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ABSTRACT. - The main idea of this paper is to reduce analysis of behavior 
of integral functionals along weakly convergent sequences to operations 
with Young measures generated by these sequences. We show that Young 
measures can be characterized as measurable functions with values in a 
special compact metric space and that these functions have a spectrum of 
properties sufficiently broad to realize this idea. 

These new observations allow us to give simplified proofs of the results 
of gradient Young measure theory and to use them for deriving the results 
on relaxation and convergence in energy under optimal assumptions on 
integrands. 

We think that this work helps to clarify role of Young measures. 
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RESUME. - L’idCe principale de cet article est de ramener l’analyse du 
comportement de fonctionnelles integrales portant sur des suites faiblement 
convergentes a des operations sur les mesures de Young associees a ces 
suites. Nous montrons que les mesures de Young peuvent $tre caracterides 
comme des fonctions mesurables a valeurs dans un certain espace metrique 
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774 M.A. SYCHEV 

compact et que ces fonctions ont un ensemble de prop&u% suffisament 
large pour mettre en ceuvre cette idee. 

Ces nouvelles observations nous permettent de donner des demonstrations 
simplifiees de resultats en theorie du gradient des mesures de Young et de 
les utiliser pour obtenir des resultats sur la relaxation et la convergence en 
energie sous des hypotheses optimales sur les indgrandes. 
Nous pensons aussi que ce travail aide a clarifier le role des mesures de 
Young. 0 Elsevier, Paris 

1. INTRODUCTION 

Consider the functional 

I(u) = 
I’ 

L(z: u(z): Vu(z))dz, 
.n 

where R is a domain in R”, u : $2 ---f R” and where L : 0 x R” x R”“” -+ 
R is a Caratheodory function. Some of the fundamental questions in the 
Calculus of Variations are 

l under which conditions on L is 1 lower semicontinuous with respect 
to weak convergence in the Sobolev space W’J’(02; R”); 

l can the lower semicontinuous envelope of I be expressed as an integral 
functional; 

l under which conditions do weak convergence UI; - u. in W1l*(R; R”) 
and convergence in energy I(Q) -+ I(Q) imply strong convergence. 

A number of results that answer these questions in different generality 
have been obtained in [I], [4], [ 141, [15], [19] since the fundamental work 
of Morrey [36] (see also [ 181, [38], [41], [44] for the scalar case m = 1). In 
recent years it has become clear that optimal results are most easily stated 
and proved in the framework of Young measures ([3], [5], [29]-[30], [45]). 
The purpose of this paper is to present a streamlined and self-contained 
approach to the theory of gradient Young measures and its applications to 
the above problems. 

We do not mention here all previous contributions in the area under 
discussion, but give appropriate references each time that we state a result 
similar to a known one or utilize a proof repeating a scheme discovered 
earlier somewhere else. 
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A NEW APPROACH TO YOUNG MEASURE 775 

In this paper we do not touch other problems in which Young measures 
play an essential role (see e.g. [8], [51]). An intensive study of the 
applications of Young measure theory to PDE started since the works 
of Tartar [49], [50]. 

We assume R is an open bounded subset of R”, with meas = 0, 
unless otherwise stated. By W’>p(R; R”“) we denote the space of all 
measurable functions u with finite norm I[z~IIn~l,~(o;n~) := II~llL~(o;n~) + 
II-b’(s2;Rnm), lV~‘*(fl; R”) is the closure of Cr(R;R’“) in 
W1>*(R; R”). By W,l,,,p(Q R”) we denote the space of measurable 
mappings u : R -+ R” such that u E W’J’(6; R”‘) for any open set 
6 compactly embedded in R (fi CC 0). The space C,(R’) is the closure 
of C,“(Rl) in the supremum norm. Equivalently, 

C,(R’) = {a E C(R’) : 1’ ,,l’ym Q(u) = 01. 

Recall that L(z, u, w) : R x R” x R’““” -+ R is a Caratheodory 
integrand if L(z, ., .) is continuous for a.a. 2 and L(., ‘~1, w) is measurable 
for all U, ‘u. It is well known that L is a Caratheodory integrand if and 
only if for each E > 0 there exists a compact subset R, of R such 
that meas(R \ 0,) 2 E and the restriction of L to fit, x R”” x R”‘” is 
continuous, see [ 181. 

From now on we will denote weak and strong convergence by - and 
-+, respectively. Convergence fk -* f in L”(0) means convergence 
of integrals j”o fkgdz to Jo fgdx for all g E L1 (R). Convergence in 
W~~(02; R”) means convergence in W’>*(fi; R”) for each fi CC 0. 

The ball of radius E with center at x will be denoted by B(x, E). We 
denote by R”” the space of all m x n matrices and, for A E R’“” and 
x E R’” we denote by Ax the vector defined by matrix multiplication. By IA 
we denote a linear function R” + R” such that IA(Z) = Ax everywhere. 

We write M(Rl) for the space of all bounded Radon measures supported 
in R”, and 11~1 lM for the total variation of a measure p. To distinguish 
the action of a measure on a function from the scalar product we use the 
notation (L; p) in the first case. Sometimes we also utilize more classical 
notation J L(v)dp. 

Recall the definition of Young measures 

DEFINITION 1.1. - A family ( v, Zen of probability measures v, E M(R’) ) 
is called a Young measure if there exists a sequence of measurable functions 
Zk : Cl --+ R1 such that for each + E CO(Rz) 

@(zk) -* G in L”(R), where 6(x) = ((a;~,). 
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Zfthe zk are gradients ofa sequence ‘& E W1)p(R; R’“), p E [l, CO[, which 
converges weakly in W’J’(R; R”) and for which the sequence [vul,Ir is 
equi-integrable, then (.v~)~.Q is called gradient p-Young measure. 

Note that Uk converges weakly in W’J’(R; R”) to some uo, and 
Vuo(4 = &n,n(.) dvz f or a.a. x E s1 (cf. Theorem 3.7). Then u. is 
unique (up to additive constants) and is called underlying deformation. 

We call a Young measure (vz)zEn an homogeneous Young measure 
if V, does not depend on 2. GMr (A) is the set of all homogeneous 
gradient p-Young measures with the center of mass at A, GMa(A) is 
the set of all homogeneous measures generated by gradients of sequences 
converging weakly” in W1.” (0; R”“). We will frequently identify elements 
of the sets GMp(A), GMm(A) with measures in M(Rnm). Note that the 
sets GMr(A), GMa(A) do not depend upon 0. 

Note also that a function +(~a) : 62 + R coincides with the function 
given by the action (Q; S,,(.)) of the family of Dirac masses S,,,,., on the 
function a. 

Other notations frequently used in this paper will be given in $3, which 
is completely devoted to general Young measure theory. 

An improved version of fundamental theorem in Young measures by [3], 
[5] states that any sequence, which is bounded in LP with p > 0, generates 
(after passage to a subsequence) a Young measure. Moreover, under certain 
conditions on an integrand the action of this measure on the integrand 
coincides with the limit of the values of the functional along the sequence 
(see [3], [5] and Theorem 3.7 stated below). In addition to these facts a 
characterization of the classes of Young measures generated by gradients 
of the Sobolev functions was obtained in [29]. 

These results give us a hope that analysis of behavior of integral 
functionals on weakly convergent sequences can be completely reduced 
to operations with Young measures generated by these sequences. In order 
to implement this idea one has to find a simple characterization of Young 
measures and effective tools for work with these objects. It turns out that 
such a characterization exists. In fact, Young measures are just measurable 
functions with values in a compact metric space with the metric having an 
integral representation (see Lemma 3.3). Although these functions are not 
so simple as the ones with values in R1, they still have a broad spectrum 
of properties (these properties are given by propositions 3.2-3.5). 

It turns out that the characterization of Young measures as measurable 
functions and operations available for work with these functions suffice to 
prove all standard results of general Young measures theory. In this paper 
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we do not discuss these matters, but concentrate on applications to gradient 
Young measure theory and problems of the Calculus of Variations related to 
behavior of integral functionals on weakly convergent sequences of Sobolev 
functions. In view of that we restrict our work to families of probability 
measures with measurable actions on continuous functions not proving 
explicitly that this class of families coincides with the class of Young 
measures. A curious reader can consult about the omitted issues in [46]. 

In $2 we will recall some auxiliary facts on Sobolev functions from [l], 
[7], [25]. The most important one is Theorem 2.1 recently proved in [30] 
(for an alternative proof see [23]). 

In 53 we prove the characterization of Young measures as measurable 
functions into a special metric space and discuss basic properties of these 
functions: the Lusin property (Theorem 3.2), some quantitative estimates 
on how the convergence of the elements of the families of probability 
measures transforms into convergence of the families (Lemma 3.4), and a 
theorem on measurable selections (Theorem 3.5). We also state a version 
of the fundamental theorem in Young measures in a form convenient for 
our purposes (see Theorem 3.6). Since in this work we need to analyze 
behavior of integral functionals on sequences of Young measures, we extend 
the theorem on relation of the value of an integral functional on a Young 
measure with the values on a sequence of functions generating this measure 
to this generality (see Theorem 3.7). 

In 54 we give simplified and self-contained proofs of the basic results 
of the theory of gradient Young measures (Theorems 4.2, 4.3), the main 
one of which is the classification of gradient p-Young measures (Theorem 
4.3), obtained by Kinderlehrer & Pedregal [29]. In the homogeneous case, 
we replace abstract duality arguments from [29] by ones relying on the 
integral formula for the metric corresponding to weak* convergence of 
measures and Theorem 3.7. Our arguments can be extended to the case 
of arbitrary integrands, see [47]. Then, we extend the result to the general 
case following construction proposed in $6 of [44]. 

In 55 we obtain some applications of the theory developed in $2-4 to 
the behavior of integral functionals on weakly convergent sequences of 
Sobolev functions. It turns out that the approach above leads to a simple 
proof of the relaxation theorem under optimd conditions on integrands if 
the standard growth conditions are assumed. 
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Recall that 
a function L : R”‘” + R is called quasiconvex at A E R”“” if for each 

4 E Cr (0; R”) the inequality 

I L(A + V$(y))dy > L(A)measR 
.R 

holds. This definition does not depend on the choice of an open set 0, with 
meas = 0 (c$[7]). 

THEOREM 1.2. -Let L(z, u! u) : R” x R” x R”“’ + R be a Caratheodory 
integrand such that 

Let 

Lqc(2, 21, wg) := 
1 

inf ~ J d~cg=(R;Rm) mea& n 
L(X> -4 210 + W(Y))dY, 

F(u) := J R Lqc(z, u(z), Vu(z))&. 

Then Lqc satis$es the same estimates as L, is a Caratheodory integrand, and 
the function v -+ LQ’(z, u, II) is quasiconvex for a.a. x E R and all u E R”“. 

If uk - ug in W1?p(R; R”“), then liminf&+,~(thk) 2 Iqc(uO). Moreover, 
there exists a sequence uk E uo+C~(R; R”) such that the sequence IVuk(P 
is equi-integrable, uk - ug in W1,P(Q;Rm) and I(?&) -+ Iq’(uo). 

Remarks. 
1. If L is continuous then LQc is continuous (see the proof of Theorem 

1.2). 
2. It follows from the second part of the theorem that Iqc is the weak 

lower semicontinuous envelope of the original functional I. 

The previous most significant results in relaxation (see [ 11, [IO], [15]) 
involve some additional requirements on behavior of integrands with respect 
to 2, u. In [l] a result on sequential weak lower semicontinuous envelope 
has been stated under less restrictive assumptions on growth of L. We will 
show how this result can be derived from Theorem 1.2 in the remark after 
the proof of the theorem. 
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The following property of integral functionals is called the weak-strong 
convergence property: 

ok - ua in W’>P(R; R”), 1(uk) + I imply u,+ -+ us0 in Wl)l(R; R”) 

We obtain precise characterization of integrands satisfying this property 
at a fixed function in $5 (see also [45]). Results of previous authors 
indicated some sufficient conditions for this property to hold at a function, 
everywhere (see [19], [29], [30], [41], [42], [52], [53] and papers cited in 
[44]). In the scalar case a pointwise characterization of this property has 
been obtained in [44]. 

DEFINITION 1.3. (see [29], [30], [39]) - Let L : R”‘” -+ R be continuous 
function such that 1 L(V) 1 5 AlvlP + B, A > 0. Then L is closed p- 
quasiconvex at vg if JRTLm L(.)du > L(wo) for any homogeneous gradient 
p-Young measure v (see Definition 1.1) with the center of mass at WO. L is 
strictly closed p-quasiconvex if the inequality is strict unless v is a Dirac 
mass. 

THEOREM~.~.-LL~~U~EW~~~(~~;R”)~~~~~~L:R~’XR~XR~~+R 
be a Caratheodory integrand satisfying the inequalities 

IL(z,u,v)l 5 Al@ + B,A > 0,~ > 1. 

Then the following assertions hold 
1. ZfL(z, Us, U) is strictly closedp-quasiconvex at ‘u = Vu~(z)fora.a. 

z E a, then the convergences Uk - ug in Wlap( fl; R”), I(uk) + I(?&) 
imply the convergence Uk + ug in Wl,‘(R; R”) for any sequence uk such 
that the negative parts of L(z, uk(Z), Vul~(z)) are equi-integrable. 

2. Conversely, if the convergences Uk - ug in W1>p(O;Rm) and 
T(uk) -+ T(uO) imply the convergence uk --+ ‘ug in W1,l (0; R”) for all 
sequences uk such that uk E uo + Cr(Q; R”) then either L(x, UO(X), ZJ) 
or -L(z, Q(X), U) is strictly closed p-quasiconvex at u = Vuo(z) for a.a. 
5 E R. 

Remark. - In the situation in 1. the convergence 

L(z, uk(x), vuk(x)) --+ L(z,uo(z),Vuo(z)) in L1 holds. 

The “sufficient” part of the theorem has been proved in [30] through 
arguments introduced in [29]. We also will follow these arguments in the 
proof of this part of the theorem. 
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Remark. - As proved in [45], for p > 1 and integrands bounded from 
below strict closed p-quasiconvexity of L at ‘ua is equivalent to the property 
called in [45] strict p-quasiconvexity (see that paper for the motivations of 
this choice in terminology). The property is the following. 

A function L : R”“” -+ R is strictly p-quasiconvex at vg E R”‘” if L is 
quasiconvex at vg and for every c, t > 0 there exists 6 = S(c, t) > 0 such 
that for 4 E Cow (fl; R”) the inequalities 

J’ L(v0 + V4(z))dz < (L(v0) + S)measC IlWllL~ L c 
Rnm 

imply the inequality 

meas{z E 0 : ]04(Z)I > E} < t 

Therefore, Theorem 1.4 indicates the additional requirement to 
quasiconvexity on behavior of integral functionals on linear functions both 
necessary and sufficient for the weak-strong convergence property to hold. 
In the scalar case (m = 1) strict p-quasiconvexity at a point v. becomes 
strict convexity: xi ciL(ui) > L(vo) for any c; 2 0, ‘ui # v. such that 
c ci = 1, c civi = va (see 1441, [45]). In this case the second claim of 
Theorem 1.4 still holds if restricting considerations to the class of r&k with 
equi-integrable ]VrQ$. We did not succeed to prove analogous result in the 
vector-valued case. As for the result from [45], it also has been obtained 
for the sequences ‘r&k with equi-integrable ]VuklP, however assuming more 
restrictive growth conditions. 

In this paper we do not treat the case p = 1. We also do not consider 
the situation when the exponent of the Sobolev space, in which the weak 
convergence holds, is less than growth exponent of the integrands at infinity. 
For results in this direction and counterexamples see [2], [4], [6], [7] [9], 
[l I], [16], [21], [22], [24], [32-351, and papers mentioned therein. It seems 
that the papers [6], [22] describe these results in the most generality. 

2. SOME AUXILIARY RESULTS 

This section contains some auxiliary facts utilized in this work. The basic 
fact from the theory of Sobolev functions which we need in this work is 
the following (see [l], [23], [25], [30,Th.3.10]) 

THEOREM 2.1. - Let p E] 1, w [ and let Uk be a sequence bounded 
in WIJ’ 0. R”) There exists a subsequence uj, and a sequence vj E L ’ 
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W1>p(R;Rm) such that IUU~ - ujl + IV(vj - Uj)l -+ 0 in measure and 
[Vvj 1~’ is equi-integrable. 

It took a surprisingly long time to understand that the key point in 
some previous results is the above property of Sobolev functions. The 
technique sufficient to prove Theorem 2.1 had been utilized in [l] while 
the theorem was first stated explicitly only ten years later in [30,Th 3.101 
(as a consequence of the stability result in the Hodge decomposition from 
[25]). An alternative proof has been proposed recently in [23, $41. 

Another important observation from [7] is the following fact. Let R be 
an open bounded set such that meas = 0 and 0 E 0. Let fi be an 
arbitrary open and bounded set. Then by Vitali covering theorem 156, Ch.l] 
for any t > 0 there exists a decomposition of fi in sets of the form a; + eifi 
(i E N), where ei < 6, and a set IV0 of zero measure. Moreover 

LEMMA 2.2. - Let 2~~ E 1~ + W,‘l”(CI; R”). For each k E N consider the 
decomposition of fi in disjoint sets of the type at + E~CI (i E N, E: 5 l/i?) 
and a set Nk of null measure. 

Defining Uk as Az + E$UO((IC - a:)/~;) for 5’ E u” + $fl, and 
as Ax otherwise, we obtain that uk - 1~ in W,‘lp(n; R”) and, 
moreover, the sequence IVukIP is equi-integrable with the same modulus 
of equi-integrability as the function lVuo]P multiplied by the factor 
(measfi/measfl). 

Proof. - is given in [7] with exception of the estimate for the modulus of 
equi-integrability of lVr&]’ which follows immediately from the relation 

meas{z E fi : IOU,(X)] > M}/measfi 
= meas{z E R : ]Vua(z)] 2 AJ}/measR. 

PROPOSITION 2.3. - Let K c R” be a compact set of nonzero 
measure. Then, for each v > 0 there exists an open set 0, (consisting, 
possibly, of several domains) with smooth boundary and such that 
supzEo, dist(z, K) < Q, meas{(K \ 0,) U (0, \ K)} -+ 0 us 77 -+ 0. 

Proof. - Let f 2 0 be a usual mollifying kernel, i.e. let f be smooth 
with the support in the unit ball and sRn f = 1. Let fc(x) = E-‘~~(x/E). 

The convolution fE * x, where x is the characteristic function of K, is 
a smooth function with support lying in 2e-neighborhood of the support of 
x. Moreover, meas(supp(f, * x) \ K) + 0 as E -+ 0. 

For almost all S l ]0,1 [ the set SE = {x : fE * x = 6) is a smooth 
hypersurface (consisting, possibly, of several connected pieces). Actually, 
by the Sard theorem for a.a. S ~]0,1[ the inequality ]V(jE*x)(~)l > 0 holds 
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for all x E Sg. For each such 6 and z E Sg the hypersurface 5’2 is smooth 
in sufficiently small neighborhoods of x by the implicit function theorem. 
Because of compactness of ,572 we obtain smoothness of S’g everywhere. 

Because of the convergence fe * x -+ x a.e. in R”, for each g > 0 we 
can isolate EO = ~~(0) such that EO 5 n and 

meas{z E K : (fE,, * x)(x) 2 1 - g} 2 measK - r. (2.1) 

The sets 0, can be chosen as {x E R” : (fc,c,, *x)(x) > 1 -S(q)}, where 
S(v) l ]q,2q[ are such that the hypersurfaces 5’~~~;’ are smooth. Indeed, 
by (2.1) meas(K \ 0,) I 1 7 + 0 as rl + 0. The rest follows from the 
inclusion 0, c ~upp(f~~(~~j * x). 

The proof is completed. 

3. GENERAL YOUNG MEASURE THEORY. 
THEOREM ON BEHAVIOR OF INTEGRAL FUNCTIONALS 

ALONG SEQUENCES OF YOUNG MEASURES 

In this section we will prove that the families of Radon measures (~,),~o 
with measurable actions on elements of Co(R1) can be identified with 
measurable functions into a certain compact metric space (Lemma 3.3). 
This fact will allow us to apply some standard (but powerful) tools for 
constructing Young measures. In fact these tools, which are given by 
propositions 3.2-3.5, are enough to prove all standard results of Young 
measure theory (see [46]). 

By the Riesz representation theorem, bounded linear functionals 1 over 
the space Co(R1) are given by actions of Radon measures: I(@) = (a; v). 
Therefore the space M(R”) of all Radon measures over R” is dual to 
Ca(R’). Moreover it is a Banach space with the total variation 

tIv/IM := SUP 
.I’ 

@(v)du 
l/~lIC.O(RI)I1 R’ 

as a norm. 
Let Kc = {V E M(R’) : ]]v]]~ 5 c} and let {@i : i E N} (Cai # 0) 

be a dense set in Co (Rl). The metric 

P(Y,P) = -g l izI 2”ll~pillc I(@& 4 - (ai; AI (3.1) 

Annaks de I’hstitut Henri Poincar~ Analyse non Ii&ire 
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defined for elements of M(R’) endows KC with weak* topology for each 
c > 0. It follows again from the Riesz representation theorem that (K,, p) 
is a compact metric space. 

DEFINITION 3.1. - Let R be a bounded measurable subset of R”. A family 
of Radon measures (~,),~n, where II, E KC for a.e. x E R, is called weak* 
measurable iffor any @ E Co(Rl) the function ((a; II(.)) is measurable. We 
denote the set of these families as L,( R; KC). 

A sequence (v$),~o of such families converges weakly* to a family 
(&J&7 in L,(O; KC) if (Q; II?,) -* (@‘;v(.)) in L”(R), k -+ co, for 
each @ E CO(R1). In this case we use the notation (zI~)~~o -* (v,),~Q. 

The space of weak* measurable families of Radon measures, which is 
U,&,(fl; KC), is the dual space to Ll(R,Co(R”)) (cf.[5],[17,p.588]) and 
this motivates our terminology. 

In the following we frequently identify (~,),~o with the map v : R -+ 
(KC, p) given by V(X) = v,. It turns out that (v,),~~ is weak* measurable 
if and only if v is measurable: for any closed subset C of (KC, p) the set 
V-‘(C) is measurable (see Lemma 3.3). This identification let us utilize 
some standard (but powerful) results on measurable maps, first of which 
is the Lusin property. 

THEOREM 3.2. (Lusin type characterization of measurable functions) - 
Let R be a bounded measurable subset of R”, (M, d) be a compact metric 
space. A function [ : R --f (M, d) is measurable if and only iffor any E > 0 
there exists a compact set 0, C R such that meas(R \ Cl,) < E and the 
restriction of [ to R, is continuous. 

The proof is a straightforward modification of the proof of the standard 
version of this theorem. 

LEMMA 3.3. - Let R be a bounded measurable subset of R”. Let v, E K, 
for a.a. x E R. The family (v,),~R is weak* measurable if and only if 
v : 62 --+ (KC, p) is a measurable mapping. 

Proof - Assume that a family (~,),~o has measurable actions on 
elements + of Co(R”). Let also {a;} c Co(Rl) be a sequence of functions, 
which is dense in C,(R”). For given E > 0, i E N there exists a compact 
set R; c R such that the restriction of (Qi; v(.)) : R -+ R to s2i is 
continuous and meas(R \ S&) 5 ~/2~. Then meas(Q \ f-Q> 2 E and the 
restrictions of all functions (@i; v(.)) to flRi are continuous. This implies 
continuity of the function v : fK& ---f (KC, p). Then v : R -+ (KC, p) is 
a measurable function. 
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Conversely, let v be a measurable mapping from R into (K,, p), Then, 
by Theorem 3.2, the Lusin property holds for V. Thus, for any fixed E > 0 
there exists a compact subset R, of 0 such that meas(R \ 0,) 2 E and 
the restriction of 11 to It, is continuous in p-metric, that implies continuity 
of the restriction of the function (@; Y(.J) to 0, for each @ E Ca(Rl). 
Therefore ((a; v(.)) is a measurable function for each @ E Ca(Rr). This 
completes the proof. QED 

We define the average Av(~,)~~o of a weak* measurable family of 
measures as follows 

It is clear that if P,~ E K,. for a.e. z E 12 then Av(~~),.~Q is a linear 
functional over CO(R’) bounded in norm by c. Thus Av(~.,),~o E K,.. 

We will need the following continuity property of the operation 

Av(~L,).za. 

LEMMA 3.4. - Let 0 be a bounded measurable subset of R” and let 

~P~hh (azEn E L,,,(R, K,). Then 
I) Zf 06 is a measurable subset of R such that meas(0 \ 06) 5 OmeasS2 

and p(pk, pf) 5 6 for all :c E 626, then 

Proof. - of the first claim is based on the representation formula for p. 
Actually, if ‘J!i = ~i/~~@;~~c(R~~ then 
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The second assertion of the theorem is an immediate consequence of the 
first one. Actually, let fi be a measurable subset of R. By the first statement 
of the theorem Av(,u~),~~ -* Av(~~),~~ as k -+ 03. Hence, for any 
@ E CO(R’) the convergence (@;,uf,)) -* (@;,u(.)) in L”(R) holds. 

The proof of Lemma 3.4 is completed. QED 

We recall also a version of the theorem on measurable selections from 
[31] (for more sophisticated versions of such theorems see [12]). 

Let R be a bounded measurable subset of R” and let (M, d) be a compact 
metric space. A mapping V : R + 2 M is a closed measurable multi-valued 
mapping if, for a.a. LC E R, the set V(X) is closed and if for any closed 
subset C of A!i’ the set {x E R : V(X) n C # 0} is measurable. 

THEOREM 3.5. - Zf V : s1 --f 2 ” is a closed measurable multivalued 
mapping then there exists a measurable selection, i.e. a measurable map 
v : R + (n/r, d) such that u(x) E V(z) for a.a. II: E R. 

The following result is a version of fundamental theorem of Young 
measures (see [3], [5], [20], [49], [50], [54], [55]) stating weak* 
compactness of families of Radon measures. 

THEOREM 3.6. (Compactness result) - Let R be a measurable bounded 
subset of R” and let ( z&zc,, E L, (R; KC). Then there exists a subsequence 
(~,!),~a (not relabeled) and a (v,),~R E L,(R; KC), such that 

that is (a; ZI(“:,) -* (a; UC.)) in Lw(G)for any Q, E Co(Rl). 

v mz,a is a family of probability measures then (~,),~a also consists 
of probability measures provided there exists a function g : R1 + R+ such 
that lim]vlioog(u) = cc and 

JJ g(?J)dL$dz 5 c. 
Cl R” 
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In particular, each sequence of measurable functions +zj : R + R’ such that 
& g(.zj(.x))dx 5 c contains a subsequence generating a Young measure. 

Proof. - of the compactness result is given in [5], [20], [30]. It follows 
from the duality L”(R; M(R’)) and L1 (02; CO(R1)) and the Banach- 
Alaouglu theorem. For a proof in context of the concept of Young measures 
as measurable functions see [46]. 

To prove the second part of the theorem note that V, is nonnegative for 
a.a. z E Sz and IIvZllM 5 1. 

Let 021, be an increasing sequence of compact subsets of 0 such that 
meas( R \ Rk) --+ 0 as k + cx) and the restrictions of v : R -+ (Ki , p) to 
52k are continuous. Let i E N and R+ = {x E fl,+ : I[v~:~~J,, 5 1 - l/i}. 
Then R+ is a closed subset of ok. Suppose that measRi,k > 0. 

Consider YJ = Av(v,;),~Q+, v = Av(v,),~~+. By the assumptions we 
have ~j -* v (this follows from the convergence (v~)~~Q -* (v,),~Q 
in -&(a; Kc)), JRL g(,)dvj I c, and IIvII,+, 5 1 - l/i. In particular one 
has, for all C < co the inequality 

vj(R’ \ B(0, C)) inf{g(v) : Iv1 > C} 5 c 

holds. Thus for any sufficiently large C we have ~j(B(0, C)) > 1 - 1/2Z 
for all j E N. 

If Q, : RE + [0, l] is continuous, (a(w) = 1 for /VI < C, and a(~) = 0 
for I’uI 2 2C, then 

J @(v)dvj > 1 - 1/2i > 1 - l/i 2 
.I 

Q(v)du 
R’ R” 

for all j E N. This contradiction with the convergence YJ -* v proves 
that measRi,k = 0. Thus meas(Ui,kRi,k) = 0 and, as a consequence, 
IIvzll~ = 1 for a.e. x E R. QED 

Recall that the main idea of this work is to replace analysis of behavior 
of integral functionals along weakly convergent sequences by work with 
Young measures generated by these sequences. In order to implement this 
idea we need to characterize the cases when the action of a Young measure 
on an integrand coincides with the limit of the values assumed by the 
integral functional at a sequence generating this measure. In the general 
case only the lower semicontinuity result holds (see [3], [43], and Theorem 
3.7). Since the inner demands of the theory which we develop in this paper 
require work with sequences of Young measures instead of functions, we 
have also to indicate such a characterization in this, more general, situation. 



A NEW APPROACH TO YOUNG MEASURE 787 

It turns out that a relevant characterization is the following one. 

Let F(z,v) : R” x R1 + R+ be a nonnegative Caratheodory integrand, 
64sER E L,(fl;K,) (i E N). We will say that (~k),.o satisfies the 
tightness condition with the integrand F on R c R” if 

where En{ : R + R is a continuous function satisfying the requirements: 
0 5 ,&,f (t) 5 t everywhere, EM(~) = 0 for t < M, <n/l(t) = t for t 2 2M. 

It is easy to see that in the case v(“., = 6,%(.) the tightness condition 
coincides with equi-integrubility of the sequence F (. , zi (.)). 

The next theorem gives answer to the above question. 

THEOREM 3.7. - Let R be a bounded measurable subset of R”. 
Let (v:)~~, be a sequence offamilies ofprobability measures with support 

in R’, and let L(z, v) : R x R’ --+ R be a Caratheodory integrand. Suppose 
that (zI~)~,, satisjies the tightness conditions with the negative part L- of 
L (therefore the integrals of the functions JR, L(., v)du[,) are either finite 
or equal +CQ) and that ( .v;)~,, generates a family of probability measures 
(~z)zEc?. 

Then 

Moreover, lim.i+w Jo JR1 L(z, v)dvidz + JQ JR’ L(rc, v)dv,dz if and 
only if (v~)~.~ satisfies the tightness condition with ILI. In this case 
JR” L(., v)dut.) - JR’ L(., v)dv(.) in L1. 

Proof. - Let RI, be a sequence of compact sets such that meas(R \ RI,) + 
0 as k + 00 and the restrictions of L to Q x R” are continuous. Let us 
prove first the theorem under the additional requirement of boundedness 
of L from below. 

Consider a sequence of continuous functions Qij : R1 + [0, l] such that 
cDj(w) = 1 for z1 E B(O,j), @j(w) = 0 for v E R1 \ B(O,2j), and Qj(u) 
is nondecreasing in j for any fixed u E R”. 

For fixed k E N, j E N let w be a modulus of continuity of the restriction 
of L to RI, x [-2j, 2j]“. Decompose & on the sets Kr, . . . , K, in such a 
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way that diamK, 5 6, p E { 1, . . . , m}. Let also x+, E Kp, p = 1, 
Then, for any fixed p E {I!. . ,,m} 

s @j(V)L(Zp, +q) -* I @‘j(w)L(z,,w)dv~.~ in L” as i - 
R” . R’ 

. ,m,. 

0, 

l@~(~)IIL(q,,v) - L(y,v)l 5 w(S), if y E Kp,u E R”. 

Thus, letting 6 --f 0 we obtain 

Since L is bounded from below the Fatou lemma implies 

as j --+ oo, i E N (the same holds for the family (~,)~~o). Thus 

It is also clear that for the complete convergence we need tightness of 
(~k)~~o~ with L+. In this case .iRl L(~,v)dv[.) - JRl L(.,u)dq.) in 

L1 (Qk). 
Because meas(R \ 0,) + 0 as k -+ cc and L is bounded from below the 

desired result follows. Theorem 3.7 is thus proved for integrands bounded 
from below. For general integrands consider the auxiliary integrands 
L” = max{L, -n} for which the inequality 

has been proved. In view of the tightness condition for (~i)~,o with L- 
and Fatou’s lemma the same holds for the original integrand. Moreover we 
have complete convergence if and only if (~k),~o satisfies the tightness 
condition with L+, and in this case JR1 L(., v)dv[,) - JR’ L(., u)dv(.) in 
L1 as i --+ co. 

The proof of the theorem is completed. QED 

In the following we will frequently use Proposition 3.8. 
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PROPOSITION 3.8. - Let R be a bounded measurable subset of R”. Let 
xj : R -+ R” be a sequence of measurable functions that generates a Young 
measure (~,),~n. Then the following assertions hold. 

1.) The sequence zj converges in measure if and only if u, is a Dirac 
mass for a.a. II: E R. 

2.) If the sequence yj satisjies zj - yj -+ 0 in measure as j + CC then 
it generates the same Young measure. 

Proof. - Convergence zj 4 z. in measure implies strong convergence 
(a(zj) -+ @(zo) in L1(R) for each @ E Co(R’). Hence zj generates the 
family S,,(.j: @(iZj) -* ((a;S,,,.j) = @(zo) in L” for all + E Co(@). 

To prove the inverse note that given E > 0 we can find a bounded 
continuous integrand L : R x R” + R and a set R, c fl such that 
meas(R \ 0,) < E, 0 < L 2 1 everywhere, and for each 2 E R, we 
have L(z,u) = 1 for u E B(zo(z),e/2), L(z,u) = 0 for w ,~B(.z~(x),E). 
By Theorem 3.7 we have L(.,Zj(‘)) -* L(.,zo(.)) in L”(R). Since 
Jo L(z,z~(z))dx 2 mea&, we infer 

limj-, meas{n; E R : .Zj(X) E B(zo,E)} > meas& > mead2 - 6. 

This implies convergence zJ -+ z. in measure. 
Proof of the second part of Proposition 3.8 is immediate since 

@(yj) - (a(zj) --t 0 in L1(R) for each @ E Ca(Rr). QED 

4. GRADIENT YOUNG MEASURE THEORY 

Recall first the definition of gradient p-Young measures. Let R be an 
open bounded domain with meas = 0. 

DEFINITION 4.1. - A Young measure (v,),~Q is a gradient p-Young 
measure, p E [l, 001 if it is generated by gradients Vuj of a sequence 
uj E W1~p(R;RnL) such that uj converges weakly in W1lp(R; R’“) and the 
.functions 1 Vuj IP are equi-integrable. 

If Uj - u. in W1>p(R;Rm), then Theorem 3.7 implies Vua(z) = 
Jk,kn, (.)dv, for a.a. z E R. The function u. is called the underlying 
deformation. 

A Young measure (~~)~~o is called homogeneous if it does not depend 
on 5. By GMp(A) we denote the set of all homogeneous gradient p-Young 
measures with the center of mass at A. By GMm(A) we denote those of 
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them which are generated by gradients of sequences converging weakly* 
in W1>“(R;R”). Both these sets do not depend on Ck 

By v o A we denote the measure obtained by exchanging the center 
of mass of v to A: if v is generated as a gradient p-Young measure by 
Vuk and B is the center of mass of v then v o A is generated by the 
sequence Vuk + lA-B. 

The main purpose of this section is to give self-contained proofs of the 
following two basic results of gradient Young measure theory first proved 
in [27]-[29]. 

THEOREM 4.2. - Let (v,),~~ be u gradient p-Young measure with 
underlying deformation ug, p E [I, co[. Then 

I) (Averaging principle) If there exists an A E R”” such that uo - 1~ E 
W,‘“(Q; R”) then Av(v,),,~ E G&,(A). Zf ~0 - 1.4 E W’,‘.“(Q; R’,) 
then AV(&u,(x))z~n E GMo(A). 

2) (Localization principle) For a.a. :c E R the measure 11.~ is a 
homogeneous gradient p-Young measure. 

COROLLARY OF THEOREM 4.2. - Let L : R’““” 4 R be continuous, 
/Lo < Alv(” + B, p E [l,co[. Then 

I. the following identities hold 

2. the function L is quasiconvex at A if and only if 

inf (L;v) > L(A). 
r&GM,(A) 

THEOREM 4.3. (Characterization of gradient p-Young measures) - A 
family (v,),~~ E L, (a; K1) of probability measures is a gradient p-Young 
measure with p E [l, CCJ[ if and only if 

(i) there exists uo E W’J’(O; R”“) such that ,I&,,- (.)Y, = VUO(IL) for 
a.a. x E 0; 

(ii) for a.a. x E 0 the inequality L(Vua(z)) 5 JRnm L(v)dv, holds for 
any quasiconvex function L such that c 2 L(V) 5 AlwlP + B. 

(iii) Jn JRnm(l + ]vlP)dvzdz < 03. 

Remark. - The theorem asserts that a probability measure v E M(R”“) 
is a homogeneous gradient p-Young measure if and only if (1 + 1.1’; v) < cc 
and L((.; u)) 5 (L; v) f or all quasiconvex L with c 2 L 5 Al . IP + B. 
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Thus (v~)~.~ E L,,(R; K,) is gradient p-Young measure if and only if 
(i), (iii) hold and for a.a. 2; E R the measure vz is a homogeneous gradient 
p-Young measure. 

In the scalar case min{n, m} = 1 quasiconvexity becomes convexity. 
Therefore any family of probability measures satisfying conditions (i),(iii) 
is a gradient p-Young measure. This fact was also implicitly proved in 
[44,56] through approximation results from [18, Ch.101. 

To prove Theorems 4.2, 4.3 we will need two simple auxiliary 
propositions 

PROPOSITION 4.4. - 1. Let p ~11, cc[, (~,),~o be a Young measure 
generated by gradients of a sequence uj bounded in W’J’(R; R”) (no 
assumptions on equi-integrability of jVuk]P), and let ~0 be the underlying 
deformation. Then (v,),~Q is generated also by gradients of a sequence 
‘& E uo + Cr(fit; R”) such that the functions ]VvkIP are equi-integrable 
and vk: - ~0 in W’J’(R; R”). In particular, (v,),~Q is a grudientp-Young 
measure. 

2. Let p E [l,cc[, let lVuj]P be equi-integrable and uj - u. E 
W1ap(R;Rm) in W,:r (0; R”) . Let also Vuj generate a Young measure 
(v,),Ec~. Then there exists a sequence vk E uo + Cr(O; R”) gradients of 
which generate (.v,),~Q as a gradient p-Young measure. 

It is clear that in the case p > 1 the statement of the second assertion 
is close to the statement of the first one, but proofs of the seconds parts 
of both propositions 4.4 and 4.5 do not involve Theorem 2.1. We state the 
second assertions of these propositions separately in order to show that, 
like in [29], Theorem 4.3 can be proved without using Theorem 2.1. 

Note that Proposition 4.4 was proved in [29] using arguments similar to 
those in [l] and Theorem 4.3. Theorem 2.1, which we use in the proofs of 
the first parts of Propositions 4.4 and 4.5, were established later in [30]. 

Proof. - 1. By Theorem 2.1 there exists a subsequence uj (not relabeled) 
and a sequence wj E WlJ’(R; R”) such that ]Vwj]P is equi-integrable and 
IV(Wj - Uj)J -+ 0 . m measure. By Proposition 3.8 Vwj generates the same 
Young measure as Vuj. Without loss of generality we can also assume 
that wj - u. in W,::(QR”). 

Let RI, CC fi be an increasing sequence of sets with smooth boundary 
such that mea.s(R \ fik) -+ 0 as k -+ CO. Let & E cr(&+i;R”) be 
a sequence such that 0 5 $k < 1, 4 = 1 on ok. Consider a sequence 
vk = ‘UO + (wj(k) - ~a)&. We will prove that there exists a subsequence 
j(k) -+ 00 such that the sequence ]Vvk IP is equi-integrable and ‘uk - ‘l&J 
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in W1lp(O;RnL). We have 

Vllk = VU0 + (V’Wj(k) - Vll”)$k, + (WJ(~;) - 7&J) @ V*k 

Then 

+Ikw, - ~~IIL~(Rb+,\~k)lI~~klIC. 

First two terms in the right-hand side of the first inequality converge 
to zero for any choice of j(k) + 30, both the last term and the right- 
hand side of the second inequality converge to zero for a special choice 
of j(k) + cc since ‘Uj - uo 4 0 in L?*,(R) as j + 00. Thus IVvkI” 
is equi-integrable for this choice of j(k), and vk - ?ho in w,‘,“‘(fl; R”“). 
Because Vuk - V,Wj(k) + 0 in measure the sequence Vvk generates the 
same Young measure (n,),.,~~ (cf. Proposition 3.8). 

In order to meet the last requirement vk E %co + Cr(fl; R”) we can 
take the mollifiers with sufficiently small radii of the already obtained 
sequence wk. 

The second part of the proposition may be proved by the same arguments, 
taking wj = uj. 

Proposition 4.4 is proved. QED 

PROPOSITION 4.5. - Let (v~),~R be a sequence of gradient p-Young 
measures such that (v~),,~R -* (v,),~R as j + CC and the underlying 
deformations ~j are equi-bounded in W’J’(R; R”“), p E [l, cc[. 

1) If Jfl JR”“’ (1 + Iqw&.?: < c and p > 1 then (v,),~~~ is a gradient 
p-Young measure. 

2) i’f the sequence (v~),~Q satisfies the tightness condition with the 
integrund (1 + I 1”) then (v,),~Q is a gradient p-Young measure. 

Proof. - By Proposition 4.4 for any fixed j there exists a sequence 
11% E uLlj + Cr(fl; R”) (uj is the underlying deformation for (l/i),E~i) 
such that (S,,;(,j),Eo -* (~i)~~o in L,(R;Ki) and U; - uJ - 0 in 
War>“(R; R”) as k -+ cc, and the functions IVui IP are equi-integrable. In 
particular Theorem 3.7 shows that 

lim I(1 + IVuj,(Lrp)dz = / / 
k+m R 

(1 + IwlP)dz&z. 
R R”“’ 
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Because of the convergence (v~),~Q -T (v~)~~Q by usual diagonalization 
arguments we may isolate a sequence U& bounded in W’?p(R; R”) such 
that (SVv3 I:I)(:l-))S~~ -* (vzjZ~n in -L,(QKI) as j + m and 

Thus, the first assertion follows from Proposition 4.4. 
To prove the second assertion note that the tightness condition implies 

see Theorem 3.7. Now we proceed as before, and because of the 
convergence 

.I * (1+ IVUQZ)1P)d” + (1+ ITJlP)dv,ds 
R .I.! Q R” “71 

by the same theorem we obtain that the functions IO?L~JP are equi- 
integrable. By the second part of Proposition 4.4 (v~)~~Q is a gradient 
p-Young measure. 

Both assertions of Proposition 4.5 are proved. QED 

Proof of Theorem 4.2. - Without loss of generality we may assume 
that 0 E R. Consider first the case (v,),~Q = (SV~~~(~J)~~Q. Recall that 
u. E bA + W,‘,“(fl; R’“). 

For each i E N consider a cover of R by disjoint sets ai of the form 
US + tgfl (J’ E N) with diamRi 2 l/i, and a set Ni of zero measure. 
Suppose also that for each i’ > i, j’ E N either $, c f2: or 0;: n fii = 8. 

Define vi(x) = $~a(?) f or x E Rc Us = ~-A(X) otherwise. Then J, 

A~(b~~(~)).q = Av(&~~(,)),~~ for each j. 
We claim that 

Let (SVV~(2~)ZEo be a subsequence (not relabeled) which generates a Young 
measure (~~)~~a. Let fi := fTi(Uj$), where 6; is the set of interior points 
of 0;. It is clear that meas(R \ 6) = 0. For each x0 E fi there exists a 
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sequence e:(i) such that 20 E 0:(,;) for each 1; E N. By the Lusin property 
(Theorem 3.2) and Lemma 3.4 

for a.a. z. E fi. Because 

we infer that Av(~,)~~o:(,, = Av(S~~~~(~))~~~ for all Z E N. Then 

vzg = *v(&u,(&n for a.a. :I:~ E cl. 

Because each subsequence of the original sequence (6~~,~(,.))XuE~2 contains 
a subsequence converging weakly* in L,,(R: K,) to the homogeneous 
Young measure Av(6 c~~(.~J).~~Q we obtain that the original sequence has 
this property. 

By Lemma 2.2 the functions jVoilJ’ are equi-integrable. Hence 
Av(SV,,,~,~~)~~Q E GMp(A). In the case UU~ E 1‘4 + W’,‘>“(fl; R’“) we have 
that U’ - 1.-1 -* 0 in W,f.“(R;R”‘). Thus Av(S~-,,(,.))~~~ E GMm(A). 

If (v.r).cEn is a gradient p-Young measure with the underlying deformation 
710 E Z-4 + Wi”‘(0; R”) then by Proposition 4.4 there exists a sequence 
‘u~i E l,.t + Cr(fl;R”‘) generating (v,),,~-~ as a gradient p-Young 
measure (in this case the functions IVU;IP are equi-integrable). Because 
*v(&u, (r)).rE~2 -* *v(v.,.).r+n and the modulus of equi-integrability of 
p-powers of gradients of sequences generating Av(~S~-,,~(,~))~~~~~ does not 
exceed modulus of equi-integrability of lV7~;lP (cf. Lemma 2.2) we obtain 
that the sequence Av(6 ~~~~~~~~~~~~ satisfies the requirements of the second 
assertion of Proposition 4.5. Hence Av(~I.,.)..~~~ E GMp(A). This completes 
the proof of the first claim of the theorem. 

Let us prove the second claim. Let (I/,,)~~c~ be a gradient p-Young 
measure. There exists a sequence RI, of compact subsets of R such that 
meas(R\RI;) + 0 as k + 3cj, the restrictions of v(.) to flk are continuous in 
p metric, and all points of RI, are Lebesgue for the map :I: + (1 + I,u(P; 11~). 

Let Vrli be a sequence generating (v,).,co as a gradient p-Young measure. 
Let ~0 be a Lebesgue point of fltl, and let B(za, E) c 0 for an F > 0. For 
j E N consider a sequence u!, i E N, defined on B(za, t) c fl by the 
formula u;I(x~ + y) = ~{u;(z~ + y/j) - ui(zo)}. 

For IyI 5 E we have that Vu~(:ca+‘y) = Vu;(zo+y/j). Then VU:, 1, E N, 
generate a gradient p-Young measure (v~),~B(~~,~) with z&+~ = v.~~ h/j t 
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y E B(zu, t). By continuity of the restriction of v : R -+ (K1, p) to RI, and 
Proposition 3.4 we infer (v~)~~B(~~,~) -* vzO in L,(B(Q, E); K,) (here 
vzO is a homogeneous Young measure). Moreover, since x0 is a Lebesgue 
point for the map IC -+ (1 + I~jp; vX) we have 

Thus (T&~B(zo,t) satisfies the tightness condition with the integrand 1 + 1’ IP 
(cf. Theorem 3.7). By the second assertion of Proposition 4.5 we infer that 
vzo is a homogeneous gradient p-Young measure. This proves the second 
claim of the theorem. 

The proof of the theorem is completed. QED 

Proof of Corollary of Theorem 4.2. - It is obvious that 
ir~f~~EGAI,(A)(L; 7)) < inf ,&GA[,(AL)(L: u). The inequality 

holds because Av(S ~~~~~~~~~~~ E GMm(A) (cf. Theorem 4.2). To prove 
the converse inequality 

1 
inf ~ 

+s2,” (R;RrTz) mea& 
L(A + V$(IC))~X 5 inf (L; v) 

, l&GM,,(A) 

notice that by Proposition 4.4 a v E GMp(A) is generated as a gradient 
p-Young measure by gradients of a sequence uk E Z.4 + Cr ((2; R”“). In 
particular, by Theorem 3.7 

.I L(V~k(s))ds -+ (L; v)measG as k + cc. 
R 

The first assertion is proved. Let us prove the second one. 
If L is quasiconvex at A then for any 5 E N the inequality 

.I’ 
L(Vuk(z))& 2 L(A)measR 

R 

holds with the above ?Lk, and, as a consequence, (L; v) > L(A). 

Conversely, if 4 E EA + Cr(R; R”) then the inequality 
(4AV(&+(z))z~~) L L(A) holds because AV(&+(z))z~:n E Gllloo(A). 

This implies the inequality so L(A + Vd(z))dz 2 L(A)measR. Thus 
L is quasiconvex at A. 
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The proof of the corollary is completed. QED 

The proof of Theorem 4.3 from [29] is based on an abstract version of the 
Hahn-Banach theorem for special functional spaces, the relaxation theorem 
in the simplest form (Theorem 4.6) and some technical approximation 
results (see Lemma 5.1 and the proof of Theorem 1.1 from [29]). We 
also prove this result first in the homogeneous case through the relaxation 
theorem (we give a direct and self-contained proof of the latter theorem). 
In this case we propose a proof based on the integral representation of the 
metric p and Proposition 4.5. This proof admits far-reaching extensions, 
see [47]. Then we extend the result to the general (nonhomogeneous) case 
utilizing construction in the proof of Theorem 3 from [44]. 

THEOREM 4.6. - Let L : R”” + R be a continuous function satisfjiing 
the estimates 

Then there exists a function LQ”, which is the greatest among all 
quasiconvex functions minorizing L. This function is given by the .formula 

Lqc(A) = inf 
J’ VEGM,(A) R>,m 

L(,u)dv, 

where GMP (A) is the set of all gradient p-Young measures with the center of 
mass at A. Moreover LQ’ is continuous and satisjies the same estimates as L. 

There are proofs of this theorem not involving Young measures (see [ 141, 
[ 151). In this case Lq”(A) is defined first as 

inf 
1 

~ 
J’ &Cr(QRn’) mea& o 

L(A + V$(z))dz. 

Then the result follows from the corollary of Theorem 4.2. We propose 
here a proof which can easily be extended to the case of dependence of 
L on the lower order terms (see the proof of Theorem 1.2 in $5) but 
involves Theorem 2.1. 

Proof. - Consider first the case p > 1. 
By Theorem 3.7 and Proposition 4.5 the infimum of J(Y) := 

.\&,, L(v)dv over GICI,(A) is attained. Let V(A) denote the set of 
minimizers of this problem. 
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If Al, -+ A as k + cc and vk E V(Ak) then for a subsequence u,~ 
we have 

lim I(Vj) = lirrizf I(z+), Uj -* V, j+m 

where v is automatically a gradient p-Young measure with the center of mass 
at A (cf. Proposition 4.5). By Theorem 3.7 limji301(vj) 2 I(V). Thus, 
lim infkim LQC(A~) > L qc A -( ), i e. Lg’ is lower semicontinuous at A. 

To prove upper semicontinuity notice that if v E V(A) then the measures 
v o Al, are gradient p-Young measures centered at Ak, respectively, and 

Therefore Lqc is continuous. 
Since each function 4 E Cr(O; R’“) can be approximated in W1,“- 

norm by piecewise affine ones, to establish quasiconvexity it is enough to 
prove the inequality 

’ I Lqc(A + V~(X))~IC 2 L4”(A)measR 
.R 

for piecewise affine functions $ E Wi133(O; R”). Fix such a 4. Let 
Rj (j = 1, . . , k) b e a finite collection of subdomains of R on which 
A + 04 has constant values Al, . . , AI, respectively. Let uj E V(Aj), 
j E {l,...,k}. 

By Proposition 4.4 there exist functions uj E Cr(Oj; R”) such that 

Define G(X) as 4(z) + Uj(Z) for :I: E (2j, j E (1,. . . , k}, and as 4(z) 
otherwise. We have 

.I Lq’(A+Vcjb(z))dx= 
.I 

L0”(A+Vq5(z))dx+& 1 Lqc(Aj)dz 2 
R fi\$=,% j=l a, 

.I’ 12\qEln, 
LqC(A + V$(z))dz + =& / L(A, + Vuj(z))dz - F > 

j=l Q, 

.I L(A+Vti(z))dx-c+ 
s 

{Lqc(A+Vq5(z)) - L(A+V~(z))}dx. 
n n\q= 10, 
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The first term in the right-hand side of the inequality exceeds L’J”(A)mea& 
since 

I 
’ L(A + Vii(:c))dz = (L; Av(S01L(Z))~CE~)meas~2; 

. 12 
where Av(S~;(,))~~~ E G&&,(A) by Theorem 4.2. The second term tends 
to zero as k + 00. Because f > 0 may be chosen arbitrary small we 
obtain that 

I 
Ly’(A + V~(Z:))& > Lq”(A)measR. 

.R 

This proves quasiconvexity of Lq”. 

By the construction L qc is the greatest function among quasiconvex ones 
minorizing L. Indeed, if F is a quasiconvex function minorizing L then 
for any 11 E V(A) we have 

Lqc(A) = (L; u) > (F; v) > F(A): 

where the last inequality follows from the corollary of Theorem 4.2. Hence 
Lqc(v) 2 Al + BII@, while the estimate A2 + B2 IuJP > L(v) > LY’(u) 
is obvious. 

The theorem is proved in the case p > 1. 
Consider the remaining case p = 1. To treat this case consider a 

family of auxiliary integrands Lp( .) := L(.) + ~1 . I’, 1~ > 0, and their 
quasiconvexifications Lr. For any fixed ‘u E R”” the values Lr (v) 
decrease to E(v) as p + 0. Because Lr are continuous functions bounded 
below by Bi the function 2, is upper semicontinuous and is bounded below 
by Bl. 

Because the inequality 

J LF(A + Vq5(x))dz 2 LF(A)measR 
R 

holds for any 4 E Cr(fi2; R”) and A E R’“” the same holds for the 
integrand L by monotone convergence theorem and then L is quasiconvex. 

To establish continuity of L it is enough to prove lower semicontinuity. 
The latter follows from quasiconvexity of J?. In fact if Ah + A then there 
exist functions $l~ E 1~ + C,“(fi; R”) such that meas{z E R : &(z) # 
Ak} + 0 and Il&llw~,= < c < co. Then 

i(Ak)measO - J x(A + V&(z))& -+ 0. 
R 

Andes de i’lnstitut Henri Poincar6 - Analyse non h&ire 
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Since the second term exceeds L(A)rneasR we infer that 
lim infk,, ii > i(A). 

Therefore i(A) is a continuous quasiconvex function. By the Dini 
convergence theorem Lr -+ ,!? as p + +0 locally uniformly. Because 
L:: are the greatest functions among quasiconvex ones minorizing the 
integrands L(.) + ,u . ]* the function i is the greatest among quasiconvex 
ones minorizing the original integrand L. 

In order to prove 

E(A) = 
“tG1g(.-l)(L; u, 

notice that by Corollary of Theorem 4.2 the following holds 

lim inf 
p-+0 VEGM,(A) 

(L(.) + ~1 . ]*; V) = ,,,G$L (JL: rj) = &)j! (JL: u). 

This completes the proof of Theorem 4.6. QED 

Proof of Theorem 4.3. - Necessity of the conditions (i)-(iii) follows from 
Theorem 3.7, Theorem 4.2 and its corollary. To prove their sufficiency we 
will prove first the theorem in the homogeneous case. In this case the result 
follows from the integral representation for the metric p. The result will be 
then extended to the general case following the construction in the proof 
of Theorem 3 from [44]. 

In the homogeneous case (~,),~o does not depend on 2 (we will denote 
this measure as v). Recall that GA$(A) d enotes the set of all homogeneous 
gradient p-Young measures with the center of mass at A. 

We prove first that GM,(A) is a convex set. Let Y’, Y* E GA&( A), 
X ~]0,1[. Let Ri, a2 be disjoint open subsets of R such that meas = 
meas(dR2) = 0 and mea&i = XmeasR, measR2 = (1 - X)measR. 
By Proposition 4.4 there exist sequences U: E lA + Cr (Ri ; R’“), 
IA: E EA+C~(&; R”) g enerating Y’ and u2 as gradient p-Young measures 
respectively. Hence the measure, which equals Y’ on Ri, Y* on Q2, 
is a gradient p-Young measure. By Theorem 4.2 its average, which is 
Ad + (1 - X)9, is also a gradient p-Young measure. This proves convexity 
of GM,(A). 

Let @a = (1 + ] . 1”). T o p rove the inclusion v E GM,(A) it is enough 
to prove existence of a sequence V~Z E GM,(A) such that 

P(vc, u> + [(Go; Q) - (@o; u)I -+ 0, k --+ cm. (4.1) 

Vol. 16. no 6-1999. 



800 M.A. SYCHEV 

In fact, the convergence of the first term to zero means that uk generates V. 
Then, by Proposition 4.5 convergence of the second term to zero implies 
u E Gil!&(A). 

We will prove (4.1) by contradiction. Recall that 

where the sequence { @;} is dense in Ca(R”“‘). 
If (4.1) does not hold, then for a sufficiently large 1 and an t > 0 we have 

> F. (4.2) 

Then, the subset of R2+l given by the vectors 

is convex in view of convexity of GA& (A), and the vector generated by 
v does not belong to its closure. Hence, there exists a vector (: E Rlfl 
such that 

Then 

inf 
ILEGM,(A) 

(L; 1~) > (L; 71) + 5, with L = k ci+i. 
i=o 

(4.3) 

Note that the coefficient CO can not be negative - otherwise the value 
at the left-hand side is -cc. In the case co = 0 we can replace L by 
L -t- nao and (4.3) still holds for ~1 > 0 sufficiently small. Note now that 
this integrand L satisfies conditions of Theorem 4.6 and that the left-hand 
side in (4.3) is equal to Lq’(A). Since L 2 Lqc everywhere we infer that 
Lq”(A) > (LQ’; V) + S, that contradicts the assumption (ii) of the theorem. 

The above contradiction proves that v E GMp(A). Hence the theorem 
is proved in the homogeneous case. 

Let v be a homogeneous gradient p-Young measure with the center of 
mass at A and let fi be an open subset of fl such that meas = 0. 
The Young measure (ZI o Vu~(z))~~~ is also a gradient p-Young measure. 

Amule.\ de I’lnstinrr Henri PoincarJ Analyse non h&tire 
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Indeed, if v is generated by wi E 1.4 + Co” (6; R”) as a gradient p-Young 
measure then (U 0 Vua(z)),,fi is generated by gradients of the sequence 
w; - ZA + uo. Because w; - lA E Cr (fi; R”) the measure, which equals 
YOVU~(Z) for z E fi and SvUO(,) for other z E fl, is gradient p-Young one. 

By Proposition 2.3 we can prove also that if R1, . . . ,Rl are disjoint 
measurable subsets of R, ~1,. . . , vl are homogeneous p-Young measures 
with the centers of mass at Al, . . . , Al respectively then the measure 
(k)zEsh which equals v; o Vu”(z) for II: E Ri (i = 1,. . . , I), SvUO(,) for 
other LC E (R \ Uj=,fli), is also a gradient p-Young measure. To prove this 
notice first that if Ri are open sets with meas = 0 then the claim 
follows from the result of the previous paragraph. If Ri are compact sets 
then the claim follows from Proposition 2.3 and Lemma 2.2. In the general 
case the same arguments let us prove the claim by approximating 0; with 
compact subsets. 

Consider now the general case of nonhomogeneous measure (~,),~a. 
For each k E N there exists a compact subset RI, of R such that 
meas(R \ ok) < l/k, the restrictions of ~0, Vu0 and &,,m (1 + (~lr)d~(.) to 
Rk are continuous, the restriction of v : R -+ (K1, p) to Rk is continuous, 
and for each z E R,+ the measure v, satisfies the condition (ii) of the 
theorem. 

We will prove that the measure (vt),,o defined as v, for z E &, and 
as &uo(z) for z E (a \ Q>, . is a gradient p-Young measure. By the second 
part of Proposition 4.5 this result will be enough to complete the proof of 
the theorem. Indeed, in this case (~&~o -* (~~)~~o in L,(R; K1) and 
(4.c,,, satisfies conditions of the second assertion of Proposition 4.5. 

Fix k E N. Suppose that C = [-a, a[” contains flk and let Ci 
(j = l,..., an) be quadrants of C. For each i > 1 decompose Cj 
(j = I,..., 2mi) in 2” cubes of equal size in the similar way. Let 
Bj = Cj n 621, (i E N; j E (1,. . . , ani}). Fix 1: E N. Let xj E Bi, 
let u,$” be equal to v(xj) o VUO(Z) for z E Bj, j E (1,. . . , 21Li}, and to 
SV.~~(~. otherwise. Then (~.$‘)~~o is a gradient p-Young measure by the 
claim proved above. 

Because the restriction of uk : R i (K,, p) to 621, is continuous in 
/, metric we obtain that (~$“)~~o -* (~:),~o as i -+ 00 (cf. Lemma 
3.4). Moreover, the sequence (~$~)~~o, i E N, satisfies the requirements 
of the second claim of Proposition 4.5 - tightness with the integrand 
1 + 1 . IP. To prove this notice that because of continuity of the restrictions 
of vu03 J&J1 + WW(.) to RI, the family of homogeneous measures 
,L+ := u, o Vuo(y), where x,y E 0 k, satisfies the tightness requirement: 
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JR- \B(O,M) (1 + ]?J/“)&L.~,~ -+ 0 as M + cc uniformly with respect to 
-c, y E 0s. Actually, the family (11~ : :I: E 12k} satisfies this requirement 
in view of continuity of the restriction of &,E,,L(l + lt$‘)dv(.) to & and 
Theorem 3.7. Because s~I),~~~~~, (VQ(:J)/ < cx) we obtain that the whole 
family pL,,y satisfies this requirement. 

By the second assertion of Proposition 4.5 ( yz),rE~2 is a gradient p-Young 
measure for each k E N. 

This completes the proof of the theorem. QED 

5. OPTIMAL RESULTS ON RELAXATION 
AND CONVERGENCE IN ENERGY 

In this section we prove Theorems 1.2 and 1.4 stated in the introduction. 
Before proving these theorems we will first prove a version of lower 
semicontinuity theorem from [l] for completeness. The proof follows 
arguments from [29], [30], [39]. 

THEOREM 5.1. - Let L : R x R”’ x R”” --i R be a Caratheodory integmnd 
such that (L(s,,w)( < Al+’ + B, IQ, E W’J’(b2: R”“), p E [l, x[. 

I) Zf the function L(z. 7~(:c), .) is quasiconvex at Dss~(:c) ,for ~1.0. :r E R 
then lim infk,,, I(uk) 2 I(,uo)for my sequence 1~ - Q in W1.“(f2: R,‘) 
such that the negative parts of L(x, Q(X), VU~(:I:)) are equi-integrable. 

2) Conversely, if lim infkioo I(Q) 2 I fir any YL~ - ug in 
W1lp(R; R”‘) such thut the sequence [VI@ is equi-integrable then .fur 
a.e. I(: E R thefunction L(.r, Q(X). .) is quasiconvex at V~o(:c). 

Proof. - Without loss of generality we may assume that 0~~ generates a 
gradient p-Young measure ( v,),~* and (ok, VU~) generates Young measure 
(6,,(,) @ z/,),~Q. By Theorem 3.7 

L(:c’, u&c), .)dv,dz. 

By Proposition 4.4 and the Localization principle (see Theorem 4.2) for 
almost all IC E R the measure 11, is a homogeneous gradient p-Young 
measure. In view of quasiconvexity at appropriate points we have 

for a.e. 5 E R (cf. Corollary to Theorem 4.2). This proves the first part 
of the theorem. 



A NEW APPROACH TO YOUNG MEASURE 803 

We will prove the second one by contradiction. Let RI, c R be an 
increasing sequence of compact sets such that meas(R \ Q,) < l/k, the 
restrictions of ~0, Vu0 to 026 and the restrictions of L to 02k: x R” x R’“” 
are continuous. Suppose that for a Lebesgue point z. of RI, the function 
L(zo, Us, .) is not quasiconvex at Vuo(zo). By Corollary to Theorem 
4.2 there exists a u E GM, (VW,~(Z~)) and c > 0 such that 

L(zo, ‘uo(zo), Vuo(zo)) > s L(z0, urJ(z(J): .)d?/ + E. 
R’L”l 

The same is true for all 2 E RI, sufficiently close to z. and v, obtained from 
11 by exchanging the center of mass from Vua(zo) to VQ(X). A Young 
measure, which equals v, for such x and &u,,(Z) for other x E 0, is a 
gradient p-Young measure due to Theorem 4.3. By the last inequality lower 
semicontinuity fails along a sequence associated with this Young measure. 

The proof of the theorem is completed. QED 

Proof of the Theorem 1.2. - Let flak: c 0 be a sequence of compact 
sets such that meas(R \ 0,) --f 0 as k + m, and the restrictions of L to 
RI, x R’” x R”“” are continuous. By Theorem 4.6 for each (:I. U) E $11, x R” 
the function 

Lyn:, u, .) = inf 
I VEGM,(.) . 

L(z, u, u)&(v). 

is continuous and quasiconvex. Moreover it satisfies the estimates 

and is the greatest function among quasiconvex functions minorizing the 
original one. 

Let V(x:, U, A) be the set of all solutions to the problem 

s 
L(z, U, .)ck --+ min. 

VEGM,(A) 

By Theorem 3.7 and the first assertion of Proposition 4.5 V(x, u, A) is a 
nonempty compact set in the metric space (Kr, p) (see $3). We will prove 
continuity of the restriction of LY” to RI, x R” x R”” by arguments from 
the proof of Theorem 4.6. 
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Moreover, for a subsequence vj of .!& we have 

liiiizf(L(zh, ?&, .); Vh) = jimW(L(Xj, ?kj, ‘); vj), vj -* .VO in GO(R,‘,)‘. 

By the first assertion of Proposition 4.5 ~0 E G&&(Q). By Theorem 3.7 

WC z~,u~;);vo) 5 liminf(L(ICIL,~h;);Vh). 
h+CX2 

This proves lower semicontinuity of the restriction of Lqc to 621, x R”” x R”“” 
at (20, ~0, ~0). 

In order to prove upper semicontinuity notice that if ~0 E T/(x0, ~0, uo) 
thenvoo~~~G~~(~~)and(1+~~~p~v~ow~)~(1+~~~p;~g)ash-,oo. 
By Theorem 3.7 this implies convergence 

Therefore 

limsupL’“(zh,Uh,‘Uh) 5 limsup(L(zh,91/,;)IVOO’Uh) = (L(za,?&;);!$). 
h-+cx h+oo 

This proves upper semicontinuity of the restriction of Lq” at (x0, ‘LL~, Q). 
Thus, we have proved continuity of the restriction of Lq’ to & x R” x R”“” 
for every k. 

Fix ‘u E W1~p(O;RfrL) and consider compact sets fi, c 12k such that 
meas(fltr, \ 0,) 5 l/k and the restrictions of ‘uu; Vu to 621, are continuous. 

Consider the multivalued mapping W : 5 E 0 -+ V(z, uo(x), Vuo(z)). 
Let 1c be such that the function L(x; ‘uo(z), .) : R’““” + R is continuous. 
Then V(Vuo(x)) is a nonempty compact set in the metric p introduced 
in $3 in view of Theorem 3.7 and the first part of Proposition 4.5. 
Thus W(z) is closed for a.e. z E 0. Because of continuity of the 
restriction of Lq”(., ~a(.), Vuo( .)) to fik the restriction of W to fik is 
upper semicontinuous: if Vk E W(X-,), :rk --+ 5 and p(Vk,V) -+ 0 (this is 
the same as uk -* Y) then v E W(z). Thus, W is measurable in 0. 

By Theorem 3.5 there exists a measurable selection of IV. By theorems 
3.3, 4.3 this selection is a gradient p-Young measure. For a sequence uk, 
associated with (v%)~.Q we have that the sequence (?&, VU~) generates 
the Young measure (6,,,(,) @ v,),,o and the functions Iv?Lklp are equi- 
integrable. Hence Theorem 3.7 yields 
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By the corollary of Theorem 4.2 the identity 

holds for a.a. x E 12 and all ‘u E R”“. 
By Theorem 5.1 the functional PC is lower semicontinuous: 

~i711k,m~yc(uk) 2 14”(uo) for Uk - u. in W1>P(O;Rm). It is obvious 
also that I(U) 2 P’(U), u E lV’~~(0). 

This completes the proof. QED 

Remark 1. - The growth conditions from the theorem may be dropped 
if one considers more special class of integrands. Let L : R x Rnm + R 
be a Caratheodory integrand such that 0 < L(z,v) 5 AluIp + B, y > 1. 
Then, the sequential weak lower semicontinuous envelope of the functional 
I(U), defined as 

rX(U) = inf{likmi;f I(‘uk) : u,k - u in I~Vl>~(fl; R”“)}, 

is an integral functional with the integrand Lq’. This can be proved through 
approximation of the original functional by ones satisfying standard growth 
conditions. 

Consider first the case of continuous L and compact 0. As in the 
proof of Theorem 4.6 consider a family of auxiliary integrands L,, where 
L,(z, V) = L(z, U) + ~lw(*P, p > 0, and their quasiconvexifications Llfi”, 
for which all conclusions of Theorem 1.2 hold. Hence LyTi (i E N) is 
a sequence of continuous functions quasiconvex in v and decreasing to a 
function J? such that 0 5 J?(x,v) 2 A/VIP + B. 

By the arguments from the proof of Theorem 4.6 (proposed for the 
case p = 1) we obtain that E is quasiconvex and continuous in ‘u and 
upper semicontinuous in z. Then i is a Caratheodory integrand that 
implies existence of a sequence of compact subsets flk of fl such that 
meas(R \ 521,) + 0 as k + co and the restrictions of i to RI, x R”” are 
continuous. Note that by the Dini convergence theorem the sequence LTTi 

converges to i locally uniformly in each compact subset of RI, x R’“““. 
For Caratheodory integrands L and general R we may reduce the 

considerations to the particular case treated above. This proves that 2, 
is always of Caratheodory type. The rest is a straightforward consequence 
of the construction. 
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Remark 2. - It follows from the proof of Theorem 1.2 that Lq“ 
is continuous for continuous and coercive L (here coercivity means 
ill (u(P + B1 < L 5 A21uI” + BP, A2 > Al > 0). In the case of noncoercive 
L the function L”’ can have discontinuities. To construct a desired example 
notice that there exists a continuous integrand L/(x, 71) : [O: l] x R - [0, x] 
such that L(O; 71) > 21’ and L(:c, u) = 0 for :I: ~10~ 11, (711 > M(z) (here 
AJ~(:c) + CC as II: + 0). Then Lq”(:c. 71) = 0 for ]u:/ # 0, L’J’(0. v) 2 11~. 

Proof of the Theorem 1.4. - Without loss of generality we may suppose 
that (‘uk: VU~) generates a Young measure (S,,,(,)@v,),,o and the sequence 
J(uk) converges as k --, x. By Theorem 3.7 

Moreover, equality holds if and only if the functions L(x: ,uk(z), VU,C(X)) 
are equi-integrable. By the Localization principle uX is a gradient p- 
Young measure for a.a. :I: E R. Because L(.x! us(z)! .) is strictly closed 
p-quasiconvex at VQ(X) for a.e. 11: E 0 the inequality 

holds for all such 2, where the equality holds if and only if v, = SV~,(,~). 
Hence the convergence I --+ I(‘zL~) holds if Uk + ‘ZLO in kk’l>l(fl;R”) 
and the functions L(., Uk(‘), V?&(.)) are equi-integrable, cf. Theorem 3.7 
and Proposition 3.8. This proves the first claim of the theorem. 

To prove the second claim consider an increasing sequence of compact 
subsets Qk of the interior of 52 such that the restrictions of ~0, VUO to RI, 
are continuous, the restrictions of L to RI, x R” x R”” are continuous and 
meas(R\fik) + 0 as k -+ cc. Let us establish first that either L(z, IQ(X), .) 
or -L(z, uo(z), .) is quasiconvex at Vuo(~) for a.a. x E R. Otherwise there 
exists k E N, Lebesgue points ~1, x2 of & and gradient p-Young measures 
vl, ~4 with the centers of mass at Vuu(zl), VUO(X~) respectively such that 

J L(x2, uo(xz), +b2 > qz2, uo(z2), Vuo(3J2)) + E,E > 0. 
R”m 

Ann&s de I’lnsritut Hem-i P&car& - Analyse non 1inCaire 
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We can isolate neighborhoods VI, I”, of ~1, x2 in RI, such that 

J 
q:G uo(x), .)d( 22 0 Vuo(x)) < L( 5, uo(z), VW(X)) - f! 2 E v,; 

R”” 

s 
L(z, uo(x), .)d( 22 0 Vu()(x)) > I;( 2, uo(x), V’L10(1:)) + t, x E vi.3 R’““’ 

J 
qx, Q(X), Vu,(x))dz = 

v* u v, 

.I{/ qz, uo(2), 94 22 0 Vuo(x)) dz L’l Rn= 1 

+ S{S qz, UO(X)? .)d( Y’ o Vuo(:c)) dz. 
v, Rn “7 

By Theorem 4.3 a Young measure (v~)~~Q, which equals Y’ o Vu0 on 
V,, I? o Vu0 on Vz, and 6 ovO(z) for other z E 61, is a nontrivial gradient 
p-Young measure with the centers of mass at Vuo(z), 2 E a. Moreover, 
the weak-strong convergence property fails for a sequence associated with 
this measure (cf. Proposition 4.4). This contradiction proves that either 
L(z, UO(X), .) or -L( 5, uo(2), .) is quasiconvex at Vue(z) for a.a. 2 E R. 

Therefore we may assume without loss of generality that L(z, Q(Z), .) 
is quasiconvex at Vuo(z) for a.e. z E R. 

For a fixed k E N consider the set Kl (I is a natural number) consisting 
of all 2 E RI, such that there exists a gradient p-Young measure v with the 
center of mass at Vzlc(z), for which the following holds: 

s 
(1 + 1 . Ip)dv < k, 

FL”” 
(5.1) 

P-3) 
We will prove that mea&l 3 0 as 1 * co by contradiction. This fact is 
enough to establish the second claim of the theorem. 

The sets Kl are open in R k, Actually, if (5.1)-(5.3) hold for a measure 
Y E GMp(Vuo(~o)) and a point za E Kl then the same holds for any 
z E Qk sufficiently close to x0 with v o Vuo(z) instead of Y. 

Since we have assumed that liml,, rnea&Sl > 260 > 0 and Kl+r C Kl 
we obtain meas(nlKl) > 260. Let K c nlKl be a compact set such that 
measK > SO. 
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Fix 1 E N. Then for each 2 E K we can find a ball B with the center at 
this point and such that for each point z E BnK inequalities (S.l)-(5.3) hold 
with v o VU~(Z), where v E GA!&(VU~(X)). Let B(zi, ci) (i = 1,. . .1’) 
be a finite cover of K by such balls and let v(x:,) E G&&(VU~(:Z:~)) be 
measures associated with the centres of these balls. Let n; = B(zi. tl) IIK. 
0; = (B(x2,tp) \ B( z~:F~)) n K. For other % 2 2 define b2:+, as 
(l?(xi+l; Cifl) \ Uj&3(:xJ, F,j)) n K. Consider also compact subsets fi2f 
of 0: such that meas(U;~f) = So. 

The measure (vL),cf2, which equals II o VQ(Z) for :c E fi”; 
(i = 1:. . . , I’), Sv,,(,c) - otherwise, is a gradient p-Young measure. Actually, 
if we replace 6: by disjoint open sets then the claim follows from Lemma 
2.2 and Proposition 4.4. By Proposition 2.3 we can approximate fii by such 
open sets, that leads to the desired result again through Lemma 2.2. 

By the compactness theorem there exists a subsequence (1~,~,)~:,~2 (not 
relabeled) converging weakly* in L,,(O: K1) to (I/,),~Q. Because (5.3) 
holds for any .‘c E uifif (with r/L instead of v) and rneas(U~fi~) > ho > 0 
for each 1 E N the Young measure (v,),~Q is not trivial. 

For each I E N there exists a sequence ?I,$ E ~0 + Cr (R; R”’ ), d E N, 
generating (z/:.)~,,, as a gradient p-Young measure (cf. Proposition 4.4). 
We can isolate a sequence u:(~), I E N, such that 

(&,.,L;~,J(:E))TEo-* (~.~)~~o, 
I 

(~+IVU~(~)(:E)~~)~X< k (because of (5.1)). 
. I> 

lr(+l,) - I(‘(Lo)l < 2 mea&/1 (because of (5.2)). 

Then ‘LL~.(~) - u. in W1,“(IL: R”“) and the weak-strong convergence 
property fails along the sequence TL:(~) in view of nontriviality of (v,),~c~ 
(cf. Proposition 3.8). 

This contradiction proves that rneasK[ --f 0 as 1 -+ ‘xj, and, as a 
consequence, that the set of all :c E Ok for which L(:c, Q(Z), .) is not 
strictly p-quasiconvex at Vu”(z) has zero measure. 

The proof of the theorem is completed. QED 

Remark. - If the function L(z, uo(x), .) is quasiconvex at VUO(Z) for a.e. 
x E R and L is bounded from below a simpler proof for the second part of 
the theorem is available (see [45, $31). Moreover, in this case it is enough 
to restrict considerations to sequences UI; with equi-integrable 1 V’ZL~C Ip. 

In this case we may consider the set Oj,k consisting of all 1c E Ok, for 
each of which there exists a gradient p-Young measure v with the center 
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of mass at Vua(s) and such that 

I (1+ 1 . IP)dv I j, (5.4) 
Rnm 

I L(z, uo(z), .)dv = Jqz, uo(z), VU”(Z)>, (5.5) 
R”” 

v(B(vuo(+ l/j>) 2 1 - l/j. (5.6) 
This defines a multivalued mapping V : fij,k -+ 2”(R”“‘), where 
V(.) consists of elements of GMp(.) satisfying (5.4)-(5.6). Because of 
boundedness of L from below it is not hard to prove that this mapping is 
closed and upper semicontinuous in p metric (see 33 of [45]). By Theorems 
3.3 and 3.5 there exists a selection (~~)~~o,,~ E L,(Rj,k; Ki), which 
automatically satisfies conditions (i)-(iii) of Theorem 4.3. Let v, = CL, for 
1c E flj)k, and v, = 6vU0(z) for x E R \ Cli,k. Then (v~)~~R is a gradient 
p-Young measure by Theorem 4.3. Hence, if measRj,k: > 0 then the weak- 
strong convergence property fails along the sequence of Sobolev functions 
associated with (~,),~o. This proves that measQj,k = 0 for any j, k E N. 
Therefore L(z, uo(z), .) is strictly p-quasiconvex at VU~(X) for a.e. 2 E 0. 

In the situation of Theorem 1.4 one may consider analogous multi-valued 
mapping V, but growth conditions do not suffice to prove closedness and 
upper semicontinuity of V in p metric. These properties hold with respect to 
convergence in the metric ij( v, ,u) := p(v, b) + I(1 + 1. IP; v) - (1 + I .I”; p) 1, 
but both V and GM,(A) are not complete in this metric. Probably more 
subtle theorems on measurable selections (see e.g. [ 121) can be helpful here 
in order to utilize selection arguments and, as a consequence, to restrict the 
class of sequences ‘LLL to ones with equi-integrable IVukI”. 
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After submission of the first version [48] of this paper a book [40] 
appeared. The author of [40] also suggests to use Young measure techniques 
to prove the relaxation theorem, see [40, p.651. He proposes to use the 
formula 

L’“(A) = vtj;~(A)(L: v): 
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which was first established in [29], to construct a gradient p-Young measure 
(%LErl with the property 

One of the aims of this our work was to develop Young measure calculus 
up to the level which let one make similar arguments rigorous. 
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