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ABSTRACT. - In this paper, we study the stability of closed characteristics 
on a starshaped compact smooth hypersurface C in R2”. We show that 
the Maslov-type mean index of such a closed characteristic is independent 
of the choice of the Hamiltonian functions, and prove that on C either 
there are infinitely many closed characteristics, or there exists at least one 
nonhyperbolic closed characteristic, provided every closed characteristic 
possesses its Maslov-type mean index greater than 2 when n, is odd, and 
greater than 1 when n. is even. 0 Elsevier, Paris 

Key words: Hamiltonian systems, Maslov-type mean index, iterations, hyperbolic closed 
characteristics, star-shaped energy hypersurface 

R&SUM& - Soit C une hypersurface CtoilCe compacte, C2, dans R2n, 
qui est obtenue par la methode de variation directe. Dans cet article, nous 
etudions la stabilite des caracteristiques fermees sur C. Nous demontrons 
que l’indice moyen de type de Maslov d’une telle caracteristique fermee 
ne depend pas du choix des fonctions Hamiltoniennes. Si on suppose qu’il 
n’existe qu’un nombre fini de caracteristiques fermees, alors il existe au 
moins une caracteristique fermee nonhyperbolique sur C si pour toute 
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726 C.-G. LIU AND Y. LONG 

caracteristique fermee sur C, son indice moyen de type de Maslov est 
superieur a 2, et si n est impair (resp. 1, et si r~, est pair). 0 Elsevier, Paris 

1. INTRODUCTION AND MAIN RESULTS 

In this paper, we consider the Maslov-type index theory for star-shaped 
Hamiltonian systems and generalize certain results of fixed energy problems 
on convex hypersurfaces of [lo] and [21] to the fixed energy problems 
on star-shaped hypersurfaces in R 2n We study the stability of closed . 
characteristics on given compact C2 hypersurfaces in W2” with r~ 2 2 
bounding a star-shaped set with nonempty interior. 

A C2 compact hypersurface C in II’” is star-shaped, if it bounds an 
open set I’(C), and there exists a point 20 (C) E I’(C) such that the tangent 
plane of C at any point z E C does not passing though Q(C). We denote 
by S(R2n) the set of all such hypersurfaces in R2” and by &,(R2”) the 
subset of all such C with x0(C) = 0. For C E S(R2n), without loss of 
generality we suppose Q(C) = 0. Let j, : W2” -+ [0, +cc) be the gauge 
function of I’(C) defined by 

jc(O)=O, andjc(x)=inf 
{ IA 1 

X>O F,I’(X) for XEIW~~ \ (0). (1.1) 

For z E C let NC(Z) be the unit outward normal vector of C at 2. We 
consider the given energy problem of finding r > 0 and an absolutely 
continuous curve 5 : [0, r] --+ R27L such that 

where J = 
(u -:) 

is the standard symplectic matrix on W2” with 

1, being the id”entity matrix on R”. The symplectic group is defined by 
Sp(2n) = {M E Q2”)IMT JM = J}, where we denote by IMT the 
transpose of it4 and L(132n) the set of all 2n x 2n real matrices. A non- 
constant solution (x, r) of (1.2) with r > 0 being the minimal period of x 
is called a closed characteristic on C. Denote by J(C) the set of all closed 
characteristics on C. The existence of at least one closed characteristic on 
any C E S(R2n) was first established by P. Rabinowitz in his pioneering 
work [24] in 1978. 
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HYPERBOLIC CHARACTERISTICS 727 

For a given C E S(R2”), we define a Hamiltonian function H4 : R2” ----f 
LO, +m) by 

Then H4 E C2(W 2n R and C = HL1 (1). It is well known that the , ) 
problem (1.2) is equivalent to the following problem 

{ 

i(t) = Jlq(z(t)), f&(x(t)) = 1, ‘dt E R, 
X(T) = z(0). (1.4) 

Denote by &(C) the set of all solutions (~7;~ r) of the problem (1.4) with 
r being the minimal period of 2. Note that ,J7( C) and &(C) are I- I 
correspondent to each other. For (:~,r) E &(C), the linearized system 
of (1.4) at (:I;. 7) is given by 

i 

&l(t) = JH~(z(t))y(t), vt E Iw 

Y(T) = Y(0). 
(1.5) 

The fundamental solution yX of (1.5) is a path in Sp(2r2,) starting from 1271. 
There is a Maslov-type index theory on yZ which was defined as an integer 
pair (&(z),v~(II;)) (cf: [5], [23], [17], [19], and [22]). 

In order to get the periodic solutions of problem (1.4), we consider the 
fixed period problem of the following star-shaped Hamiltonian system 

C 
i(t) = .JH;(z(t)), 
2(l) = X(0). (1.6) 

This problem is equivalent to finding the critical points of the following 
action functional on the Hilbert space E = W1/2>2(S1, lR2n) 

f(x) = ; /C’(Ji,r) dt - 1’ &(5.(t)) dt> V.2: E E. (1.7) 

The fundamental solution matrix yc of (1.5) is a path in Sp(2n) 
starting from 12,. The Floquet multipliers of (2, r) are defined to be 
the eigenvalues of ~~(7). By Lemma 3.3 below, the Floquet multipliers 
with their multiplicity and Krein signs of (2,~) E 34(C) do not depend 
on the particular choice of the Hamiltonian function in (1.6). Thus the 
following definition makes sense. 

DEFINITION 1.1. - A closed characteristic (z, T) E J?*(C) is hyperbolic if 
as a solution of (1.4), 1 is a double Floquet multiplier of Tz (r) and all other 
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728 C.-G. LIU AND Y. LONG 

Floquet multipliers of yT( ) r are not on the unit circle U in the complex 
plane C. It is elliptic, if all the Floquet multipliers of r&-) are on U. 

For any (x,7) E J4(C) and m E N = { 1.2. . .}, the ,m-th iteration 
.I, ‘J” of CC is defined by 

x”(t) = x(t -jr) for j7- 5 t 5 (j + 1)7-, 0 < j 5 m - 1 (1.8) 

This is simply n: itself viewed as an mr-periodic function. The Maslov- 
type index theory assigns to the iteration sequence {P} of each solution 
(2,~) E &(C) a sequence of integers { (‘l:,m,(~T”), v,,,(x’“))}~~~~N through 
the associatedd symplectic path Y.~ of X. The Maslov-type mean index of 
x per period 7, 

iT(z) := lirn 
irrrr(x’“) 

m-cc m 

was first defined by the second author of this paper in [20]. In the section 3. 
we prove that the Maslov-type mean index for closed characteristics on 
starshaped hypersurfaces is a geometric concept, it is independent of the 
choice of the Hamiltonian functions. (see Theorem 3.1 below). 

Let z be a nonconstant critical point of f in E, h = H*(z), and 2 be 
the minimal period of z for some m E N. Define 

xx(t) = hKiz(h-it) and T = ihi. (1.9) 

Then there hold z=(t) E C for all t E R and thus (XC, T) E JJ (C). 
Note that the period 1 of z corresponds to the period mr of the solution 
(Xi?, rn7) of (1.4) with minimal period T. 

On the other hand, every solution (2, T) E J3(C) gives rise to a sequence 
{G&nEN of solutions of the problem (1.6), which is also a sequence of 
critical points of f in E: 

x 7n = (mT)+z(mTt), Vm E N. (1.10) 

THEOREM 1.2. - On every C E S(R2n), either there exist infinitely 
many closed characteristics, or there exists at least one non-hyperbolic 
closed characteristic, provided every closed characteristic on C possesses 
its Maslov-type mean index greater than 2 when n is odd, and greater 
than 1 when n is even. 

This result is related to the works on the stability problem of I. Ekeland 
in [l l] and of Y. Long in [21], as well as the problem 3 proposed at the end 
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of Ekeland’s celebrated book [lo] in 1990. Up to the authors’ knowledge, 
it seems that except our above theorem on the star-shaped hypersurfaces 
so far all the other stability results for closed characteristics obtained by 
variational methods on given energy hypersurfaces are only proved for 
convex (or similarly for concave) cases. We refer also the readers to works 
of 1. Ekeland, G. Dell’Antonio, and B. D’Onofrio in [6], [7], and [12], 
and the references therein. 

2. THE MASLOV-TYPE INDEX 
AND THE GALERKIN APPROXIMATION 

Let C be a compact C2 hypersurface in R2” strictly star-shaped with 
respect to the origin. We shall consider the closed characteristics of C 
which is the periodic solution of 

j: = JN~(X), (2.0) 

where NC(X) is the outward normal, normalized by the condition 
(Nc(z)>z) = 1, here (., .) denotes the inner product in W2”. 

If H(z) E C2(FP”,R) is a function such that C = H-‘( 1) and 1 is a 
regular value of H, it is well known that the periodic solutions of (2.0) 
coincide with those periodic solutions of 

:i: = JH’(x); x(t) E c, vt E R. 

We denote by I’(C) the open set bounded by C. Let jn : R2” -+ [0,+x)) 
be the gauge function of I’(C) defined by 

jc(O) = 0 and &(x) = inf for 2 # 0. 

In this paper we choose the Hamiltonian function to be 

H(x) = H&Y) = &(z)~; Vx E R2”. 

It is well known that H4 E C2(R 2n, W) and C = HT1 (1). In the following 
we consider the fixed energy problem 

C 
k(t) = JHA(z(t)), H&(t)) = 1, Vt E R, 
X(T) = x(O), (2.1) 

for (5,~) with r > 0. As usual, we set E = W1/2~2(S1,R2n), where 
S1 = R/Z. This is a Hilbert space whose norm and inner product are 
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730 C-G. LIU AND Y. LONG 

denoted by I] . I( and (e, .) respectively. The space E consists of all 
z E L2(S1, R2,) whose Fourier series 

z(t) = a0 + g(uj cos(2jnt) + bj sin(2jTt)) 
j=l 

satisfies 

where aj, bj E W2”. Let L,(E) and L,(E) denote the set of linearly 
compact operators and the set of bounded self-adjoint operators on 
E, respectively. For B(t) E C(S1,L,(W2”)), we define two operators 
A, B E L,(E) by extending the bilinear forms 

(2.2) 

to E. Clearly, ker A = R2”. A is a Fredholm operator with indA = 0, and 
B E L,(E). Using the Floquet theory we have 

v1 G dim ker(R(l) - Izn) = dim ker(A - B), 

where R(t) is the fundamental solution of the linear Hamiltonian system 

?j = JB(t)y. 

R(t) is a symplectic matrix for every time t with R(0) = I,,,. It is 
equipped with a pair of integers: 

(il,Vl) E a: x {0,1,.**,2n}, 

the Maslov-type index of B(t) (cf. [5], [23], [17] and [22]) 
Let F = {PnL, m = 0, 1, . . .} be an usual Galerkin approximation frame 

with respect to A, i.e., I? is a sequence of orthogonal projections satisfying 
the following conditions: 

(i) POE = ker A, E, = P,E is finite dimensional for m > 1. 

(ii) P,,P m+1 - - P,+IP,, = P,, Vm. 

(iii) P,x + 2, as m + +m Vx E E. 

(iv) P,A = AP,, Vm. 
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We denote by M:(D), D&(D) and M:(D) the eigenspaces of a 
self-adjoint operator D corresponding to the eigenvalue X belonging to 
[d, +m), (-co, -d] and [-d, d], respectively for d > 0 . We also denote 
by M+(D), M- (0) and M’(D) the positive, negative and null spaces of 
a self-adjoint operator D, respectively. For any L E L,(E) we denote by 
L# = (LIImL)-’ and L,, = (PmLPm)JP,~ : P,E -+ P,E. When 0 is 
not an essential spectrum point of L, L# is a bounded operator. We shall 
need the following result of T. Wang and G. Fei [28] (cf. also [13]). 

LEMMA 2.1 (Theorem 2.1 of [28]). -For any B(t) E C(S1, L,(R2”)) with 
the Maslov-type index (il, ~1) and any constant 0 < d < all(A - B)#ll-‘, 
for large number m we have 

dimM$(P,(A - B)P,) = i dim(P,E) - i.l - ZQ, (2.3) 

dimM;(P,(A - B)P,) = i dim(P,E) + il, 

dim@(P,(A - B)P,) = q, 

where B is the operator defined by (2.2) corresponding to B(t). 

(2.4) 

(2.5) 

3. THE INVARIANCE OF THE MASLOV-TYPE MEAN INDEX 
AND THE RELATION WITH THE EKELAND MEAN INDEX 

Given a function H E C2(R 2n BB , we consider the Hamiltonian system , ) 

i = JH’(z). (3.1) 
It is well known that every solution of (3.1) lie on some energy surface 
C = {LC E R2”IH(x) = b} f or some b E W. Suppose z E C1(Iw,Iw2”) 
is a T-periodic solution on the energy surface C. Replacing H(z) by 
H(z)/b, without loss of generality, we suppose b = 1. The linearized 
system of (3.1) at z is defined by 

3 = JH”(z(t))y. (3.2) 

In this section, we denote by E(R2”) the set of all energy surfaces C which 
is a compact C2 hypersurface in BB 2n bounding a domain with origin in its , 
interior, and there exists a function H satisfying the following conditions 

(Hl) H E C2(R2”,IR), 

(H2) C = {zlH(rc) = l}, 
(H3) Vx E C, H’(z) # 0, 

(H4) Vx E C, H’( ) z coincides with the outward normal direction of C. 

Vol. 16, no 6-1999 
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By the Lemmas 2 and 3 of [29], a compact hypersurface of contact 
type has a naturally defined “inside” and “outside”. If a vector field rl 
on (Wzn, w) is a symplectic dilation(i.e. &,w = w), and H is a function 
having C as a regular level surface, then (dH,q) = -w(v,Xu) # 0. So 
if n which is transverse to C is outward and (dH, rj) > 0, then H’(z) 
satisfies the condition (H4). Therefore, the case with conditions (HI)-(H4) 
include the contact type hypersurfaces. In [26] the existence of closed orbit 
on contact type hypersurface was proved. For C E E(Wzn) we denote by 
X(E) the set of all the functions which satisfying the conditions (HI)-(H4), 
and denote by J’(C, H) the set of all closed characteristics of (3.1) on 
C. In the appendix of this paper we briefly review the w-index theory for 
symplectic paths starting from identity 12,L. The main result of this section 
is the following invariant theorem about the Maslov-type mean index. 

THEOREM 3.1. - Fur any C E ,(R’“) and H. G E ‘l-t(C). lf 
(x, r) E J(C, H), then there exists u Cl-increasing difleomorphism 
c : [0,7] + [O,p] such thut (z”.p) E J(C, G) with ~~(t) = :r(o-l(t)). We 
denote by i(r, :c, H) and i(p, z,, G) the Maslov-type mean indicesperperiod 
qf the periodic solutions (r, :I.) and (pL; z,) respectively. Then there holds 

In order to prove Theorem 3.1, we need the following Lemmas. 

LEMMA 3.2. - Let H, G E ‘l-l(C) and (x. 7) E J(C, H). There is an 
increasing Cl-diffeomorphism a,from [0, r] onto an interval [O; p] such that 
(zcr,p) E J(C, G) with z, := :t:(~-~(s)). 

Proof. - We refer the readers to [24] and [lo] for the details of the 
proof. n 

LEMMA 3.3. - Let H and G be the functions in Lemma 3.2. (r, x) and 
(P,z,) b e e ne zn d.P d L emma 3.2. Then (r, x) and (p, zO) have the same 
Floquet multipliers with the same multiplicity and the same Krein sign. 

Proof. - The proof of this Lemma is the same as the proof of 
Proposition 1.6.13 of [lo] since the convex condition is not actually needed 
in that proof. n 

Consider the functions H and G E ti(C). We have two linearized systems 

l;r = JH”(z(t))w (3.3) 

and 
j, = JG”(z,(s))y. (3.4) 
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Let RH (t) and RG (s) be the fundamental solutions of (3.3) and (3.4) starting 
from the identity respectively. From Lemma 3.3, RH(T) and RG(~) have 
the same Floquet multipliers with the same multiplicity and the same Krein 
sign. Using notations in the section 5, we denote the w-index I,,, 
of the symplectic path RH in Sp(2n) by i,,,(H) = it,,, as well as 
ii+,(G) = ip+,(R~) for w E U = {z E Cl 1.~1 = 1). 

LEMMA 3.4.-7-t(C) is a nonempty convex set. i.e., if H, G E ‘H(C), then 
(1 - X)H + XG E X(C),V’x E [OJ]. 

Proof. - By direct verification. n 

Note that the number of discontinuous points of iT3u(H) as a function 
of w E U is bounded by 2n, and the integral formula of the mean index 
(cf. (5.9)), to prove Theorem 3.1 we start from the following result. 

PROPOSITION 3.5. -rfw E U andw $ CT(RH(T)) = c(R~(p)), there holds 

MRHI[o,~I) = $w~(RGl[o,~]). (3.5) 

In order to prove this proposition, as in [lo], we consider i+(r) as a 
function of t > 0. From the definition of w-index, we have the following 
result. 

LEMMA 3.6. - Zfdet(y(t) - WI) # 0,V’t E [to, tl], then 

&d(Y) = k,w(r). (3.6) 

Proof. -Let a(t) = tit/to, and $(t) = roa(t). Then it,,w(r) = &,,W(4) 
by the Theorem 5.4 of the w-index (cf. [20]). By the assumption 
det(-dt) - 4 # 0, ‘dt E [t~,hl, $l[~,t~] and YI[o,~~I are homotopic(see 
Definition 5.3). Therefore by Theorem 5.6 (Theorem 2.14 of [20]), (3.6) 
holds. n 

Proofofthe Proposition 3.5. - Let FA(z) = (1 - X)H(x) + XG(z), then 
FJ, E ‘H(C). (TJ,,ZX) is defined as in Lemma 3.2. 7. = r,~~ = b,zo = 
z, z1 = z,. Let RF, (t) be the fundamental solution of 

Ij = JW)!/ (3.7) 

where BJ,(~) = F.f(zx(t)). By the definition of X(C), we can suppose 

H’(z) = q(z)G’(z), Vx E C, 

Vol. 16. no 6-1999. 
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where r](x) is a positive Cl-function of z defined on C. Then there hold 

By direct computation, we obtain 

J 
I ., 

:~x(t) = :c((TXI(A)) with OX = r]x(:c(t)) ctt. 

0 

.T 
rx = 

/ 
7/I/x(x(t)) cit. 

0 
where (7, X) is a r-periodic solution of the system (3.1) with the Hamiltonian 
function H = &‘a. Since F(X,:r:) := FA(x) is C2 depending on ;c and 
C” depending on A, so IC’J, (t) and BA (t) are continuous in A. Thus r~ 
and YX := RF~ are continuous in A. By the condition w $! ~(RH(T)), 
Lemmas 3.2, 3.3 and the above discussion, there holds w $! cr(y~(~~)) for 
all X E [0, I]. Define I’(X, R) = ~x(‘TJ,s). Then I’ : [0, l] x [O. l] 4 Sp(2n) 
is an w-homotopy in the sense of [20] (see Definition 5.3). Thus by 
Theorem 5.6, I(0. .) and I’( 1, .) have the same w-index. Since I’(0, ,) and 
l?(l; .) are resealings of yo(.) and rl(.) respectively, so y. and y1 have the 
same w-index. Therefore (3.5) holds. n 

Proof of the Theorem 3.1. - From Proposition 5.6 and Proposition 3.5, 
there holds 

If c E E(P) . is a strictly convex hypersurface of (wzrL, and H E ‘l-l(C) 
with H”(x) positive definite for all IC E C. To understand the relation 
between the Maslov-type index and the Ekeland index (cf. [lo]), note that 
in [IO] the standard symplectic matrix has a sign difference from ours 
defined in (1.2). So we need to consider the following Hamiltonian system 

:i = -JH’(z). (3.8) 

If (7,~) is a r-periodic solution of (3.1), then (r,?) with Z(t) = :I;(--t) 
is a r-periodic solution of (3.8). The linearized system of (3.8) at the 
periodic solution Z is 

:rj = -JH”(x(-t))y. (3.9) 

Annalrs de I’lnsritut Henri Poincr& Analyse non Ii&ire 
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In general, we consider the following linear Hamiltonian system 

zj = JB(t)y, y E FP: (3.10) 

where B(t) is a real 2n x 2n r-periodic continuous symmetric matrix. Let 
-ye be the f un d amental solution of (3.10), it is well known that in is 
a symplectic path starting from identity matrix. Let B(t) = -B(4), and 
ye be the f un d amental solution of the system (3.10) with the coefficient 
B(t). Denote by (&(B), v,(B)) and (i,(B)? I/~(B)) the corresponding 
Maslov-type indices for 7~ and 7~ respectively. 

PROPOSITION 3.7. - There holds 

i,(B) + i,(B) + v,(B) = 0. (3.11) 

v,(B) = VT(B). (3.12) 

Proof. - Since ~n(t + T) = anon, there holds I = ye = 
Knin, then we have yn(-7) = in-‘. From this we have 

Z/~(B) = dim ker(yn(r) - I) = dirnker(yo(7)-’ - I) = V.,(B). 

So (3.12) holds. To prove (3.11) we take the the Hilbert space E = 
Wfs2(S,, R2”) with norm /I. 11 an inner product (.. .), and define operators d . 
A, B, in E by 

(Bz, x) = l’(B(t)z, x) dt. 
. 0 

(3.13) 

(5.14) 

and B similarly defined as B corresponding to B(t). For all z(t) E E then 
.7:(t) = x(-t) E E, there hold 

(A:$) = /T(Ji(-t),z(-t)) dt 
0 

= +t):z(t)) dt 
J 

(3.15) 

= -(Az,z), 

and 

(i%, ?f) = /T(tT(t)+t); x(-t)) dt 
0 

= J -T(B(t)~(t), 5.(t)) dt 

= -‘(Bx, z). 

(3.16) 

Vol. 16, no 6.1999. 
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So by definition, the spectral set satisfies 

a(A - B) = +(A - I?). (3.17) 

By Lemma 2.1, for $ > 0 and large number m we have 

dimM~(P,,(A - B)P,,,) = i dim(P,,,E) - &(I?) - v7(B), (3.18) 

dimMc~(P,,,(A - B)P,,,) = i dim(P,,,E) + iT(B), (3.19) 

where B and B is the operators corresponding to B(t) and B(t) defined 
by (3.14) respectively, and I’,,,, A!f:(.) are defined as in Lemma 2.1. 
Now (3.17), (3.18) and (3.19) yield (3.11). n 

COROLLARY 3.8. - Suppose (T; :r) is a ~-periodic solution of (3. l), then 
(r>~c) with z(t) = X- ) . 1; 1s a r-periodic solution of (3.8) and there hold 

i:,(x) + iT@) + v,(x) = 0, (3.20) 

vr(x) = VT@). (3.21) 

We have the following result 

THEOREM 3.9. - ZfC E S(IF!~~) is a strictly convex hypersueace in lR2n, 
and H E X(C) with H”(z) positive definite for all z E C. Let (7: X) be the 
r-periodic solution of (3.1). Then we have 

i,E(%.) + ‘IL = &(x). (3.22) 

where Z(t) = IC ( 4) and i:(C) is the Ekelund index of 72 dejned in [ lo]. 

Proof. - By the Theorem 7.3 of [20], there holds 

iT(T) + v.,(F) = -i:(E) - n. (3.23) 

This can also be obtained from [3] and (3.11). So (3.22) follows from (3.20) 
(3.21) and (3.23). n 

COROLLARY 3,lO. - IfC E E(R2n) is a strictly convex hypersu$ace, and 
H E ‘H(C) with H”(z) positive de$nite for all I): E C. Let (T, z) be a 
r-periodic solution of (3.1). Then there holds 

iE(r, z, H) = ;(7, I%, H). 

where iE(~, Z, H) is the Ekeland mean index per period r of 25, and 
;(7-, x, H) is the Maslov-type mean index per period r of x. 

Proof. - This follows directly from the definitions of Maslov-type mean 
index, Ekeland mean index, and (3.22). n 
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4. PROPERTIES OF HYPERBOLIC CHARACTERISTICS 

For zc E E, we define 

f(z) = f J”(-Ji, z) dt - /’ l&(x(t)) dt. 
0 0 

(4.1) 

It is clear that f E C2( E, IR) and the critical points of f coincide with the 
solutions of the following problem 

{ 
i(t) = nI$lT(t)), 
x(l) = z(0). (4.2) 

If z E E is a nontrivial critical point of f defined in (4.1), then 
:I: is a nonconstant solution of problem (4.2). Its period is 7- = 1. We 
denote the corresponding Maslov-type index of 2 by (%I (x), 11~ (x)). Let 
h = H4(z(t)), and define 

z(t) = h-L@-%). (4.3) 

Then z(t) E C for all t E IR and z is an hi -periodic solution of the fixed 
energy problem (2.1) with T = hi. 

LEMMA 4.1. - For z(t), x(t) dejined ubove and T = ht, there hold 

&(Z) = iI and Ye = vl(.x). (4.4) 

Proof. - We follow the idea of [21]. Let I/J : [O:+CG) -+ Sp(2n) be 
the associated symplectic path of z, i.e., the fundamental solution of 
G = d&‘(z(t))y with G(O) = 1~~~. We define 

y(t) = $(h-it), Vt E [O. +m). (4.5) 

Then using the positive homogeneity of HI (Its degree is 2), we obtain 
that y : [0, +m) --+ Sp(2n) is the fundamental solution of the system 

9 = Jfq(z(t))y with y(O) = 12n. 

Thus by (3.23) there holds Y(T) = q5(1). This implies z&(z) = VI(Z). 
Since y[~~,~l is only a resealing of $1[0,~1, they are geometrically the same 
path in Sp(2n). This yields G(z) = i,(y/[~,~l) = il(ljll[O, 11) = ii(z) and 
completes the proof. n 
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REMARK 4.2. - We note that replacing the function H4 by function H, 
with some QI > 1, Lemma 4.1 is still true with z(t) = h-‘l”z(h2-“/“t) 
and T = haA2/“. 

We consider a nonconstant r-periodic solution 2 of the given energy 
problem: 

k(t) = JH;(z(t)), H&(t)) = 1, Vt E W, 
X(T) = x(O), 

(4.6) 

and denote by rz(t) the fundamental solution of the linearized system 
of (4.6) at x(t) 

C 
G(t) = .JIq(x(t))y(t), V’t E R> 
Y(T) = Y(O). 

(4.7) 

LEMMA 4.3. - lfx is a nonzero r-periodic solution of (4.6) and yz is the 
fundamental solution of (4.7), there hold 

y&)Li(O) = i(O), (4.8) 

,-&-)x(O) = 2Ti(O) + x(0). (4.9) 

Proof. - The proof is similar to that of Lemma 1.7.3 in [lo], and is 
omitted. n 

For 

being two even order matrices of square block form, we defined the o- 
product of Mi and M2 to be the 2(i + j) x 2(i + j) matrix Mi o M2 
(cf. P91, 1211 LW or [Sl) 

(4.10) 

and M,Ok to be the k-times o-product of MI. Note that the o-product is 
associative and the o-product of two symplectic matrices is still symplectic. 

LEMMA 4.4. - For every solution (z, T) E Jd(C), there exist matrices 
P E Sp(2n) and M E Sp(2n - 2) such that there holds 

T=(T) = I'(&(-1)o M)P-1 (4.11) 
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where we define 

N2(a) = E Sp(2)‘, Vu E R. (4.12) 

Proof - This lemma was essentially proved in [21]. For reader’s 
convenience we enclose the proof here. Fix (CC, r) E &(C), by Lemma 4.3, 
we have (4.8) and (4.9) Define 

El = 272(O), 12 = x(0). (4.13) 

We carry out the proof in three steps. 

Step 1. - Since z = z(t) is a solution of (1.4), we have z(O) E C and 
k(O) = J&(x(O)), we obtain 

I; Jc2 = 2~zi(O)~ Jz(0) = ~TH;(z(O))~ JT Jz(0) 

= 2r(H;(z(O)), z(O)) = SrH&(O)) = 8r > 0. 
(4.14) 

Step 2. - Now suppose {&, E2, . . . , &,} form a Jordan block of yz(r) 
belonging to eigenvalue 1, i.e, setting lo = 0, there holds 

%(7-)Ei=li+&-1, VlliSp. (4.15) 

As in the section 11 of [21] for 1 5 i, j 5 p by (5.2), we have 

c$J&=O Vl<a<p-j, l<j<[;], (4.18) 

where [a] is the integer part of a defined by [a] = max{m E Z( m 5 a} 
for a E R, and (4.18) follows from (4.17) by induction. 

Thus from (4.8), (4.9) and (4.18) we must have p = 2, i.e., II and J2 
form a Jordan block of yz (r) belonging to the eigenvalue 1. 

Step 3. - Define 

(4.19) 
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Then there hold 

S;J& = -1, FE span{&,&} = span{~I,<2}, (4.20) 

i.e., {S1, S2} form a symplectic base for F. Denote by K the 271 x 2 matrix 
formed by S1 and Sa as the first and the second columns. From (4.14). 
(4.15), (4.19) and (4.20), we obtain y,(r)K = KNx(-1). Now we can 
extend K to a matrix P E Sp(2n) such that S1 and 62 form the first and the 
(YL + 1)-st columns of P and for some IV! E Sp(2n - 2) such that (4.11) 
holds. n 

LEMMA 4.5. - Suppose (x. T) E Jd( C) is hyperbolic. Then 

imr(cP) = 7&(x). ~~,,1,(~‘“) = 1, Vm E N. (4.21) 

Proof. - The proof follows from the argument in [21] and the above 
Lemma 4.4. H 

LEMMA 4.6. - Suppose there are only,finitely many closed characteristics 
on C, and all of them are hyperbolic with their mean Maslov-type index 
greater than 0. Then for every k E N, there exists a solution (:ck., rk) 
of (4.6) for some q. > 0 with its Maslov-type index satisfying 

“Tr (Xk) = 72 + 2k - 1. (4.22) 

Proof. - The essential ideas of this proof come from [27]. We use the 
notations defined in [27]. 

As in Lemma 2.2 of [27], we choose a function 4 : R+ --+ R’ such that 
4 is C3, nonnegative, 4(t) = it” near the origin. Further more, we need 
4(t) = t” in the interval (6, A) for 6 > 0 small and A > 0 large enough to 
be chosen below, where Q = U( CA) E (1,2) will be very close to 2. More 
precisely, the following equation 

at2 
- = t" 
4 

(4.23) 

has a solution to = (4/a) 1/(2--u). For large a, we can choose it suitably so 
that there is an open neighborhood U( y, r) of y with radius T > 0 such 
that jr $ U( 9, r) f or all j E N and every r which is the minimal period 
of some periodic solution on C. Here T is fixed and defined in (3.3) of [27]. 
Then we choose a < 2 and close to 2 such that 4 - 7 = % (2 - o) < f . 
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Now we define 4(t). When 0 < t 5 to/2, we define 4(t) = f, 
so g(t) := +‘(t)/t = 4. When t > to, we define 4(t) = t”, so 
g(t) = q?+(t)/t = at”-2 and g(to) = $‘(to)/to = 7. Since g(to/2) 
and g(to) are contained in U( I, S), we can connect 4(t) from to/2 to to 
such that qY(t)/t E U(a/2,r) for 0 < t 5 to. From this definition, we 
note that qi’(t)/t is decreasing when t > to and $‘(t)/t + 0 as t + +oo. 
Then we define S = to. 

Set H(z) = C/+$(Z)), and UA = {z]fi(z) 5 A} for some large A. 
Following [27], we now truncate the function g(z) near the infinity by 
constructing a function H, coinciding with fi on U,, with ~EIx]~ outside 
some large ball, such that H’(s) does not vanish and IH”(z)I < E outside 
UA (see p. 624 of [27] for details). 

We now consider the following Hamiltonian system with the T fixed 
above, 

I 
k(t) = JH’(z(t))> 
x(0) = z(T). 

(4.24) 

Since jr C$ U(aT/2, r) for all j E N and r being the minimal period 
of any solution on C, and $‘(t)/t E U(a/2,~) for 0 < t < to, by 
Lemmas 2.1 and 2.2 of [27] there is no T-periodic solution of (4.24) in 
the domain {z E W2”]0 < H(z) < S}. Now we choose E > 0 small 
enough so that ET < 27r. Then by Yorke’s Theorem (cf. [30]), there is 
no T-periodic solution of (4.24) outside the domain UA. Since (4.24) is 
autonomous, all nontrivial solutions of (4.24) must be contained in the 
domain {X E R2”]S < H(s) 5 A}. It means that it is a solution of the 
following Hamiltonian system 

i(t) = JH:,(z(t)) 
z(O) = z(T). 

(4.25) 

where H, = jam with ~1: E (1,2) and close to 2. 
Since all the periodic solutions on C are hyperbolic, all the solutions 

of (4.25) are also hyperbolic. By Proposition 4.1 of [21] and 1 < o. < 2, the 
nullity of such a solution must be 1. Therefore, all solution orbits of (4.25) 
are non-degenerate critical manifolds in the sense of R. Bott. 

Since there are only finitely many closed characteristics on C, and by the 
condition i(z) > 0 for all solution z on C, from [27], for a large enough, 
there holds (see (8.12) of [27]) 

M(t) - $q = (1+ t)U(t), (4.26) 
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where IM(t) is the equivariant Morse series for nondegenerate critical orbits 
of the functional FK (defined in (3.3) of [27]) in X-” -X-” for some small 
rj > 0 and large b > 0, X” = {:I; E EIFI((x) 6 s}, and U(t) is a series 
with nonnegative coefficients. From (4.26) and our above discussions, for 
each k: E N, we obtain a nondegenerate critical orbit uk of Flc with Morse 
index d(K) + 2(k: - l), w h ere d(K) is defined by lemma 5.2 of [27]. The 
index defined by Lemma 6.4 of [27] of ‘ok is 

By the same reason of Lemma 1.3 of [21] and [3], we have the Maslov-type 
index of uA. satisfies 

By the resealing given in Remark 4.2, from this ‘11.k. we obtain a solution 
(zk. ,uA.) on C. By Lemma 4.1. zk possesses the same Maslov-type index 
with that of UL., i.e.. 

By further resealing from zk as in [ 151 (or an analogue of Proposition I.75 
of [lo]), we get a solution (:r:k., rk) of (4.6) with Hamiltonian function 
I&(z) such that 

This completes the proof of the lemma. n 

Now we can give the proof of our main result in this paper. 

Proof of Theorem 1.2. - We prove the theorem indirectly by assuming 
there are only finitely many closed characteristics on C, and all of them 
are hyperbolic. Let (5, r) E &(C) with minimal period 7, then by (4.21), 
we have i,-(z) = r&(z), and &(C) = mi,(z~). Thus the Maslov-type 
indices of all periodic solutions of (4.6) must be contained in the set 
{mq 1 nr. E N, qn < q 5 ~0) for some integer qo, where qrL = T. By 
the assumption of the theorem, applying Lemma 4.6, we obtain 

Q(n) := (2k - 1 + 7~ 1 k E N} c {mq 1 rn, E N, qTL < q 5 ~0). 

We now consider two cases according to the parity of r~. 
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If n is odd, we can choose a prime number p > max{qa, n}, and define 
k by 2k - 1 = 2p-n, i.e., 2p = n + 2k - 1 E Q(n). Thus there are integers 
m and q E (2, qu] such that 2~ = mq > 2qo. So we must have m > 2. But 
we also have q > 2, this contradicts to the choice of p. 

If n is even, we can choose a prime number p > max{qo, n}, and define 
k by 2k - 1 = p - n, i.e., p = n + 2k - 1 E Q(n). Thus there exist 
integers m and q E (1, qo] such that p = mq > qo, so we have m > 1. This 
contradicts to the choice of p. n 

5. APPENDIX. 
THE w-INDEX THEORY FOR SYMPLECTIC PATHS 

The w-index theory for continuous symplectic paths starting from the 
identity matrix 1 was first established in [20]. In this section we give a 
brief introduction of this w-index theory without proofs. For details we 
refer to 1201. Denote by 

W‘Jn) = (7 E C([O,~l, sP(2n))lr(O> = 1~~). 

For any w E U, the unite circle in complex plane, and M E Sp(2n), define 

D,(M) = (-l)“-‘6’“det(M - wl). 

One can easily see that D, = D, for all w E U and D E C” (U x 
Sp(2n), IQ 

DEFINITION 5.1. - For w E U we dejine 

Sp(2n),f = {M E Sp(2n)l f D,(M) < O}! 
Sp(2n): = Sp(2n)t U Sp(2n),, 
Sp(2n)z = Sp(2n)\Sp(2n)z. 

Let H(a) = diag(a, K’) for a E R \ (0). Using (4.10) we define 

M,’ = H(2)On, M; = H(-2) o H(2)*(“-1), 

and 
T,,(2n) = {Y E p@n)ly(~) E W2n):). 

DEFINITION 5.2. - For any T > 0 and y E PT(2n), we define 

~~,~(y) = dimckerc(y(r) - wl), VW E U. (5.1) 
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DEFINITION 5.3. - for r > 0 and w E U, given two paths yo and 
y1 E PT(2n), if there exists a map 6 E C([O, I] x [0, T], Sp(27~)) such 
that 6(0, .) = TO(.), 6(1, .) = rl(.), S(s,O) = I and v,,,(S(s, ,)) is constant 
for 0 < s I 1, then yo and y1 are w-homotopic on [0, T] along 6(.: T-) and 
we write 70 mj 71. Zfro -W y1 for all w E U, then yo and y1 are homotopic 
on [0, T] along S(.; T) and we write yo - yl. 

As well known, every M E Sp(2n) has its unique polar decomposition 
M = AU, where A = (MMT)1/2, and U has the form 

and u = u1 + au2 E L(P) is a unitary matrix. So there exists a 
continuous real function A(t) satisfying det u(t) = exp( ma(t)), and 
define A,(y) = A(r) - A(0) E R 

For any y E Ps,, (an), we can connect y(r) to Ml or Mz by a path /3 
within Sp(2n): and get a product path ,L? * y defined by ,0 * y(t) = y(2t) 
if 0 5 t 5 r/2, ,3 * y(t) = P(2t - r) if r/2 5 t 5 r. Then 

k E aAT(/3 * y) E Z. (5.2) 

In this case, we define 

&.,,Jy) = k E z> (5.3) 

For y E P:,,(2n) := PT(2n) \ P,*,,(2n), define 

i,,,(y)=inf{ 2:,;,(p)I PEPT(~TL) and /3 is Co-close enough toy}. (5.4) 

THEOREM 5.4. - For any y E PT(2n), the above dejinition yields 

(G,ti(Y)! VT.4 (7)) (2 z x to, 1,-,2n~, (5.5) 

which are called the w-index of y. 

For any y E Pr(2n), define the iteration path ? E C([O, +w), Sp(2r~)) 
of Y by 

“u(t) = Y(t - e)r(T)” 5 for jr 5 t < (j + 1)r and j E (0) U N. 

THEOREM 5.5. - For any y E PT(2n) and k E N, 

i&T(?) = c G.w(r), Q%T(;Y) = c %kY)~ (5.6) 
w”=l cd"=1 
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ir(y) := lim &T(r) 1 2T -=- k’rn k .I 2x 0 &q&Lie)(r) do E w. (5.7) 
which is called the mean index per period r of y E P, (2n). 

THEOREM 5.6 (Homotopy invariant). - For any two paths yo and 
y1 E PT(2n), if yo -W yl on [0, ‘~1, there hold 

THEOREM 5.7 (Symplectical additivity). - Vyj E P,(2n,j), nj E N, j = 
0, 1, there holds 

GJYO 0 n) = &J(yo) + i,,&). 
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