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ABSTRACT. - The Ginzburg-Landau theory of superconductivity is 
examined in the case of a special geometry of the sample, the infinite 
cylinder. We restrict to axially symmetric solutions and consider models 
with and without vortices. First putting the Ginzburg-Landau parameter IC. 
formally equal to infinity, the existence of a minimizer of this reduced 
Ginzburg-Landau energy is proved. Then asymptotic behaviour for large K 
of minimizers of the full Ginzburg-Landau energy is analyzed and different 
convergence results are obtained. Our main result states that, when K is 
large, the minimum of the energy is reached when there are about 6 vortices 
at the center of the cylinder. Numerical computations illustrate the various 
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748 A. AFTALION 

1. INTRODUCTION 

The superconductivity of certain metals is characterized at very low 
temperatures by the loss of electrical resistance and the expulsion of the 
exterior magnetic field. Superconducting currents in the material, which 
exclude the magnetic field, are due to the existence of pairs of electrons 
of opposite sign and momentum, the Cooper pairs. In the Ginzburg- 
Landau model, the electromagnetic properties of the material are completely 
described by the magnetic potential vector A (H = curl A being the 
magnetic field) and the complex-valued order parameter li/ (see [ll]. 
[ 131 or [16] for instance). In fact, $ is an averaged wave function of 
the superconducting electrons; its phase is related to the current in the 
superconductor and its modulus to the density of superconducting carriers: 
I$1 = 0 when the sample is wholly normal and ]$I = 1 when it is wholly 
superconducting. The basic thermodynamic postulate of the Ginzburg- 
Landau theory says that a stable superconducting sample is in a state 
such that its Gibbs free energy is a minimum. The nondimensionalized 
form of this energy is given by: 

WA,=.i,~(; V-iA $ +2(]$12-1)2+(curl A-Ha)* dR. (1) ) I* ’ 

where R is a domain in R’” (7~ = 1, 2 or 3) representing the region 
occupied by the superconducting sample, Ha is the given applied magnetic 
field, and K is a material parameter called the Ginzburg-Landau parameter. 
This parameter is the ratio of X, the penetration depth of the magnetic field 
to I, the coherence length, which is the characteristic length of variation 
of $. The value of K determines the type of superconductor: K 5 l/a 
describes what is known as a type I superconductor and K 2 l/v’? as 
a type II. Type I superconductors are either normally conducting (normal 
state) or superconducting according to the value of the magnetic field, 
while for type II, a third state appears, called the mixed state: in the 
mixed state, the superconducting and the normal states coexist in what is 
usually called filaments or vortices. At the center of the vortex, the order 
parameter vanishes, so the material is normal; the vortex is circled by a 
superconducting current carrying with it a quantized amount of magnetic 
flux. Macroscopic models of superconducting vortices have been formulated 
in [9], [lo] and the existence and behaviour of vortex solutions to the 
Ginzburg-Landau equations have been widely studied. See [2], [4], [S], [7], 
[8], [12], [14] for instance. 

In this paper, we study the minimization of the Ginzburg-Landau energy 
when the parameter PC is large, for a special geometry of the sample, 
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ONTHEMINIMIZERS OFTHEGINZBURG-LANDAU ENERGY 749 

the infinite cylinder. Thus, we restrict to axially symmetric solutions. The 
previous paper [l] deals with the one-dimensional case. Our motivation 
was the study made in [3] of the solutions of the Ginzburg-Landau system 
with infinite K. 

This paper is organized as follows. First of all, we study the asymptotic 
behaviour of minimizers under the constraint that vortices do not exist: we 
put formally IC, equal to infinity in the energy and study the minimizers of 
this reduced form; this will enable us to show convergence of Ginzburg- 
Landau energy minimizers as 6 tends to infinity. We especially prove a 
uniqueness property of the solutions of the system for infinite 6, which 
extends a result of [3]. The section ends with numerical results. The same 
type of work is made in the next section for the model with vortices. Our 
main result states that when IF. is large the minimum of the energy is reached 
when there are about IC, vortices at the center of the cylinder. 

Let us recall from [ 131 the main properties of the two dimensional 
Ginzburg-Landau model. We assume that the superconducting sample is 
an infinite cylinder. When the magnetic field is parallel to the axis of the 
cylinder, Ha = (O,O, Ha), one can assume that both $ and A are uniform 
in the z-direction. The state of the superconductor is described by the pair 
(‘4’1, A) that minimizes E,, where R is a regular bounded domain in W”. 
Let us define 

H,t(diw) = {A E H1(R,R3), div A = 0 and A.n = O}. 

We can choose [Icurl A]l~2 as a norm on HA(div). 

DEFINITION 1.1. - ($,A) and ($,B) are said to be gauge-equivalent if 
there exists 6’ E H2(R,R) such that $ = 4,” and B = A - (l/~)Ve. 
Then, the energy E, is preserved by this transformation. 

THEOREM 1.2. -A minimizer of E, over H1(R, W) x H1(S2, R3) is gauge 
equivalent to a minimizer of E, over H1(R, R) x HA(dk). 

THEOREM 1.3. - There exists a minimum (I,!J, A) of E, over H1 x Hk(dl:*u). 
It is a solution of: 

(2) 

AA = &*V$ - $V$J*) + A]$\” in R, (3) 

all, = 0 on 
dn 

dR > (4) 
curlA=Ho on X2. (5) 
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750 A. AFTALION 

PROPOSITION 1.4. - If (lo, A) 1s a minimizer of E, then 11+5] 5 1 a.e. 

If R is a general domain, the gauge-invariance property does not remain 
in E,, (the energy obtained when IC. is formally put equal to infinity), so 
that we do not have a global minimum of the energy. Hence we shall now 
restrict ourselves to a ball. 

2. THE CASE WITHOUT VORTICES 

When R is assumed to be a ball, we use polar coordinates and restrict 
to radial solutions. In this section, we make the extra assumption that no 
vortices exist (so 1c, is never equal to zero) and we look for: 

$(~-;8) = f(r) f(r) E I%;? and A(r,Q) = Q(r)eo. 

We automatically have div A = 0, which is the major interest of this 
gauge. So ])curl A]IL~tBR) = I](~/T)(T&)‘]]~L(~,, is a norm on H1(B~). 
Since we want ($,A) in H1 x H1, we define: 

D, = {f radial, f > 0 CM., f E H1(B~!R)}. 

DQ = {Q E H1(BR,R3)T ~Q(T) such that Q = Q(T)eo}. 

From now on, when we write that Q is in D,, it will mean that Q = Q(r)ee 
is in D,. Notice that IlfJ]Hl(BR) is a norm on Df and ]I(I/T)(TQ)‘II~z(B~) 
is a norm on D,. The energy can be rewritten as follows: 

.R 

E,(f,Q) = ./( -$f” + f (f’ - 1)” + f2Q2 -t (;(rQ)’ - Ho 7-d?-. 
0 

(6) 
The same method as in [l] allows us to say that: 

l there exists a minimizer of E, over D, x D,, 
0 it is a solution of 

q$(rf’)’ = f(f” + Q2 - 1) in (0, R), (7) 

in C&R), (8) 
f'(R) = 0, (9) 
$-Q)‘(R) = Hi. (10) 
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Equations (7)-(8) can be rewritten using the lapiacian in polar coordinates: 

-&If = f(f2 + Q2 - 1) in BR\ {o), (11) 

AQ = f2Q in BE\ (0). (12) 

2.1. Properties of solutions 

First of all, we notice, as in 141, that if Q is in D,, it implies that 
fiQ E H1(O, R), Q is continuous on [0, R] and Q(0) = 0. More precisely, 
&I C L”(&) with 

THEOREM 2.1. - If (f, Q) is a minimizer of E,, then f and Q are in 
cyo, R]. 

Proof. - The previous remark and Proposition 1.4 give that (f, Q) is in 
L”(BR). Then the result follows from classical elliptic estimates on the 
formulation given by equations (1 l)-( 12). 0 

Remark. - As f is regular in 0, equation (7) implies that f’(0) = 0. 

PROPOSITION 2.2. - If (f, Q) is a minimizer of E,, then either f = 0 or 
f is never equal to zero. 

From now on, we shall assume that f > 0 on (0, R] for a minimizer of 
E,. The solution f. = 0 and &a(r) = H0r/2 is called the normal state. 

THEOREM 2.3. - Zf(f,Q) is a minimizer of E,, then Q is nondecreasing. 

Proof - Let us first show that Q > 0 on [0, R]. If Q reached a negative 
minimum at T = TO on (0, R), then we would have Q < 0 and (8) would 
mean 

AQ=Q f2+f 50 
( > 

on a small interval1 around ra; this is in contradiction with the Maximum 
Principle. Similarly, if Q reached a negative minimum at T = R, the Hopf 
Lemma would imply that Q’(R) < 0 but then condition (10) would not 
be satisfied. 

Now if Q was not nondecreasing, we would have the existence of r1 
and r-2 in (0, R) such that r1 < r2 and Q(ri) > Q(r2). It would imply 
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752 A. AFTALION 

Q reached a positive maximum on (~1, ~2). This contradicts the Maximum 
Principle since AQ > 0 on (0, R). 0 

2.2. Infinite Ginzburg-Landau Parameter 

We put 6 equal to infinity in the energy. We define 

-Cdf>Q) = - 1)2 + f2Q2 + $0)’ - Ho)?) rdr, (13) 

where f E L&d(BR,R) = {f radial, f > 0, f E L4(BR, R)} and 
Q E DQ. 

THEOREM 2.4. - The minimum of E, over Lzad(B~) x DQ exists and is 
attained. Moreover it satisjes: 

Q/F(~) + :Q/(~) - -$Q(T) = Q(r)(l - Q’(~))~IQI<~ in BR, (14) 

Q'(r) + fQ(r) = HO for T = R and IQ(r)1 2 1, (15) 

f”(r) = (1 - Q2(r))ll~1<1 in BR, (16) 

where 11&11i(z) = 1 if IQ(z)I 2 1, and 0 otherwise. 

The proof is almost the same as in [l]. It comes from the fact that when 
Q is fixed, the minimum of (l/2)(1 - f”)’ + f2Q2 is attained for f = 0 
if ]&I > 1, and f2 = 1 - Q2 if IQ] 5 1. 

THEOREM 2.5. - There exists H,’ such that 
(i) for Ho < H,“, there exists a unique solution Q of (IA)-(15) in DQ 

and it remains smaller than 1 in (0, R). If we call CY(R, Ho) = Q(R), 
then a(R, Ho) is a continuous and increasing function of R and Ho. 
Moreover, CY(R, Ho) reaches 1 when Ho = H,“, 

(ii) for Ho > H,“, there is no solution that remains smaller than 1. 

Proof. - We proceed as in [3], using a shooting method from the boundary 
T = R. For a given a E (0, l), there is a unique solution Qa of 

Qb: + ;Q:, - fQe = &a(1 -Q:, on (&RI, (17) 
Qa(R) = Q and Q&(R) = Ho - a/R. 

We check that (15) is satisfied when T = R. The three possible behaviours 
of QoI are described by the following sets: 
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I(& HO) = 1~ E (0, l), Qa(r> E ((Al> on (0, R)), 

Jo(R Ho) = {Q E (0, l), 

rl(R,ffo) = {a E (O,l), 

X E (0, R) St QCY(r) E (0, 1) on (C, R) and Qa(<> = l}. 

We recall from [3] that 
l I(R, HO) corresponds to regular solutions, that is Q,(O) = 0, 
l lo(R, HO) and Ii (R, Ho) are open sets, 
l Ii(R, He) # 0 when RHO < 1, so it implies that I(R, Ho) # 0 too, 
l (0, &,,, c Jo(R,Ho), so for Ho > R + 2/R, I(R, Ho) = 0. 

We may also notice that QoI cannot reach a positive local maximum while 
it remains between 0 and 1, since (17) can be rewritten 

AQcy - Qa 1 + ; - Q; 
> 

= 0. 

So Qa is increasing on (~a,~, R) where ~0,~ is such that Qcu(~O,cu) = 0. 
It is proved in [3] that there exists H,’ such that for Ho < H,*, (14)-(15) 

has a solution that remains smaller than 1; H,* is obtained as the maximum 
of Ho over the points (R, Ho) in the connected component of Ii which 
contains the set {(R, Ho), st RHO < l}. The uniqueness result there is 
only obtained for R 2 l/a. We are going to prove that in fact Io( R, Ho) 
and Ii (R, Ho) are connected and that I(R, Ho) has at most one point, 
using an idea inspired by [ 171. 

Let u and 21 be two different regular solutions of 

O”+~Q’-Q(~+$-Q~)=O on (0,~). (18) 

We already know that u and v are increasing so they can be inverted. We 
denote the inverse functions by r(z) and S(X). Using as new variables 

x = u(r) and U(z) = $2(~)u12(F.(%)), 

9 = V(S) and V(y) = is2(y)d2(s(y)), 

we can rewrite (18) as 

U’(x) = ~(1 + r2(z)(1 - x”)) z E (0, u(R)), 

V’(Y) = y(l+ s2(y)(l - ~~1) Y E (0, v(R)). 
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754 A. AFTALION 

We assume u < v 5 1 on (O,a), so that S(X) < r(x) for IC E (O,u(o)) and 
U’(O) 5 v’(0). We obtain (U-V)‘(x) > 0 and since U(0) = V(0) = 0, we 
have U(X) > V(x), h’ h w ic can be rewritten T(z)u’(T(x)) > s(~)u’(s(x)) 
for x E (O,u(a)). A s a consequence, for all y E (O,u(a)), 

J y X2(1-X2) ~~< ‘y 
0 T(x)u’(T(:c)) .! 

x2(1 - 2;“) do 
(19) 

0 S(~)W’(S(Z)) ’ 

or 
J 

*T(Y) u2(r)(l - U”(r)) dr < 4J) ,U2(S)(l - G(s)) ds. (ao) 

0 r I 0 s 

For any solution Q of (18), we now introduce 

2 1 
FQ(r) = f (;(rQ)‘) +q(l - Q2)2. 

A straightforwardcomputation, using (18), gives P&(r) = (l/r)Q”(l-Q”). 
Thanks to an integration from 0 to g of F;(r), thanks to (20) and because 
u’(O) 5 w’(O), we get 

( u’(a) + ~)2+l(n)+!g)2 1 +2(l-“(0)2)2-;(l-li(C)2)a < 0. 

(21) 
Therefore, two regular solutions cannot intersect before reaching 1, 
otherwise we would have u < w on (0, g) and U(U) = w(g) with 
U’(C) > w’(g), which contradicts (21). 

We are now able to show uniqueness of regular solutions. Let R be 
fixed. Let us assume Qr (resp. &a) is a solution of (17) with a = al (resp. 
cya) and Ha = Hi (resp. Hz). If al < a 2, since two regular solutions do 
not intersect before reaching 1, we have Qi < Q2 on (0, R). We infer 
from (21) that Hr < Hz. So there is a unique a(R,Ho) in I(R,Ho) 
for each R and Ha and a( R, Ha) is an increasing function of Ha. An 
immediate consequence of the uniqueness is that lo(R, Ho) and Ii (R! Ho) 
are connected sets. 

Moreover, a(R, Ho) is an increasing function of R. Indeed, let 
or ( RI, HO) < az(R2, Ha) be the initial data for the two regular solutions 
Qi and Qa. We know that Qi and Q2 do not intersect in (0, min(R1, R2)). 
Let us assume Qi < Qa on (0, min(Rr, Rz)); we call ~2 the point 
where Qa(r) = or. We now use (20) with y = o1 which provides the 
following comparison result FQ,(R~) - FQ,(O) < FQz(r2) - FQ,(O). 

This yields HO < Qa(r2) + (1/r2)Q2(r2). But it is impossible since 
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Q;(r) + W9Qd4 is increasing and reaches Ha when r = R2. So 
Q2 < Qr on (O,min(Rr, R2)) and it implies RI < Rz. 

The continuity of CK(R, Ho) follows from the fact that &JR, Ha) and 
11 (R, Ho) are open and the continuous dependence of Q with respect 
to R and Ho on any interval that does not contain zero. Indeed, if 
a0 < a(R,Ho) < Q r, we have QCYO(rO) < 0 and Qa,(rl) > 1 for some r. 
and 7’1 smaller than R. But these inequalities remain trueAfor all (R, go) in 
a neighbourhood of (R, HO), which shows a0 < a(R, Ho) < ~1. 

We are now able to conclude the proof. Let R be fixed. For Ha small, we 
know that Il(R, Ha) is nonempty, so I(R, Ho) is nonempty too. We call 

H,” = max{ Ho such that for H < Ho, 1, (R, H) # 8). 

It can easily be seen from the continuous dependence of Il(R, HO) 
with respect to Ho that when HO reaches H,“, a(R? Ho) reaches 1. As 
a(R, Ho) is an increasing function of Ho, it implies I(R, Ho) is empty 
forHo>H,“. 0 

PROPOSITION 2.6. - We have H,“(R) is a decreasing function of R. 
Moreover 1 

lim H,“(R) = 5. 
R-CC 

Remark. - This is the same limit as in the one-dimensional case. 

Proof. - We have shown in the proof of Theorem 2.5 that for RI < R2, 
a(Rl, Ho) < cx(R2, Ho). Let HO = H,“(R2), so that a(R2, H,“(R2)) = 1. 
It means H,” ( RI) > H,“( R2), which is the desired monotonicity property. 

Let Q be the regular solution of (17) with Ho = H,“(R), so that Q! = 1. 
As FQ is increasing, we obtain F&O) 5 FQ(R), that is H,“(R) > l/&‘. 
In order to get the estimate on the other side, we introduce a new energy: 

G,(r) = ;Qt2(r) + ;(l - Q2(r))” - $Q2(r). 

A simple computation, using (17) gives G2(r) = r3G’,(r) = ---~~&‘~(r) + 
Q2(r). We now differentiate Gz and get G’,(r) = -2r2Q(r)Q’(r)(1 - 
Q2(r)). So G2 is decreasing and since G2(0) = 0, it means Gr(0) > G1(R) 
which can be rewritten 

H,“(R) < $ + 
J 
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THEOREM 2.7. - There exists a unique minimizer (foe, Qo3) of E,. 
For Ho 5 H,“, Qm remains smaller than 1 and f& = 1 - QL. 
For Ho > H,“, there exists a unique R, < R such that 
in (0, R,), Qoo remains smaller than 1 and f& = 1 - Qk 
while in (R,, R), Qk + ( l/r-)Qw = Ho and foe G 0. 

Proof. - Theorem 2.5 gives that for Ho < H,“, there is a unique (too, Qo3) 
solution of (14)-(15)-( 16) and Qm remains smaller than 1. For Ho > H,“, 
as we want a solution in D,, it means Qm(0) = 0 so Qa is a solution 
of (18) on (0, R,), with Qm(R,) = 1. The radius R, is unique because 
a(R, Ho) is an increasing function of R. So there is a unique solution 
of (14)-(15)-( 16) with foe $ 0. What only remains to show is that this 
solution is the minimizer of E,, or more precisely that the normal state 
(any solution defined by f0 z 0 and Qb + &u/r’ = Ho) has a higher energy. 
We introduce a new energy 

E(r) = $Q’,)’ - ;Qa + ;r2(l - Qk)2 on (RR,). 

and we call R, = R in the case Ho 5 H,” with cy = Qoo (R,). Computing 
E’(r), using equation (14) gives 

1 R=c 

5 0 .I 
~(1 - ~2)’ dr = :R~(I - a2)2 + :H;R~ - HoRrr~. 

This and an integration by parts on JoR( l/r) ( (TQ,)‘)~ enable us to estimate 

Em(fm, Qa) = ;R’ - $Rk(l - CY~)~ - 1”; rQk(l - Qk). 
0 

So &e(fm, &co) < R2/4 = Em(fo, Qo). 0 

2.3. Convergence of minimizers 

PROPOSITION 2.8. - For all Ho, there exists no such that for n > no, the 
normal state is not a minimizer of E,. 

The proof relies on energy comparisons as in [l]. 

THEOREM 2.9. - The whole sequence (fit, QK) of minimizers of E, 
converges to the unique minimizer (fool Qm) of E,. More precisely, when 
K -+ cx3, 

f% --+ fcx in LP(Bn) Vp 1 5 p < CC and weakly in Hl(Bn), 

Qtc-Qm in C1’CY(Rn) t/a < 1. 
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Proof. - It is almost the same as in [ 11. We only mention the main ideas. 
For HO < H,“, as IQml < 1, fm is in H1(B~) and we can test it in 

E,. We infer that fn is bounded in H1 (BR) and En(fn, Qn) tends to 
Ea(foO,Qm). As a consequence, Qn is bounded in H1(B~). So for a 
subsequence, 

.fn + f in LP(B~) Vp 1 5 p < m and weakly in Hl(BR), 

Qn + Q in P(BR) Vp 1 5 p < cc and weakly in H1(BR). 

Using equation (12), we can improve the convergence on Qn: classical 
elliptic estimates and Sobolev embeddings give that QK is bounded in 
W2aP(B~) for all finite p, and QK converges in Cl)” (BR) for (t < 1. We 
see that E, (f, Q) = E, (foe, Qco) and Theorem 2.7 gives the conclusion. 

For HO > H,‘, we have seen that fw is not in H1 (BE), but as 
in the one-dimensional case, we can find gK in H1 (BR) such that 
limrcim E,(g,, QDO) = E,(f,, Qoo). Energy comparisons give: 

As in the one-dimensional case, up to the extraction of a subsequence, 

f, - f2 weakly in L2(B~), 

Qn -+ Q in CP(BR), 

for (f, Q) E L* x DQ. Lower semi-continuity yields: lim inf R+DC) E, ( fn, Q6) 
> E,(f, Q), so that (f, Q) is the minimizer of Em. Theorem 2.7 allows 
us to know the properties of f: there exists R, with f = 0 on (0, R,) 
and f2 = 1 - Q2 on (Ra, R). Then the result of convergence follows as 
in the one-dimensional case. 0 

2.4. Numerical Study 

We want to compute solutions of the Ginzburg-Landau system such that 
f is positive. Instead of solving the system (7)-(8)-(9)-(lo), we define 
S(T) = r&(r), choose E small and solve: 

a.f 
- $ -I- 5~~2 i- TZ = f(f2r2 + S2 - r”) in (e, R), 

g(e) = 0 and g(R) = 0, 

1.g - g =rf2S in (t,R), 

S(E) = 0 and A:(R) = Ho, 
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758 A. AFTALION 

using the same scheme as in [l], that is implicit discretisation in time. It 
can be shown as in [6], thanks to the Maximum Principle, that a minimizer 
of the Ginzburg-Landau energy is an asymptotically stable solution of this 
problem. We compute the solutions with R = 1. We study the convergence 
of fn when K tends to infinity. Figure 1 (Ha = 1) and figure 2 (Ha = 3) 
illustrate the two different behaviours described in Theorem 2.7. 

‘kz3’ -  
‘k=4’ . 

‘k=iO’ 
'k=lOO 

'k=inf' . _ 

\ 
'\,. 

\ '. i '. 
'\\‘..... 

\ -.- \ 
\ 

, I I I , I I I , 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 1. - Radial solutions f(7) for R = 1, HO = 1. 

Remark. - It would be interesting to show that fn is nonincreasing and 
improve the convergence of the sequence. 

3. THE CASE WITH VORTICES 

In this section, we allow N vortices to appear in the center of the ball 
and intend to minimize the energy over this number N. We are going to 
show that N # 0 for the minimizer, and more precisely that N/K has a 
limit when K tends to infinity. The existence of vortices at the center of the 
ball can be described mathematically by introducing, as in [4], solutions 



ON THE MINIMIZERS OF THE GINZBURG-LANDAU ENERGY 759 

01 
:  ‘\ -‘-~%._.___ , , , .-._ 

0 0.2 u.4 0.6 0.8 

Figure 2. - Radial solutions f(r) for R = 1, Ho = 3. 

(T/I, A) such that 

$(r, 8) = f(r)eiNe f(r) E W, and A(T, 8) = A(r)ee, 

and A will be regular at the origin. We may notice that (4, A) is gauge 
equivalent (see Definition 1 .l) to (f, Q) with 

Q(r) = ; (S(r) - c)e0. 

where S(T)/T is regular at the origin. 

In this situation, the Ginzburg-Landau energy is the following: 

-&(N, f, a = ./( $,I2 + f(f2 - 1)2 

+{tS-f)2f2+ (~Si-Ho)2) rdrd8. (22) 
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3.1. Finite Ginzburg-Landau Parameter 

The introduction of N in the energy comes from a number of vortices, 
that is an integer. But in fact, the definition (22) has a meaning for any 
real number N. So for mathematical purposes, from now on, we will allow 
N to vary in R. We will see that the convergence properties and the limit 
would not be affected by restricting N to lie in Z, if a judiciously sequence 
of TV is chosen. 

3.1.1. Fixed number of vortices 

To start with, we fix N and want to minimize E, on Df x Ds where 

Df = {P radial, f L 0 a.e. f E H1 (BR)}, 

Ds = S radial, fS E L2(B~) and fS’ E L2(Bn) 
> 

. 

With the norm Il(l/~)S’ll~~, Ds is a Hilbert space (see [4]). We will not 
give the proof of the next three Theorems as it is almost the same as in 
the case treated in [4]. 

THEOREM 3.1. - If E,(N,f,S) < CXL then f E H1(O,R), (l/r)S’ E 
L2(0,R) and (l/7-)(S(T) - S(0)) E L2(0,R). 

THEOREM 3.2. - We have the following regularity properties: 

(9 f E Df * f E CO(O,fl), 
(ii) S E DS =+ S E C’(O,R) and S(0) = 0, 

(iii) f E Df, S E Ds and E,(N,f, S) < 00 + f E C”[O,R] and 
f(0) = 0. 

THEOREM 3.3. - There exists a minimizer (f, S) of E,. It is in 
(C”(l3~ - (0)) fl C2(BR))2 and is a solution of 

$.f”+--$f’=f(f2+~(~-S)2-1) in (O,R), (23) 

f’(f4 = 0, (24) 

(25) 

g’(R) = Ho. (2s) 
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Remark. - With the expression of the laplacian in the radial case, 
equations (23) and (25) can be rewritten: 

-$Af = f(f’+ s(S- c)‘-1) in BR, (27) 

AS - $(~it)lS +z&$) = (28) 

THEOREM 3.4. - Zf(f, S) is a minimizer of E, such that f is not identically 
zero, then 0 < f 5 1 on (0, R] and S > 0 on (0, R). Moreover, neither 
function is constant on a subinterval of (0, R). 

Proof. - Since the solutions are regular by Theorem 3.3, if they are 
constant on a subinterval, it means they are constant on [0, R]. But the 
boundary condition S(0) = 0 and (23)-(25) show that S cannot be constant 
and the only possibility for f is 0. 

If (f, S) is a minimizer of E,, so is (If\, S). Hence (IfI, S) is a solution 
of the Ginzburg-Landau equations and IfI is C” on (0, R). So either 
f = 0 or f is never equal to zero. 

Let us assume max,EIO,R] f(r) = f(ra) > 1. As f(0) = 0, r0 E (0, R]. 
Equation (27) can be rewritten 

-$Af - c(r)f = 0 

on an interval around ro, which does not contain 0, and on which f > 1 so 
that c(r) is positive. We choose the largest interval possible. Necessarily, 
either f = 1 on the boudary or T = R is the right end. The strong Maximum 
Principle implies that the maximum is reached on the boundary. But because 
of condition (26), it cannot be reached on T = R and otherwise f = 1 on 
the boundary, which is the minimum. So that f remains smaller than 1. 

We know that S(0) = 0. Let us assume that there exists r. in (0, R] such 
that max,~[O,R] S(T) = S(Q) 5 0. Equation (28) gives: 

AS - $(X&S + ~~8,s) - Sf2 5 0. 

We again apply the Maximum Principle on an interval around ro. 
The minimum is reached on the boundary which means r. = R. But 
condition (26) gives that S’(R) > 0 which contradicts the Hopf Lemma. 
So S > 0 on (0, R]. q 
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THEOREM 3.5. - Zf(f,S) IS a minimizer of E,, then S is non decreasing. 

Proof. - We rewrite equation (28) as fohows: 

The Maximum Principle implies that S - (N/K) cannot reach any positive 
maximum nor any negative minimum in the interior. Since S(0) = 0, there 
are two possibilities: 

0 S 5 (N/K) on (0,R). 
So S has no local minimum in (0, R). As S’(R) > 0, it implies S 
is non decreasing. 

0 S(r) > (N/K) for some T in (0,R). 
Let r. be the first point where S = f. Necessarily, S’(ro) > 0 by 
the Wopf Lemma and as in the previous case, S is non decreasing 
on (0, TO). Then the Maximum principle gives that S - (N/K) has no 
positive maximum in (ro, R). So S is non decreasing on (ro, R). 0 

Remark. - It would be interesting to study the monotonicity of f. 

3.1.2. Minimization of E, 

From now on, we intend to minimize E, over R x Df x Ds, that is to 
find the best number of vortices to put at the origin. We will show that the 
presence of vortices lower the energy. 

THEOREM 3.6. - There exists a minimizer (N, f: S) of E,; (f, S) is in 
(C”(BR \ {OH n c2(hd)2 and is a so&ion of (23)-(24)-(25)-(26) with 

J,, ;li(s- p=o. (2% 

Proof. - Let (n;, fil,, S,* ) be a minimizing sequence. For each ni, we 
can always replace fn, and SnZ by a minimizer of E, with fixed N = 71i 

as in the previous section. Then fn, is bounded in H1(BR) fl Lm(B~) and 
S,, is bounded in Ds. So, up to the extraction of a subsequence, 

fn, + f weakly in H1, a.e. and strongly in Lp for all finite p, 

ks;c + 57 weakly in L2. 
r r 

1 S% -3 ‘S strongly in L”, 
r r 
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where (f, S) E Df x Ds. Thanks to lower semi-continuity, we have 

J BR 2$'2+g-2-1)2+ (+fo)2 
< liminf J $fL: + &-:, - V+ (;s:, - H0)2. (30) i-+cc 

BR 

If the limit f is identically zero, equation (30) implies that the normal state 
(fo, SO), with fo E 0 and S;(r) = Her, is a minimizer of E,. Then the 
number N of vortices does not intervene. 

When f is not identically zero, the sequence n; is bounded. Indeed, 
we have 

and since SnL is in Ds, it implies (l/r)S E L2(B~). As a consequence, we 
can assume n; + N, and (N, f, S) is a minimizer of E, because of (30) and 

COROLLARY 3.7. - When the normal state is not a minimizer, then the 
minimizing solution has vortices at the origin. 

Proof. - When f f 0, equation (29) gives that S - N/K changes sign. 
The study in section 2 implies that N is positive. 

3.2. Infinite Ginzburg-Landau Parameter 

We let formally K = 00 in the energy. The difference with the one 
dimensional case is that we shall have to find the constant C (which comes 
from the term N/K) which minimizes the energy. We define 

E,(C,f,s) = J ;(f~-q~++~.)Yf~+ BR (;s - Ho)2 rdrd8. 
(31) 

THEOREM 3.8. - There exists a minimizer (C,, .foo, SW) of E, over 
WXL~,,(BR; R+)xDs. S, is in C2(BR)) and Q(T) = (S,(T) - Cm)/r 
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satisjes 

Q” + ;Q’ - $0 = Q(1 - Q2)11Q,<~, (32) 

Q’(r) + iQ(r) = HO when IQ(r)1 2 1 and r=R, (33) 

(34) 

(35) 

Proof. - We call (C,, fiL, &) a minimizing sequence and define 
Q,(r) = (S&-> - G)/r. W e p roceed as in the one dimensional case: 
replacing fz by (1 - Qi)l ~~~~~~ can only lower the energy so Qn is a 
minimizing sequence of 

J(Q) = /,, (; - $1 - Q2)21,u,s~) + (;(rQ)' - Ho) 2 rddt'. (36) 

Since (l/r)(rQ) ’ is bounded in L2, (l/r)SA is bounded in L2 too, so it 
implies S, is bounded in L”. As we are only concerned with T such that 
IQn (r) 1 5 1, we can also assume C, is bounded. Then we can extract 
a subsequence that will converge to a minimizer of E,. Equations (32) 
and (34) are the corresponding Euler-Lagrange equations for the variations 
of S and C. 

THEOREM 3.9. - Any minimizer (C,, foe, S,) of E, is such that fW f 0. 
More precisely, let Qoo(r) = (S,(r) - Coo)/r. Then QW is increasing 
on (0, R), I&ml remains smaller than one in an annulus (~1, R) with 
QW(~l) = -1. On (O,rl), foe G 0 and Qo3(r) = (1/2)Har - (l/r)Coo, 
where C, = r1(1 + Hoq/2). 

Proof. - We are going to study the shape of solutions of (32)-(33)-(34)- 
(35). An easy computation shows that if Q’(T) + (l/r)Q(r) = Ho, then 
Q(r) = (1/2)Hor-(l/r)C f or a g’ rven constant C. As (32) can be rewritten 

AQ-Q(l+f-Q’)=O when j&I< l! (37) 

the Maximum Principle implies that Q can neither reach a positive local 
maximum nor a negative local minimum while it remains between -1 
and 1. Moreover (34) implies that Q changes sign. So any solution of (32)- 
(33)-(34)-(35) with f $ 0 . 1s such that Q is increasing, I&I < 1 in an annulus 
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and outside the annulus, the solution is defined by (33) and the continuity 
condition on the boundary. There are two possible types of solution: 

l type a: IQ1 < 1 on (~1, R) with Q(r1) = -1 and Q(R) = Q E (0, l), 
l type b: I&I < 1 on (ri,rz) with Q(ri) = -1, Q(r2) = 1 and TZ < R. 

We are going to show that type b solutions cannot occur. Let us define 

2 1 
Q’(r) + :Q(r)) +$ - Q2(r)12, 

on the annulus where IQ\ < 1. Thanks to (32), we see that F’(r) = 
W)Q”(l - Q”>, so F is increasing on the annulus. But this is impossible 
in the case of a type b solution since F(q) = F(Q) = H,2/2. So we have 
to investigate the existence of type a solutions. The proof now relies on a 
shooting method: for a given a! E (0, I), there is a unique solution QoI of 

Q; + ;Q; - $Qa = Qa(l -Q:) on (O,R), 

Q,(R) = Q and Qh(R)=&--i. 
(38) 

We check that (33) is satisfied when T = R. We are interested in the interval 
where Qu remains smaller than 1. We introduce the same sets as in the 
proof of Theorem 2.5: I(R, Ha), 1a(R, Ho) and Il(R, Ho). Notice that the 
Maximum Principle applied to (37) implies that when cy E 1, (R, Ha) there 
exists rl+ E (0, R) with Qa(ri,a) = -1 and Qa is increasing on (~i,~, R). 
For a E I,(R,Ho), we define 

1 
fR(a) = Ho + - - Q&(rl,a). 

rl,a 
(39 

We notice thanks to (32) that 

f~(a) = s,, Qcx(l - Q:)l,~alg = s" rQa(l - Qi) dr. (40) Tl,a 
Classical ODE theory implies that fR is a continuous function of. Q. 

1st step. - Let R and Ho be fixed. We are going to show that when 
I(R, Ho) # 0, there is a minimizer of E, of type a. In this case, we 
know from the proof of Theorem 2.5 that lo(R, Ho) = (0, a*) with 
a* E I(R, Ho). For cx = 0, Qa < 0 on (rl,ol, R) so (40) gives that 
fR(O) < 0. As a consequence, fR is negative for Q small. 
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We let (Y tend to a*. We call ~0,~ the point where Qn (r) = 0. Up to the 
extraction of a subsequence, we have ~0,~ -+ TO. If TO > 0, then classical 
ODE estimates give that QCY(rO,n ) -+ Qcye (ro). But as a* E I(R, Ha), we 
cannot have Qcl* (TO) = 0 for r. > 0, so ‘~0 = 0. Since Qa is increasing, 
~1,~ < 7’0,~ and Q.~ + 0 too. We know that Qn is bounded on (~i,~~, fl), 
so we have 

/’ 
l’o.0 

lim rQLY(l - Qi) dr = 0 and lim 
w-+(Y* 

TQ,( 1 - Q;J dr > 0. 
’ T1.e W-+(Y* 

It implies that OR > 0 for cy close to cy*. As OR < 0 for small (1, there 
exists ,L? E (0, o*) such that f(/?) = 0. So Qp is a solution to (32)-(33)-(34). 

We already know that the minimizer of E, exists. Either it is the 
normal state, that is a solution (Co, fo, So) with f. z 0 and 5’6 = Ho,r, 
or a solution of type (L. We may notice that once we have a solution 
Q of type u, we can go back to (C, fl 5’) thanks to (39, the continuity 
condition Hari/2 - C/r1 = -1 and the definition of Q which gives 
S(T) = C + T-Q(T). M oreover, E, (C, f, S) = J(Q8). Now let us show 
that Qa provides a minimizer of E,. We introduce a new energy 

E(r) = ;(rQ;)’ - ;Q; + ;r”(l - Q;)‘. 

Computing E’(r), using equation (32), gives 

This and an integration by parts on Jr:,:, ( ~/T)((TQB)‘) enable us to 
estimate J(Qp). 

J(Qp) = ;R’ - ;R’(l -p”)” - 1” rQ;(l - Q;L (41) 
l’1.d 

Since E, (CO, fa, So) = R2/4, it means &a has a lower energy than the 
normal state. 

2nd step. - We assume Ho is fixed. Then for small R (R L l/I& for 
instance), the first step indicates that there exist a minimizer of type a. 
We call 

R. = max{R st the normal state is not a minimizer of E,.} (42) 
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Let us assume that Ra is finite. A straightforward argument shows that 
if Qa, corresponds to a minimizer of E, with QaR(R) = CXR, and if 
Jo = Ri/4 is the energy of the normal state for R = Ro, then 

lim .7(Qa,) = Jo. 
R+Ro 

According to (41), it means that (YR -+ 1 and JVy,“, rQg,(l - Qz,) 4 0. 
But this is impossible, so Ro = +CG. 0 

Remark. - Numerical computations show that fR is increasing on (0,l) 
hence the minimizer of E, is unique. 

COROLLARY 3.10. - For all Ho, there exists 60 such that for of. 2 ~0, the 
normal state is not a minimizer of E,. 

The proof relies on energy comparisons as in [I]. 

PROPOSITION 3.11. - When R is large, C, is equivalent to HoR2/2. 

Proof. - We already know that C, = rl(l + H0r1/2), where ~1 is such 
that Q(rr) = -1 and Q is as in Theorem 3.8 associated to the minimizer 
of E,. We only need to show that r-1 is equivalent to R when R is large. 
Let V be the solution of 

V” = V(l - V”) on (0, R), 

V(R) = a and V’(R) = Ho - a/R, 

where Q! = Q(R). It is easy to see that there exists p1 in (0, R) such that 
V(pI) = -1, V is increasing on (pl, R) and the energy V’2 + (1 - V2)2/2 
is preserved on (pi, R). A straightforward computation gives 

R-pI=~~((H0-~)2+~(I-02)2-:(1-~2)2)-i &I. (43) 

So if we show that r1 > pl, the proof is over. We know that Q < V for 
T close to R and we are going to show that Q and V cannot intersect 
before reaching -1. Let 

El(r) = Q’2 + $(1 - Q2)2. 

We immediately get E;(r) = (2/r2)Q’(Q - r&l). Let r. be the point 
where Q crosses zero. Since Q is increasing, Et < 0 on (rr, ~a). Let 
E2(7-) = rQ - r2Q’ on (TO, R). Since E;(r) = -r2Q(1 - Q”), it implies 
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J!&(T) < 0 on (~a, R) and El is decreasing. Since for T = R the energy 
Ei is the same for Q and V, it means 

Q’2 + ;(l - Q2)2 > V’” + ;(I - V2)2 Vr E (rl: R). 

So Q and V cannot intersect before reaching - 1 and r1 > pl. 0 

3.3. Convergence of minimizers 

THEOREM 3.12. - Let (N,, fn; S,) be a sequence of minimizers of 
E,. There exists (C,, fa, S,), a minimizer of E,, and a subsequence 
(N,,%, fn,, , S,” ), such that when K.,, tends to 00 

NK,, 
~ --+ GJ, 
K” 

f n,, --+ fee in Lp ( BR) for all jinite y, 

59& -+ Is, in C”,CU(B~) for all u E (0,l). 
r r 

Proof - Let (C, , fm, S,) be a minimizer of E,. We have seen that 
fm is not in Hl(BR), but as in [I], we can find gK in H1(BR) such that 

lim &(C,K., .qK, Sm) = Em(C,> fcm, Go). PC-C-2 

Let (N,, fK, SK) b e a minimizer of E,. Energy comparisons give: 

&&‘m, fm, &a) 5 Kc (~>f+ &(N,,fd~): 

&(Nc ftc, s,) 5 EK(Ccm~,g~i) So). 
We let IC tend to infinity and obtain 

lim Ic-CC J 
-$ffi = 0 

and lim E, 
K-CC ($, f:&) = -&.o(Gm, fm, 62,). (44) 

It implies that (l/r)S, is bounded in Ds. As llfnllp 5 1, up to the 
extraction of a subsequence, 

f,” - f2 weakly in L2(B~), 

Is:, IL -+ -S’ weakly in L2, 
I- T 

IS, --+ 53 strongly in Lp for all finite p, 
r r 
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where (f, S) E L*(BR) x Ds. Weak convergence and lower semi continuity 
give 

s BR $+1)2+ ;S -Ho (l ’ )2s li&fs,R ;(fw+(fS:-Ho)2. 

(45) 
(i) If f E 0, it is easy to see that fn -+ 0 a.e. and in LP for all finite 

p. Then (44) and (45) imply 

So it means that the normal state is a minimizer of E,, which is not the 
case as shown in Theorem 3.9. 

(ii) So f $ 0, and as in the proof of Theorem 3.6, since 

is bounded independently of 6, then the sequence N&/n is bounded. So, up 
to the extraction of a subsequence, N,/K -+ C. Let A,(r) = (l/r)S,(r)ee. 
We have 

AA, = (AK - ++. 

Since A, is bounded in H1 and AA, is bounded in LP for p < 2, it implies 
that A, is bounded in W2J’ and we infer from elliptic estimates that A, 
converges to A in W’J’(BR) for p < 2 and C’,=(BR) for Q E (0,l). For 
all small E, we have 

We can easily derive from (44)-(45)-(46) that (C, f, S) is a minimizer of 
E,. So thanks to Theorem 3.9, there exists r1 such that f E 0 on (0, ri) 
and f2 = 1 - (S - C)2/ r2 on (rl, R). Then we proceed as in [l] to show 
that fK tends to f strongly in LP, now that we know the shape of f. 

3.4. Numerical Study 

We use the same scheme as before. We compute the solutions with R = 1 
and Ho = 3. We are interested in what happens with large K. Figure 3 
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Figure 3. - Radial solutions with vortices f(r) for R = 1, h- = 300, Ho = 3. 
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Figure 4. - Minimizers of E, with vortices f(r) for R = 1, Ho = 3. 
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illustrates the different types of radial solutions f to the Ginzburg-Landau 
equations according to the number of vortices: 

- when N is too large, the only solution is f = 0; 
- for N of the same order as K, f is equal to zero in a small ball 

around the origin; 
- for small N, f is equal to zero in an exterior ring. 

Figure 4 illustrates Theorem 3.12: it shows the convergence of minimizers 
fK as K tends to infinity. We can see that the vortex core in an inside ball 
and there is an outside annulus where superconductivity remains. 

4. CONCLUSION 

We have proved in the case of a ball, that for large K, the minimizer 
among radially symmetric solutions has N vortices concentrated at the 
origin, N being of order K. It should be interesting to make a stability 
analysis of these minimizers. What we may expect for the global minimizer 
of E, is to have of order 6 vortices, but not necessarily concentrated at 
one point. 
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