
Ann. Inst. Henri Poincurt!, 

Vol. 16, no I, 1999, p. 49-105 Analyse non linkaire 

Asymptotic behaviour of solutions 
of some semilinear parabolic problems 

Luis HERRAIZ 
University Complutense, 

Departamento de Matematica Aplicada, Madrid, 28040 Spain 
e-mail: herraiz@summa4.mat.ucm.es 

ABSTRACT. - We consider the Cauchy problem: 

ut-Au+uP=O forzERN > t>o, 
u(x,O) = u,(x) for 2 E RN. 

(0.1) 
co.21 

Here p > 1, N2 1 and uO(x) is a continuous, nonnegative and bounded 
function such that: 

u,(x) N AIzI-~, as 1x1 ---f cx), (0.3) 

for some A > 0 and cy > 0. In this paper we discuss the asymptotic 
behaviour of solutions to (O.l)-(0.3) in terms of the various values of the 
parameters p, N, a: and A. A common pattern that emerges from our 
analysis is the existence of an external zone where U(Z, t) N U,(Z) and one 
(or several) internal regions, where the influence of diffusion and absorption 
is most strongly felt. We present a complete classification of the size of 
these regions, as well as that of the stabilization profiles that unfold therein, 
in terms of the aforementioned parameters. 0 Elsevier, Paris 
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50 L. HERRAIZ 

u(:c,O) = u,(z) pour 5 E RX. co.21 

Oti p > 1, N 2 1 et U,(Z) est une fonction continue, nonnegative et 
bornee telle que : 

u,(z) N A(zl-“, quand 1~1 -+ co, (0.3) 

pour A > 0 et a > 0. Dans cette note nous Ctudions le comportement 
asymptotique des solutions de (O.l)-(0.3) dependant des valeurs des 
parametres p, N, o et A. Nous prouvons l’existence d’une zone exterieure 
oii 21(x, t) - u, (x) et une (ou plusieurs) regions interieures ob l’influence de 
la diffusion et l’absorption est tres forte. Nous presentons une classification 
complete de l’etendue de ces regions et des profils des solutions dependant 
des parametres. 0 Elsevier, Paris 

1. INTRODUCTION AND DESCRIPTION OF RESULTS 

Let p > 1, N 2 1, and consider the following initial value problem: 

‘~L~-Au+u~=O for:rE@, t > 0, 
u(x, 0) = u,(x) for x E R”. 

where U,,(X) is continuous, nonnegative and bounded, and: 

(1.1) 
(1.2) 

u,(z) - A[Ic/-” as 1x1 -+ GO. (1.3) 

for some positive constants A and a. The existence of a unique, classical 
and global solution of (1. I)-( 1.3) follows at once from standard theory for 
parabolic equations (see for instance [S]). The goal of this paper consists 
in discussing the asymptotic behaviour of such solutions in terms of the 
parameters N,p, a:, and A. This is a basic question in the theory of 
semilinear parabolic equations, and as such it has deserved considerable 
attention (cf. for instance [2], [3], [S], [7], [12], [14], [15],...). To illustrate 
our approach, it will be convenient to describe at once one of our results. 
Let X be a positive number such that 0 < X < 1, and consider the following 
boundary value problem: 

(“(T-)+(v+i)(‘(r)=(1-h)<(r), forr>O (1.4) 
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C(r) bounded at T = 0, C(T) - T’(~-~), for T + 30. (1.5) 

For any such X a unique solution of (1.4)-( 1 S) exists. As a matter of fact, 
such solution can be represented in terms of Kummer’s hypergeometric 
functions (cf. Section 3 below for related results). Let us examine now 
the situation when: 

(1.6) 

Then the following result holds: 

THEOREM 1. - Let u(z, t) be the solution of (1.1)-(1.3), and assume 
that (1.6) is satisfied. Then for sufJiciently large times t we have that: 

((p - 1)t + A1--pj+(@))--,_l(l + o(1)) for f(t) 2 1x1 5 S(t), 

I Al+“(1 + o(l)) for g(t) L I4, 
0.7) 

where f(t) and g(t) are arbitrary functions such that, for t >> 1 : 

and: 
X = 1 - $, zeta(r) is the solution of (1.4)-(1.5) corresponding 

to the previous value of A, c* = (p - 1)-h and k = A-(P-l) 
(P - q-‘1-2. (1.9) 

Here and henceforth we shall freely use the customary asymptotic 
notations: << , - , O(.), etc. Let us remark briefly on Theorem. 1. To begin 
with, we point out the existence of three asymptotic regions: an external 
one, where the initial value remains virtually unchanged; an internal region, 
where the effect of the nonlinearity is strongly felt, and a transition zone, 
where the influence of the nonlinear sink gradually fades away, and changes 
in the initial daa are less and less felt. As a matter of fact, this highlights 
a common pattern in our discussion to follow. We shall look first for an 
external region where the initial value experiences but small variations, and 
then look for an internal one, where diffusion and/or absorption prevail 
in determining the stabilization profile, that has to match asymptotically 
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52 L. HERRAIZ 

with the initial value when the external region is reached. The influence of 
the absorption term is most dramatically seen in Theorem 1 above, but it 
will be apparent (both in determining the asymptotics and the size of the 
internal region) in the results to follow. 

Concerning our assumptions here, (1.3) is certainly stronger that some 
of the hypotheses previously made in the literature (cf. for instance [ 121). 
Our analysis yields, however, global asymptotic expansions, and allows for 
precise determination of the transition regions. This is in strong contrast 
with most of the previously known results, that are shown to hold in 
parabolic regions of the type 121 < ctf only (as was the case in [12]). 
This fact is related to the type of techniques commonly used in the 
literature. In general, authors proceed by considering a family of resealed 
solutions u~(:I:. t) = X’U( &r. kt) for some real H, and then by analyzing 
the equation satisfied by a limit function u~(:I:. t) = Jiii; u~(:I:, t), whose 
existence is shown as a part of the analysis to be done-We shall depart 
from that approach here, to make use of a blend of matched asymptotic 
techniques, integral estimates and comparison methods to derive our results. 
As a matter of fact, it follows that parabolic regions of size /x( = O(t)) are 
not the optimal ones when stabilization to the inner profiles is considered. 
Actually, this fact can be checked on the linear heat equation, as will be 
shown in Section 3 below. 

To the best of our knowledge, the only case where global asymptotics 
are known is when self-similarity plays an essential role in the stabilization 
process. For 11, > 0, let us denote by !J,~(.s) the solution of the problem: 

y(O) = IL, g’(0) = 0. (1.11) 

We remark on pass that existence and uniqueness for this and other related 
ODE problems in the sequel will be recalled later where appropriate. For 
instance, concerning (1. lo)-( 1.1 l), an extensive analysis of solutions can 
be found in [7] and [5]. Let us write now: 

wp(x, t> = t -~g,(lxI/d$ (1.12) 

Then there holds: 

THEOREM 2. - Assume that a = 5, and let U(X, t) be the solution of 
(l.l)-(1.3). Let wp(x, t) be the function given in (1.12). Then there exists a 
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unique p = p(A) such that: 

u(x,t) = w&,t)(1+ o(1)) as t -+ cc, uniformlyfor 5 E RN. (1.13) 

Theorem 2 can be considered as a refinement of Proposition 1 in [7], 
where it has been proved that: 

)@&I+( sup lu(z.t) - W&)t)j) = 0, 
XElRN 

provided that 1 < p < 1 + 2/N. Notice that the space dimension N plays 
no role in the asymptotics described in our previous Theorems 1 and 2, 
which cover together the situation corresponding to (Y 5 -&. 

When a > -&, the space dimension does have an impact in the 
asymptotics. Self-similarity still prevails when 5 < (Y < N, as described 
in our next result. 

THEOREM 3. - Let ~(2, t) be the solution of (l.l)-(1.3), and suppose that 
5 < (Y < N. One then has that: 

u(x, t) = t-~g(lz[/vG)(l + o(l)), as t --+ 03, uncormlyfor 5 E R”, 
(1.14) 

where g(s) is the unique solution of 

g/(o) = 0, g(s) - ASP’ when s -+ co. 

Convergence towards the linear self-similar profile t-“g ( 1x1/ &) has 
been shown to hold in regions 1x1 5 Cti in [14]. Notice that in the 
cases considered in Theorems 2 and 3 above, u(z,t) N A/xl-* whenever 
1x1 >> & > 1 (when Q! = 5, this is a consequence of the properties of 
solutions of (l.lO)-( 1.11) to be recalled later). 

When -& < Q = N, self-similarity is no longer relevant to describe the 
asymptotlcs. This last is now characterized in the following: 

THEOREM 4. - Let u(x, t) be the solution of (l.l)-(1.3), and assume that 
5 < (Y = N. One then has that, as t -+ 00 : 

I +y lo&17rt)-wql + o(1)) 

u(x,t) = when 1x1’ 5 Ct log(log t) <with C < 4, (1.16) 
Alxl-“(l+ o(l)) 

when 1~1~ 2 Ct log(log t) with C > 4, 
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where WN denotes the surface of the unit (N - l)-dimensional sphere 
in RN. 

The case N = N examined above has been considered in [15], where 
porous-media equations with absorption are studied, and their asymptotics 
are obtained in regions that correspond in our case to the parabolic scale, 
1x1 < Ct:, t >> 1. It is to b 1, e noticed that the behaviour described in 
Theorem 4 agrees with that of the solutions of the linear heat equation with 
same initial value (cf. Lemmata 3.2, and 3.3 in Section 3). 

When a is larger than N and -&, three different situations arise. The 
first of these is analyzed in the following: 

THEOREM 5. - Let u(x, t) be the solution of (l.l)-(1.31, and assume that 
-& < N < a. One then has that: 

q47r)-+r-*(l+ O(1)) 

u(z, t) = 
,wh,en 1x1’ < Ctlogt with C < 2(cx - N), 

Alzl-“(l + o(l)) 
(1.17) 

when 1x1* > Ctlogt with C > 2(a - N), 

where: 

co= * 
J 

u,(IC)d5 - i’“J up(y* s)dyds > 0. (1.18) 
IR” . 0 RjV 

Concerning this result, it has been proved in [ 121 that (u(z, t) - 
co(LJ7it)-4,-~) converges to zero uniformly on sets 1x1 < CJi with 
C > 0 and t >> 1. It was also shown there that when 5 = N < CL, 
constant C,, in (1.18) turns out to be zero, so that (1.17) no longer holds. 
The corresponding result reads now as follows: 

THEOREM 6. - Let U(IC, t) be the solution of (l.l)-(1.31, and suppose that 
2 
p--l 

= N < n. Then there holds : 

u(x,t) = wherLlzl* < Ct log t <with C < 2(c1 - N), (1.19) 
A/xl-“(1 + o(l)) 

whenlzl* > Ctlogt with C > 2(cw - N), 

where: 

(1.20) 
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We should mention here that the convergence estimate U(X, t) - 
C,(tlogt)-G-G as t -+ co, has been suggested in [lo] for a particular 
case of rapidly decaying data such that U,(Z) = 0(e-Y1~1~), when IX] -+ cc 
for some y > 0. 

The reader will notice that the transition between internal and external 
regions in Theorems 5 and 6 takes place in both cases at distances 
Id2 N CLtlogt with CL = 2(o - N), as it happens for the linear heat 
equation with same initial value (cf. Lemmata 3.2 and 3.3 in Section 3). 
The influence of the absorption term is displayed in the different asymptotic 
profiles exhibited by solutions at the corresponding internal regions. In the 
remaining case to be considered (N < -& < cu), nonlinearity also modifies 
the value of the constant CL above. More precisely, there holds: 

THEOREM 7. - Let u(x, t) be the solution of (l-l)-(1.3), and assume that 
N < 5 < u. One then has that: 

u(5, t) = I ‘when lx12 5 Ct log t with C < 2 
( 5) (1.21) 

(Y - 

Alxl-“(1 + o(1)) 

when lx12 2 Ct log t with C > 2 

where g*(s) solves: 

g’(o) = 0, g(s) N Ds&-Ne-g when s -+ 00, 

for a positive constant D which is uniquely determined by N and p. 
We point out that existence of solutions satisfying the problem (1.22) has 

been obtained in [5] (cf. Section 6 there). 
It will be apparent from the forthcoming discussion that our approach 

allows for a number of extensions. For instance the case when U,(Z) has 
asymptotic behaviour as 1x1 -+ cc different from (1.3) can be dealt with 
by means of suitable modifications in the arguments to follow. On the 
other hand, higher-order expansions for solutions could also be obtained. 
Moreover, the regularity assumptions in (1.2) can be largely relaxed. 
However, to keep this work within reasonable bounds, we have refrained 
from detailing these possibilities here. 
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We conclude this Introduction by describing the plan of the paper. The 
results stated in Theorems 1 to 7 will be formally obtained in Section 2 by 
means of asymptotic techniques. Section 3 contains a number of preliminary 
results that are required to provide a rigorous proof of the above results. We 
shall gather therein a number of (rather classical) asymptotic results for the 
linear heat equation, as well as some existence results for ODE problems 
that play a role in the sequel. Theorem 1 will then be proved in Section 
4, whereas the proofs of Theorems 2 and 3 are to be found in Section 5. 
Section 6 will be devoted to the proofs of Theorems 4, 5 and 6. A final 
Section 7 contains the proof of Theorem 7. 

2. A FORMAL DERIVATION OF RESULTS 

In this Section we show how to obtain the results described at the 
Introduction by means of asymptotic analysis. To begin with, we recall that 
there is a natural upper bound for solutions of our problem, namely: 

u(:l:.t) < ((p - 1)~)~5. (2.1) 

which follows after integrating the equation obtained by dropping the 
laplacian operator in (1.1). It is then customary to introduce self-similar 
variables as follows: 

I 
u(z, t) = t p--l qy, r); y = :ct-+, r = 1ogt. (2.2) 

Equation (1.1) can then be recast in the form: 

~,=A~+$‘@+ 
1 

-a - Cp” z A,+ + 
1 

-Q, - CD”. 
P-l P-1 

(2.3) 

We may then expect that, as r --+ 00, solutions of (2.3) will converge 
towards a global, bounded and nonnegative stationary solution of the same 
equation. If we discard for the moment nonconstant selfsimilar asymptotic 
limits, we then expect either: 

I 
@(y,r) -+ c, G (p - 1) p--l as r + cc (2.4) 

or 
@(Y, r) -+ 0 asr--+co. (2.5) 

It is to be noticed, however, that to the best of our knowledge such 
asymptotic results do not follow from standard theory (as applied, for 
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instance, in [9] for a related semilinear equation), due to the sign in the 
coefficient yV+ in (2.3). As a matter of fact, we shall show herein that 
those behaviours actually hold for the case of data U,(Z) as in (1.3). A 
word of caution is also needed concerning the sense in which convergence 
is to be understood in (2.4) and (2.5). Actually, the precise meaning of 
such statements is described in detail in Theorems l-7 at the Introduction, 
but we should mention here that, even at a formal level, we cannot expect 
(2.4) and (2.5) to hold uniformly on R N. Indeed, these behaviours have 
to be compatible with the fact that, for y = zt-i > 1, solutions should 
remain close to their initial values, i.e. 

u(:x, t) - AIx-” 
L 

as t -+ 00 for sufficiently large y = zt 2. (2.6) 

As a matter of fact, solutions of (1 .l)-( 1.3) will develop various regions 
where different asymptotic behaviours (matching (2.4) or (2.5) with (2.6)) 
will appear as t + c0. We shall see now that (2.4) corresponds to the 
case when: 

2 
a < - 

p- 1’ 

regardless of the value of the space dimension N. To this end, we argue 
as follows. Assume that (2.4) holds, and let us linearize around constant 
c* by setting: 

@(Y, T) = c* + *(Y, 71, (2.7) 

so that q satisfies: 

@,=AQ+;VM+F(Q), (2.8) 

where F(@) = O(Q2) as + ---f 0. We neglect for the moment the nonlinear 
term F(9) in (2.8), and look for radial solutions of the linear equation 
thus obtained which are of the form: 

*(y, T) = ~e-x’C(lyl). (2.9) 

From (2.8) and (2.9) we obtain the eigenvalue equation: 

<ft(~)+(y+$ C’(s)=(l-X)<(s) fors=]y]>O. (2.10) 

We consider (2.10) together with boundary conditions: 

c(s) bounded at s = 0, c(s) N s2(lPx) as s --+ co. 

Vol. 16. no I-1999. 
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For 0 < X < 1, problem (2.10)-(2.11) has a unique classical solution 
that can be written in terms of hypergeometric functions (cf. the proof 
of Lemma 3.3 in the next Section). Note that the behaviour at infinity 
of solutions of (2.10) can be derived from standard asymptotic methods 
(cf. [4]). From (2.4),(2.6) and (2.9)-(2.1 1) we would have an expansion 
of the following type: 

@(Y/: T) - c, + li.f~-~‘lyl~(~-~) as (‘y] -+ xj. (2.12) 

Notice that constants k and X remain undetermined as yet (except for the 
condition 0 < X < 1, that is required to solve (2.10)-(2.11)). Expansion 
(a12) cannot be expected to hold uniformly on Iy] and 7. As a matter of 
fact, the validity of (2.12) should break down when both terms on its right 
become of the same order, i.e, at distances ke-x’Iy12(1-x) = O(1). This 
motivates the introduction of an intermediate variable: 

In the new variables, (2.3) reads: 

for some I > 0, where operators V and A are now written with respect 
to the new variable 6. When radial solutions are considered, it is natural 
to expect that Qp, = o(l) and evrTA@ = o( 1) as r + cc, and therefore 
(2.13) reduces asymptotically to: 

I. @‘(I) 1+ - @P = 0, 
2(1- X) + y - 1 

a Bernoulli equation, whose general solution is given by: 

G)(E) = ((p - 1) + c<2(i--x))--p_l, (2.14) 

C being an arbitrary constant. In view of (2.6), (2.12) and (2.14), we are 
led to guessing the following asymptotic behaviour for the solution ~(5, t) 
under consideration when t >>l: 

t-P-l(c* + ke-“‘<(lgl) for 5 << 1, 
4x, t) - t-h((p - 1) + C<2(1-x))-& for [ = O(l), (2.15) 

A/xl-” for < >> 1 

Andes de l’lnstitut Henri PoincurP - Analyse non h&ire 
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Constants k, X and C in (2.15) are now determined by matching 
considerations. For instance, on imposing that: 

tfh((p - 1) + c<2(1-x))-& N Alz(-” for ( > 1, 

we obtain: 

C = A-b-1) i X = 1 - $ with /I = 
1 

a(p - 1). 

Notice that we need N < 5 in order to have 0 < X < 1 in (2.16). 
Once this condition has been set. we proceed to match the first and second 
regions in (2.15). On assuming that for y >> 1 and < > 1: 

t-p-L@* + ke-“<(lv/)) m t-~+(~, - 1) + Q*(~-X))-$-~, 

we arrive at: 

k = -C(p - 1)-i+*. (2.17) 

Summing up (2.15)-(2.17), the behaviour described in Theorem 1 has been 
obtained. 

Consider now the case when (2.5) holds. A crucial role in the 
corresponding analysis is then played by the spectral properties of operator 
A0 in (2.3). Let us define the function spaces: 

where k is a positive integer, and for a: = (al, . ..aN). IcyI = a1 +...+Q~, 
and 2 = al-l f 

ax;1 . ..azzN . Clearly, Li(RN) (resp. Hz(RN)) is a Hilbert 
space when endowed with the norm: 

Il.N = s,N If(4l *e+d.s G < f, ,f >, 

(resp. Ilfll%,* = llfllg + ~~$r ~~~~~~). Operator A0 is selfadjoint in 
Li(RN), with domain II = Hz (RN). Its spectrum consists of the 
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eigenvalues Xk = -(g + q), and the comesponding eigenfunctions are 
given by: 

/VI’) 
h(Y) = (ffk, (yl) . Hr,,\z (y,~))f!-~. 

where k = (kl:.., knT). Ikl = kl + . . . + kit-: y = (yt,..,yN), and 
H,(z) = c,‘H,,(t), ‘H,,(y) being the standard rbt”-Hermite polynomial. 
The normalization constant c,, is selected so as to have ]ll/,kllZ = 1 (i.e. 
c,, = (2+(4~)*(n!)+)-~). Th e reader is referred to [6], [ 131 and [ 161 for 
details about these results. It is then natural to look for solutions of (2.3) 
in the form: 

(2.18) 

Plugging (2.18) into (2.3), we readily see that the X?- Fourier coefficient 
ak(r) satisfies: 

We shall focus our attention in the equation satisfied by the first such 
mode, namely: 

(2.19) 

Several situations may now appear. Suppose first that: 

(2.20) 

If we discard the nonlinear interaction term on the right of (2.19), a linear 
equation for a,(r) is obtained that yields: 

a,(r) N e(&-G)T for q- >> 1. 

Assume now that the evolution of U(Z, t) is driven by its first mode 
as r + cc, i.e, suppose that u(x,t) - t-*~,(r)$~(y) for 7 > 1 in a 
suitable inner region. In our current case, we should then have that: 

u(z,t) - 
/=I2 

Ct-qee-T for t >> 1 in such inner region. (2.21) 

Arude.\ de I’lnstitut Henri Poincur& Analyae non IinBare 
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Since we also expect (2.6) to hold, there must be a transition zone where 
(2.21) and (2.6) become of the same order, so that one has there that: 

whence: 
loac-~logt-1512_logA-LuloRlzl. 

2 4t 
Assume now that in such a region: 

(2.22) 

log 1x1 = i log t + (lower order terms) fort>>l. (2.23) 

Then (2.22) gives: 

/xl2 - 2(a - N)t log t if Q > N. (2.24) 

Note that (2.6), (2.21) and (2.24) provide the asymptotics described in 
Theorem 5 - except for the precise value of constant C in (2.21), that 
cannot be determined from local analysis only. 

If (2.20) continues to hold, but Q = N, condition (2.24) does not make 
sense anymore. We then expect that the presence of a comparatively large 
initial value will trigger a resonance effect. More precisely, on setting 
y = 5 - $, we guess that (2.19) can be written in the form: 

&l = YG + g(T), (2.25) 

where g(r) will be of same order as the solution of the homogeneous 
equation associated to (2.25) i.e, g(r) - Ceyr, for r > 1. We then would 
have that: 

s 

7 
U,(T) N e-f7 epY”g(s)ds - CreyT for r > 1. 

0 

That amounts to an inner expansion of the type: 

u(z,t)-Ct-+logt.e-*. (2.26) 

Assuming that (2.23) continues to hold, matching (2.26) with (2.6) gives: 

1212 - 4t log(log t) for t >> 1 

(compare with Theorem 4 in the Introduction). A slower rate of decay at 
infinity of the initial value U,(Z) leads us now to examine the case where 
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a/(~ - 1) 5 a < N. The asymptotics is then self-similar, as described in 
Theorems 2 and 3 at the Introduction. 

Suppose now that: 

(2.27) 

Then the nonlinear term becomes crucial in (2.19). Assuming that 
< (Pl’,$, >- u,(r)r < ,+Y,$ >G D,u,(r)P, for T >> 1 and some 
explicit positive constant D,, one obtains after integration: 

u&) w ((p - l)D,,r)+r for 7 >> 1, 

whence: 

~(z,t) N C~(tlogt)-+r-+ at some inner region, for CN as in (1.20). 

Recalling (2.23), matching with (2.6) yields a transition region given by: 

for t >> 1, 

provided that a > N (cf. Theorem 6). The only case that has no been 
considered as yet corresponds to the range of parameters: 

2 
NC- P-1 -ctr. 

Here again self-similar solutions will play a role in describing the 
asymptotics. Namely, we will have that, at the corresponding inner region: 

u(x, t) - t-*,g(l+4) for t > 1, 

where g(s) is a solution of the ODE (l.lO)-( 1.11) satisfying g’(0) = 0. 
Matching with (2.6) now requires to select a quickly decaying behaviour 
for g(s) as s -+ cc, namely, that indicated in (1.22). This amounts to 
take g(s) as being a fast orbit, in the terminology of [5]. Keeping to 
assumption (2.23), transition to the external profile (2.6) is now seen to 
occur at distances: 

for t > 1, (2.28) 

as indicated in Theorem 7. Notice that the constant in (2.28) is different 
from that one in (2.24), and is therefore not merely prescribed from linear 
considerations. 

Atmdes de l’lnstitut Henri Poincark Analyse non lintaire 
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3. PRELIMINARY RESULTS 

In this Section we shall gather a number of auxiliary facts on the 
asymptotics of solutions of the linear heat equation. These are of a rather 
classical nature, but we have found it convenient to state (and prove) them 
here for later reference. 

Consider the Cauchy problem: 

Vt = nv 
v(x, 0) = v,(x) 

for z E R”, t > 0, (3.1) 
for z E R”, (3.2) 

where v,(z) is a continuous, nonnegative and bounded function satisfying 
(1.3). Then there holds: 

LEMMA 3.1. - Let v(x, t) be the solution of (3.1)-(3.2). One then has that: 

v(x,t) - Atxt-^ as t -+ cm, 

uniformly on sets C = {(x. t) : Ix/ > CY}, 
1 

where C > 0 is arbitrary and u > 2. (3.3) 

Proof. - By linearity, it suffices to consider the case when A = 1. We 
have thus to show that: 

,,xpJ(x, t) - l/ = o(l), uniformly for 1x1 2 Ct” and t > 1. (3.4) 

To derive (3.4), we first observe that for any given constant A4 > 0, 
one has that: 

,,x,%(x, t) - 11 = [(47rt)-g S,N exp (-v) (tb(Y)txt” - 1)4d 

5 (47rt)-+ 
(.I IYl2A[ e 

-~,v&J),x,* - l/d?,/ 

+ J e -w$(y),x,” - l,(jg 
IYlShf > =I+J. (3.5) 

From now on, we shall denote by C a positive generic constant 
(possibly changing from line to line) depending only on N and p. Since 
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In: - y12 > ln:12 - 2Ml ( .X w h enever IyyI 5 M, we readily see that, on setting 
r, = I+, 

If N 5 N, (3.6) gives that ,I 5 Cr/-” for any given u > 0 and t >> 1. On 
the other hand, if (Y > N one deduces from the fact that 1x1 2 Ct” with 
u > i that J 5 C$ exp 

( 
-$ + s 

> 
with t) = (2 + q(l) - i)-‘. 

In either case one has that: 

J = o(q-u) for any given u > 0 provided that 1~1 2 Ct” and t >> 1. 
(3.7) 

To estimate the first term on the right of (3.5), we proceed as follows. 
Set R(y) = uO(y) - I yl-“. Then there holds: 

~~uo(y)l:r~y - 11 5 I(;)” - 11 + IR(y)Il4”: 

whence: 

We now split further Ii into two parts. Let us define sets Ci and 
C2 as follows: Ci = UYA : IYI 2 M and In: - yyI > Zr~i&}~ 
Ca = {(y, t) : IyI 2 M and In: - y[ < a~+&}. We now set: 

11 = 111 + 112, (3.9) 

where 1ii (resp. 112) is given by the corresponding expression in (3.8) 
with integration restricted to &(resp. to X2). A quick computation reveals 
now that: 

-S2dS = 0 ,,U+++] 
> 

) (3.10) 

Anna/es de I'hstirur Henri PoincarP Analyse non IinCaire 



SEMILINEAR PARABOLIC PROBLEMS 65 

where u = 2av(2v - 1)-l. On the other hand, setting s = (y -x)(2&)-‘, 
we obtain at once that, for 

where upon we derive that: 

fort>> 1. (3.11) 

It remains yet to bound I2 in (3.8)-(3.9). To this end, we observe that 
without loss of generality we may assume that: 

WY) = lYI-a.9(lYl)l (3.12) 

for some function g(s) which is nonnegative, nonincreasing and such that 
lim g(s) = 0. We then split 1, just as we did for Ii, thus obtaining: S-CC 

Since IR(y)I is bounded, we may estimate I21 exactly as Iii (cf. ( 3.10)). 
Finally, to deal with 12, we observe that, if 1:~ - yl/(2&) < r,*: then 
I?/[ > [.x1 - alzl3tf > [.X1/2 provided that v >> 1 and t > 1. Hence: 

and therefore: 

122 I dl4/2vq = 41) for 7 > 1 and t >> 1. 

so that: 

I2 = o(1) for 1x1 2 Ct” and t >> 1. (3.13) 

Putting together (3.5)-(3.13), the result follows. n 
We next describe how the precise size of the region where solutions 

remain stationary depends on the value of the parameter o. More precisely, 
the following result holds: 

LEMMA 3.2. - Let v(x, t) be the solution of (3.1)-(3.2). One then has that: 
a) If cx > N, then: 

w(x, t) - AJzl-” as t + cc , uniformly on sets 
S1 = {Ix]” 2 Ctlogt} with C > Z(a - N). 

(3.14) 
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b) If CY = N, then: 

v(5, t) - illZIp as t + x’ , uniformly on sets 

S2 = { 1:c12 2 Cf log(log t)} with C > 4. 
(3.15) 

c) If (Y < N, then: 

v(n:, t) ++ A/x-” us t + x , uniformly on sets 

S’s = {Iz:I” 2 g(t)}, where g(t) is any nonnegative and 

smooth function such that g(t) > & as t --+ x. 

(3.16) 

Proof. - We shall proceed by modifying, where required, the 
corresponding argument in the proof of Lemma 3.1. Consider first the 
case CL > N. As in our previous result, we need to show that both terms 
I and J on the right of (3.5) are of order o(l) as t + x in the 
region described in (3.14). Since t < exp(q2/G) when 1~~1~ > Ct logf, 
(3.6) gives at once .J < Cr/” c:xp @$)$ + 3). On taking 
(: > 2(tr - IV), we thus obtain: 

,J = o(1) on S1 ast+co. (3.17) 

As to the term I, we split it as in (3.8)-(3.9), and consider first the 
quantity 111 thus obtained. Let E E (0,l) be given, and denote by Cl1 
(resp. by Cl2 ) the subset of C1 where IyI 2 ~1x1 (resp. where Iyj < E(zI). 
We then split III in the form: 

= Ill1 + 1112. 

Notice that in Cll, IyI 5 1x1 - 2Ixlitf 5 ~~~. Hence: 

exp (-v)dy) 

SC .I 
e-“‘& = O(++o) = o(l) in S1 for t >> 1. 

IsIkJ;i 
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On the other hand, if lyl < E~IC[ we have that: 

IJ: - Y12 L (1 - J-;>M2 + (1 - -$Yl’ 

= (1+ &* - & - d)IxI” = (1 - E&q*, (3.18) 

where ~1 = Ed > 0 is such that lii;&r = 0. By selecting E > 0 
sufficiently small, we thus obtain that if 1~1~ > Ct logt with C = 
a(~: - N) + S! and S > 0, 

1112 5 ct-qlzy exp(-(1 - &r))212/4t) 
s 
, ,2nl W% 

~C?yt~exp(-(1-2El)( 2(n-~‘+~),ogt)exp(-~) 

&1712 2 Cnaexp -- . 
( > 4 

Hence: 
Ill = 41) in Sr fort> 1. (3.19) 

As to the terms I2 and I12 arising from (3.8)-(3.9), arguing as in the 
previous Lemma we obtain: 

I12 + I, = o(l) in Sr fort>l. (3.20) 

From (3.17)-(3.20), the proof of (3.14) follows. Let us examine now the 
case cy = N. The only term that needs particular attention is III in (3.9). 
To estimate it, we write C: (resp. Ef) to denote the subset of Ct where 
191 2 I/? (resp. where I;yI < A). We then split I11 in the form: 

where Ii, (resp. If,) consists of the part of III where integration is restricted 
to the set C: (resp. to Ef). Then there holds: 

When [XI* > Ctlog(log t), one certainly has that, if IyI < &, then 
IyyI < ell~l for any given E > 0, provided that t is large enough. Recalling 
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(3.18), we then have that: 

p1 < cf-Q.,-V * exp 

(J. (  

-( l -$2$ 

)  

11, (-&-kg) lY,~~~dY) (3.23) 

< ct-4 ,.xlN exp (-(I - E)(l - ,,)k$-w 

.! ,,<,,,<;i IYl-“dY. (3.24) 

Set now S = (1 - e)(l - er). S ince C > 4 in ( 3.14), it turns out that 
if E > 0 is sufficiently small, we then have that: 

I;, 5 CrjNe-“‘(logt)r-~ 5 Cr,%-=J. (3.25) 

Therefore (3.22) and (3.25) provide a suitable bound for Ill, and (3.15) 
follows. 

Finally, the case a < N is straightforward, and we shall omit further 
details. n 

Lemma 3.2 describes the size of the regions where solutions of (3.1)- 
(3.2) remain asymptotically close to their initial values. We next turn our 
attention to the complementary regions, where diffusion-driven profiles set 
in. The following result holds: 

LEMMA 3.3. - Let V(IC, t) be the solution of (3.1)-(3.2). One then has that: 
a) If (II > N, then: 

?J(z, t) = ~~?I~~1(47r)-~e-~(l + o(1)) 
as t i 30: uniformly on sets 

{IxI” 5 Ctlogt}(l + o(1)) with C < 2(cx - N), 
(3.26) 

u(z, t) = 
Awiv 
2 logt(4+%-*(1 + o(1)) ast-+co, (3.27) 

uniformly on sets 
{[XI” 5 Ct log(log t)} with C < 4, where uN denotes 
the sulfate of the (N - 1)-dimensional sphere in IR”. 
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c) Zf a: < N, then: 

u(2,t) = t-%g(12)/&)(1 + o(1)) as t + 03, unifomly in R”; (3.28) 

where g(s) satisjes: 

Proof. - We shall begin by the case a > N. As a matter of fact, we 
will prove a slightly more general version of (3.26). Namely, it will be 
shown that, if ‘U,(X) 2 0 is such that SRN v,(y)& < co, then (3.26) holds 
uniformly on sets { 1~1~ 5 tf(t)} when t > 1, where f(t) is any function 
that is smooth for large t, is such that cl < f(t) << t for some cl > 0 
when t >> 1, and: 

f(f) * - 
e 4 

J IYW~ 
%(Y)&l el 1 ast+oo, (3.30) 

for every given constant D > 0. A quick computation reveals now that 
(3.30) yields (3.26) when V,(Z) N Alz(-” for large (x( and f(t) = Clogt 
with C < 2(0 - N). The sought-for result will be obtained as soon as 
we prove that: 

I= 
.I’ ( 

exp 
Ix - Y12 Id2 ---&- + 4t %(Y)dY -4 %lll, > 

(3.31) 
RN 

whenever { 1~1~ 5 tf(t)} and t > 1, with f(t) as before. To obtain (3.30), 
we argue as follows. Set H = JRN exp 

( 
- $ + q) v,( y)dy. For any 

given E > 0, one then has that, whenever 1~1” _< tf(t), there holds: 
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Write now J = J,,,, exp - $ - 2t v,(y)dy. Under the previous 
( 

I~IIYI 
> 

assumptions, we now have that: 

Since J 5 I 2 H, (3.30) follows now from (3.32) and (3.33) upon 
letting first t -+ 03 and then E -+ 0 in these inequalities. 

Assume now that 0 = N. Then (3.27) will follow provided that: 

whenever { [xl2 5 Ct log(log t)} with t > 1 and C < 4. (3.34) 

Let H and J be as in the previous case, and set f(t) = C log(log t). 
Then for )x12 5 tf(t) and any M > 0 given, one has that: 

(3.35) 

To estimate H1 above, we use polar coordinates and change then variables 
t 

. We thus obtain: 
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Let now R > 0, and let t be such that y < R < f2(t). We then 
split Hi as follows: 

Hl =wN/ieexp (u- &)u-‘du 

+wNlf2”)exp (u- $)u-‘du 

-‘du = HII + HI2 + HIS. (3.36) 

Application of L’Hopital rule readily gives that: 

Hll - Tlogt astico. (3.37) 

On the other hand, since - $ + u 5 f , recalling that C < 4 we derive: 

HI2 5 “,,,* J 
P(t) 

u-‘du 5 c”Ney f”(t) < logt, (3.38) 
R 

whenever t > 1. To estimate HIS, we just observe that g(u) = u - u2/2S 
is such that g’(u) < 0 for u > f. It then turns out that: 

2 
e 

-LG.- -1 
2fu du 

(3.39) 

From (3.37)-(3.39) it follows that: 

HI I %(t), where fi-ir (t) - y log t. (3.40) 

To bound H2 in (3.36), we first make use of (3.12) and then repeat our 
previous steps to obtain that, on splitting the corresponding integral into 
two terms as in (3.36), there holds: 

(3.41) 

Vol. 16, no l-1999 



72 L. HERRAIZ 

Since this quantity is o(logt) when t > 1, the corresponding upper bound 
in (3.27) follows now from (3.35), (3.40) and (3.41 ). Finally, a suitable 
lower bound is easily obtained by noting that: 

-R “7% logt. (3.42) ( ) 

which holds for any R > 0 such that R > !$ d- y. This concludes the 
proof of the case QI = IV. We finally consider the case of slowly decaying 
data, when o < N. For any given E > 0, we denote by SE(s) the solution 
of the following problem: 

Existence and uniqueness for (3.43) follows at once from classical results. 
As a matter of fact, when d < $, the general solution of: 

Sil(s)+(~+q)g’(s)+d~(~~)=U. fors>O, (3.44) 

can be written in the form: 

g(s) = Clcpl(S) + C2(P2(S)I (3.45) 

where Cr, Cs are arbitrary constants, and: 

pi(s) = &M(N/Z - d, N/2; s2/4); 

(p2(s) = &U(N/2 - d, N/2; s2/4). 
(3.46) 

Here M(a, b; z) and U(a, b; z) are Kummer’s functions of first and second 
kind respectively. Functions M and U possess the following asymptotic 
behaviours: 

M(u, b; z) = J3) me z z <L-.-b 1 + VJ- 40 -a> (3.47) 
z 

as Re z -+ +oo, 

U(a, b; z) = z-~ 1 - 
a(1 + a - b) 

z 
(3.48) 

as Re z -+ +m,, 

M(u, b; .z) = 1 + y + 4a+l) 2 

b(b + 1) 
z +0(x3) as (~1 -+ 0, (3.49) 
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where I’(s) is Euler’s gamma function (cf. [l], [ll]). Define now: 

c,(?-; t) = t-Q/&). (3.50) 

We now claim that VE E C”, and: 

(?le), for T > 0 and t > 0, (3.51) 

G(T! to> L 21(x, L) for any x E RN and some t, > 0. (3.52) 

Of these statements, only (3.52) requires of some explanation. Set now 
w = (u - V,)+, where T+ = max{r, 0). Then w has bounded support 
at some t, > 1 because of Lemma 3.2. Moreover, w is subcaloric, 
i.e, wt < Aw in some appropriate weak sense. This is readily seen by 
using Kato’s inequality, i.e, the fact that setting sgn+f = 1 for S > 0 
and sgn+f = 0 otherwise, one then has that Af sgn+f 5 Ag+ in 2)‘, 
whenever f and Af are in Ll,,. Standard estimates for the heat equation 
yield then that w(x, t) < C,(t - tl)-T for some Ci > 0 and any t > tl. 
We then deduce that: 

1)(x, t) 5 1,()2], t) + C,(t - tl)-G for T 5 h(t) and t > tl, (3.53) 

where h(t) is a positive function such that fi < h(t) < tg. (Note that 
by Lemma 3.2 we have the result for r > h(t).) We next observe that, on 
taking tl large enough, we also have 

?ie(r, t) + Ci(t - tl)-s 2 Y&(r, t) for T 5 h(t) and t > tl. (3.54) 

To check (3.54), we first remark that such inequality holds at T = h(t). 
Indeed, one has that: 

a,(h(t), t) + C,(t - tl)-+ = t-79, + C,(t - tl)-+ 

N (A + E)h(t)-” + Cl(t - tl)-+ 

5 (A + 2&)h(t)-<‘. 

We may restate that estimate by saying that Q~(T, t) - ;i7, (T, t) 2 
Cl(t - tl)-q for r = h(t) and t > tl. Since on the other hand 
?&(r, tz) - u,(T, tz) > O(E)(h(t2))-Ol 2 Cl(t2 - tl)-T, for T < h(tz) 
and tz large enough, it follows from the maximum principle applied to the 
caloric function (U 2E - .uE) that ( 3.54) necessarily holds. This fact, together 
with Lemma 3.2, gives that ~(5, t) 5 UZ~(Z, t) for all x E RN, which 
provides the required upper bound on replacing everywhere E by e/2. The 
corresponding lower bound is similarly obtained. n 
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2 
4. THE CAUCHY PROBLEM WHEN CII < ~ 

P-1 

This Section is devoted to the proof of Theorem 1 at the Introduction. 
To this end, we shall proceed in several steps. 

4.1. The external region 

Our main result here reads as follows: 

LEMMA 4.1. - Let u(x, t) be the solution of (1.1)-(1.2), and assume that 
CI < 5. One then has that: 
u(x, t) - Ajxl-” ast -+ co, uniformly on sets C = {(CC, t) : 12) 2 
g(t)}, where g(t) is any function such that g(t) > tB as t + x, and 

(4.1) 

Proof. - Let V(Z, t) be the solution of (3.1)-(3.2), and let us denote 
by S(t) the semigroup associated to the heat equation in R”. so that 
w(x,t) = S(t)uJx). 0 ur starting point is the well known variation of 
constants formula: 

u(x, t) = S(t)u,(x) - .I’ S(l; - .s)uP(.. s)ds. (4.2) 
0 

Since --!-- 
cf(P-l) 

> i, the result would follow from Lemma 3.1 as soon as 
we prove that: 

JEIxy t I S(t - s)up(., s)ds < 1 in C as t + oc. (4.3) 
. 0 

To obtain (4.3), we take E E (0, &) and split the integral in (4.3) as follows: 
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Since u is bounded, we then have that: 

Setting again ‘rl = lz[t-i and observing that whenever 1x1 2 Cto one has 
that t < CrqY with y = (p - 3)-l and Cl = C-7, we have obtained 
that, for some Z, > 0, 

J1 _< C7fexp (--f-i -E2)q2) in C as + 00. 

As to J2, we just observe that, when t > 1, 

(4.4) 

52 5 +I” /y4*(t - s))-9 J 
5 C,x,-&, 

lYl>44 
exp (-$fJ$) Iyl-"Pdyds 

(4.5) 

and this quantity is of order o(l) in C as t -+ CQ. From (4.4) and (4.9, 
(4.3) follows, and the proof is complete. n 

4.2. The comparison argument: Obtaining a suitable supersolution 

To continue with the proof of the Theorem, a number of auxiliary 
functions will be obtained. Let X be a real parameter, and consider the 
boundary value problem: 

C”(s)+(F+l)(‘(s)=(l-h)<(a), fors>O, (4.6) 
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c(s) bounded at s = 0, c(s) - s2(rPx), for s -+ CC. (4.7) 

As it has been seen in the preceding Section, there exists a unique solution 
of (4.6)-(4.7). Moreover, one then has that: 

<((I) = 41-xr N + 1 - x 
(2 >(r(G))-‘. 

where I’(s) denotes Euler’s gamma function. For E > 0 given, and for 
% = 1,2,3, we now define functions ,ui(r. t) as follows: 

YLl(T, t) = (C*fE)t-p-1 -~,f-++l.< 

where; 

c*=(p-1)-p--l, /1=1- 1 
a(p - 1) ’ 

BE = p(p - l)-2(c, + ~)~p-l(A + $2(~--1). 

R(t) = (c* + E)t-h - J&-x-i+ . [ + BEt-2X-* (2 

- (c, + &)-‘t + (A + +“f(t)“(“-l) (4.9) 

and f(t) is as in the statement of Theorem 1, 

(c* + E)‘-“1; + (A + E)~-JY’(P--~) 
uz(r.,t) = (A + E)? - G(t) FE (A + E)~.-(I 

(4.10) 

- (A + c)g(t)-” ((G + +“t + (A + +Pg(t)“- , 

(4.11) 

g(t) being as in the statement of Theorem 1. Let now &(T, t) be given by: 

ul(r., t) if T < f(t), 
T&(7., t) = ‘U2(T, t) if f(t) I T L g(t). (4.12) 

u3 (T, t) if g(t) < T. 
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Then there holds: 

LEMMA 4.2. - Let u,(T, t) be the function defined in (4.12). Then EE(r: t) 
is continuous for :c E RN and t > 0, and there exists t, >> 1 such that, 
jk t > t,: 

$(*r:t) > $(r: t) at r = f(t). (4.13) 

2(r:t) > 2(r.t) atr = g(t), (4.14) 

$)-g(E)- y gy)’ 2 0 
( > 

in D’(R”). (4.15) 

Moreover, U, ( T, t) is asymptotically equivalent to the function 
given in the right-hand side of (1.7). (4.16) 

Proof. - The continuity of U, is straightforward. To check (4.13), we first 
observe that, by the asymptotic properties of the solution C(s) of (4.6)-(4.7 
), one has that: 

$f(tL t) - -&a(p - qt-“-8% - f(t) 

( > 

u(p-1)-l 

J7: 

+ 2&,(y - l)t-“-2% - f(t) 
( > 

Zn(p-1)-l 

JT 
= -&l(p - l)f(t)“‘“-“-‘t-~ 

+ 2QwJ - q(t) 2a(p-lj--l&+1 

- --n1 + 04. - (4.17) 

On the other hand, recalling that f(t) < tP for t > 1, and using the fact 
that (A + BT)-~ N r- ‘(II - 76) when T > 1, one readily sees that, 
for large enough t: 

$fit). t) N +A + +-p(c* + +‘f(t)+)-‘t-5 

+ a(A + E)2(1--p+, + 42”-1&, _ l)-‘f(t)‘a(p-l)-lt-~-l 

XI - --a1 + b2. (4.18) 
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A quick check reveals now that b < n 2 _ 2: whereupon (4.13) follows. The 
proof of (4.14) is similar, and will be omitted. To show (4.15), it will be 
convenient to use self-similar variables @, 7, given by: 

<P(y,r) = t&(z,t); y = cd, 7 = 1ogt. (4.19) 

Equation (1 .l) is then transformed into: 

Set now 9r = teXc. Function ur(~,t) in (4.12) reads now: 

(4.20) 

@l(Y, T) = (c* + E) - k,*l(y.T) + B,(!P1(y, 7))” - R(r), 

where R(T) = e* R(t). We next observe that: 

wh)y)2 < (1 - ww”. (4.21) 

To check (4.21), we just multiply both sides of (4.6) by C’(s), and then 
integrate twice there. Consider now the region where T < *f(t) and t >> 1. 
A routine computation reveals then that: 

- (c* + &)” - s + H(y, T). (4.23) 

where H(y, T) < ((c* + e)” - $$$) in the region under consideration. 
We have thus obtained that: 

L(Q) 2 0 for r 5 f(t) and t >> 1. (4.24) 

We now consider the region where f(t) < T < g(t) and t >> 1. We shall 
perform there an analysis quite similar to that just made above. The role of 
the new scales is best highlighted by changing variables in the form : 

u(z, t) = (clqy, T))@ with [ = ztp8. (4.25) 
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As a matter of fact, all the following comparison arguments can be 
checked on the operator L(@>,) in (4.22). Instead of adapting our previous 
results, however, we shall formally proceed with the new variables as 
follows. Set s = 111. Then the sought-for inequality (4.15) reads: 

La(*) = % - pse, + JJ? - (p - 1) + e-r7 
P (W2 --_ 

&)-lqj (4.26) 

where l? = 2p - 1. Consider now the auxiliary function: 

I(s, T) = (c* + E)‘-” + (A + E)~-~&+~): 

which coincides with up (T, t) in (4.12) when written in the former variables. 
A straightforward computation reveals now that: 

L2(37) I (c* + g--y - (p - 1) + e-r7 

( 
P (Q2 

P-l T ( 
‘s, + - 

“-lT 
s 

= (C* + g--p - (p - 1) + &, 
>> 

where F(s,r) = o(l) as T + zc in the region under consideration. This 
gives (4.15) when f(t) < T < g(t) and t >> 1. To conclude, we now 
observe that Q(T, t) satisfies (4.15) when T > g(t) and t >> 1, since 
function G(t) in (4.11) is such that G(t) = o(l) and G’(t) 5 0 there. We 
therefore deduce that (4.15) holds for large enough t, except perhaps when 
r’ = f(t) or T = g(t). Along these curves, however, we may take advantage 
of (4.13) and (4.14) to obtain the desired result. n 

We next show: 

LEMMA 4.3. - Let E,(r, t) be the function defined in (4.12). Then there 
exists t, >> 1 such that: 

U(IC, t) 2 U,(IzI, t) for x E RN and t > t,. (4.27) 

Proof. - We shall divide it into several steps: 
Step 1. - Let E > 0 be given. Then there exists Ml = Ml (E) such that: 

u(z, t) 5 ;lie(lzI, t) for 1~1 2 MltP and t > 1. (4.28) 

To obtain (4.28), we first observe that for any given E > 0 there exist a 
constant M > 0 and a time t, > 0 (both depending on E) such that: 

u(z, t) L (A + E)IxI-~ for 1x1 > A4 and t > t,. (4.29) 
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Indeed, consider the auxiliary function w(r. t) defined in the following 
manner: W(T, t) = (A + E)M-” if 7’ < M, w(r.: t) = (A + E)F” if 7’ > M. 
Set now .Cw G wt - ?u,.~ - (-)a~,. + wp. One readily sees that, if 
N-u-2>O,thenL~w>Owhen~~>Mandt>OforanygivenM>O. 
On the other hand, when N - (Y - 2 < 0, one makes use of the assumption 
(I: < -& to derive that C?u 2 0 for 7’ > M with M >> 1. Since Cw 2 0 for 
7’ < M and w,. has a negative jump at 7’ = M, one readily sees that L,UJ > 0 
in D’(BX”), which is enough for our comparison purposes. Recalling the 
upper bound (2.1), one certainly has that u(:I:: t) < (A + ,c)k-” for 
all x E R” and t >> 1. Summing these facts up, (4.29) follows. We then 
observe that (A+$~)F” < ((~,+E)~-P~;+(A+E)~--~‘~.~(P-‘))-~ whenever 
7’ 2 Ctii with C = C(f) > 1. Taking advantage of this inequality. together 
with ( 4.29) (with E replaced by ~/2 there), (4.28) follows. 

Step 2. - For any given Cr. 7 > 0 one has that: 

u(2.t) < u&l,t) +rt-* for [XI > CIP and t >> 1. (4.30) 

TO check (4.30), we set 7~ = (YJ, - E$)+. Using Kato’s inequality, one 
readily sees that: 

Let now t, >> 1 be such that (4.28) holds, and write M = M,tf. Since 
u defined above is subcaloric, for t > t, we may then write: 

Take now t > t, and 1~ > Clt”. Since 2p > 1. we have that: 

v(Lqt) 5 c(t - t,)-+ exp ( 8(yo)) < rt-*. - 

and (4.30) follows. 
Step 3. - Assume that Cr, G’, are two given positive constants satisfying 

0 < Cr < Cs. Then there exists 6 = S(E; Cr, Cz) > 0 such that: 

?&(I-, t)-ug (r, t) 2 st-* for CliY 5 r < C2P and t >> 1. (4.31) 
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Actually, a straight forward computation gives: 

aa, 
3E = ((c, + ~)-~t + (A + E)-V+-l))((c+ + &J’t 

+ (A + E)l--prm(P--l))-& > 0. 

Since U,(T, t) = ;iiO(r, t) + (% I,=e) . E + O(c2), it then turns out that: 

QT, t) - ?if (T, t) =;(c;” + A-V(“-‘)t-‘) 

(c* l--p + Al-“r”(“-l) -1 t )-9-i+ + O(E2), 

whereupon (4.31) follows. 
Step 4: End of the ProoJ - We first remark that by (4.30) and (4.31), 

we have that, for any given Cr > 0, 

u(:L.,~) < L,(I:rl,t) for 1x1 2 CrtB and t > 1. (4.32) 

Let us write now z(J,7-) = z(zt-l’,logt) = t*(~(x;t) - UE(jxljt))+. 
A quick check reveals that z satisfies: 

z, 5 ,-“A2 + ,QVz + A(<, T)Z. (4.33) 

where A([,T) = (P - @$)(a - (a,)-’ if + # aE and A(e,-r) = 0 if 
@ = tpE) cp = erl(p-1) ( u resp. aE = e71+l)uE), !Z = (2/o/&- 1)) - 1 > 0. 
and differentiation on the right of (4.33) is performed with respect to I. We 
shall now argue by contradiction. To this end, we may assume that: 

U(Z, t) > &(IxI, t) for 1x1 < CItB and t large enough. 

Since (~1’ - W)(u - b)-’ > pbp-’ whenever a > b and p > 1, we 
then have that: 

2, 5 eerT AZ + PlVz + F(I. ~)sz> 

where F(t, 7) = & - $&i-l. Notice that: 

F((,T) < 0 if ItI 5 C, E ((p - 1)2(A + E)~-‘)n(p--l). 

(4.34) 

(4.35) 

As a matter of fact, at the inner region where ;iis(r, t) = uul (r, t) 
(cf. (4.12)), one has that a, = (G + E) + o( 1): so that F N -1. When 
&(r!t) = ~a(r,t), then : 

fbE = ((c, + E)‘-” + (A + E)~-PI<I+~))-&, 
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and (4.35) follows. Setting Cr = C,, we thus obtain: 

2, L e -rTAz + p<oz for all < and r > 1. (4.36) 

The change of variables w(:c, t) = z([, r) transforms (4.36) into: 

wt<Aw forallzERNandt>l. (4.37) 

By our previous results, w(z, tl) has compact support for some tl 
sufficiently large. Hence for t > 2tl: 

w(2, t) 5 c(t - t1)-T:. 

Summing up, we have obtained that: 

u(x,t) -E&#) 5 c(t - t1)yGP-l 5 TqIxZ.(‘t)E;:(Ixl)t) 

for 1~1 5 Cl@ and t >> 1, 

and the proof is now concluded. 

4.3. A subsolution 

n 

To complete our comparison argument, we shall make use of the following 
auxiliary function. For given T > 0 and 0 < E < l5 let us write: 

G(T,t) = 
ul(r: t) when r 5 f(t), 
u2(r, t) when r 2 f(t), (4.38) 

where f(t) is as in Lemma 4.2, 

ul(r, t) = (c* -E)(t+T)-P-’ -k,(t+T)-X-* .< 5 -R(t), (4.39) 
( > 

uz(r, t) = (1 - e)((c* - +"(t + T) + (A - E)~-~&-~)) ’ 
L 
. 
(4.40) 

and X, c(s) are as in (4.6)-(4.7) and (4.8)-(4.9) respectively, k, = 
(A - e)l--P(c, - e)P(p - 1)-r, and 

R(t) = (c* - c)(t + T)-b - k,(t + T)-X-p-l . < 

- (1 - E) ((c* - E)l-P(t  + T) + (A - +“f(t)“(“-‘)) ‘--l 
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Then the following result holds: 
LEMMA 4.4. - Let u,(r, t) be the function defined in (4.38)-(4.39)-(4.40). 

Then u,(r’? t) is continuous for all r and t > 0. Moreover, there exist T, 
t, > 0 such that, for t > t,: 

(4.41) 

in D’(RN)! (4.42) 

u(x. to) 2 uL1,(121, to) for all z E IRK. (4.43) 
uu,(r.: t) is asymptotically equivalent to the function in (1.7). (4.44) 

Proof. - Checking that U, is continuous and that (4.44) holds is 
straightforward. Inequality (4.41) is obtained as the corresponding result 
in Lemma 4.2, and a routine computation reveals that ~1 and ~2 given 
in (4.39) and (4.40) both satisfy (4.43) when E > 0 is sufficiently small. 
Finally, (4.43) is obtained as follows. Let g(t) be as in the statement 
of Lemma 4.1. Then, by (4.1) there exist t, and T positive such that 
u~(T, t) 3 u,(~,t;T) 5 U(IC, t) for T = 1~1 2 g(t) and t 2 t,. Since 
u,(T, t; T) is decreasing on T, we observe that, after possibly selecting a 
smaller parameter T, we also have that U(Z, t,,) 2 C(t,) 2 uE(IzI, t,; T) 
for 1x1 2 g(tO). The sought-for conclusion follows now by the maximum 
principle. n 

5. SELF-SIMILAR ASYMPTOTICS 

In this Section we shall prove Theorems 2 and 3. To obtain the first 
of these results, it will be convenient to consider separately the cases 
N>a=&andN<a=--&. 

2 
5.1. The case N > Q = :. 

p-1 

The crux of the forthcoming arguments consists in making use of rather 
classical results concerning the asymptotics of solutions of some (linear and 
nonlinear) ODE’s. To begin with, we recall that classical ODE techniques 
show that there exists a unique, smooth and positive solution of the problem: 

.$qs)+ (y + ;)s’w+ &g(s) -g(s)” = 0 for s > 0, (5.1) 

g’(0) = O> g(s) - As-* for s -+ cc (5.2) 
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(cf. [7]). To obtain Theorem 2 under our current assumptions, we introduce 
self-similar variables: 

IL(n:,t) = (t + 1)-h+J.7): :y = :r:(t + 1)-i. T = 1og(t + 1). (5.3) 

(cf. (2.2)). For any given E > 0 such that 1 + E < s we now define p-1 2 ’ 

auxiliary functions @+(;I/. T). V(y. 7-) as follows: 

cP+(y. 7) = (1 + c)g(y) + Mlc--G(:y). (5.4) 

cl-(w.7) = ((1 - c)g(y) - M2PTG(y))+, (5.5) 

where G(y) = GE(y) is the solution of (3.44) with (i = 5 + E, such that: 

G(0) is positive and bounded, and G(s) N s-“(*+.‘) for s -+ 3~‘. (5.6) 

Then there holds: 

LEMMA 5. I. - For any given positive constants 111, and Mz. @+(y, r) 
(rev. @-(:Y, ~1) is a supersolution of (4.20) (resp. is a subsolution). 

Proof: - Let us write C,@ f Cp,, + (y + :)av + 59. Then 

,&((I + e)g) = (1 + E),cI(.s)~’ < ((1 +~)g(s))“. Since C,(M1G(s)) = 
-M~cG(s) < 0, one readily sees that the differential operator .C,(@) given 
above is such that ,C,( (1 + ~)g( s) + Mr e-“‘G(s)) > 0. Since on the other 
hand (( 1 - &)!I)?’ > (( 1 - t)g(.s) - IU!~C’~G)~ provided that (1 - C).CI( s) - 
Mz~:?G(.s) > 0. one has that ,&, ((I- &)g( s) - M2~:-‘TG(.s)) < 0 in such 
a region. Finally, the subsolution statement follows by observing that the 
jump of @iY has the right sign at points where (1 -c)g( s) = AM2(~- “G( .s).M 

End of the proof qf Theorem 2 when N > (Y = 2/(p - 1): 

The desired result will follow from the inequalities: 

(5.7) 

Actually, the fact that (5.7) holds for IyI > M with M > 1 is a consequence 
of (5.2). Since Us = <p(:y,O) is bounded, we have that (a(:(/, 0) < X: 
for some ,% > 0 and I;y/j < M. We then select n/r, large enough so 
that k 5 MrG(M), and take Mz = (1 - E)~(O)/G(M), in which case 
(1 - &)g(y) 2 MzG(y) for 1~1 < M, whereupon (5.7) holds. By the 
maximum principle, we then have that: 

and since g(‘y) >> e-“‘G(y) as r + cc for any ;y E R”, the conclusion 
follows by taking E > 0 arbitrarily small. n 

Anmrle~ rlc I’lnstitrrt Hcvzri Poinwrt: Analyw non h&k 
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2 
5.2. The case N 5 u: = ~ 

p-l’ 

Under the assumptions above, it is no longer true that (3.44) and (5.6) 
have a positive solution. Instead, we have the following result: 

Let E > 0 be such that & + E - F # 0, 1,2,3,. . . Then there exists a 

unique solution of (3.44) with d = & + E such that G(0) = 1. G’(0) = 0. 

and G(y) N CEyp2(*+‘) as y+ cx), 

where C, = I’(N/2)(I‘((N/2)*- l/(p - 1) - E))-‘. 
Moreover G(y) has a finite number of zeroes (that depend on E). (5.9) 

Actually, G(y) = e-c M( $ - 5 - E, $; $), and the statements in 
(5.9) follow from classical results on Kummer’s functions (cf. [ 11, [l 11, . . .) 
Take now ~1, E:! such that 0 < 2~~ < ~2 for i = 1.2, E; satisfies the 
requirement made in (5.9) and I($ - & - E;) > 0. We now define: 

F(y, T) = 2e-E’TG,, (y) - e-C27GE2(y). 

We then have that: 

F(y,r) > 0 for all y E R” and r > 0. (5.10) 

Tocheck(5.10), wemerelyobserve that F(y,7) 2 e-E’r(2G,,(y)-G,,(y)) 
where function H(y) = 2G,,(y) - GEa(y) satisfies: 

H”(y)+(~+~)H’(y)=(~2-2~1)H(y) fory>O, (5.11) 

H(0) = 1, H’(0) = 0: H(y) > 0 for y > 0. (5.12) 

H(y) - DE1ym2(*+E1) for y -+ co; for some D,, > 0. (5.13) 

We now define: 

@+(Y> 7) = Cl+ EMY/) + MIJYY, 7); 
@-(Y, ~1 = (Cl- EMyl) - M~JYY, 4), 

(compare with (5.4)-(5.5)). One readily sees that: 

For any positive numbers MI and M2, one has that @’ (resp. @- ) 
is a supersolution of (4.20) (resp. is a subsolution). (5.14) 

To check (5.14), we merely observe that CC,F = 0, where C, is the 
differential operator defined in the proof of Lemma 5.1. It then suffices to 
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repeat the argument there to derive the sought-for result. Since F(y. 7) is 
everywhere positive (cf. (5.10)), we now obtain (5.7) exactly as before. By 
the maximum principle, (5.8) continues to hold. The conclusion follows 
now by observing that eP1’(2G1 - G2) E He?lr << g as r + X. since 
there exists C > 0 such that g(:y) > CH(y) for all :y E I?“-. n 

5.3. The proof of Theorem 3 

A first step towards deriving such result is the following: 

LEMMA 5.2. - Let u(:c, t) be the solution qf (1. I)-(1.3) with & < cv < N. 
One then has that: 

u(z: t) N .4lzl-^, as t -+ 3cj, uniformly on sets (5.15) 

Proof. - Since u(z, t) 5 U(X, t), where ~(.7:, t) is the solution of (3.1)- 
(3.3), it follows from (3.16) that U(X, t) satisfies in n an upper bound as 
that in the right of (5.15). Let now p be such that & = CX. Clearly. jZj < p. 
and therefore U(z: t) < U(IC, t) in i’l for t > 1, where ?I denotes the solution 
of (1 .l)-( 1.3) with p replaced by jY. By Theorem 2, we then have that ?i 
satisfies (5.15), and the proof is concluded. n 

End of the proof qf Theorem 3: 

Let E > 0 be given, and denote by g:(r) the solution of (5.1) with 
coefficient (--& ) + E replaced there by 5, and where the second condition 
in (5.2) is replaced by G(s) - (A+E)s-” for s --+ 3~. Arguing as in 
part c) in Lemma 3.3, we readily see that $(r..t) = t-?gQ(r/v’?) is a 
supersolution for (1.1) when t >> 1. Consider now the auxiliary function: 

u, = t-5 (g;(T/&) + e(g,(r/\/i))“t-V). 

where g;(s) denotes now the solution of (3.44) with d = 5, with boundary 
conditions (5.2) (with A replaced by (A - E) there). A routine computation 
reveals that u; satisfies all the required properties for a subsolution if 
6’ and t are sufficiently large. Furthermore, for t >> 1 one also has that 
u; (T, t) 5 u; (T, t) for all T > 0. On the other hand, considering now f(t) 

such that ti < f(t) < tg, then by Lemma 5.2, (ui (r, t) - U(T, t,) + = 0 
for T 2 f(t). This gives at once that: 

ug(r, t) 5 U(T, t) + C(t - to)-+ for t > t,. 
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Hence: 
t-T (g;(r/Jt) - C(t - to)-) 5 U(TJ)> 

and the result follows by observing that g;(r/&) > t+, as 
f(s) < SE, n 

6. THE PROOFS OF THEOREMS 4,s AND 6 

For convenience, our discussion will be split into a number of subcases. 

6.1. The case 
2 

-<N<u 
p-l 

Our first result is: 

LEMMA 6.1. - Let u(x: t) be the solution of (I.])-(1.3), and assume that 
5 < N < a. One then has that: 

u(x, t) - AIx-” as t -+ 03, uniformly on sets 

{1x/’ 2 kt log t} with k > 2(tr - N). (6.1) 

Proof. - It follows by adapting the argument already used in the proof 
of Lemma 5.2. We first notice that an upper bound alike to that in (6.1) 
holds in view of the corresponding result for the heat equation (cf. (3.14) 
in Lemma 3.2). We then select p exactly as in Lemma 5.1, and observe 
that the required lower bound holds for [XI 2 g(t) with g(t) >> t 3 when 
t >> 1, whence in particular in the region considered in (6.1). n 

We are now in a position to show: 

LEMMA 6.2. - Let u(x, t) be the solution of (l.l)-(1.3), and assume that 
5 < N < cx. Then the following estimate holds: 

u(x, t) = C,(4rt)-+ exp ast-+m! 

uniformly on regions { 1x1’ 5 kt log t} with k < 2( cr - N), where 

co = .I’ u,(x)dx - 
RN J7 0 

IRN G(y, s)dyds > 0. (6.2) 
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Prmf - Recalling part a) in Lemma 3.3. the proof will follow as soon 
as we show that: 

To derive (6.3), we proceed in several steps. the first of which is: 
Step 1. - Set: 

where E > 0 is fixed and F’(x. t; y: s) = 
Then there holds: 

I L L,, and I,,,, = (1 + 0(~))Cr as t + CC. (6.4) 

To check (6.4), we observe that when s < fi one has that: 

Thus, when lz12 < Ct logt and (v.J) < E&-, it turns out that: 

I# I:K-yj2 fi fort>>l 
--4(t-- 2 41; 

whereupon (6.4) follows. Write now: 

14t) 
IE I I 

.t . 
Pu”dyds + 

* 0 * m IN I J Pu”dyds E II f I,. (6.5) 
. h(t) R”’ 

where h(t) = tr-” and E E (0,l) will be selected presently, 

h(t) I1 = ;I’ .I 
h(t) . 

Pu”dyds + Pu”dyds E III + I12; 
0 lYl<nl(s) I .! . (1 lyl>M(s) 

(6.6) 
where M(s) = (Mslogs)~ with M > 2(tr - IV). 



SEMILINEAR PARABOLIC PROBLEMS 89 

Step 2. - There holds: 

To check (6.7), we notice that 12j2/4t - Iz - yj2/4(t - s) 5 jz12/4t - 
Le-ir/;a; [zll91/2t. Therefore, for 1~1~ 5 Ctlogt and ly/1 5 M(s), 

7 < &~logI)*M(h(t)) N ~(tlogt)i(Mh(t)logt)t E G(t), 

where /ink G(t) = 0. It then turns out that, as t -+ x : - 

whence (6.7). Let us examine now 112 in (6.6). We shall prove that: 

Step 3. - There holds: 

To derive (6.8), we proceed as follows. Firstly, we observe that for t large 
enough and small E > 0 : jl(t) 

112 5 (I$- 0)) s I P(,, t; y, s)u"(yy; s)dyds 

0 * lyl>M(s) 

= (1 + 41)) 

5 ll2l + 1122. (6.9) 

It is easy to see now that I 122 satisfies (6.8), since I~:l’/4t-lz-:yl~/4(t- 
s) 5 lxjlyl/4t 5 ME. To estimate J1al, we take ~1 > 1 and cy2 > 0 such 
that al + o2 = y. Taking advantage of Lemma 6.1, we then have that: 
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Since 1~1’ 2 &logt with k < ‘L(tr - IV) , cxp !$ 
( > 

5 t-. whence: 

Il.21 5 Ct--ylogt)c. 

for y = T((Y~ - 1) - 
( c9 

1 - r,-l (1 - E), and C = 9. A quick check 

reveals that y = (F - 5) (~1 - ~)+(I)(E), which can be selected positive 
for u1 > 1 and 0 < E < 1. in which case I12r = o(l) as t -+ x and 
(6.8) follows. 

We have yet to deal with 12 in (6.5). Analysis of that integral will require 
of further splittings in its domain of integration. To this end, we shall write: .t 

I, = I I 
.f . 

I%! + 
. /l(t) . It,ll<Af(.v) I I Pd’ E I, 1 + 12-J. 

. /t(t). lgl>Af(.5) 
.t . 

I22 = 
!.I 

PUP 
. /I(t) Ic,/>.lf(.~)./.y(>~~ .t . + .I I PUP z I,,, + I,,,. 

/l(t) . lY/>Af(s),ly/<~\ 

I222 = I2221 + I22229 (ci.10) 

where integration in 122~~ (resp. in 12222) is performed in the region where 
Iz - yI 2 E (resp. where IX - y( < E). We then prove: 

Step 4. - The following inequality holds true: .t . 
12 L (1+ o(l) + O(E)) / 1, ,,(t) . ~~~ U”(YP s)dYds fort > 1. (6.11) 

To check (6.11) we first remark that: 

I2221 i (l+o(l)+O(&)) lit, iy,>Af, ,) ~L~(Y, s)dyds for t 29 1. (6.12) 
’ .5 

As a matter of fact, (6.12) follows from the fact that (t - 
q6 exp (pd) < t-4 exp (-!52$) since IIC - yI # 0. One thus 

has that P(x, t; y, s) 5 exp !$ - w , and the result is obtained by ( > 
repeating the argument already used to estimate 1122 in Step 3. We next 
show that: 

I2222 = o(l) ast+oo. (6.13) 

Amaks de /‘hritut Henri Poincarr’ - Analyse non lint’aire 
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To derive (6.13), we note that 191 < ~(t(logt)-‘)i and IIC - y[ < E give 
at once 1x1 < e(t(logt)-I)$ , whence exp $ ( > 

5 C < co. Take now y1 
and 72 positive and such that y1 < 1, 72 > ~1 - 1, y1 + y2 = p. Denoting 
by C the region of variation of y, we then have that: 

Since Iy/) 2 M(s) > M(tl-E), it turns out that Iy-“Y1 2 
Ct-y(l-E)(logt)C. Therefore, for t >> 1 : 

.t 
iv a71 

12222 < ct 2 2 (l-4(logt)C 
I 

(t _ S)-$S-*d 
, t’-’ 

S~exp(-~)dy 

.t 
<ct 

v -y(‘---) (,og t)C 

.I 
s-s%ts<ct 2 N-‘rTl(‘--r) (log qc = ()(I). 

t, --F 

provided that E > 0 is small enough. On the other hand, arguing as for 
Ilzl (cf. (6.9)) we easily see that: 

I221 = o(l) ast+co. (6.14) 

Let us write now Ci = ((9,s) : Iy( 5 M(s), ly12 5 2(ct - N)(l - 
E)slogs}, c* = {(y,s) : 2(Q - N)(l - +ogs < Iyl2 5 (M(s))“}. 
We next set: 

To bound 1ai2, we make use of the estimate: 

lLP(y, s) 2 ct( 4(a-N)P-s)P(l-E) when (y,s) E C2 and h(t) 5 s 5 t. 

(6.16) 
Inequality (6.16) is derived as follows. By (3.26), one certainly has 
that ~(y,s) 5 Cs-*:e-g at IyyI = (2(a - N)(l - ~)slog~)~, whence 
uP(y,s) 5 Clyl-“P 5 cs( w-s)p z fi (s) there. On the other hand, 
by (el), ~(y, s) 5 C(yl-” 5 C(slogs)-5 = fx(s) at /y/1 = M(s). Since 
f2(3) I fl(S) f or s > 1, it follows from the maximum principle that 
fi (s) provides a bound for uP(y, s) in all Ca, whereupon (6.16) follows by 
recalling that s > h(t) G t"+ under our current assumptions. 
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A quick check reveals now that, if we set bl = $(c(o - N) - (~);o( 1 - c) 
and recall that t% exp < tq for jz12 < 2(o - N)tlogf, then: 

since 5 + bl + 1 = 1 - f(;u - 1) + O(E) for 0 < ,c << 1. To conclude with 
the proof, we have yet to show that: 

To obtain (6.18), we take advantage of the fact that. for I:(/[’ 5 
L!((Y - N)(l - ~)s log s with /1(t) 5 s 5 t. one has that: 

We next take (I,, 0 positive and such that n + b = i. Clearly. 

( 

1:1:12 Ix: - y/2 
exp - - ( 

4t 4(t - s) = cxl) ,4f ) ( 

I:+ ((,, + b) 1.1: - !/I” 
1 (f-s) 

and: 

(f3.1’3) 

We then have that: 

= o(1) as t -+ 3~. 

whenever IyI 5 M(s) and /z12 < 2(tr - N)t logt. with f’--E 5 s 2 t. (s.20) 

To keep the main flow of the arguments here, we shall assume (6.20) for a 
moment to conclude the proof. From (6.19) and (6.20), it follows that: 

as t B 1. 
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Finally, to derive (6.20) we proceed as follows. Suppose first that IZ - yl 
5 r(t) << A, as t -+ m. Then, since 1~1~ I (1~ - yJ + lyl)2, we readily 
see that: 

= o(l) asticc. 

On the other hand, if IX - y L: r(t) then IyI > r(t) - /XI: and 

= o(1) astico. 

From Lemmata 6.1 and 6.2, it follows at once that Theorem 5 holds. n 

2 
6.2. The case N = N > ~ 

P-l 
We now consider the situation where the asymptotics is encoded in 

that of the corresponding linear heat equation. The behaviour in external 
regions is as follows: 

LEMMA 6.3. - Let U(Z, t) be the solution of (l.l)-(1.3), and assume that 
CY = N > 5. One then has that: 

u(x, t) - Al+” as t -+ cc, 
uniformly on sets { /ccl2 2 kt log t} with k > 4. 

(6.21) 

Proof. - It is entirely similar to that of Lemma 6.1, and will therefore be 
omitted. H 

Stabilization on internal regions is described in the following: 

LEMMA 6.4. - Let u(z, t) be the solution of (].I)-(1.3), and assume that 
5 < N = a. Then the following estimate holds: 

u(x, t) = + log t(47rt)-+ exp 
( ) 

-$ (1 + o(l)) ast+c0, 

(6.22) 
uniformly on sets /xl2 5 kt log(logt) with 0 < k < 4. 
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Proof. - Recalling the derivation of (3.36) in Lemma 3.3, it will suffice 
to show that: 

is such that (6.23) 

I < 1ogt ast--+m 0nC. (6.24) 

To this end we take up the argument in Lemma 6.2 and adapt it as follows. 
We first split I exactly as in (6.5), and subdivide again the term I1 thus 
obtained as in (6.6), but with a different choice of M(s). Namely, we now 
take M(s) = (MS log log s) 3 with A4 > 4. One then readily checks that: 

111 = O(1) astiocj 0nC. 

To estimate 112, we split it in the form: 

(6.25) 

./l(t) . 
I12 = 

I J 

h(t) .  

P#dyd~ = 
. 0 R” I I 

Pu”dyds 
0 . 21, 

. /c( t )  .  

I I 

(6.26) 

+ PuPdgds E Ilzl + Ilz2 
* 0 .\A 

where now 121 = {(y, s) : Iy/ > M(s) and IyI > ~(s(log(logs))-‘)i} and 
A2 = {(y,s) : 1y/1 > M(s) and Iyl < ~(s(log(log.~))-l)~}. Just as in our 
previous Lemma, it is easy to check that: 

~122 = O(1) as t + 3~: in the region under consideration. (6.27) 

To bound 1121, we select (~1 and a2 as when obtaining the corresponding 
estimate in Lemma 6.2. Arguing as in that result, and observing that now 
!$ 5 C log(log t), we now obtain: 

( ,> Id2 &l-f+)(l-E) t 

( > 

+(l-nl) 

I121 2 Cexp 4f 
log log t 

5 CY(log tp (log log t)C”? 

where g = (1 - s) + $(l - (Y~) = (aI - l)(& - 5) < 0 provided 
that ~1 > 1. We have thus obtained that: 

1121 = o(l) ast-+cc for (z, t) as in (4.36). (6.28) 

We next set out to control 12. This we shall do by splitting that integral 
as indicated in (6.10)-(6.10) with the modifications already introduced: 
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namely, we take now M(s) = (MS logs) 4 with M > 4, and in 
(6.10) we replace IgyI 1 ~(t(logt)-‘)) (resp. IyI < ~(t(loglogt)-I)+) 
by 1~1 > ~(t(loglogt)-l)i (resp. ly/1 < ~(t(loglogt)-l)$). As before, we 
readily check that IzzzI = o(l) in the region under consideration. The 
corresponding estimate for I,,,, is a minor modification of that obtained 
in the previous Lemma. Namely, we now derive: 

I2222 i (2 
~(l-r*(l-~))(loglogt)” . p* 

< Ct-x(loglogt)“. 

where x = $(n(l - E) - 1) - 1 + 3 = (kkl) (71 - 1) < 0. 

provided that y1 < 1 as in the previous case. The term I2221 is once again 
estimated as in Lemma 6.2, to yield that Izzl = o(1) for large t in the 
region under consideration. Finally, 1 21 is first splitted as in (6.15), with 
obvious modifications in the definition of sets C1 and C2. The contribution 
arising from 121~ is of similar order (and is analogously obtained) as in the 
previous Lemma. Finally, 1212 is easily shown to be o( 1) as f. + cc in the 
region considered by using the bound: 

~(y,s) < .s-~(log~)~’ for some Ed, whenever (y,s) E X1, 

which is derived in a similar way as (6.16). Summing up, we have obtained 
that: 

I2 = o(1) as t -+ 00 in the region under consideration. (6.29) 

Putting together (6.25)-(6.29), (6.22) follows, and the proof of the Lemma 
is now complete. n 

Theorem 4 is now a consequence of Lemmata 6.3 and 6.4. 

6.3. The proof of Theorem 6 

We note that the result for the outer region follows by arguing as in 
the previous cases. To obtain the corresponding behaviour for the inner 
region, we shall proceed in several steps. To begin with, we obtain the 
following estimate: 

LEMMA 6.5. - Let u(x, t) be the solution of (1.1)~(1.3), and assume that 
Q > N = 5. Then there exist positive constants S, Ikf such that for t large: 

s 5 u(z,t)(tlogt)W 5 A4, on sets {(x6, t) : 1x1 5 CA} with C > 0. 
(6.30) 
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Proof. - We define for fixed positive T the functions: 

u,(n:, t) = b((t + T) log(t + T))-+e-*. 

and 

for 6 small and positive, and for M: E large. We now apply the maximum 
principle in 1~ 5 Cv’fl for any C larger than a certain constant (this 
can be seen by using the technique developed in Section 4, together with 
Lemma 6.1), and hence we obtain the proof. n 
To proceed further. a suitable subsolution will be derived on regions of the 
type 121 2 C(T + t)i with C > 1. Namely. we will prove: 

LEMMA 6.6. - Let T 2 1 be given. For any M > 0 and jar any B with 
1 < H < 2, there exists R,, = R,(M. 0. N. p) > 0 such that the function 
t~(x,t) given by: 

‘(L(z,~) = M((t+T) log(t+T))-+ exp ’ 
B 

4(t+T) + (t+T)” 
(6.32) 

satisfies: 

(?L)t 5 A& - QP ,for j:l:l 2 R,(t + T)f and t 2 0. (6.33) 

for any nonnegative value of the free parameter B. Pick now E such that 
0 < E << 1: and let a be the function in ( 6.32) with MI = 15 - E, where 
5 is given in the previous Lemma. Let u(z, t) be the solution of(l.l)-(1.3). 
Then there exists t, >> 1 such that: 

g(z, to) 5 u(:c, to) for 1~1 2 R,(t, + T)$. (6.34) 

G(:c, t) < u(:c, t) at 1x1 = R,(t + T)* with t 1 t,. (G.35) 

Proof. - Checking that ~(2, t) is a subsolution in the region under 
consideration is made by means of a direct computation. To derive (6.34). 
we first select t, >> 1 so that: 

‘dx,to) 2 (6 - ;)((to + T) log(t, + T))-+ exp ( $1 T)) ’ 
- 

(6.36) 
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for llcl = R,(t, + T)$ and t 2 t,, where T is fixed (this can be done 
by (6.30)). We then take B >> 1 such that for 1~1 2 &(t, + T); : 

u(x. to) > (6 - c)((t, + T) log(f, + T))-6 
1 B 

4(t, + T) + (to + T)O 

To obtain (6.37) we take advantage of the fact that U(Z. to) > 0 by 
the strong maximum principle. From this and the external Lemma 6.1, we 
merely have to observe that the quantity on the right in (6.37) decreases 
exponentially in B to derive the sought-for inequality. Finally, to derive 
(6.35) it suffices to check that: 

(6 - ;)((I + T) log(t + 7’))-$-& 

> (6 - E)((t, + T) log(t, + T))-+e-(h+i6%i.‘i’, 

whenever IX/ = R,(t + T)f with t 2 t, > 1. Such inequality holds 
whenever cxp - ~ 

( 
BR’ 

(t+T)“- 1 > 
5 1 5 2, and the proof is now comp1ete.m 

As a natural complement to Lemma 6.6, a suitable supersolution in the 
same type of external zones is provided in the following: 

LEMMA 6.7. - Let T > 1 be given. For any 1111 > 0. S > 0 and y > f, 
there exists R,, > 0 and t, > 0 (both depending on y, S, Ml. N and y) such 
that the function u(:c, t) given by: 

?i(;r:, t) = (t + T)-+ (kf(log(t + T))+ 

IL I2 
+J,f2(log(t + T))-‘)e- ‘fr+‘ri(i+i&TJ) 

+ M&r:(-yt + T)” 3z i&(x, t) + ;iz2(:r:, t) + ‘IL3(:c, t), (6;.38) 

satisjes: 

at 2 AE for 1x1 2 R,(t + T)’ and t 2 t,. : (6.39) 

for any value of the free parameters Mz and MS. Take now E such that 
0 < E < 1, and let E(x, t) be the function in (6.38) with Ml = M + E, 
where M is the constant of Lemma 6.5, and MS = 2A. Let u(z, t) be the 
solution of (l.l.L(l.3). Then there exists a constant C* such that: 

u(x,t,) 5 U(x, to) for I:cI 2 R,(t, + T)*; (6.40) 

u(x, t) 5 qx, t) at 1x1 = R,(t + T); with t 2 t,. (6.41) 
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Proof. - As in our previous result, the fact that ;ii(~. f) given in (6.38) 
satisfies (6.39) follows from a direct computation. Fix now T 2 1. As to 
(6.40) we observe that, by Lemma 6.5 for 1~1 = R,,(f+T)i and t > t,, >> I: 

‘Ib(Z. t) < (M + ;)((r + T) log(t + T))-+ exp ( &). (6.42) - 

By Lemma 6.1, (6.40) certainly holds for 1~1 2 S(t,,). where function 
S(f) is selected so that S(t) > (t log t)$ when t >> 1 : we just have to 
observe that w(:t.. to) 5 E;l(:c, to) in such regions. On the other hand, when 
rc,,(t, + T)f < 1x1 5 S(f,,) we take Mz > 1 in 712(3:, t) to derive that 
‘IL(:~: to) < &(:c, to) there. Summing these results up, (6.40) follows. To 
check (6.41), we merely have to remark that ;%ir(z:, t) is larger than the 
term coming from the right of (6.30) for t >> 1. We shall omit further 
details. n 

End of the proof of Theorem 6: 
By the maximum principle, we now have that, for any E > 0: 

where T > 1 is fixed, and R and t, are large enough. We note that ~(z, “) - 
(h-~)(l;logt)-+r-* fort > 1 andE(z,t) - (M+~)(tlogt)-%e-g 
when R& 5 1x1 < 0,/w, provided that D < dw. The bound 
on the value of D is readily obtained by looking for the region where 
El N :u;j. 

We now return to the spectral analysis which was already introduced in 
Section 2. We recall the self-similar variables: 

,u(x,t) = t-hP(y:T): y = zt-). 7 = 1ogt. (6.43) 

With the new variables, equation (1.1) can be recast in the form: 

@,=A@+++- l Q,-@“=A,@+ I@ - cpp. 
p-l p-l 

(6.44) 

Spectral properties of operator A, were studied in Section 2 and will be 
used in the sequel. Because of the previous Lemmata, we have the bound: 

(6 - ,,,-+,-q < @(y,~) 5 (M + E)T-*e&, (6.45) 

uniformly in { IyI 5 Cfi} for C < dw. We now define the 
function: 

%Y> 7) = @(Y, T)f(Y, T); (6.46) 
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where f(~d = f(lvl/~/-) . 7 1s a smooth and nonnegative cut-off function 
such that f(l) = 1 if [ < C1 and f(t) = 0 if t > C2, for some constants 
0 < C1 < C, < dw. The previous bound (6.45) ensures that the 
new function &(y, P-) belongs to L:(IRN) (cf. Section 2) for large T. On 
the other hand, it can be easily seen that: 

6, = A,& + LC - f&’ + G(y, T)> 
P-1 

where G(y,7) = (a[f, - Af - +yVf] - 2VaVf. We next define: 

6 = S(TMo(YY) + WY, T)T (6.48) 

where g(T) = < 8?,ti0 > and 4,(y) is the first eigenfunction of the 
operator A,. Our goal now is to prove that 4 - g(r)$,(y) as time grows, 
uniformly in some region. Function R(y, T) satisfies the equation: 

R,-A,R- -&I? = -g’(+),(y) - f&” + G(y, T) 3 H(y, T). (6.49) 

From (6.45) it is easy to obtain the estimate < H, H >= O(T-%-~). 
Therefore, using the variation of constants formula and the orthogonality 
of R to $,, we obtain for some Ic (with llcl > 1): 

< R, R > = O(e-“br) + /-’ e-““(‘-“)O(s-+-l)& = o(~-+‘), 

(6.50) 
where vk = -XI, - & = !$, AS being the eigenvalue of the leading 
mode. Therefore by regularizing effects for parabolic equations we have 
that lR(y,~)j 5 C’7-4-l for T > 1 and IyI 5 n/r. In particular we obtain 
that @ - g(T)@,(y) as 7 >> 1 uniformly in compact sets 1~1 5 R. 

Substituting now (6.48) into (6.47) and taking the scalar product with 
$,(y), we obtain: 
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The convergence + - ,y(r)li:O(y) on compact sets gives that: 

We now have that by (6.45): 

where Cr is a constant which does not depend on M. Finally, on using the 
bound (6.45) for each one for the terms in G(y,r), there holds: 

IG(:y,~)ldy = O(e?), 

for some E > 0. For instance, we have that for some a, b > 0 such that 
a+b = i: 

From (6.51) we obtain, on taking the limit 111 --+ c~, that as 7 > 1: 

As Go(y) = (47r-+e-q we have that y(r) N (CO(p - 1)~)~* 
for C, =< $$>I+!I,, >= (2,/%p%)-l. Back to our original variables 
we obtain that zl(z,t) N C,v(tlogt)-9 in regions IX/’ < Ct. where 
CN = (47r)-T(C,(p - l))-* = ($(l + $)u)%. To obtain the 
convergence in the regions 1~1’ < Ct log t for any C < 2(tu - N) one 
only needs to apply the maximum principle to functions (6.32) and (6.38). 
taking now constants M and MI equal to C,v f E, which completes the 
proof. n 
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7. THE PROOF OF THEOREM 7 

In this Section we shall be concerned with the case when: 

(7.1) 

Our first result is a non-optimal asymptotic estimate in an external region, 
namely: 

LEMMA 7.1. - Let u(x, t) be the solution of (l.l)-(1.3), and assume that 
(7.1) holds. Then: 

u(x, t) N AIxl-” as t -+ 00 , uniformly on regions 

{ (2, t) : /xl2 > kt log t} with k > 2(c1 - N). 
(7.2) 

Proof. - As we have done in the previous Section, we just compare 
~(5, t) with the solution of (1. I)-( 1.3) to derive a suitable upper bound, and 
then compare it from below with the solution I,(z, t) of (1 .l)-(1.3) with 
p replaced by ?, = 1 + :, this last function being estimated by means of 
Lemma 6.1. n 

A rather crude stabilization result in a parabolic inner region is provided 
by: 

LEMMA 7.2. - Let u(z: t) be as in the statement of Lemma 7.1. One then 
has that: 

u(z, t) = t 
-1 

p-ly(~:/&)(l + o(l)) as t -+ co, 

uniformly on sets (1x1 5 Cfi} 

with C > 0, where g is a nontrivial solution of (1.22). (7.3) 

Proof - It follows from the results obtained in [7]. As a matter of fact, 
it has been proved there that under our assumptions: 

)iir t+susuv IU(zA) - t-*g(+/qj) = 0. 

whereupon (7.3) follows. n 
Let now y be a positive real number, and let F(s) be a solution of the 

following problem: 

[F”(S)+ (~+:)F’(s)+($--+y)F(s)=O fors>R,, 

I F(R,) = C, F(s) > 0 for s > R,, 

F(s) - s 2( ~+44,4 for s i cc. (7.4) 
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The existence of F(s) for some positive constants C, R, can be shown 
along the lines of (5.9) where the corresponding result for algebraically 
decreasing solutions was obtained. Recall now the change of variables 
given in (5.3). Then there holds: 

LEMMA ‘7.3. - For any positive numbers M, y and E, the function 

gqy; r) = (1 - c)g(y) - MF(y)e?‘, (7.5) 

is a subsolution of (4.20) in the region where @ is nonnegative. Moreover, 
for any R, large enough , there exist r,, > R,, M > 0 such that: 

9(Y, To) i WY> To) ,for R, 5 y < k7,: with k > 2(~ - N). (7.6) 

TP(Y!r) 5 @(Y/,T) fory=krandr>r,,. (7.8) 

Proof. - Checking that (7.5) is a subsolution where positive follows 
from a straightforward computation. On the other hand, we have that 
TI!(Y,~) - (1 - c)g(y) for y = r >> 1, whence (7.8) follows by the 
external Lemma 7.1. Take now R, > 1 (in particular we need it 
to be greater than the largest zero of F). Then, by Lemma 7.2 one 
has that Q(R,,r,) > (1 - e)g(R,) > g(y;ro) which gives (7.7). It 
just remains to obtain (7.6). To this end, we observe that for fixed 
ru B 1, @(y,r,) 2 (1 - E)g(y) 2 9(y:rc,T,) for IYI 2 B = B(r,) in 
view of Lemma 7.2. By selecting R, sufficiently large, we may always 
assume that F(y) 2 Ci > 0 for R, < y < B. Inequality (f6) follows now 
on taking M >> 1 in (7.5). n 

A second subsolution that will used presently is provided by the 
following: 

LEMMA 7.4. - Let E > 0 be such that 0 < E < A. Then if cy > N there 
exists a constant R, = R,(A, N, p, CY, E, y) > 0 such that, for F(s) and y 
as before and M > 0 arbitrary, the function: 

+,t) = ((A-~)[~~-~~ - MI++h-T)+ (7.9) 

satisjes: 
tL, 5 Au - Id1 for [x1* > R,t, t > 1. - - (7.10) 
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Moreover, for 0 < E << 1 and t, >> 1 one has that: 

‘u(z,t,) 5 u(x,t,) for [xl2 > R,t,, (7.11) 

3(x, t) 5 u(z, t) for [xl2 = R,t? 1: > t,. (7.12) 

Proof. - s in the case of our previous Lemma, a quick computation 
reveals that ~(r, t) given in (7.9) satisfies (7.10). To proceed further, we 
observe that there exists a constant R, large enough such that F is positive 
for /:c(~ > R,t, and such that (7.12) holds. To see the second statement we 
note that if 1~1~ = R,t, by the previous Lemma: 

a(~, t) < ct-4 < (1 - E)g(R,)t-p-l 5 us(x, t). (7.13) 

Finally, once t, is chosen, we take M large enough to obtain (7.11). n 
Let us summarize a bit. Putting together Lemmata 7.1-7.4 we have shown 

that we can obtain subsolutions that provide bounds for U(Z, t) exactly as 
required in Theorem 7. This can be seen, for instance, by checking that 
the second term in the right of (7.9) is negligible with respect to the first 
one there for T >> A. To conclude the proof of such result, we yet need 
to obtain supersolutions displaying the required behaviour. To this end, we 
consider the auxiliary function: 

5(&T) = (1 ++I&) +g&) + Fe-“; (7.14) 

where, as usual, E is a fixed (but small), positive number, gl(T) is the 
solution of (1.22), M > 0 is a free parameter and g2(T) solves: 

We now prove: 

LEMMA 7.5. - Function q(y, -r) given in (7.14) is a supersolution of (7.15) 
for 1 y( 2 R, and r 2 1, where R, is a positive number depending on N 
and p. Moreover, there exists I-~ >> 1 such that: 

@(Y> To) I -(Y, To> for Y 2 R,, (7.16) 

Q(Y,T> 5 Q(Y,T) fory=R,andr>r,. (7.17) 

Proof. - Since the sum of supersolutions is a new supersolution, the 
first statement in the Lemma is easily checked by noting that each 
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one of the three terms on the right in (7.14) is itself a supersolution, 
which is straightforward. To obtain (7.16), we first select r,, >> 1 so that 
@(y, r) 5 (1+ $)$11(y) for y = R, and 7- > 70 (this can be done by Lemma 
7.2). By redefining r,, if necessary, we next observe that the solution U(X. t) 
under consideration is such that u(:~:,t) < (A + s)I:cI-” for /:1:12 > S(t). 
where S(t) = k:t log t with X: > 2( (I: - N). We next remark that for large 
enough t, t 

di gz 3 ( > 
2 (A+E)Ix-” for 1~1 > S(t) (this follows since 

S(t) >> t for t >> 1). Denoting by 21(:1:. t) the function corresponding to 
q(y; T) under the self-similar resealing, we then have that: 

?L(:l:. t,,) 5 ‘IL(:c. t,,) for l:r:12 > S(t,,). 

To take care of the region Rz 5 ~x:~~ 5 S(t,): we make use of the third 
term on the right of (7.14). More precisely, we select &f >> 1 there. Finally 
the proof of (7.17) is straightforward. n 

End of the proof qf’ Theorem 7: 

We deduce from Lemma 7.4 and the maximum principle that: 

u(z, t) < q:c. t) for IX/ 2 R,& and t 2 t,, >> 1. (7.18) 

Comparing the various behaviours of the functions appearing on the right 
of (7.14), we readily see that: 

q(y:~) - (1 + E)gi(y) for 1 << y 5 6 with k < 2(o - 5’. (7.1’3) 

q(W.7) - gn(y) for y > & with k > 2(o - 2). 
P-1 

(7.20) 

It follows from (7.19)-(7.20) and Lemma 7.2 that, in order to obtain a 
supersolution exhibiting the required behaviour, the only region that needs 
of further analysis is: 

c = { (:r:,t) : Ct < 1~:/’ 5 k:t logt} 
2 

with C > 0 and k < 2(tr - =). 

A (7.21) 
since gl (r) and g2(T) are of the same order in C. To conclude the argument, 
we now consider an auxiliary function z(y, T) given by &(y, T) in (7.14) 
without the term g2(y) included there. Clearly, @y, 7) is a supersolution. 
Moreover, the lower boundary corresponding to t = tl is taken care of 
by selecting M > 1 as before. As to the side conditions, 1~1~ = Ct is 
included in Lemma 7.4, whereas 1~1~ = ,kt log t follows from the result 
obtained with the previous supersolution. This concludes the proof. n 
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