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ABSTRACT. - We construct a blow-up solution for the following nonlinear 
complex equation: 

ut = Au + (1 + iS)l$%, u E 43. 

We also find the asymptotic profile near the singularity, and generalize the 
result to other vector-valued equations. 0 Elsevier, Paris 

Key words: 35K: parabolic systems, 35B40: asymptotic behavior of solutions. 

MSUMB. - On construit une solution explosive de l’equation non lineaire 

complexe suivanteu; = Au + (1 + i(j)IuIp-‘u, ‘21 E 43. 
On donne aussi son profil asymptotique au voisinage de la singularid, et on 
generalise le resultat a d’autres equations a valeurs vectorielles. 0 Elsevier, 
Paris 

1. INTRODUCTION 

We are interested in the following reaction-diffusion equation: 

$ = Au+ (1 +~S)IU]~-~U,U(O,X) = U,,(X), (1) 

* AMY Classijcation: 35 K: parabolic systems, 35 B 40: asymptotic behavior of solutions 
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where, 6 E Iw, p E (1; +x), p < (N + ‘L)/(N - 2) if N > B, and 
u. E H = W1.“+l(R1v.C) n Lm(UP’,C). 

(1) is a special case of the vector-valued equation: 

g = a7l. + F(‘IL)! u(z, 0) = uo(Ic), (2) 

where u(t) : z E IRK + Iw”‘, F : UP” + Iw”’ is regular and F is not 
necessarily a gradient. 

For simplicity, we focus on the study of (1) (results for equation (2) will 
also be presented in section 5). 

Equation (1) appears in the study of various physical problems (plasma 
physics, nonlinear optics). See for example Levermore and Oliver [IS] 
and the references inside. Blow-up results for vector-valued equations have 
been intensively studied in differential geometry. See for example a review 
paper by Hamilton [ 121. 

The Cauchy problem for equation (1) can be solved in H. u(t), solution 
of (1) would exist either on [O; t-m) (global existence), or only on [0, T), 
with 0 < T < +oc. In this case, loll + +x when t + T, we say: 
~(1;) blows-up in finite time T in H. In this paper, we are interested in the 
finite time blow-up for equation (1). 

If ?J = 0 and PLY E Iw, then (1) can be considered as real-valued. 
Blow-up in this real case has been studied by various authors. Relying on 
the use of monotony properties and maximum principle, Ball [I] and Levine 
[ 161 find in this case obstructions to the global in time existence for (1). 
Other authors investigated the asymptotic behavior at blow-up of blow-up 
solutions of (l), S = 0. See for example Weissler [20], see for a study in 
the scale of similarity variables Giga and Kohn [Ill, [lo], [9], Filippas and 
Kohn [5], Filippas and Merle [6],... The notion of asymptotic profile (that 
is a function from which, after a time dependent scaling, #u(t) approaches 
as t + T) appears also in various papers: see for example Bricmont and 
Kupiainen [4], [3], Berger and Kohn [2] for a numerical study. In the scalar 
case and in one dimension, Herrero and Velazquez give a classification of 
possible blow-up profiles. They use the maximum principle and the decay 
in time of the number of oscillations of the solution. Some of their results 
are generalized to N dimensions in [ 191. 

Most of the techniques used for h = 0 in the cited papers can not 
be applied in the case 6 # 0, since (1) is complex-valued (no maximum 
principle applied). and the equation does not derive from a gradient. 

Another method has been introduced in [ 181 in the case S = 0 (see also 
[4]): Once an asymptotic profile is derived formally for (l), the existence 



BLOW-UP FOR VECTOR EQUATIONS 583 

of a solution u(t) which blows-up in finite time with the suggested profile 
is proved rigorously, using a nonlinear analysis of equation (2) near the 
given profile. This approach which does not use maximum principle allows 
us to find blow-up solutions for vector-valued heat equations (even with no 
gradient structure). In this paper, we aim at adapting this method to show 
the existence of a blow-up solution for equation (1) with h # 0. 

Let us remark that the scalar case provides us with a blow-up solution 
if 6 = 0. Unfortunately, this result is a one dimensional result and it fails 
when we perturb slightly the nonlinearity. Indeed, let us mention the case 
of the following vectorial equation: 

with 1 < q < (p + 1)/2, the method of Ball [I] yields a blow-up solution 
TL(~) : 62 + a3 where R is a bounded domain of R”, see appendix A 
for details. 

We show that there exists 50 > 0 such that for each 5 E [-~$a, So], equation 
(1) has a blow-up solution. We give in addition a precise description of 
its blow-up behavior. Indeed, 

THEOREM 1 (Existence of a blow-up solution for equation (1) for small 
6). - There exists 60 > 0 such thatfor each 6 E [-So, 601, there exist initial 
dutu ug such that equation (1) has a blow-up solution. 

This Theorem follows directly from the following proposition which 
specifies the behavior of u(t) near blow-up. Indeed, up to a time dependent 
scaling, u(t) approaches a universal profile 

( 
(P - v -3 

p - I+ 4(P - (52) IW) 

when t -+ T. More precisely: 

PROPOSITION 1 (Existence of a blow-up solution for equation (1) with the 
profile (4)). - There exist 60 > 0, To > 0 such that for each S E [-So, S,], 
,for each T E (O.To], for each u E RN, 

i) there exist initial data uo such that equation (1) has a blow-up solution 
IL(Z. t) on R” x [O, T) which blows-up irzfinite time T at only one blow-up 
point: a, 

ii) moreover, we have 

~~~l~(T-t)~,u(a,+((T-t)lloa(T-t)l)~”,t)-/,(,)1+‘“llL7(tL”! = 0 

(5) 
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with 

iii) There exists u* E C(lw”‘\{a}, C) such that u(:c, t) + U,(X) as t I ‘I’ 
uniformly on compact subsets qf Wnr\{ (I,}, and 

Remark. - Estimate (5) is really uniform in 2 E RX. In previous papers 
dealing with the case 0 = 0, only Bricmont and Kupiainen [4] and Merle 
and Zaag [ 181 give such a uniform convergence. In most papers, the same 
kind convergence is proved, but only uniformly on smaller subsets (for 
1251 5 C/J- in [S],...). 

Remark. - In fact, we show that property iii) is a consequence of ii). We 
want to point out that for the heat equation (S=O), iii) was known just in 
dimension one using the decay in time of the number of oscillations of the 
solution (Cf Herrero and Velazquez [ 131). 

Remark. - To prove Proposition I, we linearize in a way equation 
(1) around fj+i6, and give a nonlinear finite dimensional reduction of 
the problem. Then, we solve the finite dimensional problem using index 
theory. The proof is more difficult than in [ 181, because of the vectorial 
structure, the presence of a coupling between coordinates, and the presence 
of one more neutral direction. These techniques give then as in [18] a 
stability result with respect to the initial data of the behavior described in 
Proposition I (see section 5). 

Remark. - Center manifold theory do not apply here. It fails to give 
a uniform estimate such as ii). One can point out that even if it works, 
a center manifold theory gives a convergence only uniform in the region 
{I+/~ 5 C}. F or iscussion in the case S = 0, see Filippas d’ 
and Kohn [5], page 834-835. 

Remark. - We see from (6) that 0 < Sa < J’is. Since equation (1) is 
rotation invariant, for each w E S1, we can find initial data ~a such that 
the corresponding solution has the profile fi+ihw. 

From this result, one can ask: what happens for S > So? Does equation 
(1) still have blow-up solutions? We conjecture the existence of & > 0 such 
that for (Sl < So, equation (I) has blow-up solutions, while for 151 > So, 
no blow-up is possible for solutions of equation (1). That is, all solutions 
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are globally defined. Indeed, from the formal asymptotic analysis, one can 
remark that for ISI > fi, f, 1+i6 is no longer bounded, and the analysis 
fails. Another question arises: what happens with the critical value 0 = &? 
Unfortunately, we are not able here to give a precise value of & and a 
rigorous proof of what is conjectured. 

As an extension of Theorem 1, one can mention that using the same 
techniques, we have the same result for the following vector-valued 
equation: 

$ = Au + Iz$% + G(u),u(z, 0) = ,u&c) 

where 

1) u(t) : Ic E RN -+ Iwfil, p E (1, +m), p < (N + 2)/(N - 2) if N 2 3, 
fug E H = w”+yRN, R”) n L”(5P, R”), 

2) G : R”’ + IRA’ is a perturbation of ]uIP-~u satisfying: G(u) = 
G1(Iu12)u, IG(u)I 5 CIuIT, IG(Xul) - G(Xuz)l < CX’Iul - u21 for 
Iu1l.Iu~I 5 1, X > 1, r’ E [l,p), G1 : R+ 4 IX’, 

Indeed, 

THEOREM 2 (Existence of a blow-up solution for equation (8)). - There 
exist initial data ug such that equation (8) has a blow-up solution. 

Let us mention briefly the organization of the paper. The proof of 
Proposition 1 relies strongly on a double-scale description of u(t), solution 
of (1). We first give in section 2 an equivalent formulation of the problem in 
the scale of the well known similarity variables (see Giga and Kohn [l I],...). 
Then, working in the original scale, we prove in section 3 the existence of a 
single-point blow-up solution for equation (1) such that (5) holds. In section 
4, we return to the original scale ‘u(z, t) and use the invariance of equation 
(1) under the transformation (to, X) + u&,t) = X%L(&;to + At) 
to show that estimate (5) yields the equivalent (7) for the profile u* in 
the original scale. We conclude in section 5 by giving some comments 
about the stability of the result of Proposition 1 and detailing the case of 
equation (8) (izI 2 3). 

Without loss of generality, we can now assume that (L = 0 and N = 1. 
The same proof holds in higher dimensions (see [I81 for the analysis of 
the case N > 2). We write each complex quantity (number or function) z 
as z = z1 + iza with zl, z2 E R. 

The author wants to thank Professor F. Merle for his helpful suggestions 
and remarks. 

Vol. 15. n" 5.1998 
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2. FORMULATION OF THE PROBLEM 

As we mentioned just before, the proof of Proposition 1 will be 
completed in two steps. In the first step (section 3) it is enough to 
construct I a solution of equation (1) satisfying (5) since this implies 
directly that u(t) blows-up in finite time T at only one blow-up point: 0 
(parts i) and ii) of Proposition 1). Indeed, it easily follows from (5) that 
lim,T Iu(O, t)I = + m. which means that I blows-up in time T at the 
point 0, and liru,T(T - f)* Iu(~. t)/ = 0 for b # 0, which implies in 
turn that ‘IL(~) does not blow-up at b # 0, and therefore blows-up only at 
the point 0. This last result follows directly from a Theorem by Giga and 
Kohn (Theorem 2.1 in 11 I]). 

In a second step (section 4), we show how the behavior of the limiting 
profile w,~(x) near the blow-up point (part iii) of Proposition 1) can be 
derived from the behavior of I as t + T given by (5). 

Hence, our first goal is to construct IL(~) a solution of (1) satisfying (5). 

To have an idea about the blow-up growth of U, solution of equation 
(l), we compare this solution with a blow-up solution of the corresponding 
differential equation 

f = (1 + 1:b)lUl”%. 

This solution is u(t) = eiH((p - l)(T - t))-*, with T > 0, 0 E R 

Now, we consider u, a solution of equation (1) which blows-up in finite 
time T > 0 at one blow-up point 0 E R. We expect u to grow with a similar 
rate near blow-up. If we introduce convenient “similarity variables” 

:I/= & 

s = - log(T - t) 

*w(y, s) = (T - +%o:,f), (9) 

then, we can look for bounded non zero solutions of the following equation 
(which follows from (1) through (9)): 

2.1. Formal asymptotic analysis 

Since equation (10) is of heat type, one can ask whether it has self-similar 
solutions, or at least, approximate ones. We have the following lemma: 
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LEMMA 2.1 (Formal asymptotic behavior of w). 

i) The only seEfsimilar solutions ILJ(Y: s) = vo($=) of (IO) are the 

constant ones: wg 3 0, or vg G KY?‘, with 6 = (p - l)-* and 0 E Iw. 
ii) If equation (IO) has a solution of the ,form 

(11) 

with uu.j regular and bounded, then, there exists 0 E W such that 

q)(z) = 2* ( p - 1 + (P - II2 

4(p - 62) z 
2 

> 
-* = ,‘ef&)l+i” 

(12) 

where fh (2) lfT6 is the suggested projile in (4). 

Pro$ 

i) The equations satisfied by such a vg are 

0 = -+(2) - (1+ id) -$ + (1 + iS)lwol”-‘wo, (13) 

and - ~zw~(z) = U;(Z). It is easy to see that the only solutions are the 
constant ones, and that -s + ]u,#-~uo = 0. This yields the conclusion. 

ii) If we substitute the form (11) in equation (10) and set x = -$=, we 
find (if s -+ +oo) that ~0 satisfies (13). Searching a non constant solution 
71()(Z) = p(z)e”@(“), with /, > 0, one finds that vo(z) = e’e(p-1+6~2)-*. 
with b > 0, 0 E R. 

In fact, there is only one possible value of 6. Indeed, if we substitute 
the expanded form (11) in equation (10) and compare elements of order 
t, we obtain F(z) = 0, where F(z) = ~zu,!, + ,r&’ - ;,,I: - (1 + is)%+ 
(1+iS){(p- l)lvoj”-j ( 110 ~o,l~i,i + n0,2ni,2) + IQ/‘-‘v~}, and ‘uj = ,oj,i+ 
~u~,z, j = 1,2. According to regularization properties of equation (lo), it 
is natural to require that vu1 is C”, which implies that F is C”. F”(0) = 0 
implies h = H. n 

Remark. - Looking for approximate solutions of (10) or for solutions of 
(IO) in the expanded form (11) is a well known approach used in various 
problems such as nonlinear optics, and also nonlinear heat equations (see 
for instance Galaktionov, Kurdyumov and Samarskii [7] for approximate 
self-similar solutions in the case of global existence (in time), see also 
Galaktionov and Vazquez [8] where an approximate solution is shown 

Vol. IS. n” 5.1998. 
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to be an admissible blow-up profile in the case of a heat equation with 
(1+ u) lo&l + ’ u, as a nonlinearity). Unfortunately, computation can not ) 
be carried out easily for the form (11) in the present case, and we are 
unable to show the existence of a solution for equation (10) with such a 
form. In fact, instead of using this linear approach, we use a nonlinear 
one in section 3 to show that (10) actually has a solution w(?/, s) which 
approaches (in Lr) f6( $L)1+‘6 as s + +x’. This approach (instead of 
the linear one) yields the stability of such a solution (see section 5). 

2.2. Transformation of the problem 

Using similarity variables (see (9)), we see that proving (5) is equivalent 
to proving that (10) has a solution satisfying 

where ,fj+i* is given by (4). 

In order to prove this, we will not linearize equation (10) around fl+” as 
it suggested by (14), because the linear operator of the linearized equation 
has two neutral modes which are difficult to control. We will instead use 
modulation theory and take advantage of the invariance of (10) under the 
action of S1 (To, : 111 -+ eioo ~1, for each 190 E R): in fact, we introduce 
q(y, s) : [- 1ogT; +m) + C and 0(s) : [- log-T. +a) + R such that 

w(y, s) = (p(y. s) + q(y, s))eio(s) 
0 = .I xc?/: .s)(qz(Y, s) - h(Y, s))&.L i 

(15) 

where 

cp(y,s) = KP ,fh 5 + hi 
U) 

) 

l+ih 

2(y - 62)s 
, /$ = (p - 1)-h (l(j) 

IYI 
X(Y. s) = x0 7 

( 1. K@Si 
(17) 

x0 E Gvo. +m>, IO, 11)> with ~0 s 1 on [O, 11 and x0 G 0 on [2. +x0], 
KO is a constant large enough, and 

The introduced liberty degree Q(s) is fixed by the second equation of 
(15). It will appear in the course of the proof that this second equation 
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makes one of the neutral modes of the perturbation q to be zero, which 
simplifies greatly the control of 4. 

One can remark that we don’t linearize (10) around eie(s).~~fnl+is, but 
around e”(‘)p. Up to the natural action of S1 (multiplication by c”) 
which simplifies the study of the linear operator of the equation on y, 
these two expressions differ from each other by a term of order f, so that 
(at least) some components of 4 are smaller that i, which helps to have 
q(s) -i 0 in LT as s + +CC. 

Now, we claim that proving parts i) and ii) of Proposition 1 reduces to 
proving the following proposition: 

PROPOSITION 2.1 (Equivalent formulation of Proposition 1, i) and ii)). 
- There exist 60 > 0, So > 0, such that V’s E [-So, &,I, b’s0 
3y,, E -cp(., SO) + H such that the system 

$(Y>S) = { L, - g } (d(Y, s) + %)(Y, 4 + R(H, Y> .s> 

0 = 
J 

X(Y> 4MY, s) - h(Y/, S))&dY) 

where 

L,(q) = Aq - $.vq - (1+ SS)L 
P-1 

+ (1 +WUP- m4p-34Pl~l + w2) + I'pI"-14}. 

m = (1 + W{lv + 41P-% + 4) - IPI”-lP 
- (P - wPlp-“cp(cpl~l + (P2q2) - l’prld. 

R(B, :y. s) = n*(y, s) - ifp> 

? SO? 

(19) 

R*(y,s) = -g + Acp - ;,.V, - (1 + it!)> + (1+ iS)lpl-p. 

(201 
with initial data (q(y,s~),0(s~)) = (qso(y),O) at s = so, has a unique 
solution (q, 19) f or s > so, satisfying liliW Ily(s)llp = 0, and 39, E R 

such that B(s) + 8, as s + +oo. 
Indeed, due to (15), the first equation in system (19) is equivalent to 

(lo), hence, it is equivalent to (1) (use (9)). In addition, once proposition 
2.1 is proved, we have: 
II1”(yy:s) - e.L(R,-*lugK)fh($)l+i*ll~, 

5 Ile’“(“)(g(y, s) + cp(y, s)) - ei(8,--i110K”)~~(~)1+r611L’ (use (15)) 

Vol. 1.5. Ilo 5.1998 
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2 llq(s)llp + I((+) - P, )(t7(!/, !ill,,% 
+Ile+ (p(y. s) - kP”fh( ~)l+;q,x 

5 llq(s)ll~x + CIH(s) - H,I + Ctspl i 0 as s + +oc (see (16)). 

Therefore, ~(9, s) approaches ~:‘(~~-~t”g~)~~fh( $)I+” in L”(R) as 
s 4 +cc. Since (10) is rotation invariant, we can replace ‘~1 by 
,-i(O, -‘tog ‘)UJ to obtain (14), which is equivalent to (5) through similarity 
variables (see (9)). 

Hence, we must study system (19) for ((1; H) E ,C” (R) x IR to 
solve the problem. Its evolution is mostly influenced by its linear part 
&J(Y) = Cl, - ig)(q). L e us study more carefully this operator. LP.o t 
is a R-linear operator defined on D(C,,o) c L*(R, C. dp). Since we are 
interested in the behavior of (y(s). 0(s)) in L”(W) x R as s + +3~, let 
us consider the limit as s + fx of Cp,o(r) for a fixed 7. E L”(W,C) 
(note that P(W.C) c L’(R. C, &L)). 

Since H(s) will be shown to have a limit when s + +CC, we can think 
that the effect of g appearing in the expression of C,,S (see (20)) will 
be negligible. Therefore, .C,,e (7.) i L(r) = Ar - +;y.Vr + (1 + iS),rr as 
s 4 +x (see (20) and (16)). The following lemma provides us with the 
spectral decomposition of i: 

LEMMA 2.2 (Eigenvalues of k). 

i) L is u R-linear operator dejined on L2 (IF!> C, dp) and its eigenvalues 
are given by { 1 - ylrr~ E N}. Its eigenfinctions m-e given bq‘ 
((1 + %h‘)h,,,, %Ibrn /m E N} where 

(21) 

We have: i((l + %a)/~,,,) = (1 - y)(l + ,i~?)h,,, and i(ih,,) = -?A,,,. 

ii) Each T E L2(R, C,dp) can be uniquely written as r(y) = 
(1 + 4(c;L:o 6,rrr L,,! ‘/ 1 (J 1) + i(Cz,z,, f2,rrlL,(~)), where +,j.rrt E R. 

Proo$ 

i) From [18], we know that {h,,, lrn E N} is a total family in 
L’(R, R, d/L), and that (A - i:y.V)h,,, = -y/l,,,. Hence, we decompose 
each T E L2(R, C: dp) as ,r(:y) = C~~??O(~l,,,l + *C~,,,~)h~,~(:y). 

X E R is an eigenvalue for c m 3r E L2 (W, 43, d/L). T # 0: & = XT 

U 3r # 0 Vrr2. E N 
{ 

(1 - y - A) ‘rl,,r, =O 
x Tl.,,, +(-Y - X)7&,, = 0 

u3rMEN=l-5. 
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The computation of eigenfunctions is easy and we shall skip it. 

ii) We write T = (1 + iS)rl + i7:2, with Tj E L2(R, R, dp), and use the 
fact that {h,/rn E N} is a total family in L2(R,R,d~). w 

Let us consider (q(s),o(s)) a solution of system (19). We will use 
an integral formulation of its first equation in terms of the fundamental 
solution of C,. We want [[q(s)\lL- + 0 as s + +cc. This L” control 
will result from the L” control of (1 - x(y, s))q(y. s) and x(y, s)q(y. s) 
(see (17) for x): 

1) in the “regular” region IyI > Kofi, CV behaves in L”(R, C; dp) 
like an operator with a fully negative spectrum. We will show from (20) 
that the fundamental solution of C, between so and s1 > so is a strict 
contraction from L”( lyl 2 Ko&) to L”(R). Therefore, the control of 

(1 - X(Y: ~4M./: <>I 7 5 in L”(R) will be done without difficulties. 

2) in the “singular” region I y I 5 Kc) fi, C, behaves in L2 (R, a3. &L) like 
,?. In order to control xq(y, s), we expand it with respect to the spectrum 
of 2 in L2(R. a3:$,~), but we will control xq in L”(W) and not only in 
L2(R, C, d/l) (see section 3 for the rigorous analysis). 

By lemma 2.2, 2 has two expanding directions ((1 + G!~)ho~ (1 + %h)/bl), 
two null ones (( 1 + S)h2, &) and countably many negative ones. 

Here, the situation is a bit more complicated than in [ 181, because we 
have two null directions (instead of only one). 

Our strategy to control all the components of ~‘1 so that Ilxq(s)IIL- + 0 
as s + +CX is to control the part of ~‘1 corresponding to the negative 
spectrum of ,? and the one parallel to (1 + ,i,b)hz (which corresponds to 
the null eigenvalue) as in [IS]. The component parallel to ih0 (which 
corresponds also to the null eigenvalue) has been fixed by the second 
equation of (19) to be zero (using modulation theory and the phase 
invariance of the equation). 

However, the analysis of system (19) is longer than the equivalent analysis 
in [ 181, because of terms with J& and the presence of strong coupling 
between the two scalar parts: & and i& of 4, satisfying: (1 = (1 + G)& +i(12. 
Fortunately, g will be controlled near the profile 67 (see 16), and, although 
the coupling will be of critical size, its effect will be controlled by S, which 
can be chosen small. 

3. EXISTENCE OF A BLOW-UP SOLUTION FOR EQUATION (2) 

In this section, we prove proposition 2.1, which implies parts i) and ii) 
of Proposition 1 and then Theorem 1. 
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3.1. Geometrical property for q 

As in [18], the convergence of llq(s)]l~- to zero as s -+ +oc will follow 
from a geometrical property: q(s) E VA(S), where VA(S) c L”(R. C) 
shrinks to q E 0 as s - fx. The structure of V>A(s) respects the free- 
boundary moving in ‘1 at the rate fi, and also the eigenfunctions of the 
operator 2 (Cf lemma 2.2). 

In order to define VA(S), we introduce the following useful notations: 
For each g E L”(R, R) and s > 0, we define gb(y, s) = x(y? s)g(:ll) and 

.%(Y, $) = (I-X(Y. S)).Y(Y). s ince L”(W, R) c L*(R, R, &L), we introduce 
for each rr~ E N, gm( .) s as the L2(R, Iw: d/c) projection of gf,(y: s) on Ilrrr, 
(Cf (21)). We also let g+(y. s) = P-(gb) and gl(y, s) = P_~(gb), where P- 
and Pi are the L2(R. IR, d/s) projectors respectively on Vect {h,,, 17, > S} 

and Vect {h,,, /m 2 1 }. Thus. we write either 

Y(Y) = 2 *9llL(~)L(Y) + .y-(Y, CT) + Sr(Y/: *s) (22) 
,ll =o 

or 
S(Y) = go(. + .91(?/. s) + Sr(Y/: s). (23) 

For each z E C, we write in a unique way z = (1 + GS)Z1 + 2&, where 
Zl and Z2 are real. 

Hence, if T E L”(R,C), we write: r(y) = (1 + iS)?r(y) + if2(y) and 
expand ?i and Fz respectively as in (22) and (23). Thus, we write: 
r(y) = (1+ i:s)&(y) + ““72(Y) 

= (1 + as> 
{ 

2 ?1.7rg(s)h,,(y) + ?I,-(y, s) + rl,e(y,<s)) 
In =o 

+ i{r*.o(~s)ho(y) + T*.1(y, s) + &(y. s)}. (24) 

DEFINITION 3.1. - For each A > 0, ,for each s > 0, let vJ(s) be the set 
of all functions T in L”(R, C) such that 

/i&(s)I < As-‘. for 712. = 0, 1. 
I?l,2(s)l 2 A2(logs)s-‘, ),~2.“(5) I < As-‘. 

lL(y;s)l 5 A(1 + (:yl’).~-? J?&/. s)] ; A(1 + IyI’).s-‘. 

I(?l,r(s)IILx 5 A*s-+. Il~~2.~~(c~)llL.~ 5 A2s-+, 

where r is given by (24). 
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Remark. - We note that L”(R, C) c L’(R, C, dp), which justifies the 
expansion with respect to the eigenvalues of 2 in definition 3.1. 

Remark. - It is easy to see that if q(s) E VA(S), then Vy E R, 
lq(y, s)] 5 C(A)S-~/* (see [18] for details). Therefore, IIq(s)[IL=(R,c) + 0 
as s + +cc, and we obtain a convergence in L”(R, C) and not only 
in L’(W, C,&L), as in other papers (see [5],..). We emphasize that a 
convergence in L2 (R, C, &A) or more generally in H”‘(!R. C, dp) yields 
a convergence in L”( [-R, R], C) for each R > 0, and never a uniform 
convergence on W. 

With this remark, we claim that proposition 2.1 follows from the 
following proposition: 

PROPOSITION 3.1 Equivalent formulation of proposition 1, i) and ii). - 
There exists A > 0, So > 0, 5’0 > 0, such that ‘d’s E [-SO, 601, V.SO > So, 
!I(&. cll) E W2 such that system (19) with initial data at s = so 

(Id”.<l, (y. so) = (1 + iq.fo ( ~)p~do + dlY/hO) - (;) l+Gs 

+i~(sin[hlog(~)] -h(:os[hlog(~)])ib(~)iii(8n) 

H(s0) = 0 1 

(25) 

where fo is given by (6), 

has a unique solution (q, B)do,dI ,for s > so, satisfying q(s) E vh(s), 
v’s > so. 

Indeed, once proposition 3.1 is proved, we take for qso the expression in 
(25). From q(s) E VA(S), Vs > SO, we have llq(s)llLm -+ 0 as s + +CQ, 
and 38, such that 19(s) + 8, as s + +CCI. Indeed, we have the following 
lemma: 

LEMMA 3.1. - VA > 0, &,(A) > 0 such that V’s E [-I, 11, Vs > So, 
fq(s) E VA(S), then I%(s)1 I 5. 

This lemma implies ls, +O” 1 g(s) Ids < +cc, which gives 0, such that 
Q(s) -+ 8, as s + +CG. We give the proof of this lemma in the next 
subsection. 
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In order to understand the dynamics of (1 and 0, we derive the 
equations satisfied by <i and & (q(:y,s) = (1 + 6h)&(:l/. %s) + &(:q..s). 
Cf decomposition (24)) and H: 

LEMMA 3.2 (Equations satisfied by &, & and 0). - [f 4 suri~fies ( 19) 
for s > so, then: 

a& i)s(lb) = ( vx - (1 + r’)g(4 ii1 + > ( L - 1 + v&/.s) - 4-3+, ,I ) 
+ B2(q(y. 7)) + A,(& y, s). (28) 

where 
.c = a - $.v + 1. (30) 

I 

V,.,(y, s) = (1 - S’)(lpl’-1 - &) + (p - l)lpl”-“(cp? - n-2$& - 1 

K,z(:y. s) = -m4-’ - 5) + (p - l)l@“(cpi - bp2)p2 

v2;1(!/. *s) = (1 + b2){wPl”-1 - 5, + (p - l)Jplp-“(p1 + hp2)p2} 

v2.2(Yj, s) = (1 + ~“>{(lvI”-’ - 5) + (P - l)lPj”-“cp;}. 

p is given by (16) (1 + k5)Bi + ZB2 = B. (1 + a6)R, + 2:fi, = R, and 
B, R are given by (20). 

ProoJ: - (27) and (28) follow directly from (I 9). For (29), we note that we 
derive form (19) 2 .I ~(9, s)&(:y. s)dp,(g) = 0 (G2 = q2 - by,). Therefore 
Jx(w, s)$!(y~ s)dp(y) = - ./ g(~, s)&(:y, s)dp(y). Multiplying (28) by 
x and integrating with respect to d,u yields (29). n 

The proof of proposition 3.1 follows the general ideas developed in [ 181. 
Indeed, it is divided in two parts: 

- In a first part, we reduce the problem of the control in &(s) of all the 
components of q(s) to the problem of controlling (41,O(s), Gl,i (s) ), which 



BLOW-UP FOR VECTOR EQUATIONS 595 

are the components of 4 corresponding to expanding directions of 2 (see 
(24) and lemma 2.2). That is, we reduce an infinite dimensional problem 
to a finite dimensional one. 

- The second part of the proof is devoted to the solving of the finite 
dimensional problem, using 2-dimensional dynamics of ((1r ,o, 41. r )(s) and 
a topological argument (index theory) based on the variation of the 2- 
dimensional parameter (&, clr) appearing in the expression (25) of initial 
data ~~~~~~~ (Y. sv). 

3.2. Proof of the geometrical property on g(s) 

First, we prove lemma 3.1 which insures that proposition 3.1 implies 
proposition 2.1 and then Proposition 1 i) and ii). 

PYoaf of lemma 3.1. - We control g thanks to equation (29). Let us 
estimate each term appearing in: 

If so > sj(A), we have the following estimates. 

- Since (1 E va, the left-hand side of (29) is (in absolute value) greater 
than Cl% 1 where C > 0. 

- Since L is self-adjoint in L2(lR, &), 

s 
From (17), 13 - iy!$I 5 C, and 3 - iy$$ E 0 for IyI 5 Kefi. 

Hence, we can bound e--Y’/8 by e-“g”/‘, and use g(s) E VA(S) to obtain 
1 J’x(L - l)(i2&~I 5 Ce-” (if K0 is large enough). 

- The same argument yields 1 .f ~&&I 2 Ce-“. 
- We have IV,,j(y,s)l 2 Cs-‘(1 + 1~1”) (see lemma B.1 in appendix 

B). Combining this with Definition 3.1, we get I s x(V2.~& + V2,2&)dpI < 
cs-” logs. 

- We have Ix(y,s)B(q(y, s))] < C/41* for q(s) E vA(%s) (see lemma 
B.4). Therefore, I J x&(q)dpI < J’xlql*dp < CT”. 

- From (20), I J x(y, s)&(y, s)I I 5 (see lemma B.5). 
Combining all the previous estimates gives: / g I < 5. n 
Now, we give the proof of proposition 3.1 following the plan announced 

in the previous subsection. 

PART I. - Reduction to a finite dimensional problem 

Here, (q, H) stands for a solution of system (19) with initial data (25). 
We show through a priori estimates that finding (&. $1) E Iw2 such that 
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v’s 2 so y(s) E T/J(S) is equivalent to finding (do. cdl) E R2 such that 
b’s > SO ((T~.~(s)~cj~.~(s)) E k(s). where 

DEFINITION 3.2. - For each A > 0, fir each s > 0, we d&e (1, (s) us 
being the set r-5, $1” c R2. 

PROPOSITION 3.2 (Control of q(s) by (&O(s),ijl,l(s)) in VA(s)). - There 
exists Al > 0 such thatfor each A > Al, there exists &(A) > 0, s] (A) > 0 
such that ,for each h E [-b,, h,], so > sl(i2), we have the following 
properties: 

- if (do, (1,) is chosen so that (yXl,o(~o)~ @1,l(so)) E V~(.S,)), and, 

- iffor sl > so, we have V’s E [so, sl], y(s) E va(s) and q(sl) E 
i3v~ (.~I), then 

Proofi - see proof of proposition 3.2 below. 
Now, we fix A > Al, and no = h,. We note q(do, d,) = ~~~~~~~~ (see 

proposition 3.1). 

PART II. - Topological argument for the finite dimensional problem 

In the following proposition, we initialize the finite dimensional problem 
and study the Cauchy problem for system (19). 

PROPOSITION 3.3 (Initialization and Cauchy problem for system (19)). 
- There exists s,(A) > 0 such that for each h‘ E [--So; So], ,for each 
so > sz(A), 

i) there exists a set ‘DD,,, c R* topologically equivalent to a square with 
the following property: 

ii) For each (do; dI) E DD,,,, 3S = S(do. d,) > SO (maximal) such 
that system (19) with initial data (25) at s = SO has a unique solution 
(4. B)(clo, d,) on [.%I, S), with q and ti C* and q(s) E &+1(s), V.s E [so, S). 

iii) (q. 0) is continuous with respect to (do: (11. s). 

Pro$ 

i) From (25), we have 

Gl(dO, dl, y, so) = fo (&)“(d,+d,-&) - Ecos [Olor($] 
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The expression of iji is similar to the expression of initial data (31) for the 
similar equation (15) in [18]. & is a sum of two terms appearing in the 
mentioned formula (31) in [ 181. Hence, one can adapt without difficulties 
lemmas 3.5 and 3.9 of [ 181 to conclude (note that &a(&. ni, SO) = 0). 

ii) As if to use (15) in a reverse way, we introduce 

w(y, s) = eioqq(y. s) + p(y. s)). (31) 

Therefore, our problem is equivalent to the following system in (w. 0): 

g = Aw - &VW - (1+ G?) 5 + (1 + 1:6)1wI’-isu (32) 

F((B(s). s) = 0 

where 

F(8, s) = cos(~)(w*,o(s) - SWl,O(S)) 

+ sin(@-w,0(s) - J,~~,o(s)) - @2,0(s), (33) 

with initial data 

QJ(do, 4, so) = q(do, 4, so) + cp(so), 

H(s,) = 0. 
(34) 
(35) 

By a simple calculation, we have w(&, dl, SO) E H. Hence from classical 
theory, we have local existence and uniqueness of a C2 solution for (32) 
with initial data (34). 

In order to prove existence and uniqueness for 0(s), we apply the 
implicit function theorem to F near (0, s) = (0, so). First we compute 
g(O, s) = - sin(e)(w2;a(s) - Swi.~j(s)) + CO~(~)(-V~~,~~(S) - Sw2,0(s)) 
and g(O, sg) = -cpi.o(so) - S~Z,O(SO) - (1 + S2)~i,~~(sa) - S~&,O(SO) (use 
(31)). BY Cl@, -w,o(~~o) - bn,obo) + --h; as SO -+ +XI. Hence, if 
so > Q(A) and (&,di) E Ds,), then q(s0) E v]4(so) c I!A+~(s~~) and 
Gg(O, so) # 0. S’ mce F(0, SO) = 0 (because &o(&. rll. so) = 0), and F is 
C2, we have existence and uniqueness of C2 H(s). 

We add that the solution (q, e)(s) is well defined if we require 
q(s) E h+1(s). 
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iii) Using again the equivalent formulation (31), we see that 
(4.0) (do. di . s) is a continuous function of (q( da. dl. so). s). Since 
q(da, di.so) is continuous in (&.dl) (it is affine, see (25)), we obtain 
iii). n 

Now, we fix So > II~~x(s~(A),s~(A)), and take b E [-6,.&], so > S,,. 
Then we start the proof of proposition 3.1 for A, b and so. 

We argue by contradiction: According to proposition 3.3, for each 
(d,,, di) E DD,, , system (19) with initial data (25) has a unique solution 
on [so, S(&, d,)) and q( &, di . SO) E V.~(so). We suppose then that for 
each ($0, di) E YDs,, , there exists s > sO such that q( do, di, .s) $ l’,(s). Let 
s*(&,cli) be the infimum of all these s. By proposition 3.2 (sl = s,), we 
can define the following function: 

where C is the unit square of R’. 

Now we claim 

PROPOSITION 3.4. - i) @ is a continuous mapping from D,?,, to aC. 

ii) There exists a non-trivial a&tine function g : D,?,, + C such that 
(3 0 g;; = Id,& 

From that , a contradiction follows (Index Theory). Hence, there exists 
(dO,dl) such that ‘v’s 2 so, g(&,d,, s) E VA(S). 

This concludes the proof of proposition 3.1, and also the proof of parts 
i) and ii) of Proposition 1. n 

Proof of proposition 3.4: 

i) Part iii) of proposition 3.3 implies that (Gi.0 (s) i il.i (s)) is a continuous 
function of (da, dl). Using the transversality property of (il,a(s,), ijl.l(s,)) 
on dV~(s,) ( ii) of proposition 3.2), we claim that ~,($a, di) is continuous. 
Therefore, Q, is continuous. 

ii) If (do.dl) E iJD,s,, then from i) of proposition 3.3 , q(do,dl.so) E 
1/4(so). According to the proof of lemma 3.9 in [18], (yli.~(s~),~~.i(s~)) E 
i3p~(sa). Applying ii) of proposition 3.2 with SO and s1 = .sg, we 
have s,(&; d,) = so, and @(do, dl) = $(rll.~(.~), ~I,I(so)). Let 9 : 
(&: dl) E Z&,, + $(@l.O(sO). rji,i)(sa)) E C. From (25), 9 is affine. Hence 
@ 0 s& = qmn,, . This concludes the proof of proposition 3.4. n 

Now, we give the proof of proposition 3.2. 
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3.3. Proof of proposition 3.2 

As we suggested in the formulation of the problem, the proof follows the 
general ideas of [ 181. However, it is more complicated because of terms 
with 2 or because of strong interference between & and @a (see (27), (28)). 
Therefore, we summarize arguments which are similar to those exposed in 
[18] by showing how to adapt them to the present context, and emphasize 
the arguments relative to these new terms. 

We divide the proof in three steps: 
- In Step 1, we give a priori estimates on q(s) in VA(S): assume that 

for given A > 0 large, p > 0 and an initial time SO > sq(A, p), we have 
Q(S) E VA(S) for each s E [g,g + p], where (T 2 SO. Using system (19) 
which is satisfied by q, we then derive new bounds on &a, i&,-, &, &1 
and G2,? in [a, g + p] (involving A and p). 

- In Step 2, we show that these new bounds are better than those defining 
VA(S) (see definition 3.1) provided that p 5 p*(A). Since &z(s) = 0 
by hypothesis in (19), only &,0(s) and Qlr,r (s) remain to be controlled: 
the problem is then reduced to the control of a two dimensional variable 
&o(s), cT~,ds)). Aft erwards, we conclude the proof of part i) of proposition 

. . 
- In Step 3, we use dynamics of (&a(s),&r(s)) to prove its 

transversality on 8V,(s) (part ii) of proposition 3.2). 

STEP 1. - A priori estimates of q. 

From equations (27) and (28) (which are equivalent to the first equation 
of system (19)), we write the integral equations satisfied by & and &: 

t&(s) = Kl(S, g)&(g) + 
1 

dTKl(S, 7)1/1,2(7)i2(7) 
c 

Y 

s + 
J 

dm(S, T)Bl(9& + 
J 

dTKl(S, T)@(T) 
L7 4 

Qz(s) =.K2(s, 44;2(4 + J s ~~~2(~,+2,,(4q”l(4 c7 
s s + J dTK2(S, T)B2(9)d7- + J dTK2(S, T)@(T) 

D 0 

-  J s 
D  

dTK2(S, T);(T) 

x u1+ ~“)@l(T) + &52(T)) + (1+ S2)q”1(T) + &2(T)} (37) 
Vol. 15, no 5-1998. 
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where Kt is the fundamental solution of G + Vl,l, K2 is the fundamental 
solution of L - 1 + Vz,z, L is given by (30), 
B(q) = (1+ iS)& + iB2, 
R*(y, s) = (1 + zZ)@ + l;&, B and R* are given by (20). 

We now assume that for each s E [g, g + p], q(s) E I$( s). Using 
(36, 37), we derive new bounds on all terms in the right hand sides of 
(36, 37), and then on q. 

In the case g = so, from initial data properties, it turns out that we obtain 
better estimates for s E [so, so + p]. 

More precisely, we have the following lemma: 

LEMMA 3.3. - There exists A4 > 0 such that for each A 2 Ad, p* > 0, 
there exists sq(A, p*) > 0 with the following property: V’s E [-l/2,1/2], 
Vso 2 sb(A,p*), \dp 5 p*, assume Qs E [(T,o + p], q(s) E VA(s) with 
a > so. 

I)& estimates: 
We have b’s E [a,a+p], 

i) (main linear term) 

1~1,2(s)l I A 
,l%O 52 + (s - u)CAS-~, 

lal.Jy, s)I < C(e-+(“-“)A + ed-“)‘A2)(1 + ~Y)~).s-~, 

IIqr(s)JI~- L C(A 
2 -9 + Ae(“-“))s-;; 
e 

where, as in decomposition (22), 

Kl(%ok(a) = Ql(Y, 3) = 2 qm(s)h,(y) + al,-(y, s) + c+(y, s). 
m=O 

Zf g = SO, and q(s0) satisfies (25), then 

1~1,2(41 I 
1% so s2 + CA(s - 30)s-3, 

Ial,-(y,s)l 5 C(l+ IY(~)s-~, (Ic+(s)ll~~ I C(l + ecs-“O))s-+. 

ii) (interference term) 

cr -3 
I~1,2(s)I 5 CISlA(s - c)e’- s , 

ILL-(Y, s)I L C161A2(s - a)(1 + IYI~)s-~, 

ll~~,e(s)ll~ I WI(A2 + e(“-“)A)(s - o)s-~‘~, 
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where, as in decomposition (22), J, d7K1(s, 7-)Vl,2(~)&(~) = 

Ll(Y, s) = e ~l,&)MY) + h-(Y, s) + ~l,e(Y, s). 

m=O 

iii) (nonlinear term) 

IPl,&)l 5 gg, 

I&(Y> s)l 5 (s - a)(1 + lY13)s-2-E, IIPl,&)llP F (s - w-7 

where E = E(P) > 0, and as in (22), J,” d7K1(s, T)&(~(T)) = 

Pl(Y, 4 = 2 Pl&h(Y) + A-(Y, s) + Pl,e(Y, 4. 
m=O 

iv) (main corrective term) 

IY1,2(4l I (3 - c)Csf3, 

IYL-(!A 41 I (s - +v + ly13)s-2, ll~I,&)lID= < (s - a)s-3’4, 
where as in (22), 

J s dT.Kl(S, 4m4 = Yl(Y, s) = 2 Y1,7&~bn(Y)+~~,-(Y, 4f%,e(Y, s) 
CT m=O 

v) (small terms) 

lLb,2(s)l I C(s- +-3, 

IX,,-(y, s)l 5 C(s - g)(l + lY13)s-3, IIh&)IILm I C(s - +-3’2, 

whereusin(22), S~dTK1(s,7)~(7){SQll(T)+42(T)+S~1(7)+(P2(7)} = 

Xl(Y, s) = 2 ~l,v&~hn(Y) + h,-(Y, s) + WY, s). 
m=O 

II) c.j2 estimates: 
We have V’s E [o,o+p], 

i) (main linear term) 

Icy2,Jy,s)l < C(e-+(“-“)A + e-(“-“)aA2)(1 + IY[~)s-~, 
M 

IIQz,~(s)IIP I C(A2e- p + A)sd, 
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where, as in decomposition (23), 

If a = so, and q(so) satisfies (254, then 

IQ2,1(Yy,41 I co+ lY13)s-2, IIQ2,&)IILm F cs-4. (38) 

ii) (interference term) 

ILZ,I(~, s)l 5 CISIA(~-a)(l+lyl~)s-~, IIL~,&)IIL= L CIW2(-4-1’2. 

where as in (23), 

I 
s d7K2(S, +5,1(~)@1(7) = 

t 97 

L2(Y, s) = ~2,o(S)ho(Y) + L2,1(Y, s) + LQ(Y, s). 

iii) (nonlinear term) 

IP2,1(Y, 41 I (s - a)(1 + lY13)s-2-E, IIP2,&)b 5 (s - 4-Y 

where E = E(P) > 0, and as in (23), 

.I’ s d7K2(% -r)Bz(d4) = P2(Y, 3) = P2,0Wo(Y)+P2,1(Y, 4+P2,e(Y, 3). 
cl 

iv) (main corrective term) 

IY2,dY, 41 5 cs-2(s - a1 + lYl”>, Ilr2,&)IIL- 5 (s - a)s-3’4, 

where as in (23), 

.I 
s d7K2(3> GG(7) = -Y2(Y> s) = 72,oWm(Y) + 72,1(Y, 3) + Y2,4Y, 3). 

c 

v) (small terms) 

lX2,I(Y, s>l I C(s - a)(1 + lY13)s-2, II~2,e(s)llP= 5 C(s - 4-T 

where s’ drK ( 2 %~)~(7){4~2(7) - (1 + S”>&(4 - @2(T) - (1 + 

~“>@I(T>} = x2(11, s) = Xz,o(s)ho(y) + Xz,~(y, s) + X2+(31, s), as in (23). 
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Proofi - see appendix B. 

STEP 2. - Lemma 3.3 implies i) of proposition 3.2. 
Here, we derive i) of proposition 3.2 from lemma 3.3. We follow the 

method used in [ 181 to prove proposition 3.11 starting from lemma 3.12. 
Indeed, from integral equations (36, 37) and lemma 3.3, we derive new 
bounds on @1,2(s), @I,-(Y, s), Q”I+(Y, s), G,I(s) and 42,4y, s), assuming 
that V’s E [cr, a+ p], Q(S) E VA(s), for p 5 p* and 0 2 so 2 s4(A, p*). The 
key estimate is to show that for s = a+p (or s E [a, a+p] if a = so), these 
new bounds are better than those defining VA(s), provided that p 5 p*(A). 

Comparing lemma 3.3 here and lemma 3.12 in [ 181, we see that we 
have additional terms: 

- Interference terms I ii) and II ii), 
- Small terms I v) and II v). 
If we try to adapt the proof of proposition 3.11 of [ 181 in order to prove 

a similar result, we see that the introduction of small terms does not change 
anything to the proof, since they are either of lower order, if compared for 
example with linear terms (speaking in terms of power of s): Ai,-, Xi,, 
and k+, or of the same order, but with a “small” coefficient (compared 
with A): Xi,2 and X2,1. 

This is not the case of interference terms Ii) and II i), which have a 
critical growth in terms of power of s. But recalling that in the mentioned 
proof in [ 181, we have (s - a) 5 p 5 p* 2 log $, if we assume that: 
C]S]Alog &el+ < 1 (Cf ~i,~), C161A2 log & 1. $ (Cf or,-), 
CJSI(A2+ clog &A) log & 5 $ (Cf hi,?), ClSlAlog & 5 $ (Cf L2,J and 

CISIA2 log & 5 $ (Cf A~,+), 
which is possible if ISI 5 &(A), with &(A) > 0, then all these terms, while 
remaining with critical growth, have a reasonable coefficient (1, 3 or <). 

Therefore, adapting the proof of proposition 3.11 in [ 181 for ISI < S5 (A), 
we prove a similar proposition: 

PROPOSITION 3.5. - There exists A5 > 0 such thatfor each A 2 AS, there 
exists S,(A) > 0, sg(A) > 0 such thatfor each 6 E [-&,&I, so > sg(A), 
we have the following property: 

- @(do, dl) is chosen so that (&,o(so), &J(so)) E c,(so), and, 
- iffor s1 2 SO, we have Vs E [so,sl], q(s) E VA(s), 

then V’s E [SO, sl] , 1@1,2(s)l 5 A2sw210gs - sp3, [@I,-(y,s)l I 
$(I + IY13)s-27 Il~l,e(S)IIL~ 

IIG2,e(4lb F &. 

I $p> 192,I(Y,S)I 5 $(I + lY13)s-2J 
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By definition of (q, @) (Cf system (19)), we have &?o(s) = 0. If in 
addition q(sr) E dV,(sl), we see from definition 3.1 of VA(s) that the first 
two components of q(sr), namely @r,a(sr) and QI,r(sl) are in a&(~~). 
This concludes the proof of part i) of proposition 3.2. 

STEP 3. - Transversality property of (&,a(~~), Qr,r(sr)) on apA( 
To prove part ii) of proposition 3.2, we show that for each m E (0, l}, 

for each E E (-1, l}, if &,,,n(sl) = E$, then *(sI) has the opposite 
I 

sign of $($)(sr) 
A 

so that (ir,a, ql,l) actually leaves VA at s1 for sr > so 
where SO will be large. Now, let us compute %(sI) and *(sr) for 
q(sr) E VA(S~) and (Q~,~(s~),Qr,~(s~)) E a$‘.~(.sr). First, we note that in 
this case, I1q(sl)IILIy 5 z and Iqb(y, sl)l 5 CA2~(l+lyl”) (Provided 
A > 1). Below, O(1) stands for a quantity whose absolute value is bounded 
precisely by 1 and not Cl. 

For m E (0, l}, we derive from equation (27) and (21): 

J ~PX(sl)~&bn + 
J 

&X(Sl){K,l& + K,2Q2)bn + 
J 

~Px(sl)&(q)~m 

+ 
J 

~PX(&(sl)bn + J dlLX(S1)~(S1)1641 + 42 + @l + (P2)bn, 

where km = ~m/llLIl~2~,,,~~ (see (21)). > 2 
We now estimate each term of this identity: 

a> I J&x(sI)$$~&, - *I = IJ’h&q”lk,,I 5 J44~l~lk?l 5 
C’t~-~l if so 2 s3(A). 

b) Since C is self-adjoint on L’(R, dp), we write 

J ~pX(S1)~~lk77 = J w(x(s1)hlz)Q1. 
Using C(x(sl)k,) = (1 - y)x(s~)k, + $$a, + $$(2% - +jkm). we 

obtain J &x(sr)L~,k, = (1 - $)@I,~~(sI) + O(CAe-“I). 
c) We have Vy E W, (K,j(y,s)l 5 $(l + 1~1”). Therefore, 

1 j-&x(s~){Vt,~il+ K,&}bl 5 j-d~Cs,~(l+ l~~~)CA~s,~logs~IICrnl 
< CA2q3 log s1 

d) A standard Taylor expansion combined with the definition of 
vA shows that kb,sl)~(q(Y,sl)>l 2 ck# 2 c()4bj2 + 1qe/2) 5 
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CA4($s1’2(l + 1~1~)~ + l~,y,~~\/;,~(~)~. Thus> I j’~~x(sd~d~)hnl 5 
CA4(logsl)* 

4 + Ce-‘I. 

ejSirom lemma B.5 in appendix B, we have 1 J d~~(si)&(si)~~] 5 
c(p) (Actually it is equal to 0 if m = 1). ST 

f) From lemma 3.1, we have ]g(si)1 < Csr2. Hence, 
I .pPX(Sl)~(Sl){Gl + 42 + @l + @2)brl I c$. 

Putting together the estimates a) to f), we obtain 

%(st, = (1 - ;) $ + O(Y) + O(C&y ) 

whenever i&(si) = 2. Let us now fix A 2 2C(p), and then we take 

s,(A) larger so that for so 2 s,(A), ‘v’s > so, $@ +O(CA4y) 5 p. 
Hence, if E = -1, *(si) < 0, if E = 1, *(ai) > 0. This concludes 
the proof of part ii) of proposition 3.2. It also concludes the proof of part 
ii) of proposition 1, and then the proof of Theorem 1. n 

4. BLOW-UP PROFILE OF u(t) 
SOLUTION OF (2) NEAR BLOW-UP POINT 

We prove in this section part iii) of Proposition 1. 
We consider u(t) solution of (1) constructed in section 3, which blows- 

up in finite time T > 0 at only one blow-up point: 0. We know from 
section 3 that: 

“,II~ [(T - t)%+&T - t)I log(T - t)l, t) - f(z)] 5 ’ 
xnGvTl 

(39) 
with 

(40) 

Adapting the techniques used by Merle in [ 171 to equation (l), we derive 
the existence of a profile U* E C(R\{O}, C) such that ~(z,t) -+ U,(X) 
as t -+ T uniformly on compact subsets of R\(O). We want to find an 
equivalent function for U* near the blow-up point: 0. 

For this purpose, we define for each t E [0, T), a resealed version of u(t): 

v(t, I, T) = (T - t)%~(&‘~, t + (T - t)~) (41) 
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where [ E R, T E [-&, 1) c [0, 1). From equation (I), we see that 
w(t, [, T) satisfies the same equation as ,u(t: 2): 

‘JrE [-;4;;~),~=*~“+(l+i6),2,IY-~w. (42) 

Stated in terms of v(t), (39) becomes: 

(43). 

We proceed in two steps: 
- first, we consider T > 0 and estimate v(t, <, T) and its derivatives 

locally near [(r, t) E R satisfying ]C(T, t)] = rd-. We show 
that w(t, [, T) is bounded, and that it does not vary much for I[ - [(T, t)l 
bounded and r E [0, 11, 

- then, we can identify v(t, [, 0) (approximated by (43)) and 
w(t,(‘, 1). For each z E W\(O), we write ]z] as ][(r, t)]Jm = 
T&T--)]log(T-t)] f or some T > 0 and t < T and combine this 
identification with (41) to get the equivalent of u,(z) for II: --+ 0: 

S(p - S’)l log [z/l * 
‘u*(x) pv 

(P - vl42 1 . (44) 

For simplicity, we omit t in the notation and write V( I, T) for V( t, <, T), 
t(r) for I(r,t). 

PART I. - Estimate for 21 near r-d-. 
From (41), ‘u blows-up at time T = 1 at only one blow-up point: 0. Using 

(43) and a lower bound shown by Giga and Kohn in [l l] on blow-up rate 
for V, we derive a local bound on 21 for r E [0, l), I< - t(r)] bounded, 
independent from T and t. Using classical parabolic theory and the fact 
that w depends in a certain sense only on T for IT] small, we show that ‘u 
actually does not depend much on T- E [0, 1) for I< - r(r)] bounded. 

PROPOSITION 4.1 Estimate on E-(<(T), T). - There exists r1 > 0 
such that Qr 2 rl, 31(r) < T such that Vt E [tl(r),T), Qr E [0, I), 
I~(J(r)7~)l I Clf(r)lp. 

STEP 1. - Local bounds on w near c(r) for T E [-l/2,1). 
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We crucially use a lower bound on blow-up rate for ‘u established by 
Giga and Kohn in [l l] to show that ]‘u] is bounded for [ near t(r) and 
7- E [-l/2,1). 

LEMMA 4.1 (Lower bound on blow-up rate for V) 
i) (Giga-Kohn) There exists E = ~(p, 6, IV) > 0 with the following 

property: Iffor I< - I(r)] < 3j,/m, 7- E [-l/2,1) 

then ‘d< E R with I< - t(r)/ 5 2dM, V’r E [-l/2, l), 
14t,a I c. 

ii) There exists ~-2 > 0 such that Vr 2 ~2, 3tz(r) < T such that 
Vt E [t?(r), T), if II - I( I 2dmp 7 E [-l/2,1) then 

Proofi 
i) follows immediately from Theorem 2.1 in [ll]. ii) is a direct 

consequence of i) and estimate (43). Indeed, if I< - t(r) I 5 3dm 
and r E [-l/2,1), then we have by (43) (1 - r)hl~(<,r)l < 
Clf(r)l + Cl log(T - t)l-1/2. n 

STEP 2. - Local bound on g(<, r) near E(r) for r E [0, 1) 
- r = 0: From a parabolic estimate and (43) considered for r 5 0, we 

have for I< - E(r)1 < dm: 

Hence, from (42), we have for r > rg, t 2 ts(r), I< - r(r)1 5 
JGiiFT: I$$(t,O)I I Clf(r)Y. 

- r E [0, 1): We use the equation satisfied by 2 and standard tools 
of localization and local estimates with the semi-group era to conclude. 
Indeed, if x(<, r) = 1% 12, it follows from equation (42) and ii) of lemma 4.1 
that ‘#r E [0, l), V< E R with I< - c(r)1 2 dm, g 5 AZ + A&, 
where 111 = M(p,S,N). 

We can consider 6 E C,“(R) satisfying 4(t) = 0 if I< - E(r)/ 2 
Jm7 0 I 4 I 1, $(I) = 1 if IE - E(r)1 I JGF7l/% 
and lO4/+ IA41 I C. 
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If w({,7-) = e -‘“~(C)Z(<, r), then w satisfies: 

dW 
- 2 Aw + eprM 
i3-r 

(-zA$+ 2Vz.V4) and V< E W, Iw(<, O)l 5 Clf(r)/2r’. 

If r E [0, l), then 

w(E(r),-r) F (eTAwiO))(t(~)~ T) + s (jT (4&l/2 . /’ dxe -%%(zlAqi + 2~Vz~lV~l)(z,o7) 

s 
dxe- 

, log ‘Y--t)1/4 IkE(~ 8(7-o) e- S(T-0) C 

(lemma 4.1 ii) implies by parabolic regularity that for T 2 rz, t 2 t2(r), 
(zlA$l + 2lVzllV4l)(x,a) 5 C, for 0 E [O, 1) and 111: - [(r-)1 F 
l/l-hnm. 

Therefore, w([(T),T) 5 Clf(r)l”” + e-ilog(T-t)~. If t > t4(r), then 
w(l, T) F Clf(~)l”“~ which implies Vr E [0, l), Ig(t(r),r)I 5 Clf(r)lp. 

Taking r1 = max(r2, ry) and ti(r) = max(tz(r), ts(r), t4(r)) concludes 
the proof. H 

PART II. - Conclusion of the proof. 
For each T > r1 and each x E R\(O) small enough, we define 

t(r, x) E PJ) by 

(XI = I((r)IJT---t = rJ(T - t(r,x))l lo@ - t(r.Lr))I. (45) 

Applying proposition 4.1 to w( t( T, XC)), we estimate the difference between 
u*(x) and u(x, t(r, z)) and then between u,(z) and f(r). Then, by simple 
asymptotic calculation, we reach the equivalent (44). 

LEMMA 4.2 (A first estimate on the profile G(X)). - Vr 2 ~1, 3&(r) > 0 
such that Vx E Iw with 0 < 1x1 < R2 

I(T - t(r,x))*u*(x) - f(r)1 I qf(?y, 

where t(r,x) is uniquely determined by (45). 

Proofi - Using proposition 4.1 and (43), we write for T 2 r-1, t 2 tl(r): 
vJ7 E P, 1) I4m4 - f(r)1 I I4rb97> - 4t(~>>o)l + b(I(T)TO) - 
f(r)1 5 Clf(T-)lP -I- Cl log(T - t)l-1’2. 
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Stated in terms of U, this gives: VT E [0, 1) 

I(T - t)%h(<(r)dT--t,t + (T - t)7) - f(r)1 
5 cpyry + Cl lo&? - t)p2 (46) 

From this estimate, we derive &(T) > 0 such that Vx E W with 
0 < 1x1 < R2, we have: VT E [0, 1) I(T - t(r,x))3~(x,t(r,x) + (2’ - 
t(r,x))~) - f(r)1 < Clf(r)lp, where t(r,x) is given by (45). If we let T 
go to 1, we have the conclusion of lemma 4.2. H 

NOW, we conclude the proof of estimate (44). For this purpose, we 
consider an arbitrary E > 0 and look for R, > 0 such that for 0 < 1x1 < R,, 

If we consider an arbitrary r > rlr then by lemma 4.2, we have for 
0 < 1x1 < R2 

Id2 I[ 1 -log 1x1 

I 
lx/2 s 

I[ 1 -hA 
- [2r”(T - t(r,x))]S/./u*(x)/ 

+ [2r2]P--lI(T- t(r,x))+fu.(x)- f(r)1 

+ [2r2]Sf(r) - [“c&TJ”~ 

We fix r(e) > r1 such that I[2r2]%f(r) - [HIS\ 2 E and 

lf(r>lp--l i E. 
From (45), we have 

Id2 
- 1% I4 
= 2r2(T - t(r, x)) log(T - t(r, x)) 

log(T - t(r, x)) + log I log(T - t(r, x))I + 2 log r ’ 

Let R, > 0 sufficiently small and smaller 
0 < 1x1 < R, 

. than RZ (r (e)) such that for 

Id2 IL I 
yfg 

- 1% 1x1 
- [2r”(T - t(r, x))]S 5 E[2r2(T - t(r,x))]h. 
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Hence, for 0 < )x1 < R,, we have from (47): 

5 &[2?(T - t(T,x))]p-‘IU*(x)1 + CE&qf(7.)1 + & 
< Cer*lf(r)I(l + GE) + CE (use lemma 4.2 and If(r)I < E) 
< CE. This concludes the proof of part iii) of Proposition 1. 

5. GENERALIZATION AND COMMENTS 

As a first application of the techniques in previous sections, we have the 
following stability result concerning the behavior described in Proposition 1: 

THEOREM 3. (Stability with respect to initial data of the profile (4)). - 
Let S E (-&,&I) where & > 0 and consider Gi~g initial data constructed in 
Proposition I. Let C(t) be the solution of equation (I) with initial data Co, 
T its blow-up time and a its blow-up point. 

Then there exists a neighborhood V of ‘lie in H with the following 
properties: For each ‘U,J E V, u(t) blows-up in jnite time T = T(Q) 
at one single point a = a(uo), where u(t) is the solution of equation (1) 
with initial data ~0. Moreover, u(t) approaches the projiles (6) and (7) near 
(T, u) similarly as C(t) does near (T, 6). 

The proof of this theorem relies strongly on the techniques developed in 
sections 2, 3 and 4. We give just the key ideas of the proof. 

Consider initial data ua in a neighborhood of &a and u(t) the 
corresponding solution of (1). Then, for each (T, u) near (!?, i;), we 
introduce as in section 2 a two-parameter group acting on u(t): 

where 

CT: a) ---) (CC a, Y, s), W, a, 4) 

‘t 
0, a, Y, s) = WV> u, Y, s> - CP(Y> s> 

&,0(s) = 0, 
w(T, u) is defined similarly as in (9) by 

x-u 
y=Jm 
s = - log(T - C) 

w(y, s) = (T - t)su(x, t), 

and cp is given by (16). 
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Therefore, our problem reduces to searching a parameter (T(ua), a(?~)) 
such that 

for some so > 0 and A > 0 (see definition 3.1). Indeed, T(uo) and a(uo) 
will be shown then to be respectively the blow-up time and point of u(t). 
Moreover, we derive directly form (48) an estimate analogous to (6) and 
then, by the techniques of section 4, an other estimate analogous to (7). 

By uniform a priori estimates analogous to proposition 3.2, we reduce 
this problem to a finite dimensional one. We solve it using a non-degenera- 
tion property of the two-parameter group acting on ti(t) itself (see [18] for 
similar argument). Hence, we reach the conclusion of Theorem 3. 

The proof used for equation (1) applies in a more general case: consider 
the following vector-valued heat equation: 

2 = Au + IuI~-~u + G(u), u(q 0) = uo(z) (4% 

where 
1) u(t) : Ic E RN + RM, p E (1, +m), p < (N + 2)/(N - 2) if N > 3, 
2) G : R” + R” is a perturbation of Iulp-‘?~ satisfying: G(u) = 

G1(1~1~)u, IG(u)I 5 CIuIT, IG(Xul) - G(Xu2)l < CX”Jul - u21 for 
lull, Ju2I 5 1, X > 1, T E [l,p), Gi : IV + Rf, G needs not be a 
gradient, 

3) u. E H = W1~ptl(RN, W”) n L”(RN, R”). 
Using the same techniques as in the case kf = 2 (equation (1) with 

S = 0), we show the following blow-up result for equation (49): 

THEOREM 2 (Existence of a blow-up solution for equation (49)). - There 
exist initial data UO such that equation (49) has a blow-up solution. 

This Theorem is a direct consequence of the following proposition which 
describes more precisely the behavior of u(t) near blow-up. Indeed, after a 
time dependent scaling, u(t) approaches a universal profile 

( 
p _ 1+ k$42)-~~, (50) 

when t + T, where w E SMP1. In fact, we have the more precise result: 

~OPOSITION 2 (Existence of a blow-up solution for equation (49) with the 
profile (50)). - There exists To > 0 such thatfor each T E (0, To], for each 
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a E RN , for each w E S M-1, there exist initial data uo such that equation 
(49) has a blow-up solution U(Z, t) on IWN x [0, T) which blows-up injnite 
time T at only one blow-up point: a. Moreover, 

~LI(T - t)hu(a + ((T - t)j log(T - t)])+~,t) = f(.~)w (51) 

uniformly in z E RN, with 

1 

f(x) = (p - 1+ @$&a) = I. (52) 

Remark Structural stability. - In [18], a particular version of this 
proposition was shown in the case A4 = 1 and G = 0 (without perturbation): 
Single point blow-up and a blow-up profile (52). There, this result was 
shown to be stable with respect to perturbations in initial data. With 
proposition 2, the blow-up solution constructed in [ 181 is shown to be 
structuraZZy stable in a certain class of functions, since this solution behaves 
in the same way when we take a non zero G and consider a higher dimension 
(M > 2): we still have single point blow-up with the same scalar profile 
(52). 

A. APPENDIX 

Blow-up result for g = AU + Iu/%L + i(uI@u 
on bounded domain for q small 

We consider the complex-valued heat equation (3): 

au 
dt = Au + IuIp% + il~l~-~u 

wn = 0 (53) 

where u(t) : R -+ C, Cl is a bounded domain of RN, p E (l,+co), 
p < (N + 2)/(N - 2) if N 2 3, and q > 1. 

PROPOSITION A.1 (Existence of blow-up solutions for equation (53)). - 
Assume 1 < q < (p + 1)/2. There exists A(fl,p, q) > 0 such thatfor each 
uo E H;(R) with IIuoIIL~(~ 2 A and E(Q) 5 0 where 

1 
quo) = - J 2 R 

JVuo12drc - -& s, Iuolp+ld& (54) 

Annales de l’lnstitut Henri Poincark Analyse non lintaire 
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equation (53) with initial data ~10 has a unique solution u E 
C([O, T), Hi(O)) with 0 < T < +co, which blows-up in HA(R) as t -+ T. 

Proo$ - From classical theory, we know that if 1 < q < p and 
u. E Hi(R), then equation (53) with initial data ~0 has a unique solution 
defined on [0, T) with T = TUO E (0, +co] and u E C([O,T),H,$(R)). 
Moreover, if T < +CQ, then u(t) blows-up in Hi(R) as t -+ T. 

Hence, proposition A.1 will be proved if we show that for 1 < q < 
(p + 1)/2, IIu~ll~~(~) 2 A (to be chosen later) and E(Q) < 0, we have 
T,,, < +m. 

We proceed as follows: first we give estimates on u(t) for t E [0, T), 
then we use a blow-up result for an integral inequality to conclude. 

LEMMA A.1 (Estimate for u(t), solution of (53)). - If z(t) = 
(J, Iu(z, t)Ipf1dz)2/(P+1), then V’t E [0, T), 

s 
t 

z(t) 2 c1A2 + c2 dcxi+~)(~+~)/~ - c3 .I .I t da *u dsz(s)q (55) 
0 0 0 

where cl = cl(fl,p) > 0, c2 = cz(R,p) > 0 and c3 = cj(O,p,q.) > 0. 

Proof: - For simplicity, we omit 5, R and dz in following expressions 
of the type Jo Iu(z, t)12dz. 

From (54), &E(u(t)) = R(- Jfi,(t)Au(t) - J lu(t)Ip-lu(t)i&(t)). 

From (53), sE(u(t)) = R(- J&(t)ut(t) + is ju(t)lq-'u(t)?&(t)) 

I -s btW12 + s lu(~)l”l%(~)l 
5 - J’ 1ut(t)12 + $(s Iut(t)12 + s lu(t)12”) (Cauchy Schwartz), 

5 -~SIut(t)12+C4(~2,p,Q)(SIU(t)l P+’ 2ql(P+1) (H6lder). Integrating this ) 
inequality and using E(uo) < 0 gives 

t 
q4u F c4(fhvd .I’ .I ds( lu(~)l~+~)~~‘(~+? (56) 

0 

Now, if we multiply equation (53) by G(t) and take the real part, we obtain 
using expression (54) 

g .I’ lu(t)12 = -4E(u(t)) + ps / Iu(t)y+l. (57) 

Using (56), J Iu(O)l” 2 A2 and (J Iu(t)lp+1)2/(p+1) 2 cl(qp) J lu(t)12 
(HGlder), we have the conclusion by integrating (57). n 
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Now, the conclusion follows directly from lemma A.1 and the following 
lemma: 

LEMMA A.2 (Blow-up result for an integral inequality). - Let z E 
C([O, T), R+) such thar 

J 

t .t *t’ 
z(t) 2 B + a &‘z(f)(P+1)/2 - b 

J J 
,&’ dsz(t)q (58) 

0 0 0 

where 1 < p, 1 < Q < (p + 1)/2, u > 0 and b > 0. 

There exists Bo > 0 such that if B 2 Bo, then T < +co. 

Proofi - Let g(t) = ;z(t)(p+l)/* - b j” s,‘dsz(s)“. Let us show that 
Vt E [0, T), g(t) > 0. We proceed by a priori estimates. For B > 0, we 
can define T* = sup{T’ E [0, T)lVt E [0, T’), Ji dt’g(t’) 2 0} > 0. Then 
we have ‘dt E [O,T*), g(t) > 0. 

Indeed, we have Vt E [0, T*) s,” dt’g(t’) > 0. Therefore, (58) yields 
z(t) 2 B + ; J; dsz(s)(p+1)/2 which gives z(t) 2 B and x(t) 2 
t .r,,” dsz(s)(p+1)/2. Hence, g(t) = s,z(t)(P+‘)/2 - b J Ji dsz(s)q 

> ;B(p-1)‘2z(t) - b J’<r,’ dsz(s)q 

> ;B(P-1)/2; s,” dsz(s)(“+1)/2 - b J’J; dsz(s)p 
> 9(P-w 1; dsB( P+1)‘2--qz(s)q - b s s,: dsz(s)q 

= (<BP-q-b) Ji dsz(s)y. Now, if B > (4bap2)l/(P-‘J), then Vt E [0, T*), 
g(t) > 0. This yields T” = T and Vt E [0, T), Ji dt’g(t’) 2 0. 

Therefore, (58) implies that 

Vt E [0, T), z(t) 2 B + ; J 
t 

dsz( s) (P+1)/2 

0 

Hence, T 5 s < +oo by classical arguments. n 

B. APPENDIX 

Proof of lemma 3.3 

Lemma 3.3 consists in a priori estimates on terms appearing in the 
integral equations satisfied by & and s:! (see (36), (37)). Let us recall them: 

b(s) = KI(s, c)&(a) -t J ’ drKl(s, +‘i,z(+&(4 c7 
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where K1 is the fundamental solution of ,C + Vl,l, K2 is the fundamental 
solution of & - 1 + V2,2, ,C is given by (30) 

B(q) = (1+ i6)Bi + iB2, 
R*(y,s) = (1 + ;S)& + Z&, B and R* are given by (20). 

From these expressions, we obviously see that the main step in doing a 
priori estimates is the understanding of the behavior of the kernels K1 and 
K2. By definition, K1 and K2 can be considered as perturbations of eeL 
and ee(Lc-l) respectively. Hence, we give the proof in two steps: 

- in Step 1, we give estimates on the integral operators K1 and K2, 
nonlinear term B(q) and corrective term R* appearing in equations (36) 
and (37). 

- in Step 2, we use these estimates to prove lemma 3.3. 

STEP 1. - Estimates on linear, nonlinear and corrective terms of (36) 
and (37). 

In order to estimate K1 and K2, we follow the perturbation method used 
in [18] (and before in Bricmont and Kupiainen [4]). Since K1 and K2 
correspond respectively to the operators ,C + Vl,l and C - 1 + V2,2, we 
estimate first the potentials Vi,j so we are able to adapt the cited method 
which compares K1 and K2 to eeL and ee(L-1) respectively. Then, we 
show that B(q) can be considered in some sense as a quadratic term, and 
R* is in fact small as s + +c~. 

LEMMA B.l (Estimates on potentials I&, ISI < l/2). - ‘d’s 1 1, 

a) VlJ(y,s) 5 cs-l, I*[ 5 cs-“‘2, 7L = 0,1,2, 
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Ivl,l(Y,")l 5 cs-l(1+ lY12)9 v,.1(y,s) = -$2(y)+ v,,l(Y:S) with 

Ip~,~(y,s)l 5 Cs-‘(1 + [y/1”). YE > 0, XT’, > 0, 3s, such that 

with -5 5 -1 - 1/(2p). 

b)V&y,s) < cs-1, I*/ 5 c<s-“/2, n = 0,1,2, 

Iv2,2(~,4I I Cs-'(1 + lyl"), v2,2(?/,4 = s+Qs(yY) + %L2(~,4 with 
Q6 a polynomial of degree 2 with bounded coeficients and IV2,2(y, s) I 2 
cs-2(1 + IYI”), 

YE > 0, 3C, > 0, 3s, such that 

SUP - 1 + v,,,(y, s) - ( 
1+s2 <E 

- 1 - - 

S>S,,~>C, >I p-l - 

with -1 - s < -1 - l/p. 
c) For V = VI,* or V,,,, we have IV(y, s)l 5 CISI, and IV(y,s)I 5 

CISls-y1 + Iyl”). 

Proo$ - The expressions of V;,, are given in lemma 3.2. 

a> vl,l(Y,S) 5 (1 - ~2Mwlp-1 - 5, + (P - 
l)l~(o,s)l~-3(~~(o,s)~2 - 0) - 1 - C(S)s-1 5 cs-‘. 

We introduce Wi,,(z, s) = Vl,l(y, s) with z = y/d. In order to prove 
the next estimate, it is enough to prove that I-1 I: C, n = O! 1,2. 
Since VIJ is a sum of products of terms Ipl*-l and cpj/lpI, j = 1,2, 
our problem reduces to proving that these terms have bounded first and 
second derivatives with respect to z, which follows easily (see (16), t,h” key 
estimates are afs = a2 ~p~1~~?f+bz2~f~ and If61 L 14 with b = a). 

We introduce -I@i,l(Z,s) = Vl,l(y,s) with 2 = Iy12/_s. We can 
Taylor expand IV,,, near 2 = 0 to have Wi,i(Z, s) = IJV~,~(O,S) + 
z $$(O, s)+O(Z2) with I@i,i(O, s) = 1/(2s)+O(sP2) and %(O! s) = 
-l/4 + O(s-I). Returning to V 1,1, this yields the next two estimates. 

The last estimate is obvious from the expressions of Vl,l and cp. 
b) For the first term, we make a change of variables by setting Y = 

~-‘f~(y/fi) + l/(2@ - 6”)s) E (l/(2(13 - S2)s)? 1[(2(13 - @)s) + 11 and 
V2,2(Y, s) = V2,2(y, s). Then, it is easy to see that V2,2(,, s) is increasing. 
Therefore,$!2(Y, s) 5 ?z,2(1/(2(p- S2)s) + 1, s) N C(S)s-1 5 C.s-i. For 
next estimates, do exactly as for VI,,. 
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c) Same proofs, one has to be careful with the parameter S. n 

LEMMA B.2 ( Estimates on K1, ISI < l/2). 

a) 'd's L r > 1 with s 5 2r, Vy,z E R, ~K&,T, y,x)l 5 Ce(“+(y,x), 
with 

[\KK~(s,T)(~ - x(T))[\L- < Ce-(“-‘)I@). 
b) For each A’ > 0, A” > 0, A”’ > 0, p* > 0, there exists 

sg(A’, A”, A”‘, p*) with the following property: 
V’s0 > sg, assume that for g 2 so, 

Iqm(a)l L A’c2 ,m = O,l, /q&)1 5 A”(log+-‘, 

lc(~Y,~)l L A”‘(1 + IYI~)~-~, ll~&)ll~~ 5 A”d 
then, V’s E [a, g + p*] 

log IT 
l4s)l I A”- s2 

+ (s - (T)CA’S-~; 

Ic~(y,s)I 5 C(e-~(“-“)A”’ + e-(3--0)2A”)(1 + \Y~~)s-~, 

IIQ,(s)IIP I C(A ,, -L.?Zd e p + A”‘e+“) )sd, 

where, as in decomposition (22), 

Kl(s, 4q(a) = a(~, 4 = 2 wn(s)Ld~) + a-(~, s) + ~e(yY, 4. (59) 
m=O 

c) For each A’ > 0, A” > 0, A”’ > 0, p* > 0, there exists 
slO(A’, A”, A”‘, p*) with the following property: 

Vso >_ ~10, assume that for a > SO 

Is&)1 L A’u-~ , m = 0, 1, Iqz(g)I < A”ae3, 

k-(y, g>I I A”‘(1 + ly13W3, Ilq&>ll~~ 5 A’a-2, 
then, Ifs E [a, o + p*] 

la2(s)l 5 A”s-3 + (s - u)CA’S-~, 

l~(y,s)l I CA”‘@ + (Y[~)s-~, 

where Kl(s,c~)q(a) is expanded in (59). 

Proo$ - In [4] (proof of lemma l), the authors prove the estimate for 
an integral operator K corresponding to L + V (see (30) for L), where V 
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is a particular function. However, their result is in fact true for a larger 
class of operators satisfying estimates of the type a) in lemma B. 1. Hence, 
lemma B.2 follows. W 

LEMMA B.3 (Estimates on Ks, /SJ < l/2). 
a) v’s > 7 > 1 with s < 2T, vy, 5 E R, 

I&(s, T, y, z)I 5 Ce-(“- w-‘)qy, 5), with 
(ye-o/“--z)2 eer(y,x) = d& expl- 4(1-e-o) 1, 

111(2(s! 7)(1 - x(r))I]~~ < Ce-(s-T)‘p. 
b) For each A’ > 0, A” > 0, p* > 0, there exists 

~11 (A’, A”, p*) with the following property: 
‘dso 1 ~11, assume that for c~ 2 SO, 

lqo(o)l 5 A/O-~> m = 0, 1, Iql(y, u)I 5 A'(1 + ly13)op2, 
I 

llqe(dl~~ i A”CJ 2 > 

then, Y’s E [a, 0 + p*] 

Iai(y, s)l < C(e-+(“-“)A + e--(S-“)2A”)(1 + 1~1~)~~. 

IIQ~(s)IIL- 5 C(A ,, -v +A/)s-+, e 

where, as in decomposition (23), 

K2(s, a)q(o) = Qf(y, s) = Qo(S)ho(Y) + W(Y, s) + h(Y> s). 

Proo$ - Again, we can adapt the proof of lemma 1 in [4] with L replaced 
by C - 1 and V replaced by V 2,2, without difficulties. Indeed, one checks 
easily that V,,, satisfies all useful estimates: b) of lemma B.1. n 

LEMMA B.4 (Estimates on B(q(r)) for q(T) in VA(~)161 5 l/2) 
VA > 0, %12(A) > 0 such that VT > slz(A), q(r) E VA(T) implies 

IX(Y,~PMY,~))l = I(1 + qx& + ix&I I C1412~ 
lB(q)l = I(1 + i6)B1 -t &a[ < Clql” with p = min(p,2). 

ProoJ: - Start with (20) and do the same as in the proof of lemma 
3.15 in [18]. W 

LEMMA B.5 (Estimates on R*(y, s), ISI 5 l/2). - V's > 1, if R* is expan- 
ded as in (24), then: 
IRT,o(s)l 5 cs-2, R;,,(s) = 0, p&(s)1 L cs-3, 
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Ifi;,-(y,s)l I Cse2(1 + lv13), Ilfi;,,(s)II~- I Cs-‘, and 
l&(s)1 I cs-2, lii;,,(y,s>l I cs-2(1 + IYI”), Il~,e(s>llL- 5 cs-l. 

Proo$ - fi;,l(s) = 0 since R* is even. All the other estimates follow 
from the three following estimates: Ix(y,s)R*(y,s)l 5 CsP2(1 + [y/1”), 
IR*(y,s)l I Cs-’ and &,(s)l 5 CsP3. 

fQ-w.@ Ix(Y, ~)R*(Y, 41 I CS-~(~ + Ivl”) 
From (20), we have 

R*(Y, s) ‘ 
= 2 + Acp - +qJ - (1+ 

- $++ 2(p:a)s)1+i6). 

Some of these terms are easily seen to be bounded by CsP2 (1 + I y I”), 
whereas others need some calculation: we divide the others by (1 + is)( f& + 
--!L--- i6~G-i6 and obtain Q(y s) = @~‘)Y2 1 
z, +(f6 + &$S$‘. 1; 

w.f; - &f&f: - 36 + 

remains to prove that Ix(y,s)Q(y,s)l 5 
cs-2(1+ Iyl”). w e write Q(Y, s) = US + ejp - f: - &$$fl- 

2(p-S2;(p-1)s ’ Setting z = !$ 2 0 and Q(z,s) = Q(y, s), we have 

Paw L cc2 and l$C~s)l = Pl$&{(.f6 + &)p-’ - f:-l - 

&i&p>l 1. Cs-l if z 5 2Kc, (Taylor expansion). Therefore, if 
z 5 2Ka, lQ(z,s)I 5 Cse2 + O(lzls-l). Returning to Q, this gives the 
result. 
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Proof of (R*(y, s)I 5 cs-1. - Thinking of R* as a function of 
lY12s-1 and s (see (601), this estimate is obvious for all terms except 

(1+ w~-i6(f6 + q&Jg(~f~ + (f6 + &g - &fn) = 
(l + i@sei6(f6 -l- *)“6((f6 + e)p - fi). We conclude using 
a Taylor expansion. 

Proof of l&,,(a)) < Csp3 - From (60), we have 

Starting from R;,,(s) = J &(y)x(y, s)fi;(y, s)q, one carries out easy 
but long asymptotic calculation to get the result. n 

STEP 2. - Conclusion of the proof of lemma 3.3. 
We now prove lemma 3.3. 
I i) Case 0 > so: Apply b) of lemma B.2 with A’ = A, A” = A2 

and A”’ = A. 
Case G = SO: From (25), 

4”1(Y/, so> = fO(*wO + 4YlfiJ - w2(p-~2)so )1+i6). Since (do, di) 
is chosen so that (&o(so),~l,i(so)) E ?~(s~), we have from lemma 
3.5 in WI, IQ”I,~(so)I 5 Asr2, m = (41, 141,2(50)) F (logso)s~2> 

I&-(y,so)l I Cs,‘(l + ly13) and IIil,e(~~)II~m < ~0~‘~. We apply b) 
of lemma B.2 with A’ = A, A” = C, A”’ = 1 to conclude 

I ii): We have from lemma B.l JVl,2(y, s)I 5 ClSl~-~(l + 1~1”). 

Since C?(T) E VA(T), 1%,2(y, T)&(Y, T)I 5 CA(W3(l + Iv/“). 

Hence, Jq2(s)I = ICs &h2(~) J,” d7-KlC-5~ ~)K,2(~)~72(7)1 
< CJ &(l + 1~1”) J,” dre(“-‘)LCAISIr-3(1 + IX/“) 
5 CAlSlow J dp(l + Iyl”)(s - cr)e”-” 
5 CA(S(sp3(s - g)eyeu, if G > so 2 p*. 

If we set Q(y, r) = Vl,2(y,~)&(y, 7.), we have by lemma B.1 
vij IVt,2(~,7)1 I WI and then IQm(r)I 5 CI~IAT-~, m = 0,1,2, 
IQ-(y,~)l I ClW(1 + ly13)~-*, IQe(~,~)l 5 C(+~*T-~/*. Applying 
lemma B.2 and integrating between 0 and s yields good estimates for 
~1,~ and ~1,~. 

I iii): Using lemma B.2 and a) of lemma B.2, we do the same as for the 
nonlinear term in Proof of lemma 3.12 in [ 181. 

I iv): From lemma B.5, we have IfiT,o(r)I 5 CT-~, R;,,(T) = 0, 
pg2(4 I c.r-3, I&-(YJ)l 5 Cr-2(l + lY13>, IIZT,,(Y,Q I CT-l. 
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Applying lemma B.5 b) and integrating between D and s gives the results 
for YI,Z and ?I,-. 

For Ti+,we use the following estimate: ]R*(y, T)] 5 CT-~, and compute: 

IYl,el = I J," ~~wd~T(dI 

5 ./l ~T~(“-“)~C’T-~ (use lemma B.2 a)) 
< Ca-‘(s - g)esvg 5 CS-~/~(S - a) if so 2 sg(p*). 

I v): We set Q(~,T) = Z(T){& + 4”s + S& + (ps}. By lemma 3.1, 
we have I%(T)] < CrP2. Using q(~) E VA(T), cp bounded and a simple 
calculation, we have: 

IQ&)1 5 CAT-~> m = O,L lQd~)l I CIW3, IQ-(y,‘)I 5 
CA(1 + IY[~)~-~, IQe(y,r)l I CT-~. 

Using lemma B.2 c), we obtain estimates for X1,2 and X1,-. For Xi,,, 
use ]Q(y,r)] 5 CrP2 and do as for Y~,~. 

II i): For CT > SO, use lemma B.3. 
For (T = SO, we have from (25) 

&(Y,so) = ~(Scos[Slog(~)]-sin[Slog(~)])(l-P(so)fo(~)) where 
a: and ,L?(su) are given by (26). It follows easily that 4”2,0(so) = 0, 
~~,I(Y,so)~ I CG2(l + Iv\“) and Ii2,e(~,~~)l L Cs;’ I s:‘~. Apply 
b) of lemma B.3 to conclude. 

II ii): we have by lemma B.l IV~J(~,T)I 5 C]6] and jV2,1(y,~)) 5 
CISlr-l(l + Iv]“). If Q(y, 7) = V~J(~,T)&(~,T), then 
]&o(r)] 5 CIS(A2s-3 log.5, ]Ql(y,~)] 5 CISIAS-~ and 

IQe(y, 41 5 CIW2s-1’2. 
Using lemma B.3 b) yields the conclusion. 
II iii): Using lemmas B.4 and lemma B.3 a), we do the same as for I iii). 
II iv): Same estimates as liv). 
II v): By lemma 3.1, we have I%(T)] 5 C-T-~. Using lemma B.3 a) and 

integrating over [a, s] yields the conclusion. 
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