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Ergodic problem
for the Hamilton-Jacobi-Bellman equation.
I. Existence of the ergodic attractor

by
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ABSTRACT. — The problem of the convergence of the terms Auy(z),
# u(z,T) in the Hamilton-Jacobi-Bellman equations (HJBs) as A tends to
+0, T goes to +o0, to the unique number is called the ergodic problem of
the HIBs. We show in this paper what kind of qualitative properties exist
behind this kind of convergence. The existence of the ergodic attractor is
shown in Theorems 1 and 2. Our solutions of HIBs satisfy the equations
in the viscosity solutions sense.

RESUME. — Le probleme de la convergence des termes Aux(z), 2u(z,T)
dans les équations de Hamilton-Jacobi-Bellman (HJBs) quand X tends
vers +0, T tends vers 400, vers le numéro unique s’appelle le probleéme
ergodique des HIBs. Nous montrons ici les propriétés qualitatives qui
existent derriere ce type de convergence. L’existence de Iattracteur
ergodique est démontrée dans les Théorémes 1 et 2. Nos solutions des
HIBs satisfont les équations au sens de la solution de la viscosité.

1. INTRODUCTION

In this paper and in the subsequent papers of this series, we study the
so-called ergodic problem of the Hamilton-Jacobi-Bellman equation (H.J.B.
in short). We concern solutions of one of the following problems.
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(Stationary problem - infinite horizon control problem)

(1) sup{—<b(z-a)- Vux(z)>~+Aux(z) (z,0)} =0, z€Q,
a€A

(Time dependent problem - finite horizon control problem)

Ou (z.t) + sup{— <b(z,a), Vu(z,t) >~ f(z,a)} =0,
ot acA

t €N, t>0,
u(z,0) =0, z€Q.

The goal is to study the convergence of terms Auy(z) in (1) and £ u(z, T)
in (2) as A goes to 0 and T goes to +oo respectively. Here, (2 is a bounded
connected open smooth set in R™ (or the n dimensional smooth manifold;
ux(z), (A > 0) and u(z,t) are real-valued unknown functions defined in
Q, Q x [0,00) respectively; A is a metric set corresponding to the values
of the controls for the underlying controlled dynamical system; b(z, @) is
a continuous function on © x A with values in R™ which is Lipschitz
continuous in z uniformly in «; f(z,«) is a bounded continuous on  x A
with values in R. And we consider either one of the following boundary
conditions: for the equation (1).

(Periodic B.C.)
Q) is assumed to be a n dimensional torus

) /H (T,Z) =~ H[O,Ti],

where T; (1 < i < n) are real numbers and that b(z, ), f(x,®)
are periodic in z; (1 < ¢ < n) with the period T; (1 <@ < n).

{Neumann type B.C.)
(4) <Vux(z),y(x)>= 0 on 9%,
(State constraints B.C.)

(5) ux(z) is a viscosity supersolution of (1) in €2,
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and for the equation (2), we impose (3) or either one of

(Neumann type B.C.)
(6) <Vu(z,t),y(z)>= 0 on 012,
(State constraints B.C.)
(7)  w(zx,t) is a viscosity supersolution of (2) in Q x [0, +00),

where «(x) is a smooth vector field on 0€? pointing outward i.e. denoting
n(z) the unit outward normal at z € 95, y(z) satisfies

(8) Jv>0,Vzeo, <n(z),v(z)>> v

Existence and uniqueness results for the H.J.B. equations (1), (2) with
the boundary conditions stated above have been obtained in the viscosity
solutions framework, the references of which we shall give at the end of
the introduction. Now, assuming that the equations have a unique viscosity
solution (the viscosity solution theory was introduced by M.G. Crandall and
P.L. Lions in [7] to treat the nonlinear P.D.Es. in a generalized solutions
framework), we shall mainly be concerned in this introduction with the
following two issues: first, we want to explain why the convergence problem
of limy_ o Aux(z), limy_ o0 %u(x,T) is called the “ergodic problem”;
secondly, we state our main result namely the existence of a subset of {2
which plays the role of an attractor for the control problem, we shall call
this set the ergodic attractor.

First, we shall briefly mention the relationship between the convergence
of lim_,o Aux(z), limr_o % u(z, T) and the notion of “ergodicity” in the
dynamical systems theory. For this, let us remind that the equations (1), (2)
corresponds to the deterministic controlled dynamical system given by the
following ordinary differential equations (9) (in the cases of periodic B.C.
and state constraints B.C.) and (10) (in the case of Neumann type B.C.),
and that the value functions wuy(z), u(z,t) given in (11), (12) below are
the solutions of (1), (2) respectively. The O.D.Es. are

d

— Ta(t) = b(xa(t), olt)) VteR,

® o
Ta(0) = = z € Q, VY a control,
T4(t) € Q VteR, Voacontrol,
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and
s ot t
zo(t) = :E+/ b(za(s),als)) ds——/ v(za(s))dB; ViteR,
Jo 0
24(0) = z 2 € Q, Y « control,
(10) S z.(t)€Q Vte R, V «acontrol,

B; is continuous, nondecreasing and

B, = /0 loo(ra(s)) B ViER

\

where a(t) is a measurable function from [0, 00) to A. The functions uy(z)
and u{z,t) are given by

(11)  ux(z) = igf /000 e A fza(s),a(s))ds A>0,z€Q,
(12)  wu(z,t) = ir(if /O‘,f(a:&(s),a(s)) ds reN, t>0.

Remark that when b(z, ) = b(z), V x € Q the controlled system (9),
(10) reduce to the ordinary differential equations. For time being, we restrict
ourselves to the dynamical systems case i.e. b(x,a) = b(z), V z € Q and
let f(z,a) = f(z), ¥ 2 € Q. In this case, the ergodicity is traditionally
formulated in terms of measure theory. That is, denoting the evolution of
the system as Ty : * — z(t), t € R from ) into §, taking an invariant
measure fo (invariant under T3, ¢ > 0), the system is ergodic with respect
to the measure po when

(13) Thm ~—/ flz(t))dt = / flx)dug po —ae. €N
— 00 6

holds for any f € Ll(ﬁ, 1o), where x(t) denotes the solution of (9) or (10)
with £(0) = x (see [1]). By recalling the following known relationship

A—0

(14) lun)\/oooe’“f(x(t))dt - Tli&%A () dt

provided that at least one side is meaningful (a proof of this fact,
named Abelian-Tauberian theorem can be found in [14]) we see that
the convergence properties limy_.o Aux(z) = dy = limr.oc 7 u(x,T) for
Y x € (Q relate closely to the ergodic theory. In fact, the system which
has the above convergence properties is called uniquely ergodic ([6]). This
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is our reason to justify to use the usual terminology “ergodic” in calling
the convergence problem of the terms Aux(z) and % u(z,T) in the H.J.B.
equations). '

Now, we state our main result.

THEOREM 1. — Let f(z,) in (1), (2) be in the form of f(x,a) =
f(z)+ g(z, @), where f(x) is an arbitrary real-valued Lipschitz continuous
function on Q and g(x, @) is a bounded continuous function in Q x A. If for
any dLipschitz continuous function f(x) there is a constant dy such that

(15) /l\in%) Aur(z) = df forall z€Q

(16) (resp. Thm %U(CE,T) = dy for all :IIE—Q)

then there is a subset Z of Q which satisfies the following properties (Z),
(P), (A). _

(Z) Z is non-empty and z € Z if and only if for any y € ) and for any
¢ > 0 there exist T, > 0 and a control «. such that lim._o T, = +oo,
|Z = Yo, (Ta)l <e

(P) Z is closed, connected and positivity invariant i.e.

(I4) 24(t) €Z Nz e Z , NYacontrol,¥Vit>D0.

(A) Z has the following time averaged attracting property, i.e. for any
open neighborhood U of Z,

an [ e Mlad — 1
0
as X\ — 0, uniformly in o, V2 € Q,
1 (7
(18) (resp. T/ xu(za(t))dt — 1
0

asT — oo, uniformlyinoz,\/xeﬁ,)

where xy (U C Q) denotes the characteristic function of the set U.
Concerning with Theorem 1, we make following remarks.

Remarks. — 1. From the property (Z), Z is determined uniquely.

2. M b(z,0) =b(z) Ve, Vae A, then the following backward
properties hold on (Z).
(I) 2(t)e Z VzeZ YteR.
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~ For any z;, 22 € Z and for any ¢ > 0, there is a time 7, > 0
(Z7) such that lin(1) T = —00, |zo—21(T.)| <e.

We can explain the convergence property (15) (resp. (16)) by saying that
there exists an invariant, connected subset Z which is the attractor in the
time averaged sense of (A), that all the trajectories come as close as we wish
to any point of z € Z infinitely many times. This qualitative property of the
system matches very well with our intuitive understanding of ergodicity.

In the following section 2, we shall give some examples illustrating
Theorem 1. After that, we state a more general result than theorem 1 when
the convergence property (15) (resp. (16)) holds for a subset £y of Q which
does not depend on the choice of the continuous function f(z, «); we shall
give also examples for this result. In section 3, we shall prove theorems
1, 2 and the statements of the Remarks associated with these theorems. In
section 4, we shall give some general remarks concerning with the results
in this paper.

In the following, we use the notations R, Z, N, R* for the sets of real,
integer, natural, positive real numbers respectively. The distance between
two points z,y € () is given by |z —y|; the scalar product of R” x R" is
denoted by < -,- >. We use the letters C(C}, Cy, .. .) for positive constants.
For a Lipschitz continuous function f(z), L; denotes its Lipschitz constant.
We shall write the solution of the O.D.Es. (9) or (10) as z,(¢), ys(t) (t € R)
corresponding to the initial conditions z,(0) = x, y3(0) = y etc... When
we consider a trajectory z,(t) (¢ € R), we call « a control for z. For
z € (2, we denote by U.(z) = {y € Q| |[r—y| < ¢}. We shall sometimes
write H(z,p) = supaecs{—< b(z,a),p> —f(x, )} where the right-hand
side appears in (1), (2).

From the Lipschitz continuity of b(z, ) in z € Q and a € A, we have
the following continuity of the controlled system.

(19) |zo(t)ya(t)| < e*!a—y| Vz,y€Q, Vacontrol, VteR;

where Ay > 0 is a constant. In particular, in the periodic case A, is given
as follows (see P.L. Lions [10])

(20) Xo = sup {—<b(z,a)-bz' a), z—z'> |z—2/|?} .
gy

In the case of Neumann type B.C., the description of A¢ is not so simple

as in (22), in the case of state constraints B.C., we refer to the results

of HM. Soner [15].
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To conclude this introduction, we shall give some references which relates
with this subject. One can find the definition of the viscosity solution
in [7], [10]. The existence and the uniqueness of the solutions of the
H.J.B. equations (1), (2) with the above stated boundary conditions was
obtained by P.L. Lions [11], G. Barles and P.L. Lions [2], H.M. Soner [15],
I. Capuzzo-Dolcetta and P.L. Lions [4], P. Dupuis and H. Ishii [8]... For the
treatment of the ergodic problem as the convergence problem in the H.J.B.
equation, one can consult M. Robin [13] which contains many references,
I. Capuzzo-Dolcetta and M.G. Garroni [3], I. Capuzzo-Dolcetta and J.L.
Menaldi {5], P.L. Lions [11], P.L. Lions and B. Perthame [12] etc...

The author expresses her gratitude to Professeur Pierre-Louis Lions for
his helpful advices and constant encouragements.

2. EXAMPLES AND OTHER RESULT

We give simple examples illustrating theorem 1.

Example 1. — Let £ be a bounded connected subregion on R™, and
consider (1) (resp. (2)) with H(p) = |p| with one of the boundary conditions
of (3), (4) and (5) (resp. (3), (6) and (7)). By [11], we know that the system
enjoys the convergence property (15) (resp. (16)) in theorem 1 with the
uniform convergence. Therefore, by theorem 1 there exists a subset Z C Q
which has the properties (Z), (P) and (A). In fact, by the form of H(p)
for all points x,y € § there exist a control o and a time 7' > 0 such that
2o(T) = y and thus Z = .

Example 2. - Let ) be a bounded convex subregion of R™ containing
the origin. Consider a positively definite symmetric linear operator B on
R™ and set H(x,p) =< Bz,p >. For the system given by (1) (resp. (2))
with this Hamiltonian and the boundary condition either one of (4) and
(5) (resp. (6) and (7)). Then the system satisfies the convergence property
(15) (resp. (16)) in Theorem 1 with uniform convergence. Therefore, by
Theorem 1 there exists a subset Z C Q which has the properties (Z), (P)
and (A). In fact, in this system every point in § is attracted to the origin
and thus Z = {0}.

Example 3. — Let §2 be an open ball of radius 1 centered at the origin
in R?. Consider (1) (resp. (2)) with H(z,p) = SUP|q|<1(@p1 +T2p2) where
a € R, p = (p1,p2) and either one of (4) and (5) (resp. (6) and (7)).
Then the system satisfies the convergence property (15) (resp. (16)) in
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theorem 1 with the uniform convergence. Therefore, by theorem |, there
exists a subset Z C £ which has the properties (Z), (P) and (A). In
fact, in this system every point in € is attracted to the zo-axis and thus
Z={(x1,m2) | =1 <oy <1, 29 = 0},

Our second result is the following.

THEOREM 2. — Let f(x,a) in (1), (2) be in the form of f(x,a) =
f(x) + g(x, o) where f(x) is an arbitrary real-valued Lipschitz continuous
function on Q and g(x,«) is a bounded continuous function in © x A.
Suppose that there exists a maximal subset Qo of Q such that for any
Lipschitz continuous function f(x) there exists a constant number dy such

that

(21) /l\in}) Aun(x) = dy forall © €

1
(22) (resp. Tlim 7 w(x, T) dys Jorall x ey )

then there exists a subset Zy of Q which satisfies the Jfollowing properties
(Zo), (P()) and (A()) .

(Zo) Zy is non-empty and z € Zy if and only if for any y € Qg and for
any € > 0 there exist T. > 0 and a control o, such that im._oT. = +o0,
1z = Yo (T2)| < &

(Fo) Zo is closed, positivity invariant i.e.

(I4) za(t) € Zy N2z € Zy, VY acontrol, Vi>0.

(Ao) For any open neighborhood U of Z,,

(23) lim inf/\/ e Myv{za(t)dt = 0 Ve Q.
A0 @ JO
I
(24) <resp‘ lim inf— Xve(zo(t))dt = 0 Ve Q, )
T Yo © Jo

where xi; (U C Q) denotes the characteristic function of the set U.

Remarks. — 4. The properties (Zo), (Fo) and (Ao) are weaker than that
of (Z), (P) and (A) in theorem 1, and here we do not know if Z, C Q.
Moreover , we do not know if the following property holds on Zj :

for any points 2z, 20 € Zy and for any ¢ > 0
there exist 1. > 0 and a control «. such that

1ir%TE = +o00, |za—z1, (T:)] <e.
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5. 1f b(x,a) = b(x), YV o € Q, ¥V a € A, then the following stronger
result holds: the subset Z, C g and in place of (P), (Ag), we have
(PP), (AP) as follows.

(PP) Zy is closed, invariant and connected.

(AP) For any neighborhood U of Zj,

(25) m A / E_M Xb'(l'(f)) dt =1 Ve Qo,
A—0 0
— 1 (T
(26) <resp. lim T / xv(z(t))dt = 1 Ve Q. >
T—+0co J0O

We now give simple examples illustrating theorem 2.

Example 4. — Let ) be a bounded connected subregion of R™, and
consider the equation (1) (resp. (2)) with H(z,p) = a(x) |p| where a(z) is
a real-valued continuous function defined on € satisfying that a(z) > 0,
a(r;) =0, 1 <i < N where z; € Q, a(z) > 0in Q\ {x1,...,2n}, and
wish one of the boundary condition given by (3), (4) or (5) (resp. (3), (6)
or (7). Then Qy = Q\ {x1,...,2x}, Zo = (L

Example 5. — Let §1 be a ball of radius 2 centered at the origin in R”™.
Consider a negatively definite linear symmetric operator B on R™ whose
minimum eigenvalue is —1, and set H(z,p) = {< Bx,p> +|p|}. Then for
the equation (1) (resp. (2)) with this Hamiltonian and the boundary condition
(4) (resp. (6)), U ={x € Q, |z| <1} and Zy = {z € R" , |z| < 1}.

Example 6. — Let Q = (a, b) be an open interval in R. For three numbers
¢,d,esuchthat o < ¢ < d < e < b, put g(z) = [; (¢'—c)(z'=d)(x'~e) dx’
and set H{z,p) =< —Vg(z),p >. Then there exist two disjointed subset
Qo1, Qo2 in Q which have the convergence property (21), (22) in theorem 2.
For €1, the corresponding Zo; = {c}, for 2y, the correspondig Zg = {e}.

3. PROOFS OF THEOREMS 1, 2

First, we shall prove theorem 1.

Proof of Theorem 1. — We shall prove the statements in the following
three steps: (i) proof of (Z); (ii) proof of (P); (iii) proof of (A). First
of all, let us assume

(27) Cy < glz,a) < Ve, YVac A,
where C; > C5 > 0 are fixed constants.
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(i) Proof of the property (7). — To prove this claim, we argue by
contradiction: we assume that for any = € § there exist e(x) > 0, T(z) > 0,
a point y(x) € € such that

Y(r)alt) ¢ U.w)(2) Vit >T(z), V«a control.

Since  is compact, there exist a finite number of points z1,...,zx € Q
such that UkN:1 Uy () D Q. We shall denote by &), = Le(y), 1 <
k S N, g = minlS;SN €k, Tk = T(.’Ek) 1 S k S N, T(] = HlaXlgng Tk,
v* =y(zx) 1 <k < N, Uy, = U, (z1), U, = U., 4(x1). Then we have

N
(28) U U:. D Q
k=1
and for any z;, (1 < k < N) there exists y* € Q (1 < k < N) such that

(29) yh(t) ¢ U, Vit>T, Yacontrol, 1 <k < N.

In the following argument, we concentrate on the behavior of y'. Let
us denote W = (UkN:2 Ui) N (U])° N €. Since we can trivially assume
that UkN:2 Up # 0, the subset W C Q is non-empty. Moreover, since
W uUj D Q, by (29) and from the boundary conditions of the system
we have

(30) yo(t) € W Yt>Ty, Vacontrol.

Let {V/} 1 < ¢ < M be a partition of W composed of a finite number
of open subsets of W such that

M
W = UV’,
k=1
vV, NV, = it (£
N
v, c ( aUk>u8U{uaﬁ for 1</<M,
k=2

i
=

for 1<{< M,

N
1788 {(U aUk) U ou! uaﬁ}
k=2

for example we can take {V/} 1 < ¢ < M the finest family of open
subsets of W devided by the boundaries of Uy, (2 < k < N), U and €.
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Then, for any point zo € W\ U,I_,\il V,/, we shall choose arbitrary only
one number £y (1 < o < M) such that zo € 9V, and shall add 2, to
Vi, . In this way, we can obtain a family of measurable subsets of W, say
{V;} 1 < £ < M where V, is the union of V; and some of the boundary
points of V; satisfying

M
(31) W= Vi, VenVa=0 if (£

=1

For this family {V;} 1 < ¢ < M, we shall define the following values

Lat) = 4 [ e Ghw)dr
0

A>0, acontrol, 1 << M

(32)

N 1 [T .
(33) (resp. L()‘a a, [) - 'T /0 XV, (ya (t)) dt
T >0, acontrol, 1 < £ < M.)

By (31), (32), (33)

M
(34) /l\% ; L\ a,f) =1 for all control «,

M
(35) (resp. Tll_lgo;L(T,a,E) =1 for all control a.)

Thus, for an arbitrary fixed control oy, we can take a subsequence A’ — 0
(resp. T — o0) such that

(36) M
> Liag,t)=1 for 1<Y4<M
=1

(37) (resp. Tllim L(T', ag, £) = L(ag, £),

M
Zi(ao,l)zl for 1§€§M.>

=1

Vol. 14, n° 4-1997.



426 M. ARISAWA

Hence, there is at least one ¢y, 1 < ¢y < M such that

(38) < L{ag, &) < 1.

+
M

1 y
(39) (resp. i < L{ag,fy) < 1. )
Choose a number ko, 2 < ko < N such that V,, C Uy, and take a Lipschitz

continuous function f(x) on  such that

40 0 < flz) < 2M(C1—-Ch+1),
( ) f(.L’):O in Uko, :2M(Cl‘—02+1) in (U]:O)n'

Then by the convergence property (15) (resp. (16)) there must exist a
number dy which satisfies the following two relationships at the same time.
On one hand,

dy = Jim X (y)

Al—0 o

= lim inf X /000 e“’\lt(f(ycly(t)) + g(y(ll(t), a(t))) dt

< Hm X [ e, ) d+ G
40

A —0

= T N / TN, (0)(1 - xun, ) (6, (8) di + Cy

A =0

and thus

(41) dy < 2M(C, —Cy + 1)(1 — %)ﬂkCl

where we used (27), (36), (40). On the other hand, we have
dy = lim Aua(y"")

= im0 [t 0) + ol 0), at0)

A—0 o
> lim inf)\/ e f(Yroa(t)) dt + Co
— (63 I}
and thus
(42) df > 2M(01—02+1)+Cg
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where we used (27), (29), (40). Thus, from (41), (42) we have

1
2M(C1 — Ca+ 1)+ Cy < 2M(Cy —Cz+1)<1— M)+Cl

which is clearly a contradiction with (27).
Similarly, in the finite horizon case we have

1
d = Jim Zuly'T)

T'—o00 o

= lim inf{%//o /f(yi(t))+g(yi(t)»a(t))dt}

T
< T L[
T!'—o0 T 0
- 1 T 1 1
= lim f(yao (t)) (1 — XUy, ) (yao (t)) dt + C;

T —o00 T 0

and thus

(43) d; < 2M(Cy — Ca + 1)(1 - ~1—) +C
F= M

where we used (29), (39), (42). On the other hand,

1
dy = lim Tu(ka,T)

T—o0

= lim inf{—;,— /OT f(yf;“ ) + g(y"i0 (t), a(t)) dt}

T—oo o
> lim inf 1 i flyk@®)dt+C
T Tooo T 0 @ 2
and thus
(44) df > 2M(01—02+1)+Cg,

where we used (27), (29), (40). And as in the argument for the infinite
horizon case we reach a contradiction.

(i) Proof of the property (P). — First, we shall prove the closedness.
Let z, € Z be a sequence such that lim, o 2, = 26, € §1. We are to
show that z., € Z. Let z € § be arbitrary and ¢ > 0 be arbitrary. We
take a number no € N large enough so that |z,, — 2| < § holds. By the
property (Z), since z,, € Z there exist 7 > 0 and a control o for z such
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that z(T) € Us(zn,). Clearly, (T) € U.(2x) and since z € Q, € > 0
are arbitrary we have proved that z., € Z.

Next, we shall prove the positive invariance (1) of Z. Let z € Z, «
control for z, T > 0. We want to show that z,(T) € Z. Let 7 € Q,
e > 0 be arbitrary and set ¢’ = exp (— o7 )e where Ay > 0 is the constant
appearing in (21). For this ¢/, we derive from (Z) that there exist 77 > 0
and a control 3 for = such that

(45) Tv+T >0, z3(Th) € Us(2).
We denote z; = z3(71). By (19),
(46) |21 (T)—24(T)| < e’\OTfa:1~z| = ¢

Now, denoting the control a(t) = G(t), 0 < t < Ty; = a(t—-T1),
T <t < T1+T, from (48) we have z5(T1+T) € U.(2,(T)). Since
x € Q, € > 0 are arbitrary we have proved z,(T) € Z.

Finally, we shall prove that Z is connected. Assume that there are two
open subsets of Q: Uy, Uy such that Uy NZ #£ 0, UoNZ # 0, U1 NUy = 0,
Z CU UUs. Let 21 € ZNUy, 29 € Z U Us be arbitrary. Choose € > 0
small enough so that U.(z2) € Us,. Then, by the property (Z) there exist
T; > 0, a control «; for z; such that z1,,(t) € U.(22). However, this
is impossible because the set {z,,, | 0 < ¢t < T1} is a connected set
which must be contained in U;. Therefore, the above assumption leads to
a contradiction and Z is connected.

(iii) Proof of the property (A). — We assume that the property (A) does
not hold and we shall look for a contradiction. We use the facts that Z is
closed and invariant which we have proved in (ii). If (17) (resp. (18)) does
not hold, there are open subsets Uy, U; C Q, a point T € Q, a constant
C3 > 0 such that

Z C Uy C U,,
(47) li—m/\sup/ e M xuve(Ta(t))dt = C3 > 0.
A—0 3 0
(48) (resp. Z Cc Uy € Us,

T
lim 1 sup/ xvs(Ta(t))dt = Cs > O.)
a Jo

T—o0
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Take a Lipschitz continuous function f(z) on Q such that

1 —
0 < f(.’IJ) < 6—(01—02+1) in Q,
3
1

f(.T) - C (01—02+1) in Ul, =0 IHUQC
3

Then by (27), (49) and by the invariance of Z, for any z € Z

(49)

(50) lim Mux(z) = lim inf{)\ /0 T e () + g(za(t),a(t))dt}

A—0 «
1
Cs
and by (27), (47), (49),

> (Cr = Cy+1) + Oy,

tig () = Jim inf{ 3 [N @ 0 + ot () al0)

A—0 0

< lim inf)\/ e f(Tal(t)) dt + C
> Jo

A—0

= im inf{)\/oooe‘)‘tf(Ta(t))(l‘XU;)(fa(t))dt}"”clf

A= X
and thus
1
(51) lim Aup(T) < = (Cy = Co+ 1){1 - C3) + C4.
A—0 Cs

We thus reach a contradiction and we have proved the property (A), which
completes the proof of Theorem 1.
Next, we shall prove the assertion of Remark 2.

Proof of Remark 2. — To check the invariant property (1), by (1) it is
enough to show that z(t) € Z forall z € Z,allt < 0. So,letz € Z, T <0
be arbitrary. Let 2 € Q, ¢ > 0 be also arbitrary and let ¢’ = exp (A\T)e
where A¢ > 0 is the constant appearing in (19). By the property (7), there
is a time 7T} > O large enough such that ‘

(52) Ti+T >0, z(Th) € Ual(z).
Denoting 1 = z(T}), by (21) we have
21 (T) = 2(T)] < ez —2| = e,

that is we have |2(Ti+T) — 2(T)| < €. Since € Q, ¢ > 0 are arbitrary and
we can take 77 > O as large as necessary, we have proved that z(T) € Z.
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Next, we shall prove the property (Z 7). Let 21,22 € Z, ¢ > () be arbitrary
chosen. By (7), {#1(¢) |+ < 0} C Z and thus by the compactness of 7
there is a sequence {t¢,},.en, lim, .o %, = —oc and a point z_.. € Z
such that lim,,_ . 21(f,) = z_.. By the property (Z), there is a time
T > 0 such that

(53) 2ene(T) € Us(z).

Let ¢/ = 1 exp(—AoT)e, where Ay > 0 is a constant appearling in (19).
Let us take a number n’ € N large enough so that 21 (¢)) € U (z_..).
Then by (19), denoting =/, = z((#/) we have

(54) ) = TN € T = 2] =
By (53), (54), we get (¢, + T') € U.(z2) and since € > 0 is arbitrary and
t, < 0 can be taken as small as we wish independtly on the choise of T,
we have proved the property (Z7). Therefore, the assertion in Remark [
was proved.

Now, we shall prove Theorem 2.

Proof of Theorem 2. — The former two properties (Zp), (I%) can be
proved as in the proof of Theorem 1. In fact, we only change 2 in the
former proof to €1y, so we do not repeat them. Here, we only prove the

property (Ag). Let C; > C5 > 0 be the constants such that
(55) Cy < gla.a) < O Ve VaeA.

The difference with Theorem 1 comes from the fact that we do not know
if Zg C 2 (and in general it is not true !). Let us assume that (A) does
not hold, and we shall look for a contradiction. We use the fact that Z; is
closed (obtained in (I%))). We assume that there exist three open subsets
U, Uy, Us C 9, a point T € Q and a number C3 > 0 such that

ZCU CU, CU;. Uy nUS =0,

(56) lim inf/\/ ét“)‘tXU,;(.T‘a(t))dt =C; >0
A=0 Y Jo ’

1 [~
(57) (resp. lim infi;/ Xus (Ta(t))dt = C3 > ().)
Jo

A—0 @
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Take a Lipschitz continuous function f(z) defined on © such that

0 < f(z) <Cy/Cs, supp fa) C US,

fl&y=0 inlU;, = G in Uy
Cs

By the convergence property (21) (resp. (22)), we have by (55), (56) (resp.
(57)), (61),

/l\in}) Aup(x) = lim inf A / M F(@alt)) + g(Fa(t), alt)) dt

A—0 Jo
> lim inf)\/ e M F(Ta() dt + Cy
A0 & J0
. . o —At Cl e
> lim inf A e M x xve (Zy (1)) dt + Cs,
A—0 ¥ 0 C3 '
and thus
(59) )l\ilr(l) Aup(z) > C1+Cy for all x € Q.

Similarly, for the finite horizon case

T
lim %u(:z:,T) = Tlim inf l/{) [(@a(t)) + g(Ta(t), a(t)) dt

T—oc —0oC o T
1 47
> lim inf o [ f@a(8)dt+ Co.
T—oc @ Jo
and thus
1
(60) Tlim T w(z,T) > C1+ Cy for all x € .

On the other hand, for any A > 0 (resp. T > 0) by (58)
3 . > — At Cl
(61) inf A e” " X = xus(aa(t)) dt
*x Jo 03 -

> inf A e Fag (b)) dt Y e Qq,

> Jo

P B o
(62) resp. 12f T C_gXUg(Ia(t))dt

1T
Zlgf —1;/0 flea (1)) dt VwESlO.)
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And by (59), (61) (resp. (60), (62)) we have
L RV 1
(63) h_n_llnf/\/ e X—XD( (1)) dt
0

A—0 & CJ

> lim inf)\/ e M flza(t))dt > Cy Y e Q.
A--0 X Jo

(64) <resp. lim inf /) gi Xus (za(t)) dt
JA

T—oo &
1 /7
> lim inf 4/ flza(t))dt > Cy Vaxe Q.
T—oc T.o

In fact, for any z € )y let us take a subsequence A" — 0 (resp. T/ — 00)
such that

lim inf)\/ e M flag(t)dt = /\ljrrlo inf/\'/ AN fro (1)) di
J0 -

A—0 @ 0

(resp lim 1nf —/ flz = hm mf —/ flza (1)) dt, )
T—)OC ..

and then by using this sequence X — 0 (resp. 7' — oc) we deduce from
(59) (resp. (60))

C1+ Cy < limAuy(z) = llim Nuy ()

A—0

= lim inf X /0'00(_/\1(](( (1) + g(za(t), aft))) di

A0 o

< lim inf ) / "“f( «(1))dt+ Cy  for any x € £y,

—0 « Jo

1 1
(resp. C1+Cy < TILI»I;C ?’U,(:I;,T) = lim F’II,(JI,'.,TI)

T —o0
T/

= lim inf —]17 Flea () + glaza(t), alt)) dt

T —oo o -O

'—oo o

< hm inf .,/ f(,va ) dt+Cy  for any = EQO)

and we have (63) (resp. (64)).

At this stage, from (63) (resp. (64), we can derive Us N Z # () which is
apparently a contradiction. In other words, we can show that there exists
a point z € U; such that for any point 2 € )y and for any £ > 0 there
exist T, > 0 and a control a. for x such that z, (7T.) € Uc(Z). For

Annales de I'Institut Henri Poincaré - Analyse non linéaire



ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION 433

this, we follow the argument used in Theorem 1 to prove the property
(Z). That is, we assume the contrary: {z € U; | for any point z € ()
and for any £ > 0, there exist 7. > 0 and a control «. such that
zqo,(T:) € U(z)} = 0, and we shall look for a contradiction. As in the
proof of Theorem 1, the above assumption leads the existence of the finite
points z1,...,zx € Us, y% € Qo (1 < k < N), a finite number of real
numbers £, > 0 (1 < k < N), e = minmy<p<n &, T >0 (1 <k < N),
To = maxi<k<n T, a finite number of open sets U, = Ue, (zx) N Us and
Ul = U 4e(zx) NUs (1 < k < N) such that

N
(65) Uu. = us,
k=1
and for any z, (1 < k < N)
(66) y*(t) ¢ Uy Yt>Ty Yacontrol, 1 <k<N.
We also denote W = (Ui\]:2 f]k) N (U] N (US). Since we can trivially

assume that Uivzz Ui # 0, the subset W C Us is non-empty. Moreover,
since

wnU, = Us,
by (63) (resp. (64)) and (66)

(67) ton infA [ e A0) & 2 o
0

A—0 @

T—o0 ¢ 1

1 /T
(68) (resp. lim inf —/ xw (yL(t)) dt > G 03.

Now, as in the proof of Theorem 1, we take a family of subsets of W,
say {Vi} (1 < ¢ < M) satisfying

M
W=V, VinVe=0 if (#£¢,

=1

1V
(69) oV, c ,<U 8Uk> VAl ua(Us) 1<f<M,
k=2
I\T

M
Jove = (U (’)f]k) U al; u a(Ug).
=1 k=2
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For this family {V;} (1 < ¢ < M), we shall define the following values

Lhand) = A / ¢ X (g (1)) dt
JO

A>0, acontrol, 1 </< M

(70)
. 1 /7
@ (e Dren) = 4 [ o
JQ
T >0, acontrol, 1 </ < M)

By (67), (69), (70) (resp. (68), (69), (70)) for any fixed control o we have

M
. Cy Cy
72 lim LA g, ) > ,
(72) lim Z, (a0, 0) 2 ==
CyCs )
73 resp. lim L(T, ag,¢) > ,
( ) ( p T—oo ; 0 ) - Cl

and we can take a subsequence \' — 0 (resp. 7' — o0) such that

lim L(N,a0,¢) = 3 L(ag.f) 1<E<M,

AT—0

M
(74) ZL(OJ(),K) - C{2 C3.

(75) (resp. lim L(T ap,f) = 3 L{ap, b) 1</i< M.

T'—o00

C
ZL a(),[)> 203 )

Therefore, there is at least one ¢y (1 < £y < M) such that

CyC
(76) L(a[))EO) > A;Cf7
~ Cy,C
(77) (resp. L(ag, b)) > MQC—,;:,)
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and we choose a number ko (2 < ko < N) such that V, C Eko. Now, we
take a Lipschitz continuous function f(x) on € such that

flz) = R/IC in Uy,
1 e
(78) 02 03 (Cl - CQ + 1) m (Ukn) 3
MCy e
< r) < - .
0 <S f(T) < C2 03 (Cl Cg + 1) in

Then, by the convergence property (21) (resp. (22)) there must exist a
rea} number dy which satisfies the following two relationships at the same
time. On one hand,

dy = lim /\u,\(yl)

~ Jim Vinf / L) + gyl (t), alt)) dt
< Tim Ne “f(yao( ))dt + Cy
A —0
= X [N, () (1 g, )b (O e+ Oy
=0 Jo
and thus
MC, CyCs
< - — —
(79) d < G @G- Orn(1- ) + G

where we used (55), (70), (74), (76) and (78). On the other hand,
— T ko
dy = ;lil‘lj Aun(y™)

= Jiny ind {A /OOO e (e (1) + 9(vi (1), 1)) dt}

-0 «

o
> lim inf)\/ flyke @) dt + C,
— o 0
and thus
MC
(80) d; > L (G - Cy+ 1)+ Oy

CyCy

where we used (55), (66).
However, these relationship leads a contradiction to (55) and we have
proved the property (Ap). Similarly, in the finite horizon case, we have
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on one hand

dy = Jim ~ u(yT)

o0 o«

= i nt{ - " L)+ o020, att) i)

1 (7

< lim — L)) dt+C

< fm = /0 fya, (1) 1

= T L [ )0 -x, ) 0 s
and thus

MC, C3 Cy
81 dy < —2X (0, - 1— ,

( ) F S CZOS( 1 02+1)< M01)+Cl

where we used (55), (71), (75), (77), (78). On the other hand

T

1 . .
df = 111_}11;} Tu(y"” T) > TEIEOO 12f' ; f(yfﬁ(t)) dt + C,
and thus
MC,
82 C;-C 1
(82) dy > Cng( 1 >+ 1) + Oy,

where we used (55) and (66). Then (81), (82) lead the same contradiction.
Finally, we shall prove the statement of Remark 5.

Proof of Remark 5. ~ We shall prove it in the following two steps: (i)
proof of Zy C §y, (ii) proofs of the invariance and the connectedness of
Zy-. The property (A) comes from (Ag) in Theorem 2.

(i) Proof of Zy C €. First, we remark that this assertion is implied by
the positive invariance of Qg i.e. T;)y C g for all ¢ > 0. In fact, if we
have the above invariance of 2 then € is also positive invariant and all
trajectories starting from the points in Qg stay in (g, thus by the definition
of Zy we see that Z, C Q. To see that T, C Qp for all ¢ > 0, let
g € o, Ty > 0 be arbitrary. Then

Aur(zg) = )\/ } e fzo(s)) ds + Ae T uy (zo(Th))
Jo
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leads xo(Ty) € Qo. Similarly, in the finite horizon case

! _ 1 " d ! 1), T —T;
7 @, T) = T J, f(zo(s)) 8+—T"u($0( 0), T'—=To)

leads xo(Tp) € Q. Therefore, we have proved Z, C €.

(ii) Proof of the connectedness and the invariance of Zy. The invariance
(in particular the negative invariance) can be proved similarly as in the
proof of Remark 2. To see the connectedness, let Uy, Uy C Q be two open
sets such that Uy NUy, = 0, U1 U Uy D Zy, U1 N Zy # 0, Uy N Zy # 0.
Let zy € Uy N Zy, 29 € Uy N Zy and take € > 0 small enough such that
U.(z1) C Uy, U(22) C Us. By the property (Zy), since Zy C Qq there
exist a point y € Qo N U (z1) and T. > 0 such that y(T.) € U.(z2).
However, since {y(t) | 0 < t < T.} is connected it leads a contradiction.
Therefore, Zy is connected.

4. GENERAL REMARK

Finally, in this section, we shall make a general remark and two questions
concerning the ergodic (long time averaged) attractor.

Remark 6. — We have seen that the convergence property (15) (resp. (16))
in Theorem 1 and (21) (resp. (22)) in Theorem 2 implies the existence of
the sets Z and Z, respectively, for the controlled system considered in the
compact set Q. So, it is natural to ask whether the same is also true for the
system in a non-compact set (for example 2 = R™ or a bounded set in a
Banach space (see [9], [16]) etc...). We believe, although we have not yet
demonstrated it rigorously, the answer is negative.

Question 1. - Is it possible to precise the behavior of the trajectories
on Z?

Question 2. — Can we have some information on the geometric property
of the attractors Z and Z, by the properties (Z) and (Z)?
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