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ABSTRACT. - The objective of this work is to study the 2-parameter 
unfolding of an intricate bifurcating dynamical structure in dimension 3, 
namely a saddle-focus singular cycle. It is showed that hyperbolicity is a 
prevalent phenomena: the initial system is a total density point of hyperbolic 
dynamics. This dynamic exhibit either simple critical elements or nontrivial 
basic set. It seems to be the first time that non-trivial hyperbolicity (as well as 
its prevalence) is proved for the maximal invariant set for a perturbation of a 
vector field with a cycle containing a saddle-focus singularity. 0 Elsevier, 
Paris 

RBsuMG. - L’objectif de ce travail est l’etude du developpement a 
2 parametres d’une structure dynamique complexe avec bifurcation en 
dimension 3, a savoir un cycle singulier <c selle-foyer D. Nous montrons que 
l’hyperbolicite est un penombne prevalant : le systbme initial est un point 
de densite totale de dynamiques hyperboliques. Cette dynamique presente 
ou bien des ClCments critiques simples ou un ensemble fondamental non 
trivial. Cela semble le premier ensemble oti l’hyperbolicitt non triviale 
(et sa prevalence) est prouvee pour l’ensemble invariant maximal pour 
une perturbation d’un champ vecteur a un cycle contenant une singularite 
c< selle-foyer B. 0 Elsevier, Paris 
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624 B. SAN MARTiN 

1. INTRODUCTION 

The main aim of this work is to show that in the unfolding of a three- 
dimensional vector field having a saddle-focus singular cycle, hyperbolicity 
is a prevalent phenomena, i.e., the set of parameters corresponding to Axiom 
A flows has full Lebesgue density at this bifurcation value. 

Mechanisms involving diffeomorphisms in two-dimensional manifolds 
which unfold simple dynamics into a complicate one were studied, for 
instance in [3] and [5]. Essentially, the main phenomenon involved in these 
works is the appearance and unfolding of homoclinic tangencies. This yields 
non hyperbolicity for a positive Lebesgue measure set of parameters and 
even infinitely many sinks for a residual set on intervals close to the first 
bifurcation value in the parameter line (see [2] and [4]). Nevertheless, it 
was proved that hyperbolicity has Lebesgue density one at its bifurcation 
value ([S]). 

A similar result is also true when the simple dynamic diffeomorphism is 
changed by a non-trivial Axiom A diffeomorphism, provided that the limit 
capacity or Hausdorff dimension of the basic sets involved in the cycle 
are not too large (see [S]). 

The vector field case containing a cycle which has a singularity is quite 
different. For instance, in [l] was treated a certain class of cycles, called 
singular cycles, formed by periodic orbits and a unique singularity which 
is hyperbolic and has two negative different eigenvalues. It was proved, in 
the so-called expansive case, that the set of bifurcation values is included 
in a Cantor set with small limit capacity and, therefore, the hyperbolicity 
has total Lebesgue measure in the parameter space. In the contractive case, 
a similar result has been obtained for the measure of the parameter set 
corresponding to hyperbolic dynamics [6], [I I]. 

The cycle studied here was motivated by the example in R3 pointed out 
in [12]. This consists of two singularities, one of them is a singularity with 
real eingenvalues as in the singular cycle case mentioned above, and the 
other is a saddle-focus index-two singularity. In that work it was proved 
that three dimensional vector field exhibiting such a cycle has a similar 
dynamics as the so-called Sil’nikov cycle (see [12]), provided that certain 
twist condition related to the intersection between the central manifolds of 
the singularities holds. 

Now, what we call a saddle-focus singular cycle is just the above cycle 
with the oppositive twist condition. So that the cycle is now isolated: 
the cycle is the maximal invariant set in a neighborhood of it. It is a 
co-dimension-two cycle and we study it through generic two parameter 
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SADDLE-FOCUS SINGULAR CYCLES 625 

unfoldings. The novelty of this cycle is that it possible to prove, for small 
perturbations of the original field, that the maximal invariant set in a fixed 
neighborhood of the cycle is a hyperbolic nontrivial set. Moreover, the 
dynamic is hyperblolic for a set with full density at this bifurcation value, 
i.e., the set of hyperbolic parameters has total density at the (0,O) parameter. 
This extends the results that showed the existence of hyperbolic set like 
finite symbol subshift. 

Let us now give the precise definition and statements of our results. Let 
X’ be the space of C’ vector fields on Iw3. Given X E X’, we denote 
by I’(X) its chain recurrent set. 

A cycle of a vector field X E X’ is a compact invariant chain recurrent 
set of X, consisting of a finite family of critical elements and orbits whose 
C\I and w - limit set are critical element of the family. Critical elements 
are periodic orbits or singularities. 

We study here the vector fields that presents a simple saddle-focus 
singular cycle defined as follows. 

DEFINITION. - A simple saddle-focus singular cycle A for a vector field 
X E X’ is a cycle satisfying 

- A contains only two singularities p and 4; 
- the eigenvalues of D,X : W3 +- are real and satisfy --X3 < -X1 < 

0 < A,; 
- the eigenvalues of D,X : R3 * are a f ib and c where a < 0, b > 0 

and c > 0; 
- A has a unique non singular orbit y. contained in IV‘(p) such that 

w - lim(ra) is 4 and a unique orbit y1 contained in IV(q) such that 
w - lim(yr) is p; 

- for each z E 70 and each invariant manifold W of X passing through 
p and tangent at p to the eigenspace spanned by the eigenvectors 
associated to -X1 and Xp, we have 

T,W + T,W”(q) = R”; 

- there exists a neighborhood U of X such that if Y E U, the 
continuations py and qy of p and q are well defined and, the vector 
field Y is C2-linearizable at ~117 and qy; 

- A is isolated, i.e., it has an isolating block. Recalling that an isolating 
block of an invariant set A of a vector field X is an open set U c A4 
such that A = n &WJ), where & : M c--’ is the flow generated 
by X. 

Vol. IS, no S-1998 



626 B. SAN MARTIN 

Fig. 1 

Now we state the main theorems this work. We use the following 
notation: If Y E X’ and U c R3 is an open set, we denote by A(Y, U) the 
set n,Y,(U), and we denote by I’(Y) the chain recurrent set of Y IA(Y, U), 
where Yt is the flow generated by the vector field Y. 

THEOREM 1. - Let A be a simple saddle-focus singular cycle of a vector 
field X and U be an isolating block of A. Then there exists a small 
neighborhood U of X and a co-dimension-two submanifold N through X 
contained in U such that if Y E N, then A( Y, U) is a simple saddle-focus 
singular cycle which is topologically equivalent to A. 

Let S be a two-dimensional manifold which is transverse to N at the 
vector field X. The study of the hyperbolicity of the set I’(Y), Y E S 

depends on the following eingenvalues conditions : -2 < 1 and 
2 

-2.1 
2 

DEFINITION. - Let A be a simple saddle-focus singular cycle for a vector 
field X. We will say that the cycle is expansive if it has the first inequality. 
In the other case, we will say that the cycle is contractive. 

THEOREM 2. - Let A be a contractive cycle and Pi c 5’ be the set of vector 
fields such that I’(Y) is ormed by the analytical continuations py, qli and f 
at most a unique attracting periodic orbit which is hyperbolic. Then 

lim m(~ n V,(x)) = 1 
P-0 P2 

where V,(X) is a p-neighborhood of X in S. 
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SADDLE-FOCUS SINGULAR CYCLES 627 

The dynamics in the expansive case is much richer than in the previous 
case because the maximal invariant set in the neighborhood of the cycle 
must contain a suspended horse-shoe equivalent to a finite-symbol subshifts. 
The following is the main result in this work. 

THEOREM 3. - Let A be a expansive cycle as above. Let IFI be subset of S 
formed by vectorjelds such that I’(Y) ’ f 1s ormed by py , qy and at most one 
hyperbolic saddle-type basic set. Then 

lim m(3-I” v,(X)) = 1 n 

contractive case with c > a 
Fig. 2a 

expansive case with )L, > h. 2 
Fig. 2b 

(: A (Y,W = (P,. q,) 124: A (Y,u) = (p,, q,)+ per. orb. -: A Cr,U) = (P,. qJ+ H-S 

This paper is divided in three sections. In section 2, we prove theorems 1 
and 2. The first one is an immediate consequence of usual transversality 
arguments. The second is proved studying the Poincare map induced by 
the flow for every vector field belonging to S. It is showed that this map 
is actually a contracting map for most parameter values. Finally, in section 
3 we give a proof of theorem 3. To do this we introduce an approach as 
the one presented in [8]. 

2. PROOF OF THEOREMS 1 AND 2 

Let A be a simple saddle-focus singular cycle for X E X’, and let 
(2, $, 5) and (z, y, z) be C2-1 inearing coordinates in neighborhood of p and 
q respectively. X has the following form in these coordinates: 

jj = --x,2 
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and 
i = ax - by 

Q = bz + ay ‘dl(x, y, z)I < 2 

i = cz. 

Let consider the following Poincare maps defined by the X-flow 

7rL : D(7rL) c C” - co 
7ri : D(7ri) c CL - c;+1 

where 

and C4 = Co. 

co = {(O,YJ) : Y 2 0, I4 I 11 

Cl = {(?Y, 1) : 14, IYI F 11 
x2 = {(Q% 1) : 14, IVI L I> 
c3 = {(it, 1,5) : 121, IZ/ 5 l} 

For these maps we have the following properties. 
A. TL(Y,Z) = &/,a+ (y,z) E D(TL) = {(w) E Co; 0 5 y I 1, 

0 2 z 5 g-l}, where X = e+ and g = e?. 

B. TO(Y,~ = (-K:ysin(Log(.z-q)), z-~ycos(Log(z-!))), for 
(y,z) E D(7-r0) = {(y,z) E CO; 0 5 y < 1 and 0-l L z < 1). 

C. ~(z,Y) = (A(~>Y~),%,Y)) is a C2-diffeomorphism. We can take 
C2 coordinates, iterating Ci by the X-flow if necessary, such that 
d,B(O,O) = 0 and d&0,0) < 0. Therefore d,A(O,O) # 0. 

D. zs(?.,Q) = (ypZ,$“), for all -1 5 5 2 1, and 0 5 jj 5 1, where 
B=2 x1 and a = x,. 

E. Q(# = (@i5,~),~(~,2)) is a C2 diffeomorphism that satisfies 
&B(O, 0) < 0. This conditions follows from the definition. 

Now, let i!4 be a neighborhood of X as in the definition of simple saddle- 
focus singular cycle. Taking 24 small enough, we can define the maps 7ri (Y) 
and 7rL(Y) associated to Y E U in a similar way as we did for the respective 
maps relative to X. In the case the equations for 7r~(Y), TO(Y) and rip(Y) 
are like XL, 7ro and 7ra changing the corresponding eigenvalues of X by the 
Y ones. On the other hand, ,1(Y) = (Ay,&) and rs(Y) = (Ay,&) 
are diffeomorphisms C2-close to 7rl and 7r3 respectively, and therefore 
&&(O, 0) and &&(O, 0) are negatives. 

In a similar way as we did for the vector field X, we can take linearizing 
coordinates for the vector field Y, such that 6$,&(0,0) = 0. 

Obs. - The Y-flow define a Poincare map 7ry from D,(Q) C CO into CO. 

Annaks de I’lnstrtut HemY P&curl Analyse non h&ire 



SADDLE-FOCUS SINGULAR CYCLES 629 

Fig. 3. 

ProofofZ’heorem 1. - Let P(Y) = (Pi(Y),P2(Y)) = rri(Y)(O,O) and 
Q(Y) = (&i(Y), Q2(Y)) = rs(Y)(O, 0) . Let define the map F : U ---+ R2 
given by 

F(Y) = (pz(Y), Q,(Y)). 

Clearly F is a C2 map and has X as a regular point, therefore 
N = F-l(O,O) nU is a co-dimension two manifold containing X and 
satisfying the wanted properties. n 

Let S c U be a two-dimension manifold transversal to N at X. 
Since F/s : S - W2 is C2 and D(Fls)x is a isomorphism, we obtain 
Y(u, s) = (FIS)-l(u, s) is a C2-p arametrization in a small neighborhood 
of X in S such that 

(i) Y(O,O) = X 
(ii) P2(Y(u,s)) = s and Q2(Y(q3)) = U. 

In addition, we can take C2-linearizing coordinates (depending smoothly 
on Y ) such that Q,(Y) = co, co a constant with X < CO < 1. 

Obs. - From now on we will use the notation p(~, s),Q(u, s),A,,,, ... 
etc. to mean ~(Y(u, s)),q(Y(~, s)),Ay(,,,), ... etc. To simplify the 
notation we will omit the dependence on u and s for the Poincare Maps. 

The following lemma gives us information about the preimages by the 
map 7r3 o 7r2, of the horizontal lines in a small neighborhood of (co, 0) in 
Co. In particular of (~a 0 ~2)-~(W’(q(r~, s))). 

LEMMA 1. - For small u, s, t with 0 5 t < u we have that the preimage 
set 7rc1{(y, t) : y E [ co - E, CO + E]} is given by the graph of a C2-map 
Z = +,,,,q,t(Z) such that 
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630 B. SAN MARTfN 

(i) [G,,,,,,(Z) - G7,,.,,t(0)l 5 dl21 V smaZ1 2, where d is a positive 
constant. 

(ii) a,;o;yo o)c2(v 3) I kL3,t(O> I a;j+?;o o,Cl(rr> ST) with , ) > 

1 - c1(Iul + ISI) 5 C,(u,s) < G(u, s) < 1 + C(lul + ISI). 

(iii) ~~~(graph6~,,,~,~) is given by the graph ofa C2-map, 
$ = QT,,,S,l(Z) for all 121 5 1, which satis@ 

K(u - t)kz(u, s) 5 !P,,,,&!) 2 K(u - t)kqu, S)> 

where K = I&&o(O,O)l-~ and 

[I - C(lul + ISI + luy)]” 5 Cz(u, s) < Cl(U, s) 

5 [l + C(lul + ISI + Iul”)]~ 

with p = t - 1. Here, 6 is a positive constant. 

Proof. - It is _clear that (Z,Z) E 7rT1{(q, t) : y E [cO - &,cO + E]} 
if and only if B,,,,(Z> 2) = t. Since d;B,,,,5(0,e) < 0 the Implicit 
Function Theorem give us a C2 positive map Z = qU,S,t($) that satisfies 
&,,(2,2) = t. Moreover, 

for all U, s, 2 small. Therefore we obtain (i). 
On the other hand, 

Furthermore, since \i’,,,,,,t(0) is small, then @7b,,,,(O) 1 0. Hence 

(2) 
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Replacing (2) in (1) and arranging terms, we obtain that 

(t - u) 
1- cI(u - t) < qj 

WA+5 (0, 0) - 
u,s,t(O) 5 (t - u) ~zy(;o-o~. 

z 7L.s 7 

Now we obtain (ii) in the lemma taking &(u, s) = (1 + cu) ~$$‘$$ 
I 

To prove the third item of the lemma we observe that 7rz(C,) is contained 
in the up-side of graph Z = (213. Let define ?i and & by the equations 

Xl -5 = &,,&(O) - d&, 

(3) 

x2 -% = It,,,s,,(o) + d2.2. 

It follows from above and (i) that if (5, \ltV,,,,t(Z)) E r2(C2) then 
L$ 5 jJ 7&,&q 5 st . 

From (3) we have that 

$ 5 t-u 
[ ( t-u QL,s) 

P 

&&,o(O, 0) 
l&s) 1+C 

u%,o(O, 0) )I 
and 

where p = z - 1. 

The Implicit Function Theorem implies that ~;‘(~raph$,,,,~) is the 
graph of a C2-map *U,s,t defined for all 121 5 1. By the inequalities above 
it follows that 

K(u - t)k&(u, s) i: 9 u,s,t@) I K(u - t>%(u, s> 

where 

and 

C1(u,s) = ~~(~,s)(l+~(~i,io,o)~l(“~~))p)]~ 

which satisfy the required properties. n 
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632 B. SAN MARTiN 

Obs. - a) Applying the previous lemma in the case t = 0 we obtain that 
(7rs 0 7rp(w(q(TL; s))) . g is iven by the graph of a C*-map i = q11,,.,,(5) 
defined for all 151 L: 1 which satisfies that 

b) In particular Eq. (2) above implies that {(y. z) E ~2 o ~2(&) : z > 0} 
is contained in [c 0 - Ku. c0 + Ku] x [0, u], where K is some positive 
constant. 

Proof of Theorem 2. - Clearly, if u < 0 then I(YT1,S) = {p(u, s), ~(41, s)} 
where U is the isolating neighborhood of the cycle, given by the definition. 

Let consider in the section Co, the box B given by 

B = [co - 7, C() + 71 x [O. l] 

with small T. 
Given s and u > 0, n = n(u, s) will define from now on, the unique 

integer that satisfies the inequalities 

-(n+l) a(?,,+) -=c IL I 0 ;,,r.‘,5 ) . (4) 

In addition let define the boxes 

Rk = 7rpyRo) n B 

N,+ = 7r,“(Ho) n B 

Let define the box RI,,,,? by 

R u.s = u (Rk uHI,) u [co - T.Q +T] x (0) = [co - 7,co +T] x [o,cT;~;,<,]. 
k&z 

It is clear that every orbit in the new non-wandering set must intersects 
Co in the set R,,,,5. From this the Y,,,,-flow lead these orbits to intersect 
the section Cl in the interior of the ball of radius A& Sj centered in 
(0,O). In the same way, we obtain that these orbits meet c’* in the ball of 
radius CXTU,S, (C positive constant) centered at the point W” (q( U, s)) nC2, 
that is, the point with coordinates (Pi ( U, s). s). 

From the equation (4) we get: 

Log(u) ---I<+# 
LW(~) ff 
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We will study four cases separately 

I. 7x1 = {(u,s) : s 5 -u,C=+} 

2. 722 = {(u,s) : s 2 Ugly} 

3. R3 = ((71,s) : u,u-23 5 s 5 t&} 

4. 724 = ((71,s) : 1.71 < N&M} 

where the constants are independent of (u, s) and satisfy uniformly on (u, s) 
the inequalities al: QQ > A&, , C, nj2 > 2K, 0 < 63 < 5, 0 < a4 < 1 and 
6 is a small positive real number. 

Let observe that the set of parameters that belong to the complement of 
Uf==,R; in {(u. s) : u > 0} has zero Lebesgue density at the origin (0,O). 

CASE 1. - For (u, s) E R1 we have that 

from this r(K,,,s) = {p(u, s), q(u, s)}. Therefore R1 is a region filled by 
Morse-Smale systems. 

CASE 2. - For (u, s) E R2 we have that 

L%(X) 1 
Smce Logo + ; < 0, because - 2 > 1. 

Therefore I’(Y&) = {p(u, s), q(u, s)}. Hence R2 is a region filled by 
Morse-Smale systems. 

In the third case we will show the existence of one attracting periodic 
orbit, for which we will need to estimate the derivative of the Poincare 
map ~1,. 
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LEMMA 2. - Let (1~, z) be a point in R, U H, such that ?/cm, > 0, where 
(Z(m,, y(m~) = ~1 o ~0 o xr(g, ,z) and m is a large positive integer. Then 

WY, z) = D( 7r3 0 7r2 0 7r1 0 7ro 0 7rT)(y, 2) 

= ( 

y:,s)qz)- y,s,q,,,s)q372 
~;=,s,u;;)9f3 ~~,s,q: .,s )?I&$4 > 

where Ha are uniformly bounded functions on both m and (u, s). 

Proof. - It follows straightforward from the definitions of the maps 
involved in the computation. n 

CASE 3. - If (u, s) E R3 then 

-c s - Xi3u$ 

< -ii3’ll$ 

<o (5) 

and 

With this we obtain that x(R,,,) c int R,,,. Moreover, the inequality 
(5) together with the definition of K = IdE&o(O, O)l-? give us that there 
exists a C? < 1 such that, if (y, z) E Co fl r(R,,,) then y 2 CU. 

From now on 6 will came denote differents constants. Next, lemma 2 
implies for (y,z) E IJ~(R~,~) n (R, u H,), that: 

Annales de l’lnstitut Henri PoincarP Analyse non h&tire 
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and 

Therefore I’(&) is formed by {p(zl, s), q(u, s)} plus a unique periodic 
orbit, which is an attracting hyperbolic one since IIDr(y, 2) 11 is uniformly 
small in all region. 

CASE 4. - Here we use the following lemmas. 

LEMMA 3. - Let define fm,&yyo, .) : [a&,, l] H R by 

fm,u,s(Yo, 2) = -+L,s O ~O(Xi”,,,)YO, 2) - sl 
xL, 

where yo is fined. Then 

fm,o,s(Yo, .> s fu,s(yo, 2) = -&B,,,(O, O)yox-: sin(Log(z-i)). 

Moreover, 

Il.L,P,S(YO, .) - fU,S(YO> %P 5 c’q+). 

Proof. - It follows easily from the definitions. n 

LEMMA 4. - Let (u, s) H A(,,,) E (0,l) be a Lipschitz map dejined in a 
neighborhood of (0, 0) E R2. Then, given p E (0,l) there are E > 0 and u+(, 
such that if /(IA, s)I < E and m > mo then 

IJ$,s) - Xi”,,,)1 < [~;“,,o)lp(l~l + ISI). 
Proof. 

Iyi,s, - qi,O)I = Xi”,,,) I (%N x 

L yt,O)P + m4 + IsI)>” - 11 
5 ~~,O)~~P + w4 + 14r1(If4 + IsI> 

where K is some positive constant. For I( U, s)l small and m. a large 
integer then, for any m > m. 

Km[l + K(IuI + lsl>]“-1 I (xi”o,o))p-l. 
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Therefore 

I$:,,$ - y~.o,l < byli.o,Y(l4 + l4). n 

Now we are ready to study the case 4. If (u,; s) E R4 using lemmas 2 
and 3 we obtain boxes l?,,, c R,, and kr, c H,, given by 

such that 
l 7r is defined in fi, and I&r(:y,z)l < 1 V(y>z) E l?,, 
l i?,, is wandering, 

where 0 < y < S. 

Moreover, x(?&,,,,~) is contained in the ball of radius 61~ “,‘%(X) loo centered 
at (co, 7~). 

With this we obtain that 
(i) If 

u(l,7t, ) J 
a& + a~~~s)u~ < u - c%-* 

and 

then I’(Y(lL,S)) is formed by p( U, s), CJ( U, s_), plus a unique attracting 
periodic orbit, whose orbit pass through R, and it is hyperbolic. 

(ii) If 

and 
U+dlU 

+LOg(X) 
Log(n) < a& J fT(& - a(;,;;,,)u’ 

then r(Y(lL,s)) = {P(V ~1. q(u, s)}. 
Finally, applying lemma 4 to the function a;,1,5j for p such that 

L%(4 -p<6-- 
b=T(~) 

we obtain that 

(i) If 

a(,;, + c(n) 5 u < a(,yo, - c(n) 

then J3Y(u,s)) = (14 U, s), y( U, s), r}, y a periodic orbit. 
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where lim,,,,, _--R = 0. 
” (O,O) 

NRUJ ) 

3’. Per. Orb. 

Fig. 4 

The conclusion of Theorem 2 follows from the cases studied above. 

3. PROOF THEOREM 3 

Clearly, if u < 0 then I’(Y7 ,,,. 5) = {P?~,,~, q7,,,S}. The analysis for u > 0 
will be divided in four cases. 

1. R1 = {(UJ) : s 5 -alu-zH} 

2. R2 = {(T&s) : s 2 a,,,-W} 

3. 723 = {(U>S) : ISI 5 u”} 

4. 724 = ((21,s) : u+ 5 I:/ 5 uquG$#+a)} 

where al > K$&, , a2 > 2KX&) and 0 < US < 1. 
Moreover, a and S are chosen small so that the complement of U$=,‘&!; 

in {(u, s) : u > 0) has zero Lebesgue density at the origin (0,O). 
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,.We will use the notation of the previous section, and the fact that the 
maximal invariant set meets Cz inside the ball centered on (Pi ( U, s)! s) 
with radius CA&,,, where n in defined by the equation (4). 

CASE 1. - Let (u, s) E Ri be. Then we have that 

Thus Vu+) = {pu,s,qu,s}, and from this R1 is a region of 
hyperbolicity. 

CASE 2. - Let (u, s) E R2. Then 

s - cxi”7L.s) - KC& s)u$ 

> s - qu~,~)u-~ - KCl(U, s)u$ 

,,o 
= s - Ir-zH(CX-l + KC& S)1Lt+LOsq 

> s-a2u -E# 

20 

since J- + # > 0. 
Q 

Therefore I’(YU,+) = {pU+, qU,S}, thus Rz is a region of hyperbolicity. 
In order to continue the analysis of our cases, we will give a more 

precise location of the non-wandering set. 

LEMMA 5. - Let u, s be such that IsI < u~-=(‘+~). Then the non- 
wandering set is contained in the saturate of the set C( u, s) dejined 
by 

Annales de I’hstitut Henri PoincarP Analyse non h&ire 
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where k is the greater integer smaller than n a and 0 < y < S. Moreover 

S and a are taken so that S < i + %(I + a). 

Remark. - By observation b after lemma 1, we can change r by l?u. 

Proof. - If (y,w) E (%+i U fL+i) II r(Y(u,s)), then 

0 5 B,,, 0 7ro 0 TT;+yy, w) 5 Kukqu, s) 

and from here 

where z = c(~,~) n+i w. Therefore 

Then the only possibilities for z are: Iz - 11 2 ~7 or Iz - ~&,I 2 uy or 

Iz--~~,,~,~)I 5 UT with0 < y < min . Iterating (n+i)-times 

by ?rL1 we obtain: 

LEMMA 6. - For all < > 0 there exists No which satisfies the following 
property: for any N > No and u, s with 0 < u < uo = a(,:), IsI < 

U 
h-W(l+a) the nonwandering set is contained in the set 

[co - KWI> co + Kw] x V,(&) 
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where 
V<(A.v) = (2 > 0 s.t. d(z,A,v) 2 lu,,} 

with 

AN = {“(o;“;, ,oGI’;, r- q& )m>n’. 

Proof. - From lemma 4 with p > 1 - 6 + s( I + U) and large 

No we obtain that 

where ,$ is a small real number. 
In particular, it follows that 

q;;, L w(l - i, 2 41 - i, > o;,,:‘:;‘)(l - i, 

for n given by the usual inequality Q~~‘~:” < u < a;,::,,,. 
Since 

rl > jjJ + Log(1 - i) _ 1. 
h!dql,.,)) 

Hence n > N, because i is small. In this way applying the previous lemma 
we obtain the result. n 

From the previous lemmas we obtain that I’(Y~7,,,+~) contains a suspended 
subshift of the finite type. Our objective here is to determine the parameters 
(u, s), and how abundant they are, for which the new non-wandering set 
is a suspended subshift of the finite type. For this we need to study the 
images, in Ca, through the Poincare map, of the vertical lines in a small 
neighborhood of (co, 0) E Co. In particular, we will need to compute 
the localizations of the criticalities of these images with respect to the 
horizontal lines in the section X2. 

criticality 
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LEMMA 7. - Given u, s such that 1.~1 < u~-~(‘+~), y. E [,,-I?-., co+ 

KU] and m a large integer, we have that fm,u,s(yo, .) has two critical 
points a,m,y,(~, s) and .qm,yo (u, s). Moreover, if we denote ci,m,yo (u, s) 
for B,,,, 0 ~~(X~‘yo.~i,~,~,~,(u! s)) i = 1,2, then 

where coti = fo,o(co, zi(O, 0)) (tl > 0 and t2 < 0) and zi(u, s), i = 1,2, 
are the critical points of f=+(yo, .), that independs on yo. 

Obs. - This lemma guarantees us that the criticalities are contained in a 
small neighborhood of the sequences {s + X~,O~coti}m>O. - 

Proof. - From definition we have that 

&.L,~~(YO! 2) 

= -&&,s(O, 0)Yo z &[-asin(Log(C~)) - bcos(Log(z-$))I. 

Therefore, the solutions of equation 

are the solutions of 

tCJ(Log(z-+)) = -;. (8) 

Since a~‘~) < z < 1, then 0 5 Lo&-~) 5 27r, therefore it has two 
solutions bI(u, s) and ZZ(U, s) with 

Moreover, %2fu,S(~~,~i(u, s)) # 0. 

From lemma 3, and for every large integer m, there are zi,m,yO ( U, s) 
close to z;( U, s) such that 

Wm,u,s(YO, i+n,yo (u, s)) = 0. 

On the other hand. we have 

(9) 
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In fact, from lemma 3 it follows that 

Iwu,s(Yo~ Qn,yo (K s)) - d,f,,,,,(Yo,Z;,,,yo(U, 4)l 5 q;,,+ 

This implies 

lQf7L,dYo, 01 . (fQrL,y& s) - Zi(K s>I 5 CXyz&). 

From this inequality the claim (9) follows, because < is close to zi( u, s). 
Now, using (9) we obtain: 

and therefore 

Ihn,ya (U> s> - (s + ~i”,,,)fu,s(YO, G(% s)>l F c’~~~s)~ 
Let f71,S(yc, z;(u, s)) = y&(u, s). Now, arranging terms and applying 
lemma 4 to Xc,,,) we get 

IYhYO (211 s) - (s + ~i”,,,)coGm)l L c;‘@;o, + ~~~,o,lP(~ + ISI)) 
This finishes the proof of the lemma. m 

CASE 3. - Let consider (&,io) E CZ n ~?(Yc~,,+,), and let m, Y/O, zo be 
such that (2.0, CO) = ~1 0 ~o(~~,,,)Yo, 20) 

Fig. 6 

Let E > 0 fixed and 210 = ~(o$, where N is a large integer and Is ( 5 uo’. 
Let denote B, (N, E), B(N, e) and TN the sets 

13, (N, E) = {U E [g(ri!G+l), (r~;:,] : there is (2.0, $0) like above, 

such that Igo - &,m,yo (u, s)] 5 euo$} 
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B(N,&) = ((74,s) s.t. ISI 5 d, u E B,(N,&)} 

and 
TN = {(u, s) : c$;+‘) 5 2~ 5 a&, IsI 2 &}. 

Now we want to determine those parameter values (u, s) for which the 
chain recurrent set is a subshift of finite type. Afterwards we will show 
that these parameter values are prevalent. Our objective is to show the 
following assertions: 

A. VE > 0 3 No such that V N 2 No, m(K(N, 4) 

ff$) 
5 g(e), where 

g(E) - 0 as E ---+ 0. 
B. If (q s) E TN \ B(N,e) then I’(Ycu,+,) is a hyperbolic set. 

Fig. 7 

Obs. - Using assertion A and B it is easy to prove that 

m({(u, s) E TN s.t. ~?(Yc~,+)) is hyperbolic}) 

m(Td 
>l-Cg(c). 

LEMMA 8. - Given < > 0 there exists No such that: for every N > No and 
(u, s) such that ~7 --(N+l) (04) 5 u 2 o(o;, = 210, ISI 5 u$; and m satisfying 

1s + ~i”,,,)co~i(o, O)l I c& we have: for every 2, I?‘( < 1 

I&s 0 m@‘, i&q&, 8)) 
- (u + ~~~O,O(O, O)[s + q,o)co~i(o, o>l”‘“‘o’)l 5 luo. 

Proof. - From lemma 7 we know that 

li&,Wl CT s> - (s + ~i”,,op~d I W(O,O) 2m + Py&3)lPb + ISI)) 
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On the other hand, for ‘VA like in the lemma we have that XiyI aI < kl$ 

with Ic constant greater or equal than 
C$l 

Jc&(O. ())I. 
Thus 

IYi,lWO (74, s) - (s + xj’;,,,c,t;)l 2 C{k2uoi + k%;-*(uo + ,t$)} . TL$ 

therefore if p is such that p > 1 - o we obtain, for every <’ > 0, that 
there exists No such that 

Moreover, it is easy to show that 

and 
l(s + Xy;,o)coti)” - (s + Xi”o,o)‘:oti)c~(o’o)I 5 ((<‘)?&I 

where i(c) + 0 when I’ + 0. 
Let (2,2) = 7ra(5?,$;,m,y0(~, s)), then 

pzL,s($ .c(u + &~o.o(O,O)[s + X&qcoqy 

=IB,,s(~, 2) - B,,,& 0) - d;Bo,o(O, O>[s + A&qcotz]“l 

IIRU;S(3! 2) - &,,,(O, +qI 

Since I2l 5 6~~~ we obtain that ]I!?,,,.(?>.?) - (U + &&,a(O,O)[s + 

~$p)c~ti]e I is smaller than C?U$ + c&+Lo + p2L,s(o,Pi) - 
&Bo,o(O, O)IC”%. 

From this inequality we obtain for ~0 small that 

pu,, 0 r2@‘, Yi,na,y, (u: s)) - (Ir+i3Bo.o(0.0)[s+X~~,o)r:oti]“(o’o))/ 5 (utl 

as we claimed. n 
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Proof of the claim A. - Given [ > 0, QJ = uG:,, N a large integer and 
L 

ISI 5 uo” . Let denote by B,v( s) the set 

&(s) = {a,Bo,o(o, O)[S + ~i”;,o~~ot~]~(o~o)}rri~O n [-a,~, 01 u (0) 

and let V, (Bn;( s)) be the neighborhood given by 

V@N(S)) = {z : 42, Rv(S)) 5 E . uo) 

Let define 

The next proposition give us the proof of claim A. 

PROPOSITION 1. - Let < and No be as in the previous lemma. Then for all 
N > No and IsI < ~0 = c~G’\d, we have that 

where G(E) + 0 when < -+ 0. 

Proof. - We have that u E 17, (N, I) if and only if [U + V, (BN( s))] n 
V&(ALv) # 0. Thus implies si(N,<) C V2c(A~) - V&(Blv(s)). It is easy 

to prove that I’& (AN) can be cover with 6 - LQdl) 
bdvAo,> 

intervals of length 

- 
~<UO and that V,(BN( s)) can be cover by C( 1 + Lo:tii),,) ) intervals 

of lenght [q,. 

From here it is obtained that 

m(V&h) -V&(S))) 5 6 L%(E) 
L%(qo,o,) 

with i(t) = (c + Log(‘) 
L%(qo,o)) 

)c(l + Lo~~!~)j) )3[. This complete the 

proof of the proposition. n 
To finish the proof of claim A, we will show that YE > 0 there is 

[ = E(E) > 0 which satisfies < ---+ 0 when E - 0 and NO such that 
V’N 2 No 
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Let u E D,(iV, E). Then there are (20, $,) E CZ nI’(Y(,,,)) and m, ~0, zo 
such that (20,~~) = ~1 o YTO(X?JO, ~0) and 

Following the argument used in the proof of lemma 8 we obtain 

From lemma 8 and using that I& - $tm,vO (u, s) 1 I: I@ - $&yo ( U, s) 1, 
we have that 

l&, 0 7r&), $J) - (74 + d;Bo,o(O, O)[s + Xi”o,o)coti(o, 0)1”‘“~“‘)l L Euo 

for large NO where < - 0 if E - 0. 
This implies that &,, o rrs (20, jjo) E u + I$ ( I?N( s). Moreover, 

B,,, o x-z(&, GO) E VY(A,v). From here it follows that 

and in this way we have that m(BdJw) < i(r) = g(E) 
q$) - 

Thus, claim A is proved. n 

Proof claim B - To proof the claim B, we will determine lower bounds 
for the angles formed, in the section C a, between the horizontal lines and 
the candidates to be unstables manifolds, i.e., the images of vertical lines 
in a small neighborhood of (co, 0) in the section CO through the respective 
Poincare Maps. Next, we will prove hyperbolicity constructing a cone field 
over C2 U r(Y(u,s)), i.e., for each (20, jja) E 322 U r(Y(lL,s)) we take a cone 
Cu,s(i?o,~o) c X2, such that 

and, there exists constant 0 > 1 such that both 

V(&, 62) E GL,s(~o, Co) 

IIW Tl 0 7f-0 0 $y 0 T3 0 ~2)(~,,,o)(h; 62)ll L @I((%, 62)ll 

and 
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where (io, co) = ~1 o ~0 o KY o 7r3 0 7ra(Z:o, &J) hold. 

Step 1. - Determining the angles 
-(N+l) Recall that a(,,,) 5 u 5 ‘TG;), IsI I ‘1~;) A~TL,s)qlL,s) > 1 and m are 

those integers satisfying AK Sj < xTUIS,~-w, 

Let (?o,Co) E x2 n r(Y(u,s)) and let yo, z. and m be such that 
(~o,lJo) = Tl 0 ~o(y&Yo, zo). Then, the angle is given by 

l&(RL,S 0 ~o(x;,s)Yo, 4)/===0 I 
ITg ’ I = I&(&,, 0 ~o(~~,s)Yo~ z)>/z=zo I. 

From here ITg +I I 2 ~lkfm,u,s(~~,~~)l. 
Now, it is easy to see that if d = (go - &m,yo (u, s)l we have two 

different bounds for ITg 0: (: 

(i) ITg 0: I > L when --6- 2 <. 
yi,s) 

L is a some constant and < is a small positive real number. 

(ii) JTg 0: 1 2 C 
J 

-?-- when 
d 

yi,s) 
- 5 c. 
Az,,s) 

From this, we have that for every (u, s) E Tn; \ B(N, E) either 

ITg 3: I 2 L or ITg 0: 1 2 CJE 
J- 

&, because d 
yt,,$) 

2 < implies 

that Ai;,S, < ZCU~ (C some poitive constant). 

Step 2. - Contruction of the cone field 
Let define C7,,,S(Z~, 90) by the vectors (fir, i2) E C2 such that 

1621 L l&l cfi 1 ->-or->- - 
-\i 1611 - 2 IGll - 2 2c 

depending on the previous cases (i) and (ii). 
From this, it follows that if (&,&) E CU,S(&, 7ja) and (2711, G2) defined 

by ($,G) = D7q20,~,)(G,G) then 

IWZI a--3 
->&Lo- . 
161 - 

Vol. 15, no S-1998 



648 R. SAN MARTiN 

This implies that D(7r3 o 7r2)(:,,,y0) Co.>(2u, $1) is contained in a cone 
centered in a vertical line passing through (:&, 3~;) = ~~5 o x~(:&,; 5,)) 
with angle upper bounded by some positive constant. Now, we must 
apply nr, where rn is such that a;; ,,)u[, E [(r;,t,,). I]. Therefore, 
D(rE” O rTT3 0 ~2)(.i3.yri)Gs( :i:a, 2/a) is containing in a small cone centered 
in a vertical line passing through (X;!~~,,,,)~/:,Z~),Z~ = ~~~.~)uu’{,, with angle 

smaller than C+;,,>) o;,,‘,‘,‘, . It is easy to see that this cone is led away inside 
the cone centered in the tangent space to the curve z CJ ~1 o 7r() (Xi’:, ,) :&. 2) 

at the point z,$, with angle smaller than Cg<,“:). 

Now, if we take large N, 

D(~TT~o~~T~o~~o~~o~TT~)(,,,,,~~)C~~.\(-C~, :Qo) c C,,,,,(~~o~“o~~o~~o~~(~“. $0)) 

because in this way Ccri;,‘l:, is smaller than both $ in the first case and 

in the second one. 

Moreover, the expansivity of the vectors in CU,y(ZO, &), follows 
straightforward from its definition. In a similar way we obtain the desired 
contractivity in the corresponding place. 

CASE 4. - We need to study this case only when 1 > 1 and 

Lo&4 < ], 
(1 

-~ 
L%(U) 
Let E > 0 be and ‘1~~ = cr(;T, with N a large integer. Given ‘1~ 5 u() 

let define the sets 
& (N: E) = { 1 s 1 5 ‘Uo such that there is (it), co) = 7rl o ~o(X~r~~,,,~yo. q,) 

E x2 U W(i,.,5)) with lii,nL,yo(~, cs)l 5 WI)/ 

~?(N!E) ={(u.,s) : IL E V,(A,v) or s E &(N,e)} 

TX =[O; t!& x [-uo, 7101. 
As in case 3 we can prove, in a more simple way, the following claims 

for a suitable choose of 6: CL and p. 

A. VE > 0 3 No such that ‘d N 2 No, 
rr@(N, E)) 

27.2 
5 g(E) where 

g(c) -+ 0 as E d 0. 

B. If (u, s) E T&- \ ~(N,E) then I’(Y((L,b)) is a hyperbolic set. 
In this case the proof is easier, because the width of the region that 

contains C2 U I(Yc.~~.,,)), which has order u,$ is smaller than ~21~. Moreover, 
the ratio between ua and the length of the interval around s + Xi; oj~ati that 
contains the criticalities, for rrl, such that XG;a) 5 C~Q ( C some’constant). 
tends to 0 as ~0 -+ 0. 
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