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ABSTRACT. - The problem of the convergence of the terms XUX(Z). 
# ~(5, T) in the Hamilton-Jacobi-Bellman equations (HJBs) as X tends to 
+O, T goes to -too, to the unique number is called the ergodic problem of 
the HJBs. We show in this paper what kind of qualitative properties exist 
behind this kind of convergence. The existence of the ergodic attractor is 
shown in Theorems 1 and 2. Our solutions of HJBs satisfy the equations 
in the viscosity solutions sense. 

R&wMB. - Le probleme de la convergence des termes XUA(X), +u(z, T) 
dans les equations de Hamilton-Jacobi-Bellman (HJBs) quand X tends 
vers +O, T tends vers +m, vers le numero unique s’appelle le probleme 
ergodique des HJBs. Nous montrons ici les proprietes qualitatives qui 
existent derriere ce type de convergence. L’existence de l’attracteur 
ergodique est demontree dans les Theoremes 1 et 2. Nos solutions des 
HJBs satisfont les equations au sens de la solution de la viscosite. 

1. INTRODUCTION 

In this paper and in the subsequent papers of this series, we study the 
so-called ergodic problem of the Hamilton-Jacobi-Bellman equation (H.J.B. 
in short). We concern solutions of one of the following problems. 
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(Stationary problem - injnite horizon control problem) 

(Time dependent problem - jinite horizon control problem) 

g (27, t) + q&{ - < b(z, a), Vu(z, t) > -f(z, a,} = 0% 
(2) :I: E 62 ) t > 0, 

u(z,O) = 0, :c E c2 . 

The goal is to study the convergence of terms Xzlx(x) in (1) and $ U(Z, T) 
in (2) as X goes to 0 and T goes to +cc respectively. Here, 0 is a bounded 
connected open smooth set in R” (or the n dimensional smooth manifold; 
UX(X), (X > 0) and u(z,t) are real-valued unknown functions defined in -- 
R, R x [0, oo) respectively; A is a metric set corresponding to the values 
of the controls for the underlying controlled dynamical system; b(z, CI) is 
a continuous function on fi x A with values in R” which is Lipschitz 
continuous in z uniformly in IX; f(x, cy) is a bounded continuous on fi x A 
with values in R. And we consider either one of the following boundary 
conditions: for the equation (1). 

(Periodic B. C. ) 

t is assumed to be a n dimensional torus 

T” = R” 
(3) I 

fi(ZZ) FZ fi,O,Ti] , 
i=l i=l 

where T; (1 5 i < n) are real numbers and that b(rc, a), f(z, a) 
are periodic in lci (1 2 i < n) with the period Ti (1 < i 5 n). 

(Neumann type B.C.) 

(4) < Vux(5), y(z) > = 0 on 80, 

(State constraints B. C.) 

(5) UX(X) is a viscosity supersolution of (1) in 0, 
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and for the equation (2), we impose (3) or either one of 

(Neumann type B.C.) 

(6) <Bu(x,t),y(x)>= 0 on X2, 

(State constraints B.C.) 

(7) ~(2, t) is a viscosity supersolution of (2) in R x [0, +oo), 

where y(z) is a smooth vector field on dR pointing outward i.e. denoting 
n(z) the unit outward normal at z E dR, r(x) satisfies 

Existence and uniqueness results for the H.J.B. equations (I), (2) with 
the boundary conditions stated above have been obtained in the viscosity 
solutions framework, the references of which we shall give at the end of 
the introduction. Now, assuming that the equations have a unique viscosity 
solution (the viscosity solution theory was introduced by M.G. Crandall and 
P.L. Lions in [7] to treat the nonlinear P.D.Es. in a generalized solutions 
framework), we shall mainly be concerned in this introduction with the 
following two issues: first, we want to explain why the convergence problem 
of lirnx_,o XUx(x), limr+oo + U(X, T) is called the “ergodic problem”; 
secondly, we state our main result namely the existence of a subset of fi 
which plays the role of an attractor for the control problem, we shall call 
this set the ergodic attractor. 

First, we shall briefly mention the relationship between the convergence 
of limx,n X21x(z), limT+oo & U(Z, T) and the notion of “ergodicity” in the 
dynamical systems theory. For this, let us remind that the equations (I), (2) 
corresponds to the deterministic controlled dynamical system given by the 
following ordinary differential equations (9) (in the cases of periodic B.C. 
and state constraints B.C.) and (10) (in the case of Neumann type B.C.), 
and that the value functions us (xc>, U(X, t) given in (1 l), (12) below are 
the solutions of (l), (2) respectively. The O.D.Es. are 

{ 

; x,(t) = b(x&), a(t)) vtc.W, 

(9) xa(0) = x x E 2 , V a! control, 
xa(t) E a V t E R , V a control, 
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and 

/ *t 
&y(t) = z+ I 

b(z,(s),a(s)) ds-/tY(xJa(s)) dps v t E R, 
. 0 0 

t&(O) = x z E t . V a control, 

(10) ( 5.,(t) E 2 ‘d t E R ( V N control. 
Bt is continuous, nondecreasing and 

t 

Bt = 
J’ 

lan(~(.~)) dP.s V’tER 
\ 0 

where a(t) is a measurable function from [0, cc) to A. The functions uX(x) 
and U(Z, t) are given by 

(11) UX(X) = inf 
.i” 

e+ f(x&s),a(s)) ds X > 0, 5 E f?, 
cy 0 

(14 u(z, t) = igf , 
I 
it f(x,(s)> o(s)) ds :L: E 2, t > 0. 

Remark that when b(z; o) = b(z), V z E a the controlled system (9), 
(10) reduce to the ordinary differential equations. For time being, we restrict 
ourselves to the dynamical systems case i.e. b(z, a) = b(z), V (c E 62 and 
let f(z, o) = f(z), V II: E n. In this case, the ergodicity is traditionally 
formulated in terms of measure theory. That is, denoting the evolution of 
the system as Tt : z + s(t), t E R from G into Q taking an invariant 
measure p. (invariant under T,, t > 0), the system is ergodic with respect 
to the measure ,uo when 

(13) T ’ j-(x(t)) dt = 
J 

Tif (~1 ho p. - a.e. :I; E 2 

holds for any f E L1(n, pa), w h ere x(t) denotes the solution of (9) or (10) 
with z(O) = z (see [l]). By recalling the following known relationship 

(14) ;rr;x ‘me-X”f(x(t))dt = $\r&~Tf@-(t))dt 
I . 0 

provided that at least one side is meaningful (a proof of this fact, 
named Abelian-Tauberian theorem can be found in [14]) we see that 
the convergence properties limx+a Xux(x) = d, = limT-,x $ u(x, T) for 
V z E R relate closely to the ergodic theory. In fact, the system which 
has the above convergence properties is called uniquely ergodic ([6]). This 
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is our reason to justify to use the usual terminology “ergodic” in calling 
the convergence problem of the terms Xux(x) and $ u(x, 7’) in the H.J.B. 
equations). 

Now, we state our main result. 

THEOREM 1. - Let f(x,n) in (l), (2) be in the form of f(x, a) = 
f(x) + g(x, a), d2ere f( x is an arbitrary real-valued Lipschitz continuous ) 
function on 0 and g(x, a) is a bounded continuous function in n x A. Iffor 
any VLipschitz continuous function f(x) there is a constant df such that 

(15) pmOXux(x) = df for all x E Ci 

(16) resp. $irna $ u(x,T) = df for all x E t 
> 

then there is a subset Z of 2 which satisjies the following properties (Z), 
FL (4. 

(2) Z is non-empty and z E Z if and only if for any y E G and for any 
E > 0 there exist TE > 0 and a control Q, such that lim,,~ TE = +cq 
12 - ~a,(T,)l < E. 

(P) Z is closed, connected and positivity invariant i.e. 
(It) G?(t) E 2 Q x E Z , Q Q! control , Q t 2 0. 
(A) Z has the following time averaged attracting property, i.e. for any 

open neighborhood U of 2, 

(17) 

(18) 

X 
.I 

(x eextxu(x,(t))dt + 1 

(.L. ;iy;:;;;;_: Qx E fL 

asT+oc, uniformly in Q: , Q x E 2, 

where xu (U c 2) denotes the characteristic function of the set U. 
Concerning with Theorem 1, we make following remarks. 

Remarks. - 1. From the property (Z), 2 is determined uniquely. 
2. If b(.x, n) = b(x) Q :E E 2 , Q cy E A, then the following backward 

properties hold on (2). 

(0 z(t) E 2 Q’~EZ,Q’EIW. 
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(Z-1 
For any 21, z2 E 2 and for any E > 0, there is a time T, > 0 

such that lim T, = -co. 
E-0 

jz2-z1(TE)I < E. 

We can explain the convergence property (15) (resp. (16)) by saying that 
there exists an invariant, connected subset Z which is the attractor in the 
time averaged sense of (A), that all the trajectories come as close as we wish 
to any point of .z E Z infinitely many times. This qualitative property of the 
system matches very well with our intuitive understanding of ergodicity. 

In the following section 2, we shall give some examples illustrating 
Theorem 1. After that, we state a more general result than theorem 1 when 
the convergence property (15) (resp. (16)) holds for a subset 00 of fi which 
does not depend on the choice of the continuous function f(z, (Y); we shall 
give also examples for this result. In section 3, we shall prove theorems 
1, 2 and the statements of the Remarks associated with these theorems. In 
section 4, we shall give some general remarks concerning with the results 
in this paper. 

In the following, we use the notations IR, Z, N, R’ for the sets of real, 
integer, natural, positive real numbers respectively. The distance between 
two points 5, y E 2 is given by Jz- yl; the scalar product of W” x R” is 
denoted by < ., . >. We use the letters C(C1, Ca? . . .) for positive constants. 
For a Lipschitz continuous function f(z), Lf denotes its Lipschitz constant. 
We shall write the solution of the O.D.Es. (9) or (10) as z,(t), yo (t ) (t E R) 
corresponding to the initial conditions ~~(0) = X, ye = y etc... When 
we consider a trajectory zCY(t) (t E R), we call a: a control for 2. For 
:c E a, we denote by U,(z) = {y E a 1 IX - y 1 < E}. We shall sometimes 
write H(z,p) = s~ip,~~ {-< b(z,a),p> -f(z,a)} where the right-hand 
side appears in (I), (2). 

From the Lipschitz continuity of b(z, o) in x E n and Q: E A, we have 
the following continuity of the controlled system. 

(19) Impel 5 exolt’14 V 2, y E 2 , V u: control , V t E IR ; 

where X0 > 0 is a constant. In particular, in the periodic case X0 is given 
as follows (see P.L. Lions [lo]) 

(20) x0 = sup {-<b( 2,c+b(z’,a), z--d> 15--2’1-2} 
Z.Z’t?i 

ntA 

In the case of Neumann type B.C., the description of X0 is not so simple 
as in (22), in the case of state constraints B.C., we refer to the results 
of H.M. Soner [15]. 
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To conclude this introduction, we shall give some references which relates 
with this subject. One can find the definition of the viscosity solution 
in [7], [lo]. The existence and the uniqueness of the solutions of the 
H.J.B. equations (I), (2) with the above stated boundary conditions was 
obtained by P.L. Lions [l 11, G. Barles and P.L. Lions [2], H.M. Soner [15], 
I. Capuzzo-Dolcetta and P.L. Lions [4], P. Dupuis and H. Ishii [8]... For the 
treatment of the ergodic problem as the convergence problem in the H.J.B. 
equation, one can consult M. Robin [13] which contains many references, 
I. Capuzzo-Dolcetta and M.G. Garroni [3], I. Capuzzo-Dolcetta and J.L. 
Menaldi [5], P.L. Lions [ll], P.L. Lions and B. Perthame [12] etc... 

The author expresses her gratitude to Professeur Pierre-Louis Lions for 
his helpful advices and constant encouragements. 

2. EXAMPLES AND OTHER RESULT 

We give simple examples illustrating theorem 1. 

Example 1. - Let R be a bounded connected subregion on W”, and 
consider (1) (resp. (2)) with H(p) = Ip] with one of the boundary conditions 
of (3), (4) and (5) (resp. (3) (6) and (7)). By [ll], we know that the system 
enjoys the convergence property (15) (resp. (16)) in theorem 1 with the 
uniform convergence. Therefore, by theorem 1 there exists a subset 2 c 2 
which has the properties (Z), (P) and (A). In fact, by the form of H(p) 
for all points Z, y E n there exist a control Q and a time T > 0 such that 
z,(T) = y and thus 2 = R. 

Example 2. - Let R be a bounded convex subregion of W” containing 
the origin. Consider a positively definite symmetric linear operator B on 
Iw” and set H(z,p) =< Bz,p >. For the system given by (1) (resp. (2)) 
with this Hamiltonian and the boundary condition either one of (4) and 
(5) (resp. (6) and (7)). Then the system satisfies the convergence property 
(15) (resp. (16)) in Theorem 1 with uniform convergence. Therefore, by 
Theorem 1 there exists a subset 2 c 2 which has the properties (Z), (P) 
and (A). In fact, in this system every point in 2 is attracted to the origin 
and thus 2 = (0). 

Example 3. - Let R be an open ball of radius 1 centered at the origin 
in lR2. Consider (1) (resp. (2)) with H(z,p) = s~p,,,~,(crp~+z~p~) where 
a E Iw, p = (pi,p2) and either one of (4) and (5) (resp. (6) and (7)). 
Then the system satisfies the convergence property (15) (resp. (16)) in 
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theorem 1 with the uniform convergence. Therefore, by theorem 1, there 
exists a subset 2 c 62 which has the properties (Z), (I’) and (A). In 
fact, in this system every point in G is attracted to the zz-axis and thus 
z = {(:cl>:c2) 1 -1 5 :I:1 < 1 . :c‘J = O}. 

Our second result is the following. 

THEOREM 2. - Let f(:r> N) in (l), (2) be in the form of f(z, CY) = 
f(x) + 9(2> a) where .f(*:) .I ts an arbitrary real-valued Lipschitz continuous 
function on 2 and g(:c, U) is a bounded continuous function in a x A. 
Suppose that there exists a maximal subset 0” of fi such that jar any 
Lipschitz continuous ,function .f (:c) there exists a constant number df such 
that 

(22) lim 
1 

resp. - U(Z,T) = d, 
TWX T 

,for all 5 E 0,) 

then there exists a subset 2” of a which satisjies the following properties 
(ZO), (PO) and (A,). 

(20) 20 is non-empty and z E 20 if and only if for any :y E R. and for 
any E > 0 there exist T, > 0 and a control (Y, such that lim,,o TE = +cq 
12 - ?/a,(Z)1 < &. 

(PO) 20 is closed, positivity invariant i.e. 
(I+) zCY(t) E 20 V z E 20 . V 0 control, t/ t > 0. 
(A,) For any open neighborhood U of 20, 

I’ 
J; 

(23) hr~ infX CA* ,yr;c (n:,(t)) nt = 0 v :L: E (20. 
x-0 a .o 

(24) 
( 

resp. b if;f $ 
.T 

T-+X 
, o xp(Ll&(t))dt = 0 v’:r: E f&j. 
I 1 

where ~(1 (U c 0) denotes the characteristic function of the set U. 

Remarks. - 4. The properties ( Zo), (PO) and (A,) are weaker than that 
of (Z), (P) and (A) in theorem 1, and here we do not know if Zt, c no. 
Moreover , we do not know if the following property holds on Z. : 

for any points zl, z2 E Za and for any E > 0 

there exist T, > 0 and a control (1, such that 

lim!!‘, = +co, 
E’O 

Iz2-z1,, (TE)I < E. 
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5. If b(z,tr) = b(z), V :X E 2, V cy E A, then the following stronger 
result holds: the subset 20 c 00 and in place of (PO), (A”), we have 
(I’,“), (A:) as follows. 

(Pa”) Za is closed, invariant and connected. 
(At) For any neighborhood U of Za, 

(25) ePAt x&c(t)) dt = 1 vx E ?a(), 

.T 

(26) resp. lim A 
I T-fez T., 

x&(t)) dt = 1 v 2: E 00. 
> 

We now give simple examples illustrating theorem 2. 

Exumple 4. - Let 62 be a bounded connected subregion of R”, and 
consider the equation (1) (resp. (2)) with H(z,p) = a(z) IpI where a(:~) is 
a real-valued continuous function defined on R satisfying that a(z) 2 0, 
u(.ri) = 0, 1 5 ,i 5 N where 2, E fi, a(.~) > 0 in a\ {zr,. ,IL.~~}, and 
wish one of the boundary condition given by (3), (4) or (5) (resp. (3) (6) 
or (7)). Then 62a = R \ {:I.!~~. . , :cAF}, 2, = 2. 

Example 5. - Let R be a ball of radius 2 centered at the origin in R”. 
Consider a negatively definite linear symmetric operator B on 5X” whose 
minimum eigenvalue is -1, and set H(z,y) = {<Bz,p> +[pl}. Then for 
the equation (1) (resp. (2)) with this Hamiltonian and the boundary condition 
(4) (resp. (6)) 00 = {:I; E (2 , /n:l < l} and 20 = {X E KY” , I:cI 5 l}. 

Exumple 6. - Let (2 = (a, 6) be an open interval in R. For three numbers 
c, r/l, e such that n. < c < d < e < h, put g(z) = J’l(:c’--c)(.7:‘-d)(Lc’-e) ds:’ 
and set H(z,p) =< -Vg(:c),r) >. Then there exist two disjointed subset 
(201, f2u2 in 51 which have the convergence property (21), (22) in theorem 2. 
For 1&n, the corresponding 2 01 = {c}, for 0a2 the correspondig Z,,, = {e}. 

3. PROOFS OF THEOREMS 1, 2 

First, we shall prove theorem 1. 

Proof of Theorem 1. - We shall prove the statements in the following 
three steps: (i) proof of (2); (ii) proof of (P); (iii) proof of (A). First 
of all, let us assume 

where Cr 2 Ca > 0 are fixed constants. 
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(i) Proof of the property (2). - To prove this claim, we argue by 
contradiction: we assume that for any CC E 2 there exist E(X) > 0, T(z) > 0, 
a point Y(X) E 2 such that 

:y(x)c?(t) $ K(x) (21) V t > T(X), V f3 control. 

Since fi is compact, there exist a finite number of points :~i, . . . , :E,~ 6 2 
such that lJf=_, u--(sc) (Q) 3 2. We shall denote by &k = $ E(zk), 1 2 
k < N, E = miR<;<rv Ek, Tk = T(Xk) 1 5 k < N, TO = Imxl<k<N TA., 
Yk = Y(xk) 1 5 k < N, uk = uC,.(xk), uk = uCI.+E(.‘ck). Then we have 

(28) 
N 

U u, > t 
k=l 

and for any XI; (1 < k: < N) there exists yk E 2 (I < k < N) such that 

(29) Y:(t) $ u;, \Y’t>Ta,Vacontrol? l<Ic<N. 

In the following argument, we concentrate on the behavior of yl. Let 
us denote W = (lJf=, uk) fl (Ui)’ fl 2. Since we can trivially assume 
that Ur=‘=, uk # 8, the subset W C 2 is non-empty. Moreover, since 
W U 17; > R, by (29) and from the boundary conditions of the system 
we have 

(30) Y:(t) E w V t > TO, V (v control. 

Let {Vi} 1 5 li 5 A4 be a partition of W composed of a finite number 
of open subsets of W such that 

k=l 

VL n Vi = 0 if !#J?, 

for example we can take {I$‘} 1 5 C 5 A4 the finest family of open 
subsets of W devided by the boundaries of uk (2 5 k < N), Ui and 0. 
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Then, for any point z. E W \ UE, Vf’, we shall choose arbitrary only 
one number CO (1 5 to < M) such that z. E dVd, and shall add zo to 
Vd,. In this way, we can obtain a family of measurable subsets of IV, say 
{Ve} 1 2 e < A4 where Ve is the union of Q’ and some of the boundary 
points of V,l satisfying 

For this family { Vt} 1 5 l < 

(32) 

(33) 

x > 0, Q control, 1 2 II 5 M 

V@flV@, =0 if efef. 

M, we shall define the following values 

xv, (Y:W> dt 

1 I-T 
(resp. L(x, ,,,e) = $ 

.I 
xdd$)) dt 

0 
T > 0, QI control, 1 < e < M.) 

BY ~31)~ (32), (33) 

(34) limcL(X,a,e) = 1 
X-O e=i 

for all control (.y, 

(35) resp. li~m~i(T,a,l) = 1 for all control cy. 
e=i > 

Thus, for an arbitrary fixed control ~0, we can take a subsequence A’ -+ 0 
(resp. T’ + 00) such that 

(36) 

lim L(X’, ao, e) = L(ao, e), 
A’+0 

5 qao,e) = i for 1~’ ! 5 M, 
e=i 

(37) resp. ,!-1, i(T’, ~0, e) = f&O, e), 

e=i 

for 1 <es M. 
> 
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Hence, there is at least one &, 1 5 !?a 5 M such that 

(38) 

( resp. & < ii(ch-J,llo) < 1. 
> 

Choose a number ka, 2 5 k0 5 N such that Ve, c UkO and take a Lipschitz 
continuous function f(x) on 0 such that 

(40) 
0 L f(x) L 2JJ(G-C2+1), 

f(x) = 0 in UkO , = 2M(C1--C2+1) in (U&)‘-. 

Then by the convergence property (15) (resp. (16)) there must exist a 
number d, which satisfies the following two relationships at the same time. 
On one hand. 

d, = liioXu&) 

= !,iTo ir;f A’ 
S‘ 

@‘“(f(~;@)) + do:> 4t)>) dt 
0 5 EGA’ r eexlt f(y& (t)) dt + CI 

A’+0 ,o 

.I 

17c 
= lim A’ e-‘lt f(d, (t)> (1 - xc’,“) (do (t>> dt + Cl 

A’+0 0 

and thus 

(41) d, < 2M(C1 - C, + 1) 

where we used (27), (36), (40). On the other hand, we have 

= jjmoinf X 
i 01 y 

ehxt (.f(y? (t)) + s(Y? (t> ) a(t)) dt 
0 

2 Frno i;f X 
s 

eeXt f (ylzoa(t)) dt + G 
0 

and thus 

(42) d, 2 2M(C1 - C2 + 1) + C2 

Ann&s de I’hstitut Henri Poincart! Analyse non lintaire 
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where we used (27), (29), (40). Thus, from (41), (42) we have 

which is clearly a contradiction with (27). 
Similarly, in the finite horizon case we have 

and thus 

(43) d, L 2M(C1 - Cz + 1) (1 - ;) -t Cr 

where we used (29) (39) (42). On the other hand, 

and thus 

(44 df 2 2M(C1 - c, + 1) + CZ, 

where we used (27), (29), (40). And as in the argument for the infinite 
horizon case we reach a contradiction. 

(ii) Proof of the property (P). - First, we shall prove the closedness. 
Let Z, E 2 be a sequence such that limn+oo Z, = Z, E a. We are to 
show that z, E 2. Let x E D be arbitrary and E > 0 be arbitrary. We 
take a number no E N large enough so that I.+, - z,/ < 5 holds. By the 
property (Z), since znO E 2 there exist T > 0 and a control a for z such 
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that ~~(5”) E U,(Z~,). Clearly, z,(T) E UE(zoc)) and since z E 2, E > 0 
are arbitrary we have proved that z, E 2. 

Next, we shall prove the positive invariance (I+) of 2. Let z E 2, (v 
control for z, T > 0. We want to show that za(T) E 2. Let il: E 2, 
E > 0 be arbitrary and set E’ = exp (-&T)E where Xc > 0 is the constant 
appearing in (21). For this E’, we derive from (2) that there exist Tl > 0 
and a control P for .X such that 

We denote ~1 = za(T,). By (19), 

Now, denoting the control S(t) = P(t), 0 < t 5 T,; = a(&-- Tl), 
TI < t 5 Tl+T, from (48) we have x,(Tl+T) E UE(.za(T)). Since 
z E 2, E > 0 are arbitrary we have proved .za(T) E 2. 

Finally, we shall prove that 2 is connected. Assume that there are two 
open subsets of 2: Ul, Uz such that U, n 2 # 0, U, n 2 # 0, Ul fl Uz = 0, 
ZcUiUUs.Letzi~ZflUi,z~~ZUU~bearbitrary.Choose~>O 
small enough so that U, (2s) E U,. Then, by the property (2) there exist 
Tl > 0, a control nl for z1 such that .~+~~~~(t) E Uc(zp). However, this 
is impossible because the set {q,, ) 0 < t 5 T,} is a connected set 
which must be contained in Ul. Therefore, the above assumption leads to 
a contradiction and 2 is connected. 

(iii) Proof of the property (A). - We assume that the property (A) does 
not hold and we shall look for a contradiction. We use the facts that 2 is 
closed and invariant which we have proved in (ii). If (17) (resp. (18)) does 
not hold, there are open subsets U,, Uz c 1, a point 3 E D, a constant 
C, > 0 such that 

z c Ul c u2, 

(47) 

(48) 

cxt xLr;(~,(t)) dt = C, > 0. 

( resp. ZCUICU~, 

xu;(~&))d~ = C3 > 0. 

Ann&s de i’lnsfitur Henri Poincard Analyse non lintaire 
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Take a Lipschitz continuous function f(x) on 2 such that 

0 5 f(x) I &Cl -c2+ 1) in R, 
(49) 

f(x) = &-C2+1) in Ur, = 0 inUi. 

Then by (27), (49) and by the invariance of 2, for any z E 2 

e-‘“(f(4t)) + g(Za(t), 4t)) dt 

and by (271, (47), (491, 

e-x”(f(:Q(t)) + g@,(t), a(t))) dt 

epxt f@,(t)) dt + Cl 

and thus 

(51) blows) I & (Cl - c, + l)(l - C,) + cr. 

We thus reach a contradiction and we have proved the property (A), which 
completes the proof of Theorem 1. 

Next, we shall prove the assertion of Remark 2. 

Proof of Remark 2. - To check the invariant property (I), by (I+) it is 
enough to show that z(t) E 2 for all z E 2, all t < 0. So, let .z E 2, T < 0 
be arbitrary. Let z E 2, E > 0 be also arbitrary and let E’ = exp (XoT)~ 
where X0 > 0 is the constant appearing in (19). By the property (Z), there 
is a time Tl > 0 large enough such that 

(52) TI +T > 0, z(Tl) E UC!(z). 

Denoting ~1 = z(Tl), by (21) we have 

h(T) - 4T)I 5 e qx-ZI = E; 

that is we have Ix(T,+T) -z(T) I 5 E. Since z E a, E > 0 are arbitrary and 
we can take Tl > 0 as large as necessary, we have proved that z(T) E 2. 

Vol. 14. no 4-1997. 
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Next, we shall prove the property (Z-). Let zl, zz E 2, E > 0 be arbitrary 
chosen. By (I), {zt (t) / t < 0} C 2 and thus by the compactness of Z 
there is a sequence {t,,},rG~, lim,,,, f,, = -X and a point .zzX E % 
such that lim ,,-m~t(l,l) = z-,. By the property (Z), there is a time 
T > 0 such that 

(53) Lm(T) E U,(Z~). 

Let E’ = S$ exp ( -&T)E, where X0 > 0 is a constant appearling in (19). 
Let us take a number 11.’ E N large enough so that zl(t:,) E &(z-,). 
Then by (19), denoting z:, = 21 (t:,) we have 

By (53), (54), we get zl(tk + T) E Uc( ) z2 an since E > 0 is arbitrary and d 
ti, < 0 can be taken as small as we wish independtly on the chaise of I’. 
we have proved the property ( ZP). Therefore, the assertion in Remark I 
was proved. 

Now, we shall prove Theorem 2. 

Proof of Theorem 2. - The former two properties (Za), (Pa) can be 
proved as in the proof of Theorem 1. In fact, we only change 2 in the 
former proof to flu, so we do not repeat them. Here, we only prove the 
property (A,). Let G’r > C$ > 0 be the constants such that 

The difference with Theorem 1 comes from the fact that we do not know 
if 2, C &?a (and in general it is not true !). Let us assume that (A,) does 
not hold, and we shall look for a contradiction. We use the fact that 2,) is 
closed (obtained in (Pa)). We assume that there exist three open subsets 
l?t: U,, Ua C 0, a point Z E OO and a number CT3 > 0 such that 

( 

.m 

(57) resp. b i;f $ 0. 
X-O I 

xc,; (&(t)) fit = c:, > 
. 0 > 
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Take a Lipschitz continuous function f(z) defined on 2 such that 

0 I f(x) 5 Cl/C,. supp f(x) c u;, 

(58) 
f(x) = 0 in LJ,, = 2 in Ui. 

J 

By the convergence property (21) (resp. (22)), we have by (55), (56) (resp. 
(57))> (611, 

‘30 

PII:, XuA(2) = Fn:, inf X 
i_ 

fcxt f(z, (t)) + .(/(Y& (t), a(t)) nt + (I . 0 

> b inf X 
x-10 a I’ 

e-xf ,f(zn(t)) dt + c* 
. 0 

I 

.x 
> lim irif X c:-‘~ 

x-0 o . 0 
x g x[;;(T,,(t)) fit + (32, 

3 

and thus 

(59) i !‘I:, Xu~(x) > C1 + C, 

Similarly, for the finite horizon case 

for all .I: E 62”. 

> lim inf Jj 
T-02 o 

. 
I’ 
ilT f&(t)) fit + cx. 

and thus 

(60) ,“rlr; $ U(X, T) > Cl + C, for all :I: E &,. 

On the other hand, for any X > 0 (resp. T > 0) by (58) 
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And by (59), (61) (resp. (60), (62)) we have 

(63) lim inf A 
I 

‘r>L e-xf x 2 xUJ(zm(t)) dt 
x+0 n .” 3 

.x 
> lim inf X -- 

I 
cxt f(:&(t)) dt > c, v 2 E 00. 

x-+0 (2 .o 

(64) 
T Cl 

resp. b inf & .I G xU;(zO(t)) dt 
T+oo (y 

-- f(G(t)) dt 2 c2 v :c E Qo. 

In fact, for any z E 00 let us take a subsequence X’ -+ 0 (resp. 7” - W) 
such that 

.30 
lirrl infX 

I x-0 o( ,o 
ePxt f(xCy(t)) dt = J& inf A’ 3o e-X’“f(z~(t)) dt, 

N 

1 
resp. lirn inf F 

Tim cv 
dt = ,Ilm i:f j!$ 

and then by using this sequence X’ + 0 (resp. 7” + cc) we deduce from 
(59) (rev. (60)) 

= lim inf A’ A’-+0 0 i_ 
e-x’f(f(:c,,(t)) + g(x,,(t). n(t))) dt 

0 

< lim inf A’ 
A’+0 (1 I 

evxlt f(z, (t)) dt + Cl for any :c E 620, 
. 0 

resp. 

1 

I 

T’ 

= lim inf - 
T’+cr; (Y T’ . 

f(:rn(t)) + .q(xa(t). (z(t)) dt 
o 

5 lim inf -A- 
I 

T’ 

T’--tm o T’ . o 
f(xa(t)) dt’+Cl for any 3: E slo 

and we have (63) (resp. (64)). 
At this stage, from (63) (resp. (64), we can derive UZj n 2 # 0 which is 

apparently a contradiction. In other words, we can show that there exists 
a point Z E UJj such that for any point 3: E R. and for any E > 0 there 
exist T, > 0 and a control a, for 2 such that ,zI;,~ (TE) E UC(i). For 
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this, we follow the argument used in Theorem 1 to prove the property 
(2). That is, we assume the contrary: (2 E U,j 1 for any point z E 00 
and for any E > 0, there exist T, > 0 and a control cy, such that 
xa,(Tc) E U&)> = 0, and we shall look for a contradiction. As in the 
proof of Theorem 1, the above assumption leads the existence of the finite 
points xl, . . . , XN E u;, yK E Ro (1 5 Ic 5 N), a finite number of real 
numbers Ek > 0 (1 5 Ic < N), E = minl<k<Nek, Tk > 0 (1 5 Ic < N), -- 
To = maXl<k<N Tk, a finite number of open sets Til, = U,, (zk) n U; and 
u; = UEk+E(zIc) n U; (1 < k 5 N) such that 

(65) 
N 

U & = u;, 
k=l 

and for any xk (1 5 /C 5 N) 

(66) Y:(t) e 0; Vt > To, V’acontrol, 15 k 5 N. 

We also denote W = (Uf=, tik) fl (0;)’ n (U;). Since we can trivially 
assume that Ur=‘=, ok # 8, the subset W c U; is non-empty. Moreover, 
since 

Wni3; = U;, 

by (63) (resp. (64)) and (66) 

WI lim infX .I” c2 G e-““~w(yi(t))dt > ---. 
x-0 Q 0 Cl 

(68) resp. 

Now, as in the proof of Theorem 1, we take a family of subsets of W, 
say {If!} (1 < e 5 M) satisfying 

W/j&, V&Vet=0 if r!#e’, 
I=1 

(69) u a.!?; u a(u;) l<!<M, 

u au; u qu;). 
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For this family {r/j} (1 5 ! 5 M), we shall define the following values 

(70) 
X > 0. (I: control, 1 5 C < M 

(71) resp. i;(T: 0,e) = $ /T , o xdd,(C dt 

T > 0; N controlY 1 5 B 2 M. 

By (67), (69), (70) (resp. (68), (69), (70)) for any fixed control no we have 

M 
(73) resp. lim xi(T,ao,l) > F, 

T’cYG O=l 

and we can take a subsequence A’ -+ 0 (resp. T’ --+ W) such that 

lim L(X’, a,;~?) = 3 L(a0.t) l<!<M, 
A’-0 

(74) 

(75) resp. lim L(T’, a~,[) = 3 L(ao,e) l<&<M, 
T’+m . 

~qao:Y) = 9.) 

e=l 

Therefore, there is at least one & (1 2 & 5 M) such that 

(76) 

(77) ( resp. L(Q:,,!,) > $$, 
1 ) 
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and we choose a number iE0 (2 5 kc 5 N) such that Ve, c ck,. Now, we 
take a _Lipschitz continuous function f(x) on n such that 

f(x) = kc in i?k, 

(78) 
= &Cl - c2 + 1) in (0;,)‘! 

0 L f(x) 5 gg (Cl - c2 + 1) in fi. 

Then, by the convergence property (21) (resp. (22)) there must exist a 
real number df which satisfies the following two relationships at the same 
time. On one hand, 

‘df = FrnaXux($) 

s 03 
= $,ma A’ inf e-w(Ym + dYm1 o(t)) dt 

(y 0 
5 lim A’ e-‘lt f(Y& (t)) dt + Cl 

A’-0 

= lim A’ 
_ 1” A’+0 ,o 

e-x’t f(d,(t)) (1 - xir,,)(d,(~)) dt + Cl 

and thus 

(79) df L S(C1-C1+l)(l-$$)+cr, 
2 3 

where we used (55), (70), (74), (76) and (78). On the other hand, 

d, = !i_mo Xux (y”” ) 

e-““f(~?‘(t)) +g(y?(t),4t))dt 

2 Frnn i;f X 
.I 

oa .f(~c$(t)) dt + C2 

and thus 

d, > s (Cl - c2 + 1) + c2 

where we used (55), (66). 
However, these relationship leads a contradiction to (55) and we have 

proved the property (Ao). Similarly, in the finite horizon case, we have 
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on one hand 

= Thm i:f $ 1 I’ 
T’ 

f(YM) + dYm> 4t>) dt 
to 1 

<lim 
1 

T’+‘X F I 
( oT’ f(Y&Jt)) dt + Cl 

= lim $ J 
T’ 

T’icx 0 
f (YA, w) (1 - xu,, ) (do w) dt + c1 

and thus 

(81) dj 5 s (Cl - c2 + l)(l- ++c,. 
1 

where we used (55), (71), (73, (77), (78). On the other hand 

and thus 

(82) d, 2 gg (Cl - c, + 1) + c2: 
‘2 3 

where we used (5.5) and (66). Then (81), (82) lead the same contradiction. 
Finally, we shall prove the statement of Remark 5. 

Proof of Remark 5. - We shall prove it in the following two steps: (i) 
proof of 20 C 20, (ii) proofs of the invariance and the connectedness of 
20. The property (Ag) comes from (A,,) in Theorem 2. 

(i) Proof of ZO c Q,. First, we remark that this assertion is implied by 
the positive invariance of 00 i.e. TtQo c R. for all t > 0. In fact, if we 
have the above invariance of 00 then !&, is also positive invariant and all 
trajectories starting from the points in R. stay in no, thus by the definition 
of Za we see that Z. c 20. To see that Ttfio c R. for all t 1 0, let 
q, E s20, TO 2 0 be arbitrary. Then 

I 
Trl 

Xux(zo) = x e-xs j-(x0(s)) ds + XcXT ux(zo(To)) 
. 0 
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leads za(Ta) E 00. Similarly, in the finite horizon case 

g U(Zg,T) = g 
TO 

f(xo(s)) ds + + u(zo(To), T-To) 

leads zo(To) E Ro. Therefore, we have proved 20 c aa. 
(ii) Proof of the connectedness and the invariance of 20. The invariance 

(in particular the negative invariance) can be proved similarly as in the 
proof of Remark 2. To see the connectedness, let Ui, U, c n be two open 
sets such that U1 n U, = 0, Ui U lJ2 1 Zo, U, n 20 # 0, U2 n Z. # 0. 
Let z1 E U1 n 20, z2 E lJ2 n 20 and take E > 0 small enough such that 
UE(zl) c Ul, U,(z2) c U2. By the property (Za), since Z. c 20 there 
exist a point ‘y E Ra n UE(zl) and T, > 0 such that y(T,) E &(xz). 
However, since {y(t) 1 0 5 t 5 TE} is connected it leads a contradiction. 
Therefore, Z. is connected. 

4. GENERAL REMARK 

Finally, in this section, we shall make a general remark and two questions 
concerning the ergodic (long time averaged) attractor. 

Remark 6. - We have seen that the convergence property (15) (resp. (16)) 
in Theorem 1 and (21) (resp. (22)) in Theorem 2 implies the existence of 
the sets 2 and 20 respectively, for the controlled system considered in the 
compact set 2. So, it is natural to ask whether the same is also true for the 
system in a non-compact set (for example R = R” or a bounded set in a 
Banach space (see [9], [16]) etc...). We believe, although we have not yet 
demonstrated it rigorously, the answer is negative. 

Question 1. - Is it possible to precise the behavior of the trajectories 
on Z? 

Question 2. - Can we have some information on the geometric property 
of the attractors Z and Z. by the properties (2) and ( Zo)? 
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