANGIANS ASSOCIATED TO MAGNETIC FIELDS 689 

The transformation T should be seen as a first hitting map in the variable 
(~i,~z) of the trajectory beginning in the line (z~,z$) = (0,~:) to the 
line (~i,~t) = (1,~;). 

The domain of definition of T is the set of (z$!, w”) obtained in Theorem 5 
and remark 1. Note that in this case, the solution z(t) of the Euler-Lagrange 
equation , z(t) = (xi(t), 22(t)), with initial condition (0, z$, w”) should 
satisfy the condition vi(t) = xl(t) # 0 for all t. 

The map T(zi, w) is formally defined by taking the time one of the flow 
&, generated by this (time-dependent) vector-field. 

If b is a function of 21 only, as in the above example, the vector-field is 
integrated explicitly and the return map becomes 

@(Xl) - b(O) + w> 

2E - (b(q) - b(o) + w)” 

In this case we call T integrable. 
Such T is clearly a twist map and therefore, for small A, the map T = TX 

is also a twist map defined on an open annulus. 
This is also valid in the general case but the region where T is twist 

will depend of the particular form of b. 
Now we will show Theorem B. 

THEOREM 6. - Let b(xl, x2) be a magnetic potential satisfying the 
hypothesis of Theorem A. Then there is a positive number Eo such that 
if E > Eo there is an open annulus /j (E) and an area preserving twist 
map BE : l\(E) + A(E) such that the minimizing measure p with supp p 
contained in the level set E is described by orbits of BE. 

Moreover, there is a number Q = a(E) E R such that if p is an ergodic 
minimizing measure with the slope of the rotation vector p(p) bigger 
then Q, then supp p is not an invariant torus. 

Proof. - First we observe that the local maximum of the slope of any 
solution occur at x1 = 0 and the minimum at x1 = $ and by the graph 
property, if there is an invariant torus in the tangent bundle contained in 
some energy level E and foliated by minimizers then it is a Lipschitz graph 
of the form 4 = 4(~r,zz). 

Let A(E) be the domain of the twist map as described in Theorem 5, 
then there are two C1 functions &, $2 such that l\(E) = {&(x2) < w < 
42W). 
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If T : l\(E) -+ C denotes the return map, then f~j~:zTj(A(E)) is an 
annulus bounded by the graph of two Lipschitz functions a?(~), @(x2). 

Let P+(E) = supa? and P-(E) = infaf(z2) and 

P+ (El 
a+(E) = &E _ p+(E)2 

and 
a-(E) = P- w 

J2E - /L (E)2. 

If SPh is an invariant torus contained in the level set E and with 
the associated rotation vector a multiple of p/q, then there is a point 
(xy, xi) belonging to the projection of S,,, on the torus T2 such that 
tan9%6,4 = P/C 

It follows from the invariance of S,,, that cy- (E) < p/q < a+(E). 
On the other hand if S, is an invariant torus with associated rotation 

vector with irrational slope, then there is a sequence of rational numbers 
pn/qn converging to Q and a sequence of points (zc;,x$) in T2 such that 
tan 4(x;“! +) = pn/qn . Therefore, from the invariance of S, we obtain 

CL(E) < LY < a+(E) 

We conclude that if E > a+(E) then there is not an invariant torus with 
rotation vector p = (pl, ~2). q 
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