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ABSTRACT. - We prove that C” diffeomorphisms of a two-dimension 
manifold M with a homoclinic tangency are in the closure of an open 
set of Diff” (jI4) containing a dense subset of diffeomorphisms exhibiting 
infinitely many coexisting H&on-like strange attractors (or repellers). A 
similar statement is posed in terms of one-parameter C” families of 
diffeomorphisms unfolding a homoclinic tangency. Moreover, we show 
the existence of infinitely many dynamical phenomena others than strange 
attractors. 0 Elsevier, Paris 

RBsuMB. - Nous considerons les diffeomorphismes C” d’une variete 
bidimensionnelle M qui exhibent une tangence homoclinique. Nous 
demontrons qu’ils appartiennent a la fermeture d’un ensemble ouvert de 
Diff” (M) admettant un sous-ensemble dense de diffeomorphisme exhibant 
une infinite d’attracteurs ou de repulseurs &ranges de type H&on. Nous 
Cnon~ons un resultat similaire en termes de familles C” a un param&re de 
diffeomorphismes presentant une tangence homoclinique. De mCme nous 
montrons l’existence d’une infinite d’autres phenomenes dynamiques a c6tC 
des attracteurs &ranges. 0 Elsevier, Paris 

1. INTRODUCTION 

Homoclinic behavior, corresponding to possible intersections of the stable 
and unstable manifolds of some orbit, was first introduced by Poincare about 
a century ago [lo]. He suggested that deep dynamic phenomena should be 
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involved in the presence of such a behavior. In the present work we exhibit 
one more of these rich dynamic phenomena, namely the possible coexistence 
of infinitely many strange attractors when unfolding homoclinic tangencies. 

In 1970 [5], Newhouse proved that there is an open set 24 c DifF(M), 
T > 1, A4 closed and dim(M) = 2, in which the set of diffeomorphisms 
exhibiting a homoclinic tangency is dense. This result was a negative 
answer to the question that Axiom A (or hyperbolic) diffeomorphisms 
could be dense in the space of surface diffeomorphisms (in fact, it is still 
an open question in Diff’(A4) with the C1 topology). It also implied, in 
the dissipative case, the existence of a residual (Baire’s second cathegory) 
subset R of U such that each diffeomorphism in R exhibits infinitely 
many sinks [6], as an easy consequence of the known fact that homoclinic 
tangencies can be approximated by sinks in the space of diffeomorphisms. In 
1979 171, Newhouse showed that such open sets actually appear arbitrarily 
near any diffeomorphism which has a homoclinic tangency: new and 
perhaps clearer proofs of Newhouse’s results are presented in the book 
of Palis and Takens [ 121. The wish to grasp some meaningful description 
of the “majority” of dynamical systems led Palis to conjecture that the 
diffeomorphisms exhibiting a homoclinic tangency could be dense in the 
interior of the whole complement of the hyperbolic ones, not only in the 
open sets described by Newhouse. In fact, these and other results mentioned 
below justify Palis’ view that the unfolding of homoclinic tangencies might 
be a main bifurcating mechanism [ 121. 

In the 80’s and 90’s there was intense research done on the unfolding of 
homoclinic tangencies. Particularly, it has been shown that in addition to 
infinitely many sinks, homoclinic tangencies are approximated by critical 
saddle-node bifurcations, as observed by L. Mora, cascades of period 
doubling [18] and specially H&on-like strange attractors [l], [9], [17], 
among others. All these phenomena are related to different aspects of 
nonhyperbolicity or even to different ways to depart from hyperbolicity. 
These results altogether suggest a kind of “homogeneity” in the interior 
of the hyperbolic diffeomorphisms complement, i.e. any nonhyperbolic 
phenomenon above mentioned could be approximated by all the remaining 
ones, as in the case of homoclinic tangencies. Indeed, this conjecture has 
been partially proved in the recent years by several authors. We already 
know that critical saddle-node bifurcations are approximated by homoclinic 
tangencies [8], the same for some relevant cases of period doubling 
bifurcations [2] and for H&on-like strange attractors [16]. However, 
whether the phenomenon of infinitely many sinks can exist isolated from the 
other main bifurcating mechanisms is, as yet, nearly completely unknown. 
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In addition to the conjectures above, Palis also proposed the existence 
of infinitely many coexisting strange attractors near homoclinic tangencies. 
The problem, although simply stated, revealed itself quite complicate since 
H&on-like strange attractors do not have a key property of hyperbolic 
periodic point attractors, namely the stability under perturbations. In this 
direction, some particular results have been found. In 1990 [3], Gambaudo- 
Tresser constructed an example of a C2 diffeomorphism in the 2-disk 
exhibiting infinitely many hyperbolic strange attractors. However, the 
method of construction, which consists of gluing copies of a single attractor, 
does not obtain C’ diffeomorphisms for T > 2. Later on, in 1995, the author 
and F. Jorge Moreira observed that the method yields the construction of 
infinitely many H&on-like strange attractors, and even infinite copies of 
many other dynamical phenomena, but always with stringent restriction on 
the differentiability of the resulting diffeomorphism. Finally, in 1994 [l 11, 
Puma&o-Rodriguez exhibited a very specific C” family of vector fields in 
R3, related to a saddle-focus connection, which has at least one parameter 
value with infinitely many H&on-like strange attractors. 

In the present work, we give an answer to the question in the C” 
topology and in much generality in the context of unfoldings of homoclinic 
tangencies of surface diffeomorphisms. 

Let M be a compact manifold of dimension two. 

THEOREM A. - Let fO E Dir(M) be such that fO has a homoclinic 
tangency between the stable and unstable manifolds of a dissipative 
hyperbolic saddle po. Then, there exists an open set V C Dir(M) such that 

. fo E v; 
a there exists a dense subset l7 c V such that for all f E lJ, f exhibits 

infinitely many coexisting H&on-like strange attractors. 
The open set V of Theorem A will be constructed as an union of open 

sets W,, each W, written as 

where 2, is an open set in the space of C” one-parameter families and I, 
is an interval. In Section 6, we prove the following statement: “there ‘is a 
residual subset R, c 2, such that for each family G = (gP)P E R, there 
is a dense set D, C I, such that for each p E D,, gP exhibits fr@nitel? 
many coexisting H&on-like strange attractors. ” Therefore 
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fits the conclusion of Theorem A. The same statement will easily imply 
the following theorem. 

THEOREM B. - Among the families that unfold a homoclinic tangency at 
parameter value 0 there is a residual subset such that if F = ( fcL)cl is a 
family in this subset, then there are intervals I,, -+ 0 and dense subsets 
D, C I, such that for 1~ E D,,, fp exhibits infinitely many coexisting 
H&ton-like strange attractors. 

Besides sinks and strange attractors, we also consider codimension- 
one phenomena of the quadratic family P = ($a)a, where $,,(z, y) = 
(1 - ax’, 0). Examples of codimension-one phenomena of the quadratic 
family are saddle-nodes, critical saddle-nodes, flip bifurcations, homoclinic 
tangencies and, although not proven in full generality, Feigenbaum 
attractors. Eventhough Theorem A is stated for H&on-like strange 
attractors, yet the following theorem is a Corollary of the proof of 
Theorem A. 

THEOREM C. - Let C be a codimension-one phenomenon of the quadratic 
family. Under the same hypothesis of Theorem A, the resulting open set 
V C Dir(M) of the conclusion also satisfies: There is a dense subset of 
V such that for each f in this subset, f exhibits infinitely many coexisting 
phenomena of C type. 

An important open question on the subject concerns the measure 
prevalence of diffeomorphisms with infinitely many attractors (periodic 
or not) in families with a finite number of parameters. In other words, 
let F = (f&nk be a Ic-parameter family of diffeomorphisms and let 
PF C R’” be the set of parameters such that for p E PF, fp has infinitely 
many attractors. Is the Lebesgue measure of PF positive for any or for 
“most” families F? It is already known [13] (see also [12], Appendix 4) 
that for generic one-parameter families F, PF contains a residual subset, 
in the case of periodic attractors, but nothing is known about its measure. 
For strange attractors, Theorem B provides a similar result for a residual 
set of such families. 

This work is organized as follows. In Section 2 we give a full account 
of the main results on Cantor sets used to prove the theorems and state 
the “Linking Lemma”, which is crucial to the argument. In Section 3 we 
review the construction used to prove Newhouse’s theorem on infinitely 
many sinks as presented in [ 121, taking especial care with the expansion and 
contraction rates of the basic sets involved. Section 3 can be summarized 
by Proposition 3.7 and the remark following it. In Section 4 we perform 
a renormalization scheme in 2-cycles of periodic points with a heteroclinic 
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tangency. This renormalization is needed to the control of orbits in Section 6, 
which is in turn essential to guarantee space for arbitrarily small C’ 
perturbations, for any T 2 0. The calculations to prove convergence of the 
renormalization scheme in Lemma 4.1 are somewhat straightforward, but 
depend nontrivially on delicate relations between the eigenvalues of the 
periodic points involved and the amount of time spent near the periodic 
points. A necessary assumption to perform renormalization is the existence 
of linearizing coordinates in a neighbourhood of the periodic points, so 
at the end of Section 4 we make a delicate discussion on how to perturb 
the families to obtain linearizability, in a way that will be useful to the 
arguments of Section 6. Simpler aproaches of this question were tried 
without success, even renormalization with no linearizing hypotheses. In 
Section 5 we make a brief summary of the theorems in [9], [17] and derive 
some consequences of its proof. Finally, in Section 6, we present the proof 
of Theorems A, B and C, after achieving the desired control on the orbits 
of the strange attractors. 

2. CANTOR SETS 

In this section we recall some concepts about Cantor sets in the line and 
their relation with dynamics. Most concepts can be found in [12]. At the 
end of the section we state and prove what we call the Linking Lemma. 

A Cantor set here is a compact, perfect and totally disconnected set in 
the line. Let K be a Cantor set and I its convex hull. A presentation of 
K is an ordering U = {Ucn)} n2i of the bounded gaps of K. An ordered 
presentation of K is a presentation U such that ]U(“) 1 5 1 UC”) 1 for all 
n > m. The bridge at u E dU(“), UC”) E M, is the component C of 
1 - (U(l) u j-J(2) U . . . U U(n)) that contains U. The thickness of K is the 
number 

r(K) = inf T(K,U, u), 
u 

where 24 is any ordered presentation of K, 

and where C is the bridge at u E dU cn). This definition of thickness makes 
sense since T(K) does not depend on the ordered presentation U (see [ 121). 
Also, it is immediate to see from the definition that if C is a bridge, then 
T(C n K) 2 T(K). 
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Let Kr, K2 be Cantor sets and Ii, 1, their convex hulls. We say that 
the pair (Kl, K2) is linked if 11 n 1, # 8, Ii is not inside a gap of K2 
and I2 is not inside a gap of K1. If the same conditions are verified by the 
interiors ;I, fz of II, I, then the link is said to be stable. 

We say that (Ki. K2) has a sublink if there are proper intervals Ci c 11 
and C, c 12, bridges of K1 and K2, respectively, such that the pair 
(Ci n K1, Cz f? K2) is linked. Finally, we say that (K1 , K2) has two sublinks 
if there are two pairs of distinct proper subintervals forming independent 
sublinks (we will eventually say (C,, C2) instead of (C, f’ K1. C, n K2) 
where the full notation could be somewhat heavy). 

PROPOSITION 2.1 (Newhouse’s Gap Lemma). - Ifr( K,) . T(K,) > 1 and 
(K1, Kz) is linked, then K1 n K2 # 0. 

Let Ii, . .1l be a collection of disjoint closed intervals. Let Q be a 
Cl+’ function defined in a neighborhood of each I,, i = 1,. . . : 1, such that 
for each 1 < i < 1, Il[I(l;) is an interval which is the convex hull of a 
subcollection of intervals {I,, 1j+i,. . . i Ik}, 1 < i, Ic < 1. Suppose that Q 
is expanding, i.e. inf,. I*‘(X)] > 1. The set 

K= fi ‘l-‘“&u... u 11) 
n=O 

is a dynamically dejined Cantor set, and the collection of intervals 
{II,. ‘. ,Il} is the M ar ov partition of K. A further property is often k 
required: For n sufficiently large, Q(K n &) = K, 1 5 i 5 1, meaning 
that %&IK is topologically mixing. 

If f is a C2 diffeomorphism on a manifold of dimension 2 and A 
is a hyperbolic set of saddle type (a horseshoe), then VV;Oc(z) n A and 
W&(X) n A are dynamically defined Cantor sets (see [12]). 

PROPOSITION 2.2. - If K is a dynamically dejined Cantor set, then 
0 < T(K) < 0;). 

Let ,4 E K. Define 

Q,JK, k) = lii(sup{~(K); p c K rl B,(k) a Cantor set}), 

the local thickness of K at k. 

PROPOSITION 2.3. - If K is a dynamically defined Cantor set, g4 : R -+ R 
is a C1+a diffeomorphism and c = max ]$‘I/ min )@I, then 

1. 4(K) is a dynamically defined Cantor set; 
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2. c-%(K) I: T@(K)) 5 m(K); 

3. %(4(K), 4(k)) = Qx(K, k>. 

A consequence of the proposition above is that for dynamically defined 
Cantor sets, local thickness is independent of the point Ic. But in general 
%W) > qq. 

It is possible to define a topology on dynamically defined Cantor sets in 
such a way that thickness and local thickness are continuous functions of K. 
We say that k is near K if k has Markov partition {fl, . . . , fl} such that 

1. the endpoints of jl,. . . , & are near the corresponding endpoints of 
11,. . . ,k 

2. the function 3 of the definition of k is C1 near 9; 

3. 9 is C1+E with Hijlder constant C, G is Clfi with Halder constant 
6 and (E:C) is near (Ex,c). 

It is not difficult to prove that if k is sufficiently near K then there 
exists a homeomorphism h : K -+ p Co-close to the identity such that 
@oh = hoQ. 

THEOREM 2.4. - Thickness of K depends continuously on K. 
From the proof, it can be seen that 
l local thickness is also continuous in this sense; 
l the continuity is uniform over all sub-Cantor sets of K; in particular, 

given t > 0, if k is sufficiently near K then for any bridge C of 
K we have 

r(h(C) n k) E [T(C n K) - t,~(c n K) + t]. 

Now we state and prove a lemma which will be used later in Section 6. 
Since the hypotheses are in complicated form, in order to fulfill the 
requirements of the main theorem, we also state a corollary which is 
the simplified and intuitive version of the lemma. 

LEMMA 2.5 (Linking Lemma). - Let K1 and K2 be Cantor sets with 
T(K~) . Q-(Kz) > 1 + t, for some t > 0, and II, 12 the convex hulls of K1, 
Kz. Let 8;’ : II + R and 6;’ : I2 -+ R, p E R, be such that 

1. 8:’ is a topological embedding, V/3 E R, i = 1,2; 

2. 8:)(x) is differentiable with respect to ,8, lfx E K,, i ‘= 1,2; 

3. +(8;‘(x) - G;‘(y)) > c > 0, Vx E Kl,y E K,; 
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4. ifI?1 C K1 and I?2 c K2 are Cantor subsets with ~(l?,) . ~(h;~) > 
1 + t, then 

Let ,& E R be such that the pair (ti:’ (K,), fig’ (Kz)) is linked. Then, for 
any E > 0, there is 0 such that 

l IP-Pal < E; 

l (19&“( KI), 8;’ (Kz)) has two (stable) sublinks. 

Proof. - Consider the bounded intervals J c R such that for ,O E .I the 
pair of Cantor sets (19;) (Kl), 19~) ( K2)) is linked, and fix the interval Jo to 
which ,& belongs. By the Gap Lemma (Proposition 2.1), there are bridges 
Cr of K1 and Cz of K2 such that 

a. IS~‘(Cl)l, IS~‘(C2)l < e/3 c and IS~‘(C2)I 5 IS~‘(Cr)I, ‘v’p E JO; 

b. (#)(Cr fl K,) fic2)(C2 n K2)) is a linked pair. PO ’ 6 
Let U2 be one of the greatest gaps of C2 and Q2, Q2 the adjacent left and 

right bridges. By hypothesis 3, there is ,!$ with I,& - /3al < 26/Z? such that 
the right endpoint of 6Jc2) (Q ) 2 coincides with the left endpoint of tiFI)(CI) 

(see Figure 1). Supposk’that ti’“‘(&s) is contained in 6(l)(Ur), where U 
is a bounded gap of K1 (Ur cotid not be an unbounded Eap by a.). Let Q: 
be the left component of Cr \ UI. Hence figI c 7jg)(U2). Thus 

1 > l$‘(Q1)1 Ik9302)l 

142’(u2)l IsyuI)l 
2 @)(Cl)) . @(C,)) > 1, 

01 81 

Fig. I. - A contradiction 
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which is a contradiction. Therefore SE’(&) has a (stable) link with a 
bridge of tig’ (Cl f~ K,). Without destroying this link, choose /? near ,& 
(with I,8 - ,&I < e> such that 8;)(&2) and Sg’(Q1) have a stable link. Cl 

COROLLARY 2.6. - Let K1 and KZ be Cantor sets such that r(K,). 
r( K2) > 1 and the pair (Kl, Kz) is linked. Then, given E > 0, there is 
IpI < E such that the pair (Kl, Kz + ,L?) has two stable sublinks. 

Corollary 2.6 had already been proved by Kraft [4] using similar 
arguments. 

3. THE UNFOLDING OF HOMOCLINIC TANGENCIES 

The goal of this section is to obtain Proposition 3.7, by recalling the 
main tools used to prove Newhouse’s theorem on infinitely many sinks. We 
follow the ideas presented in [12] and obtain further estimates, necessary 
for Section 4, on contraction and expansion rates of the basic sets involved. 

Let p be a saddle fixed point for f such that its stable manifold W’(p) and 
its unstable manifold IV‘(p) have a point of non-transversal intersection (a 
homoclinic tangency). Suppose dissipativeness at p, i.e. 1 det Df(p)I < 1. 
Otherwise, if I det Df(p)I > 1, just take f-2 and if 1 det Of(p)1 = 1, one 
can find arbitrarily near f a diffeomorphism f with I det Dj(p”) I < 1, where 
p is the continuation of the hyperbolic point p. Let X and g be the contractive 
and expanding eigenvalues of Df(p). Assume without loss of generality that 
both are positive. Suppose that there are C2 Einearizing coordinates (z, y) 
in a neighborhood U of p, i.e. f has the form (xc, y) H (X .x, g . y) in U. 
If this is not the case, there is f arbitrarily near f such that the linearizing 
coordinates are guaranteed, since their existence is an open and dense 
condition in Diff” (M) ( see [14], [15]). To be more specific, linearization 
around p is possible ever since the eigenvalues X and c do not satisfy 
a finite number of certain equalities, often denominated resonances. By 
another perturbation, the point of contact between the stable and unstable 
manifolds can be made quadratic. 

Now take a family (f,), c Diffo(M) such that fo = f. The point p 
has continuation p, with eigenvalues X, and FZJ~, which we will denote for 
shortness simply as X and c. Up to resealing of the linearizing coordinates 
we can suppose that U contains {(x, y); 1x1 5 2, IyI 2 2}, q = (1,0) is the 
point of tangency and u = (0,l) = fGN(q), for some N > 0. By openess 
of linearizability, fp is also linearizable in U for p small. 
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We can write f: near (0,l) as 

(x, y) H (1+4y-1)+&(pu, x, y-l),P(y-1)2+s~+yz+H2(~,~. y-l)), 

where o, p, y are non-zero constants (since the contact between WS(p) 
and W”(p) is non-degenerate) and s # 0 since we assume that the family 
(f,), generically unfolds the quadratic tangency. We assume s = 1 and, 
for p = x = y = 0, 

C 
I& =ay& =o 
I72 = a,lT, = a,& = a,l;r, = a,,r;T, = 0. 

Moreover, using a b-reparametrization and ,u-dependent linear changes 
of coordinates, we can suppose I?~(IL, 0,O) z 0, I?z(~, 0,O) 3 0 and 
8,fi2(p,0,0) G 0, so that 3PI?I(p,0,0) = 0, dYPI?z(bu, 0,O) = 0 and 
&l;r,(P, w = 0. 

Define the change of coordinates 

1 

< = cqx - 1) 
ql= gyy - a-“) 
u = a2”(p + yX” - a?). 

After that, define again new coordinates 

and denote O,,, the function taking (i, 75) to (xc, y) and Mm(C) the function 
taking 6 to ,LL (the inverses of the coordinate changes defined above). 

PROPOSITION 3.1. - Let K be a compact set in the (fi, c, ij)-space. 
1. The images of K under the maps 

converge, as n + 00, to (0, q) in the (p, x, y)-space; 
2. the domains of the maps 

converge to R3; 
Annales de l’lnstitur Henri Poincurr’ Analyse non IinCaire 
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3. the maps ~(“)IK converge, in the C2 topology, to the map 

9 : (i&gig H (.c,ij, ij2 + 6). 

Proof. - See [12], Chapter 3. 0 
The family P = (&,),, with gV(x, y) = (9, y2 + V) is equivalent to the 

family (x:, y) H (l--ax2 , 0), so we will use interchangeably the symbol 6 to 
denote both families, except when clarity requires specification. Properties 
of q = ($a)a are identically valid for \I! = (&,), and vice-versa (we could 
obtain tia(2, y) = (0,l - ay2) directly if the renormalization was done 
with another scaling for the variable 2). We also consider the converging 
functions ~(“1 of Proposition 3.1 as approaching 9 = ($J~),. 

The endomorphisms qI, have two fixed points, namely Qa E {X < 0) 
and Pa E {X > 0). For a = 2, Qa = (- 1, 0), the right unstable separatrix 
of Qu. is the interval [- 1, l] and the stable manifold of Qa is the vertical 
line {y = - 1). The situation can be regarded as Qa having a homoclinic 
tangency. If Q, = (cp,), is a family of diffeomorphisms C2 near q’, we have 
a true homoclinic tangency for a = a(+) involving the continuations of QLl, 
W”(Qa) and W”(Qa). M oreover, u(G) approaches 2 as Q, approaches q. 

It is well known that 7+!~~ : J: H 1 - 2x2 for 2 E [-1, l] is conjugated 
to the tent map T : [-1, l] + [-1, l] defined by T(z) = 1 - 21x1. The 
conjugacy is given by the map J(x) = sin(y), i.e. T = J-l o $+ o J. 

PROPOSITION 3.2, - T has arbitrarily thick invariant Cantor sets. 

Proof. - Here we only indicate which are the invariant Cantor sets. 
The detailed proof can be seen in [ 121, Chapter 6. Fix m > 3 and 
let q E (-1,1) be the unique point of period m for T whose orbit 
q = qo, ql = T(q), . . . , qm = Tm(q) = q satisfies 

q2 --c q3 < . . ’ < qm-1 < 0 < qm = 40 < 41. 

Define qk E (-1,0) by T(qk) = T(q) and, for i = 3 ,..., m - 1, 
qr = T-‘(q,*,,) n (-l,O). Consider the intervals 

11 = k72,q1lJ2 = kI2,dlY . ,Lr-1 = [4m-l,Q~l,L = [4m,41]. 

We have 

Ii c Il,i = 2,...,m 

and 
T(I;) = &+I, i = 2,. . . ,m - 1, 

T(I,) = II. 

Vol. 15. no 5.1998. 
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Finally, define the Cantor set 

K,,, = fi *-“(I2 u . . . u IWL), 
i=o 

that is a dynamically defined Cantor set. It is not difficult to see that 
r(Km) + cc as m -+ 03. 0 

Observe that K, c (-1,0) U (0, l), so the map T is differentiable in 
a neighborhood of K,. Moreover, TlK,,, is uniformly expanding (vectors 
are multiplied by 2). Since J is a diffeomorphism in a neighborhood of 
K,, T[K, is differentiably conjugated to $~IJ(K,), hence we also have 
qoc( J(K,)) --f cc as m + co, by Proposition 2.3. Furthermore, there 
exists N, which depends on m, such that 4,” IJ(~,,) is uniformly expanding. 

PROPOSITION 3.3. - Let m and K, be as above. Let cp be a diffeomorphism 
C2 suficiently near $2. Then cp has a basic set l?m which is the continuation 
of J(K,) and such that &(Rm) is near qor (K,). 

Proof. - see [ 121, Chapter 6. Cl 
Let p be a saddle fixed point with contractive and expanding eigenvalues 

X and 0 which generically unfolds a homoclinic tangency. Then the family 
(d9 v with 

PI;“’ = o,,;, 0 fn”ltr;) 0 @n., 

defined above is C2 near @ if a is big. Therefore, by Proposition 3.3, 
for fixed m and n both large, we have hyperbolic sets Kg’ for cpc’ 
with V, + 2 as rz + cc. Moreover, the parameter values V, can be 
chosen in such a way that cp?L’ has a homoclinic tangency associated to 
the saddle fixed point near (- 1, 0), see above. Denoting by &(“I this 
saddle fixed point, it is proven in [12] that Q cn) is heteroclinically related 
to a periodic point QE’ E K$‘, i.e. IV(Q(“)) n I&“(&~‘) # 0 and 
Ws( &(“I) n WU(Q%‘) # 0, both intersections transversal. Furthermore, 
for cp = cpk’, there are 0 < X = X(n) < 1 = x(n) < 1, 1 < a < 77 < 3 
and C = C(n) such that 

0 C-lylluII < lIDpi . 2111 5 CTllull 
0 C-l&ll 5 lIDpi . VII 5 COi~~v~~, 

for all x E K?‘, u E Ez, v E E,” and i 2 0. 
Thus, if 5 E Kg) . is a periodic point for cp of period j, then D@(x) 

has the stable eigenvalue between A(n)j and %(n)j, and the unstable 
eigenvalue between cj and ~j. Denoting 

A:) = %,,,z (Kg)), 
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then 142’ is a hyperbolic set for fcLn = fMn(V,) of period n + N. Let 
x E A$!) be a periodic point for fPn of period k = (n + N)j. Then 
2 = @n,,/,(x), h (n) w ere x is a periodic point for cp = (pVn of period j. 
We conclude that if Xt and gf are the stable and unstable eigenvalues of 
Df”+N(z), then 

a: = $+*)j 2 c.i < 3j = (n+*!)k 

which implies 01 in+*&!. Al so, using ] det DfN ] 5 K near f-*(q), K 
a large constant, we obtain 

which implies X1 5 X0 < 1, for large n, where Xa does not depend on n. 
We conclude that by increasing n, it is possible to choose crl arbitrarily 
near 1 and A1 bounded away from 1. 

PROPOSITION 3.4. - Let p be a dissipative periodic saddle point for 
f E DifJ”(M) with eigenvalues X and a and such that WS(p) and IV(p) 
have a point of transversal intersection. Then, for any t > 0, p belongs to 
a hyperbolic set A = A(e) which sati$es: 

l C-l@ - E)nll’llll I Ilop . ‘UII I C(X + ql(UIl, 

l C-l@ - ~)nllVII I Il~f”(x) .vll I C(a + ~)nllvll, 

for any x E A, n 2 0, u E E$ v E E,“, where Ei and E,” are the stable 
and unstable subspaces at x of the hyperbolic decomposition of TAM and 
C is a constant. 

Proof. - The existence of A is proven in [ 121, Chapter 2, and it is easy 
to see from the proof it verifies the property above. II 

COROLLARY 3.5. - If x E A is a periodic point of period k, then the 
eigenvalues of Df ” ( ) x are between (A - 6)’ and (A + 6)’ and between 
(a - 6)’ and (a + c)~. 

PROPOSITION 3.6. - Let (f,), b e a one-parameter family of diffeomor- 
phisms as above with a quadratic homoclinic tangency q at p = 0 associated 
to a saddle p, and suppose it unfolds generically. Then there is a sequence 
pt -+ 0 such that f,, has homoclinic tangencies qpL1 t q associated to 
p,‘, + p. Moreover, the values ,LQ can be chosen in such a way that the 
connected components of W” (pp,, ) \ {ptLI } and W”(p,, ) \ {pp, } that have 
a homoclinic tangency also have transverse homoclinic intersections. 

Proof. - see [ 121, Chapter 3. 0 
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Take a sufficiently large 1 and consider the homoclinic tangency for fbLi 
between IV” (pp,, ) and W” (p@, ). By Proposition 3.6 there is also a transverse 
homoclinic intersection between the stable and unstable manifolds of pp,,, 
so that, by Proposition 3.4, pF1 belongs to a hyperbolic set which we 
now call AZ. The hyperbolic set A2 has an analytic continuation near &, , 
so that without destroying AZ we can unfold the homoclinic tangency at 
f and obtain, by Proposition 2.2 and 3.3, a hyperbolic set A1 such that 
&n,) ’ ~&JAI) > 1, with a periodic point Q1 E A, heteroclinically 
related to a point Q which has a homoclinic tangency. 

It is proven in [ 121 that the point Q is heteroclinically related to the 
continuation of p,, which we denote from now on by Q2. After making a 
small perturbation and considering the whole discussion above, we obtain 
the situation stated in the following proposition. 

PROPOSITION 3.7. - Let f0 E Dir(M) be such that p is a dissipative 
periodic saddle point with a homoclinic tangency between its stable and 
unstable manifolds. Then, there is an f E Dir(M) C” arbitrarily near 
fo such that 

1. f has hyperbolic sets Ar and AZ with 

&(AI) . G(A2) > 1; 

2. there are periodic points &I E A1 and Q2 E AZ such that W”(Q1) 
and W’(Q2) meet transversally at r and W’(Ql) and WU(Q2) meet 
quadratically at q; 

3. there exists c > 0 such that if pl E Ar is a periodic point for 
Dfkl (pl) with period k1 and eigenvalues At’ (stable) and oF1 
(unstable), p2 E A2 is a periodic point for Df”” (~2) with period 
k2 and eigenvalues X!j2 (stable) and ot2 (unstable), then 

(a> XI . 01 < 1; 
(b) CJ,~~ . X1 < 1; 

(c) (~1 is so small that (~1 . (X92)42 < 1. 

Remark. - Let F = (f,), be a C” family of diffeomorphisms such 
that f = fo has a homoclinic tangency between the stable and the unstable 
manifolds of a dissipative saddle point p. Among the families with this 
property, there is an open and dense subset which satisfies the following 
generic conditions: C2 linearizability of the saddle, quadratic tangency at 
fo and generic unfolding as p varies through 0. Moreover, it is easy to see 
from the considerations above the following property of a residual (even 
open, see [ 121, Appendix 4) subset of these families: “There is a sequence 
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p, --+ 0 such that f = f,, have the properties stated in Proposition 3.7 and 
the subfamilies (g”), with gV = fpn+” g enerically unfold the heteroclinic 
tangency of item 2. ” After the Claim at 6.4, this assertion will immediately 
imply Theorem B. 

4. RENORMALIZATION IN 2-CYCLES 

In this section we describe the renormalization scheme involving a 2-cycle 
of periodic points, i.e. points pr and p:! periodic for f such that W”(pI) 
intersects transversally Ws(p2) and W’(pl) has a quadratic contact with 
W”(pz). We also make further assumptions on the eigenvalues of p1 and 
p2 to obtain convergence of the renormalization process. 

First suppose that pl and pz have period 1 and are C4 linearizable (we 
treat the other cases at the end of this section). This means that, under C4 
changes of coordinates, there are neighborhoods Ur of p1 and U2 of p2 
such that the expression of f in Ul is (x,9) H (X1z,oly) and in U2 is 
(w , Z) H (X2 w , ga Z) . Extend the domain of the linearized coordinates along 
W’(P~) and W”(pl) in such a way that U1 and U2 intersect around the 
transversal crossing of WS(p2) and Wll(pl). Also, extend Ul along WS(pl) 
until it meets Q, the point of quadratic tangency. Let U be a neighborhood 
of Q inside Ul and extend U2 along W”(p2) until it meets f-‘(U). We 
may suppose that Q = (1,0) in Ur-coordinates and f-‘(q) = (0,l) in 
U2-coordinates (see Figure 2). 

Let F = (f,), be a C’” family of diffeomorphisms with f0 = f. We 
know that C4 linearizability is an open condition (see [14], [ 15]), so we 
have continuations pl = pl(,u), p2 = p2(p), eigenvalues (TV = cl(p), 
X1 = Xl(p), 02 = az(p), X2 = X,(p) and linearizations at pl and 
p2 corresponding to orthogonal multiplication by these eigenvalues. We 
may assume that f has the following expression in a neighborhood of 
(w,z) = (0,l): 

(w, 2) ++ (Lx, y) = (1+ a(z - 1) + fil(P, w, 2 - 11, P(z - Q2 

+ Y&b + SP + ~2(cL, w> J3 - I)), 

where Q, ,0, y(O) and s are non-zero constants, 

H, = a,IT, = 0, 
l& = i3,& = &I& = a,,& = 0 
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,\ 01 
\ 

h, PI 
U, 

Fig. 2. - Renormalization scheme in the 2-cycle. 

at (p, w, ,z - 1) = (0, 0,O) and &I?2 (p, 0,O) E 0. Moreover, by use 
of a p-reparametrization and p-dependent linear changes of the space 
coordinates, we may even assume s = 1, &,(&O,O) 3 c, fi2(,&OLO) f 0 
and dZfi2@, 0,O) z 0, in such a way that a,H, = ~,,Hz = ~,,Hz = 0. 
We still have to consider the transition map Tp between U, and UZ at their 
“transverse” intersection (see Figure 3). Suppose Tp has the form 

where 

h(P,O;O) = fmW) = 0, 

a,e, = aye1 = a,ez = aYe, = 0 
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at (b, 0,O). We may assume Yfi c 1, also by a p-dependent linear change 
of coordinates. The transversality between WS(pz) and WU(pl) implies 
that d, # 0. If one looks at Z’;1(W”(p2)) in Ur coordinates near (0, l), 
then it is the graph of a function z H I’,(z). Analogously, IV‘(pi) is 
the graph of a function z H A,(z) in U2 coordinates. We also define the 
functions I’km) and At’ whose graphs correspond to !I’;‘( {z = g;“}) 
and T,({z = A;}), respectively. 

f: r y ,/,,,” w”(p ) / ’ /j / 
W”(P,) 

2 I 

Fig. 3. - Still the renormalization scheme. 

Now we are ready to define the change of coordinates. Let ,UO = ,uF’~‘) 
be solution of the equation 

~(po)A~A~)(o,-) + ,uo = a-“I$T)(A;l). 1 

It is easy to see that there exists such ~0. Let 

Yo = Yo ‘“>‘“‘(p) = cqy’(x;). 
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and define 

In (x, y)-coordinates, the return map fTTfrn+l is written as 

(x, y) I--+ (1 + a(z - 1) + &(/1., w, z - l), /3(.2 - 1)2 

+ y(p)ti + p + W,(p, w, z - l)), 
where 

73 = X7(1 + a,X;“z + b,(Cqy - 1) + &(/A, /\;x, cr;“y - 1)) 

and 
z = u~(c/J;Ic + d,,(cfy - 1) + e&L, AFZ, a;“y - 1)). 

In (E, q)-coordinates, the return map is written as 

(I, 7) H(cq$Q(Z - 1) + 0Ya,“H&, w, z - l)> 

u;nu;m[-yo + P(z - I)* + y(p)w + p + fi*(p, w> x - l)]), 
where now 
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and 

LEMMA 4.1. - Suppose there is c < 1 small such that gic . X1 < 1 and o1 
is so small that 01 . (A, ’ a2)‘12 < 1. Choose m = m(n) such that 

c -. 
2 

n 5 m(n) 5 c+n 

Then, when restricted to compact parts of R3, the maps 

(V> I, 7) +-+ (V> HP%, c, rl), $-)(? El 71)) 

converge in the C3 topology, as n + 00, to the map 

(c E, v) H (y, ~dov, Pdh2 + 4 

Proof. - Observe first that the hypotheses imply 

a;(X2,,)“(4 ---+Oasn+cc (1) 

g2 
24n) . q -Oasn+co. (2) 

To obtain the claimed convergence, we will make use of (1) and (2), 
or their weaker versions. We choose a compact part of R3, so that 
](v, [, n)] 5 const., where the convergence will take place and let K 
be a sufficiently large constant (there will be some slight abuse of notation 
when dealing with K). 
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First notice that I?(p) - y(p”)I, II’l”‘(A;,) - I$‘,,‘(A~)j and lAJl”(n;‘“) - 
Ak’(a;““)I are bounded by const.Ip - ~01 5 K~;““c;~~~, so the C” 
convergence in 3 is guaranteed. The derivatives with respect to c and jr/ are 
all zero, and all the derivatives with respect to v lead to the appearance of a 
multiplicative extra factor equal to ~~~~~~~~~ which implies convergence 

to zero. Thus item 3 is proved. It is easy to see that d,,q%&r/. We 
also have 

by (2), and the derivatives of this term go to zero for the same (or even 
better) reason. The term $“azm . u~A;A~o;~~;‘~< goes to zero in the 
C3 topology, due to the dissipativeness of pi and ~2, and 

by (l), together with all the derivatives. It remains to estimate @,(n)n‘) and 
its derivatives up to order 3 to complete 1 and 2. We have 

since (2) implies A; < a;“‘. To simplify the notation, we define 

* - (P. x;c, ~fV&) - 1) 
and 

Then 

and 

d d”‘“)(V,<,Q) N cq”“cT,““{[a,e,(**) -a$;(*)] v z 

+ P?/~d**> - WA(*)] . [GYXP) - 111, 

where the aproximate equality stands for the negligible terms coming from 
the derivatives of the eigenvalues as functions of Y. Thus 18~O~“‘m’I 5 
KX~O;~O;~~, l8,Oi”>-‘I 5 Ko;~cJ;~~ and l&,O~“‘“)I 5 Ka[2”~;4m. 
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Performing similar (and straightforward) estimates, one obtains else 
l&,@f”‘“‘I 2 Ka;2na;4m and I&.St(;lL”‘m)l 5 Ka;3ncr;6m, where 
r,s,t E {~,<,n}. Therefore 

and 
2n 2m . xp~‘“)(v, [, q) 2 O> g1 u2 

using (1) and dissipativeness of pl. 
To prove 4. and 5. we first have to do estimates on ti and 

z - 1. It is easy to see that Iti1 5 KXF, 1~ - 11 5 Kc;“cryrn, 
IpI 2 const.(aTn + XT) 5 Kcrrn, l&til 5 KXyg;2na;2m, lf3,ZI 5 
KcT;~?;~~, l+tij 5 KX;X~-~;“CT;~, l+zl 5 KX;a,“, l&,zil 2 
KX~~,“C,~“, lt3$ < Ka,“a;“. Also 

Now we can go through 4. and 5. 
Co convergence: Write the Taylor expansion of fil near (,u, 0, 0), having 

in mind that H1(pL, 0,O) s 0: 

if&L, cl, z - 1) = a,& . w + a,& . (2 - 1) + &&i . w2 

+ &,H, . w(z - 1) + ;&*I%, ’ (2 - 1)2 + Rs(& 23, z - l), 

where 
Rzb, w, 2) 

,&Lo I(w,2)12 = 

o 

and all the derivatives are taken at (CL, 0,O). Observe that 

IU%l, I&J&I, I&AhI, l&J% I K 

and 
P&II F KP, 

since a,fii(O, 0,O) = 0. Hence 
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by (I), proving the CO convergence of cr;“ay&r. 
Now write the Taylor expansion of l?z near (CL, 0,O): 

H&L., w, 2 - 1) = ;&& . *?2+d& . w(x - 1)+ ;6J,,ti* . (z - 1)2 

+ ~&,“W IT2 . w” + && d(2 - 1) + ;;r;,,,ri, . w(z - 1)” 

+ &,H, (2 - 1)” + ~aww& w” + ~awww*fiz . Gj3(z - 1) 

+ &“&. w2(2 - 1)2 + &,,zI;r,. w(z - 1)” 

+ $Lz, ii; . (2 - 1)” + R&L, 73, z - 1) 

where the null derivatives (d,E;T2 and a,I?,) have not been written, all 
derivatives are taken at (b, 0,O) and 

since dw~2(0,0,0) = ~,,Z?2(0,0,0) = 0. Therefore 

by (1). 
C1 convergence: We have 

As +p = 0, l&,r;‘rl 5 K, IdZfil(p,ti,~ - l)l 5 K(Xy + gin), using 
the estimates above we get 

-2n Id$&(p,~,z - 1)l 5 KX;a, . 

Similarly, 
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and 
Id&(p, w, z - 1) 1. K0;3Y7;2m. 

Also note that la,J?aI, l&,,fisI, l&fig\ 2 Ka;” at (~,ul,Z - l), since 
l+,fi2 = &JGf2 = i3,1T2 = 0 at (O,O, 0). So 

l&.riz(p, w, 2 - 1)l I Ku;‘“[l&Pl + l&~l + l&q]> 

for T E {v, I, n}, which implies 

l&,l;T,(p, w, z - 1)l 5 Ku;3nn;2m 

and 

Hence 

by (11, 

&7;mldvfi2(p,w, ,T - 1)l 5 Kay-” -+ 0. 

It remains to show that af”azm c3Ji2(p, W, 2 - 1) goes to zero as n goes 
to infinity. Write 

lgfv,"~at& .aq.q 5 K+ya,H2(p,ti,.2 - i)l 

goes to zero. But now we proceed as with the Taylor expansion of fii, 
having in mind that &fis(p,O, 0) G 0, 

iawzff2i, iawwzfi21, iawzzfi2i, lazzzI;Tzi 5 K 

and 

since &,fi2(0, 0,O) = 0 and all the derivatives are taken at (p, 0,O). 
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C2 and C” convergence: Differentiating twice I?i, Z = 1,2, and 
observing that ~&PI, Jd,til 5 ~~~~~~~~ and %,L = 0, Vr,s E {~,<;n}, 
we obtain 

Then 

and 

since a,,Bs(O,O,O) = 0. 
Let Tl,T2,T3 E {u3~jv)3 211 = #Lb 112 = w, v3 = 2, 61 = p = p(u, <, Q), 

v2 = w = W(V, I, 7) and ti3 = z = Z(V, I, 71). The third order derivatives 
are given by 

1~1 j=l k=l 

where all the derivatives of I$ are evaluated at (CL, W, Z-1). As Id,l.,r,Vll 1. 
KCTpCJ;5m, Id,,,,vll 5 Ko-;~~c;~~ and la,,v,I 2 Kc;~~;‘~, it follows 
that 

Prm, &(p, w; z - 1)1 5 Ka;3na;3m, 

implying the claimed convergence. 0 
Suppose now that pl and p2 are periodic points with periods /q and 

ICZ. Let Xfl and (T~I be the eigenvalues of of”’ (PI), Xi2 and at2 the 
eigenvalues of Df kz (p2). Assume that fkl is linearizable near p1 and fk2 
is linearizable near p2. Suppose also that Xl, gl, X2 and (~2 satisfy exactly 
the same conditions of Proposition 3.7, i.e. there is c < 1 small such that 
a~“.Xl < 1 and g1 is so small that al.(X2as) c/2 < 1. We want to verify that 
in this case the renormalization performed for fixed points is still possible. 
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If 4 is the point of quadratic tangency between W’(pi) and WU(p2), 
extend the domain of the linearized coordinates of fkz near pz until it 
meets f -klkz (q). The other extensions are made as before. Let n be the 
number of times the orbit spends in the linear region of pl, under f”‘, 
and m be the number of times spent in the linear region of pa, under f’“‘. 
Now fklk2 is quadratic near f -“I IcZ (q) and the renormalization is possible 
over the return map 

for a generically unfolding family (f,), with f. = f. It remains to choose 
m as a function of n in order to obtain 

~7;‘~ . (X~CT~)~(~)~~ - 0 as n -+ ~0, 
2m(n)kn 

g2 
nkl 

. Xl --+Oasn-+m. 

It is enough to take 

(3) 

(4) 

This is possible since for n large we have snkl > k2. 

Suppose now that a saddle pa is not C3 linearizable. This means that the 
eigenvalues at po are resonant, see [14], [15]. We want to show that by 
an appropriate arbitrarily C” small perturbation it is possible to destroy 
the resonances and turn the point pa in a C4 linearizable one. To be more 
specific, if pa is a saddle of period k, then we are interested in a C4 change 
of coordinates that linearizes f k in a neighborhood of ~0. 

The resonant conditions of Sternberg applied to dissipative saddles with 
eigenvalues 0 < 1x1 < 1 < 1 1, (T are translated into the condition 

(A. l7)” = cm, (5) 

for some pair of integers (n, m) with n, m 2 1. If f is C” and we desire 
just C’ linearization, for T < 00, it is enough to avoid a finite number 
of resonances of this kind, i.e. Eq. 5 with N = N(f, r) 1 n, m 2 1 (the 
function N( f, r) is continuous on f and N(f, r) 4 cc as T -+ co). 

Let p. be a saddle of period k and X,a the eigenvalues of Df ‘(PO), 
satisfying 0 < 1x1 < 1 < ICI] and IA. gI < 1. Let 4 : W -+ R2 be a local 
chart defined in a neighborhood W of po, with $(po) = 0. Assume W 
sufficiently small so that fj W rl W = 0 for all 0 < j < k. Let < be a 
C” function on R satisfying 

C(s) = 0, s>2 
C(s) = 1, SF1 
0 2 C(s) 5 1, vs. 
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Let B, c 4(W) be a ball of radius o centered at the origin and t = <( 4$$). 
We define the perturbations f, = lZt o f of f, where 

1 
&t(X) = x ifxEM\W 
~~(5) = $-l([l + t. <(lc#(x)l)] .4(x)) if x E W 

We claim that for arbitrarily small 0 < t < to the function f,” is linearizable 
near po. First observe that the eigenvalues of Dft(po) are (1 + t)A and 
(1 + t)~. Choose to such that for t < to, Of,‘“(po) is still hyperbolic and 
dissipative. Let on(t) = ((1 + t)A (1 + t)~)‘” and S,(t) = ((1 + t)a)-““. 
If of”(pa) is non-resonant, then for every pair (n! ~1,) with 1 5 ‘II: VL < N 
we have D,, (0) # S, (0). If to is small, then Dn(t) # S,,, (t) for every 
t < to, thus f) is linearizable near ~0. If Df”(pa) is resonant, define the 
sets of pairs of integers 

PI = {(mm); 1 < n,m 5 N,&(O) = S,(O)} 

and 
P2 = { (r~. m); 1 < n, m < N, DrL(0) # S,,(O)}. 

Choose to small such that for every t < to and every (n, ~1) E Pz we 
have k(t) # h(t). F or ( n,m) E P1 we have Ok(O) = 27zD,(O) = 
2nS,(O) = -$9;,(O). Th en, for to small, every 0 < t < to and 
(n, m) E PI satisfy Dn(t) # S,,,(t), which implies that f,” is linearizable 
near pa. 

Consider now a family (f,), E I where I is an interval and f. = f, 
and let p, be the hyperbolic continuation of the saddle po, A, and ucL the 
eigenvalues of Ofi(p,) and q5P : W H R* a C” family of local charts 
defined in W with 4(ykL) = 0. Define the perturbated families (frl,t)P,t by 
f&t = l,+ 0 f,, where 

{ 
&t(X) = 2 ifxEM\W 
L@,t(x) = 4;l([l + t. <(l+,(x)l)] .4,(x)) if x E W 

The eigenvalues of Of,“,,@,) are (l+t)X, and (l+t)c,,. Let J = [-to, to], 
for sufficiently small to > 0. The following lemma will be useful in 
Section 6. 

LEMMA 4.2. - The set oft E .J such that fi,t is not linear&able around 
p, for a positive Lebesgue measure set of p-values in I is countable. 

The lemma above is a corollary of the following lemma. 

LEMMA 4.3. - Let I, J c R be closed intervals, r : I x J 3 
(p, t) H T(,B, t) E R be a C” function satisfying g(p,t) 2 c > 0, 
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V(p, t) E I x J. For t E J, let 2, = {p E I; T(,u, t) = 0). Then the set 
7 = {t E 3; rn(zt) > 0) is countable. 

Proof. - The condition E (p, t) > c > 0 implies that r( ,u, .) is an strictly 
increasing function, for all p E I. Hence 2, n .Ztr = 0, if t # t’. Let 
7,, = {t;m(Zt) > l/n}. Then 7 = &In and each 7, is finite. Thus 
7 is countable. 0 

To prove Lemma 4.2, just consider the functions 

%&>4 = ((1+ w,. (1+ t)a,)” - ((1 + t)o/JnL, 1 < n,m < N. 

5. STRANGE ATTRACTORS NEAR THE QUADRATIC FAMILY 

Now we state and comment the important results in [9], [17] about the 
existence of strange attractors for H&on-like families of diffeomorphisms. 
These results are based in the fundamental work of Benedicks and 
Carleson [ 11. 

Let 6 = (Qa), be the family of endomorphisms of R* given by 

qlc, y) = (1 - ax*, 0). 
We say that @ = (cp,), is a H&on-like family if 

l Q is a c“ family of C’ diffeomorphisms, T 2 3; 
0 II@ - 911~3(~) is sufficiently small, 

where R is a sufficiently large rectangle in R x R* (say R = [-4,4] x 
[-lo, 1012). Let m be the Lebesgue measure. 

THEOREM 5.1 (Mora-Viana). - Let 0 < c < log 2 and Q = (cp,), be a 
H&on-like family. Then, there is E = E(c, fD) c (1,2), with m(E) > 0, 
such that for every a E E there is a compact, cp,-invariant set A = A, 
satisfiing 

1. the stable set of A, WS(A), has non-empty interior; 
2. there is z E A such that 

(a) {‘pE(zl);n 2 0) is dense in A; 
(b) IlD&(z1) . (l,O)ll 2 ecn for all n > 0. 

The set A of the theorem is called a H&on-like strange attractor. 
Further properties of the set E = E(c, a) can be easily derived from 

the proof of the theorem above: 
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1. E is constructed from exclusions of parameters of a host interval A, 
which does not depend on the family a; 

2. if /IQ, - 911 3~ 1 c R is small, the interval A0 can be choosen near a = 2; 
at the same time, the Lebesgue measure of the excluded parameters 
relative to lAoI can be made small, i.e. 

m(E) 2 (1 - Wol, 

for choosen S > 0; 
3. although the interval Aa does not depend on a, the excluded 

parameters do; on the other hand, if we consider only a jnite number 
of exclusions, we can see from the proof that they vary continuously 
with @. 

From 3 it is easy to conclude the following lemma, which will be useful 
in the arguments of Section 6. 

THEOREM 5.2. - Let E = E(Q) c A0 be the set obtained in [9], [17], 
in such a way that for a E E, (P~ has a strange attractor. Let I c A, 
b_e an interval such that m(E n I) 2 clIl,-for c > 0. Given t > 0, for all 
@ = (pa), su@ciently near a, there exists E such that m(EnI) 2 (c-c)lIl 
and for a E E (Pa has a strange attractor. 

When we look at the unfolding (f,), of the 2-cycle involving pi and p2 
considered in Section 4, we see a sequence of host intervals A,m., in the 
h-space, going to zero as n and m tend to infinity, each one corresponding 
to Aa by the (n, m)-change of coordinates. Moreover, if we embed the 
family (fP), in a C” two-parameter family (ffi,p)P,p, we find, for each 
/3 sufficiently small, a sequence A,,, (p) of host intervals converging to 
pT(/3), the value of tangency between W” (pl) and W”(p2). It is easy to 
see that A ,,,(/.?I) depends cant inuously on /?, since the (n, m)-parameter 
changes of the families (fP,o)P do. Also, the convergence of the families 
in Lemma 4.1 is uniform in /3, since all bounding constants can be taken 
the same for all families (fP,p)P with /‘? small. So for each /? small, there 
is a set Ela,m (8 c An,dio) f 0 parameters presenting strange attractors, as 
a direct application of the theorem of Mora-Viana. 

Altogether, these assumptions imply that we can fix ,&J small and obtain: 
“given c > 0, there are no = na(,&), mo = 7n30 (/?a) such that for all 
An,+@) with n 2 no, m 2. mo and /3 < 00, we have: 

l SUPUP - m(P)l;~ E &mU4) < F; 
l m(&,m(/4 n An,7n(P)) L ~l&,m(P)I; 
l A,,,(,@ is continuous with respect to p.” 
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6. PROOF OF THE MAIN RESULTS 

6.1. Preliminary remarks 

Let f0 E Diff” (IU) b e such that p is a dissipative periodic saddle point 
with a homoclinic tangency between its stable and unstable manifolds. 
Hence there is f E DifY(1M) C” arbitrarily near fe with hyperbolic 
sets Al, As and points Qr E RI, Qa E As satisfying items 1 to 3 of 
Proposition 3.7. Let U c DifY(M) be a sufficiently small neighborhood 
of f. For g E 24, there are hyperbolic continuations RI(g) and As(g) of RI 
and Aa, respectively. That is, there exist C” functions 

+‘i : 24 d C”(A&), i = 1,2 

9 - Wd 

such that A,(g) = @i(g)(A;) is a basic set for g, where C’O(A;, M) is the 
space of injective continuous functions from A; into M. Moreover, cPi (g) 
conjugates f IA, to 9 IA,(~). 

For z E A;, denote by Ws(z,g) the stable manifold IV((a,(g)z,g) 
and W” (z, g) the unstable manifold W” (@i(g)z, g) of the continuation 
@i(g)z of 5. We know that, as a C” embedded disk, W&(z,g) varies 
continuously with z and is a C” function of g. Hence, there are small 
balls Bs(Qr) and Bh(Qs), centered at &I and Qs, such that for all 
g E U, 2 E Ba(Ql) n Al, y E B6(Q2) n Aa, W”(x,g) and W”(y,g) meet 
transversally in a neighborhood of T, the point of transversal intersection 
between WU(Ql) and kVs(Q2) mentioned in Proposition 3.7. 

Let U be a sufficiently small neighborhood of Q, the point of 
quadratic tangency between Ws(Ql) and WU( Q2) (U will be eventually 
diminished in order to satisfy further requirements). Put C” coordinates 
(‘zL,‘u) E L-1, 11 2 in U in such a way that 

1. y has coordinates (0,O) ; 
2. the connected component of W’(Qr) n U containing g is given by 

{?J = 0); 
3. for z E Bb(Q1) n RI and g E U, the connected component of 

WS(z, g) n U which corresponds in the obvious way to WS(QI) n U 
is given by {V = Al(z)(u,g)}; 

4. for y E &(Qs) n Aa and g E U, the connected component of 
WU(y, g) fl U corresponding in the obvious way to the connected 
component of IV(Q2) n U containing q is given by {U = 
-b(y)(u>g)l; 

5. AdQ2)W’) = 0 = &&(Q2>(O,f). 
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In view of the above discussion, 

z ++ A;(z)([-Ll],g) 

is continuous in the C” topology and 

A&) : [-l> l] x 24 --+ [-I, I] 

is C”, i = 1,2. From the hypothesis of quadratic tangency between 
W8(Q1) and W”(Qa), we may assume 

&u(&(~) - Al(z))(u,g) 2 c > (4 

for any u E [-I, 11, g E U, 2 E Bh(Qi) n Ai and g E &(Qa) n AZ, where 
c is a sufficiently small constant. As a consequence, all possible tangencies 
between Al-leaves and AZ-leaves in U for g E U are quadratic. 

6.2. Control of orbits 

Suppose there are periodic pointspl E &(Qi)rM, andpz E Ba(Qz)rlhz 
such that for g E U, W’(p,, g) and W”(pz, g) are tangent inside U. Since 
W”(pl, g) and W”(pa: g) meet transversally near T, we can apply the 
renormalization scheme of Section 4 to find, for $j near g, a strange attractor 
of very high period. It will be important in 6.4 that we have some control 
on the orbit of this strange attractor. To be more specific, we will require 
that the orbit of the strange attractor intersects U only once, implying that 
any perturbation done inside U but outside a neighborhood of the strange 
attractor does not affect the remaining of the orbit. 

Let U' be a neighborhood of 7’. Define L;L(Qr) to be the least 
closed segment of W”(Qi) f rom Qi through T that crosses U' and for 
II: E B6(Qi) fl A1 let L?(z) be the least closed segment of WU(x, f) that 
corresponds in the obvious way to Ly(Qi) and crosses U’. Analogously 
define L;(Qz) and L;(y), for y E Bs( Q2) n AZ, and replacing U' 
by U, make the natural definitions of LJ(Q,), L;(x), L;(Qa) and 
G(Y). Define also 4 = UzGB*(Ql)“*l L?(x)* G = U2EB*(Ql)“hl G(z), 
L; E u vGBs(Qz)nhz J%(Y~ and LY E UyEBn(Qz)nh2 G(Y). Choose 6 > 0 
in such a way that &(Q1) n Al n w&(Q1) &(Q1) n Al n w&(Q,)~ 

&(Qz) n AZ n W;Oc(Qzj and B6(Q2) n Aa n W&.(Q2) are compact. Hence 
L;, Ly, L; and,L; are compact. Let U, and Uz be neighborhoods of A1 and 
Aa andtakele suchthat f'(L;)Uf-'(Ly) c VI and f'(L$)UfeE(L;) c U, 
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for all 1 > la. Consider the compact set 

R =(W;,,(A,) u w&(A,)) n U1 u ij fj(L;) u c f-j(L;) 
j=l J=o 

u (K&b) u w ; , ( A , ) )  n u2 u c P(G) u (j f-Q;) 

j=o j=l 

and its natural continuation R, for g E U, which is clearly defined since R 
is made up by arcs of stable and unstable manifolds. 

Suppose there are periodic points pi E B6 (Qi) n A, and p2 E B6 (&a) nh, 
such that for g E 24, IV” (pi, g) and W”(p2, g) have a (quadratic) tangency 
inside U. Assume f”’ linearizable around pl, f k2 linearizabie around p2, 
where Ici and Ica are the periods of pl and pa. Take a family (gP)@ c U 
with go = g generically unfolding the quadratic tangency. By Sections 4 
and 5, there are a sequence of host intervals A, + 0, subsets E, c A,, 
with m( E,) > 0 and integers k, -+ co as n -+ 00 such that for p E E,,, 
gbm has a strange attractor S, = S,(,U) inside U. Moreover, given cy > 0, 
there is no sufficiently large such that 

hl,h%LY~(sn)> ‘. * ,p(w c &Wg) 

for all 7~ > no, where B,(R,) denotes the a-neighborhood of R,. 
We claim that if U, M, S and (u are sufficiently small, then in fact 

&Sn)nu=O, Vo<j<k,,. 

For that, it is enough to choose U, U and a in such a way that 
B,(flg) n U = 0 (6 is chosen after U in order to satisfy item 4 of 6.1). 
If f(U) n U = 0 and f-‘(U) n U = 0 then g 6 R. As R is compact and 
composed by stable and unstable manifolds, if U is sufficiently small then 
U n !J = 0. This implies that there are N and U such that Ba(O,) n U = 0 
for all g E U. 

6.3. The line of tangency 

For each g E U, there is a C1 foliation defined in the whole of U which 
extends the leaves of Ai. In other words, for i = 1,2, there is a C1 vector 
field Xi = Xi(g) : [-1, 112 + R2 such that 

1. g H Xi(g)(u, V) is C”, for each (u, U) E [-l,l]‘; 

2. Xi(g)(uo, AiMuo,g)) . is colinear with (~0, &A;(Ic)(u~, g)), Vu0 E 
[-l,l], g E U, z E A;. 
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Since Xi(f) (0,O) . X2(f) (O? O)l = 0 and the tangency is quadratic, by 
the Implicit Function Theorem there is a C1 line 1, such that for (u. II) E I,, 
we have 

The line I, is called the line of tangency for g (see Figure 4). 

-- -- -- -- 
R 

Fig. 4. - The line of tangency 

Let 9r; : Y:,(&I,~) --f 1, (rev. $ : w;,,(Q2,9) -+ kJ be the 
C1 projection along stable (resp. unstable) leaves of Ai (resp. A,). Let 

: 2, + R be a C1 parametrization of the line of tangency. Consider 
20 C’” parametrizations P : WU(Q1, g) +RandC; : w’(Q2,g) -+ R 
with L;(@i(g)Qi) = C;(&(g)Q2) = 0. Define the Cantor sets 

K,” = CpXQ1~ d n b(g)) 
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and 
q = q~~r(Q2.L?) f-l A,(g)). 

which are dynamically defined (see [ 121) and are near Kf” and KT, 
respectively, if g is near f. The function Ly o @t(g) o (Ly)-l : K;” + Ki 
(resp. L,; 0 (a,(g) 0 (L;)-r : Ki + K,“) is the natural equivalence between 
Kf” (resp. KY) and its continuation K.; (resp. K,“). 

It follows from Proposition 3.7 that there is some t > 0 such that 

The definition of local thickness and the equicontinuity of thickness (see 
Section 2) imply that for U small enough, there exists to > 0 such that 
for any e. > E > 0 we can find Cantor sets “y c Kf” n B, (0) and 
I?; c K; n&(O) h w ose continuations i?i and K,” satisfy 

3 
-dR;) s,.(K;) > 1+ -.vg E M. 4 

If co and U are small enough, we still obtain 

+I& 0 7r; 0 (p-l@-;)). T(& 0 7r; 0 (L;,-‘(Q) 2 1+ f: 

by Proposition 2.3. 
Now we are seeking to determine open sets W c Diff”(M) arbitrarily 

close to f,-, such that for all g E W there is a tangency between W’(Ar) and 
W” (A,). A set like W is often called an open set of persistent tangencies. 
First define the functions 

n: t---3 xg 0 7r; 0 @1(g) 0 (c;)-‘(x) 

and 

II: - xs 0 lrg y 0 @‘2(g) 0 (L;)-‘(x), 

which can be extended to the convex hull of Kf” and K;. Let 

dJc1+-1>+11 c .?A be a C” family of diffeomorphisms generically 
unfolding the tangency between W” (Qr , f) and W’(Q2, f). To be more 
specific, we require that frj = f and 

i3,[4(~)(u, f,J - MYW, &J] L c > 0. (6) 
Vol. 15. no 5.1998. 
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for any IC E R1, y E AZ, U, U’ E [- 1, I] and p E [-1, 11. As a consequence 
of (6), for any x E Kf”, y E Kj, we have 

3,[1yyp (x) - dq, (y)] > c > 0. (7) 

if c is small enough. 
Consider the Cantor sets Ri C Kf” n B, (0) and k; C Kj n B, (0) 

introduced above, with the property that r(z!Ji(Ky)) .r(l_li(Rj)) > 1 +t/2: 
for any to > E > 0, g E U, to and U small. Then, by (7), there is a 
p. such that 

l Ipol < 2c-Q; 
l the pair (r9’; (KY), fi; (k;)) is linked for ,U = ~0. 

Let 2 be a neighborhood of F = (f c1 P in the space of one-parameter ) 
families and I an interval around ~0. Taking 2 and I sufficiently small, 
and defining for G = (gGLbL E 2 the Cantor sets K” (G; ,u) E r9i,L (r7-y) and 
K”(G; CL) G $, (J?;), then we have that (K”(G; b), K”(G; p) is a linked 
pair for ,u E I, since the linking property is an open condition. 

Define 
W = {gp; G = (g&i E 2, P E I}. 

This set corresponds to one of the sets PV, mentioned in the Introduction. 
We still obtain, by equicontinuity of thickness, that if C, is a bridge of k? 
and C, is a bridge of k;, then for any g E W, 

Moreover, (6) can be stated for any G = (gcl)ll E 2: 

%hW)(u, g,J - -&(Y)(& Y,)I 2 c > 0; (8) 

for any 2 E Al, y E AZ, U, U’ E [-1, fl] and P E [-1, +l]. 

6.4. The argument 

Claim: Given any subinterval I’ c I, there exists a residual subset R of 2 
such that for each family G = (gP)@ E R, there is a parameter pm(G) E I’ 
for which gpLoo (G) exhibits injnitely many strange attractors. 

The Claim clearly implies the existence of a residual subset fi c 2 such 
that for each family G = (gP)P E 2, the set of parameters ,U E I for which 
gP has infinitely many strange attractors is dense in I. So, Theorem A 
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is proved, and Theorem B follows easily from the remark at the end of 
Section 3. 

The proof of the Claim will be done by induction. Let U be as in 6.2 
and 2 3 ‘RI I . . > RN I . . . be a sequence of sets satisfying 

1. for all N > 1 and each family G = (gP)PLEI E RN, there is a compact 
set EN = EN(G) c I’, m(EN) > 0, such that for p E EN, gp has 
Iv distinct strange attractors S1 = Sr(G; CL), . . ~ SN = S,(G; ,u); 
furthermore, 
(a) for all % = l,... , N, the strange attractor Si is generated by 

renormalization (see 6.2) and the orbit of Si intersects U only 
once, inside BTt, where B,% c U is a ball of radius r;, and 
B,% n BT3 = 0 for all i # j; 

(b) EN+~(G) c EN(G), for N > 1; 
2. for each G E RN and b in a neighborhood of the convex hull of 

EN(G), there are bridges P,” of l?T and Pr of 27, i = 1, . . . , N, 
such that 
(a) their images Pt(G; b) z r9i.P (Pt) and P,1”(G; CL) E 1yXL (PC) form 

a stable linked pair (see Figure 5); 
(b) their images on the line of tangency Pf (G; b) E x&‘( Pf (G; p)) 

and @(G; p) E x,-,‘(P,“(G; b)) satisfy 

3. for each G E RN and p in a neighborhood of the convex hull of 
EN(G), there are bridges Q& of j?; and Q> of &f” such that 
(a> their images Q&(G; ,u) G 8:,(&&) and Qk(G; P) 3 diw(Q;IT) 

form a linked pair; 
(b) their images on the line of tangency &+(G’; P) SE x,,~(Q%(G: PL)) 

and Q&(G;p) - x;,'(Q~(G;P)) satisfy 

where B, c U is a ball of radius E and B, n B,, = 0, for any 
i = l,...,N. 

We will show that RN+~ is open and dense in RN. This will imply that 
the set R = &,,a RN is residual and for each G = (gP)P E R there is a 
nested sequence 7’ > El(G) I E2(G) > . . . > EN(G) > . . of compact 
sets as in the item 1 of the induction. Hence if ha(G) E &>a EN(G) c I’, - 
then gE1-(G) has infinitely many strange attractors. 
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Fig. 5. - Induction hypotheses 

I I 

P,?G; FL) 

Now we prove that Rfi-+r is dense in R,v, N > 1. The openess of Rni, 
N > 1 is an easy consequence of Lemma 5.2. 

Let G = (.9P)P E RN, N > 1. We will show by successive perturbations 
that there exists H = (IL~)~ E RN+~ C” arbitrarily near G (the proof 
also shows that ‘RI is dense in Z; for that, take G 5 2, Es(G) = I’, 
Q; the convex hull of K;, Q$ the convex hull of Kf” and proceed as 
below with N = II>. 
First perturbation. Choose a density point of EN, i.e. a point p.N such that 

lim IrLcEN ” [I-LN - P> PN + p]) = 1 
p-0 2P 
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Consider the bump function C of Section 4. Let y1 be less than 
half the distance from UgEEN G&(G;p) n C&(G;p) to R2 \ B,. We 
will define G(l) = (s;))~ such that 9:’ = gP out of B,, for each 
p, and there are two (stable) sublinks associated to the linked pair 
(Qk7(G(‘); /L,v), Qk(G(‘); ~~1’)). For that, let 41 be the center of B, and let 

cl(ru>~) = c(; . (II( U-U) - Ql// - (f - 71)) . 
> 

Define, for ,lJ small, the C” diffeomorphism 

TO:M-+M 

(74 71) - (‘4 71 + p. (‘I(% u)) in U, 
x-x inM\U. 

Denote by Tp o G the family (Tp o gp)p. Since (Q&(G; ILL), Q&(G; pN)) 
is a linked pair by the induction hypotheses and the Cantor sets 
Qk(T~oG;IIN)nKs(T~oG;~N), &‘~,(TpoG;~~y)flK“(TpoG;~~~) have 
non-zero /?-velocity with respect to each other, all the hypotheses of the 
Linking Lemma are satisfied. Therefore we obtain ,l3r arbitrarily small for 
which there are two disjoint sublinks associated to the link above. We have 

IITP, 0 G - Gllcr I const.lP1lll~lllcr < constIP $ ’ 
( ) 

and, by 6.2, the perturbation inside B, does not affect the links of item 2 
of the induction. 

Define G(l) E To1 o G and let 

V’h+,(& PN)~ P;+,(@); PN)) 

tQsV+lV% PN), Q;+@); M); 

be the sublinks of (Q;.(G(l); ,uN), Q”nr(G(l); ply)), where 

for some bridges Pi;+I, Q&+r of I?:: Pj$+l, Q&+1 of I?y. Let BTN+I c B, 
be a ball of radius TN+~ containing P&+l (G(l); pN) n &.+l (G(l); pN) and 
B,! c B, be a ball containing &&+t(G(l); p&r) f~ Q”,+,(G(l); ,xN), with 
B,, n I&,+, = 8. 
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Second perturbation: Since the pair 

is linked, there is a tangency between a stable leaf of Al, say Al (x)( . . 9:; ), 
II: E A,, and an unstable leaf of AZ, say Az(y)(.,gFi), y E AZ. Given 
dI, d2 > 0, there are periodic points pl E B,(Ql)~A1 andp2 E Bs(Q2)nA2 
such that 

lAl(m)(w~(~)) - A&)(w(~))~ 5 4, P.W PN 
lA&dh.&) - Az(d(w(l))l 5 d2 PN 7 

for every u E [-1, I]. Let hl and k2 be the periods of p1 and ~2. Fixing 
q > 0 small and making a perturbation similar to the one described in 
Section 4, we obtain a family Gc2) = (gf’)P near G(l) such that (g/,?))“’ is 
C4 linearizable near pl and (gi?)lip is C4 linearizable near p2 for Lebesgue 
almost every point p E [p,v - rl, ,LL~ + r/l. As Gc2) can be chosen arbitrarily 
near G(l) independently from v, we use Lemma 5.2 to conclude that there 
is a density point of EN ( Gc2)), say &, with I& - PN I 5 v and the 
additional property that (9:: )‘il is C4 linearizable near pl and (9:: )“” is 
C4 linearizable near p2 . 

Observe that the choice of pl, p2 and the perturbation from G(l) to 
Gc2) can be done in such a way that W”(pl,gffi) and W”(p2,g$i) 
cross the line of tangency inside B7.,,,+1-2yL, where BTN+,-+, is 
the ball of radius T-N+~ - 272 concentric with B,,,, and y2 > 0 is 
a small constant. Moreover, if the perturbation is sufficiently small, 
the link (Q&+,(G(l); ,uN), Q;LN+l(G(l); PN)) is not destroyed, i.e. 
(Q&+I(G(2); b/N), Q&+1(G(2); bh)) is a linked pair and Q&+I(G(2); &)f? 
Qh+l( Gc2); ,&,.) c B,). Finally, we may assume that 

IAl(m)(u gc2)) - Al(pl)(u dl))l 5 ~1, ’ PIN ’ PN 

IA2b2)b gc2)) - A2(m)kd))l 5 r! ’ ply P.V > 

and that dl + dz + 3rl is small with respect to 72. 
Third perturbation. Let q2 be the center of II,.,,,,, and 

C2z(%~u) = c(;. UK v u> - Qzll - (w+1 - 72)) 
> 

. 

As in the first perturbation define, for ,0 small, the C” diffeomorphism 

TD : M ---+ M 
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Hence there exists a pZ with l,&/ 5 const.(di + d2 + 377) such that 
W”(pi, Y& og$L) and W” (pZ, !?‘oZ og:J ) have a tangency inside B,,,, --Ya. 

Define Gc3) = (~f’)~ = 5!p2 o Gc2), using the same notation as before, 
and observe that pi and p2 are still C* linearizable for (gFi)iel and 

(9;; ) kz > respectively, since G c3) = Gc2) out of B,,,, . Furthermore, 
EN(Gc3)) = EN(Gc2)), since the orbits of the strange attractors S;, 
% = l,..., N, intersect U only out of B, 1 B,.,+,. As a consequence, 
& is still a density point of EN(Gc3)). Also, 

llGc3) - G(2)II~r 5 const.lp21 . 

Fourth perturbation. Now we consider ?‘p o Gc3) = ppI+o o Gc2). Let 
pcLT(p) be such that W”(pi,?p o g,(&) and W”(p2,5!~ o gFd(a,) are 
tangent. Clearly ,~r (0) = &, . Let A be a host interval of strange attractors 
in the p-space given by the renormalization scheme involving pi and p2 
for the family Gc3), and let A(,@ be its natural continuation for the family 
FP o Gc3), as already discussed in Section 5. These intervals exist since 
all families are inside W and (8) is valid, implying generic unfolding. By 
Section 5, the relative measure of the set E(P) of strange attractors in 
A(p) can be taken greater than 5, and A can be chosen in such a way 
that A(p) is arbitrarily near ,u@), uniformly with 0. We may suppose, 
without loss of generality, that A(p) is on the right of h,(p), for /3 small, 
and pLT(p) decreases as ,0 increases. As a consequence, we can choose 
p3 > 0 arbitrarily small and A so near p$,, that 

Hence, if we denote by ~a(/?) the center of the interval A(p), there is 
0 < ,f& < ,& such that PL,(,&) = ~~(0) = &. Since E~(pp o G(“)) = 
EN(Gc3)), VP, using 6.2, and & is a density point of EN(Gc3)), there 
is p. such that for all p 5 po, 

m(En;($ 0 d3)) n [& - P, ,& + P]) 2 P. 

Imposing (A@) I < po in the choice of A, it follows that 

m(EN(pp, 0 G (3)) n J-W&)) 2 
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Defining H = 5!‘Ij4 o G(“), it is clear that H belongs to R2v+l, with 
FN+~(H) = EN(H) n E(P4) c EN(H), again by 6.2. Furthermore, 

which implies 

IIH - Gllc~~ <const. 

As ,L?i is taken arbitrarily small with respect to yl, 02 and /Xi are also small 
with respect to yz and lJG(2) - G(l) II C~ is arbitrarily small for any T, by 
Section 4, we conclude that IIH - GII ,, c can be arbitrarily small for any T. 

The Claim is proved. 
For the proof of Theorem C, instead of considering, in the induction, 

a positive measure set EN at the paramater space for which the family 
G exhibits N strange attractors, just consider a parameter value PN for 
which there are N phenomena of C type. The perturbation from G to G(l) 
is identical, but the perturbation from G(l) to Gc2) causes to change the 
parameters for which the N phenomena of C type appear. If they become 
separated in the parameter space, by making a perturbation similar to the 
third and fourth perturbations above in each B,,*, % = 1, . . . , N, with size 
proportional to the size of G @) - G(l), one obtains a family Gc2) such 
that for Gf’ N there are N phenomena of C type. As these perturbations 
are done inside U, they do not affect the eigenvalues of pi and ya. After 
that, one applies identically the third perturbation. To apply the fourth 
perturbation, it is enough to substitute the host intervals a(p) by single 
parameter values, where the new phenomena of C type are generated. 
The openess of RN is not possible when considering codimension-one 
phenomena. Thus, the Claim is translated into the following statement: 
“Given any subinterval I’ c I, there exists a dense set R of 2 such that 

for each family G = (g@)@ E R, there is a parameter pm(G) E I’ ,for 
which gP, cG) exhibits injinitely many phenomena of C type. ” This assertion 
obviously imply Theorem C. 
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