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ABSTRACT. - The paper is concerned with the long-time behaviour of the 
solutions of a certain class of semilinear parabolic equations in cylinders, 
which contains as a particular case the multidimensional thermo-diffusive 
model in combustion theory. We prove, under minimal conditions on the 
initial values, that the solutions eventually become monotone in the direction 
of the axis of the cylinder on every compact subset; this implies convergence 
to travelling fronts. This result is applied to propagation versus extinction 
problems: given a compactly supported initial datum, sufficient conditions 
ensuring that the solution will either converge to 0 or to a pair of travelling 
fronts are given. Additional information on the corresponding equations in 
finite cylinders is also obtained. 

RBSUML - Cet article traite du comportement en grand temps des 
solutions d’une classe d’equations paraboliques dans des cylindres; ce 
type d’equation contient le modele thermo-diffusif multidimensionnel de 
la theorie de la combustion. Nous montrons que, sous des hypotheses 
minimales sur la donnee initiale, les solutions deviennent, en temps fini, 
monotones sur tout compact dans la direction de l’axe du cylindre; ceci 
implique la convergence vers des ondes progressives. Ce resultat est ensuite 
applique a des problemes de propagation et d’extinction: une donnte initiale 
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Ctant fixee, on donne des conditions suffisantes pour que la solution qui 
en est issue tende vers 0, ou converge vers deux fronts se deplagant dans 
des directions opposees. On obtient enfin des informations supplementaires 
pour des equations dans des cylindres born&. 

1. INTRODUCTION 

Let C be the cylinder: C = { (5, y) E W x w}, w being an open bounded 
regular subset of RN-l, with N > 1; the outward normal derivative at 
(z, y) E R x aw will be denoted by V(Z, y), as usual. Consideration is 
given to the asymptotic behaviour - as t + +oc - of the solutions of the 
following class of semilinear parabolic equations 

(1.l.a) ut - Au + ~‘(Y)‘IL, = g(y, u) for (x:,Y/) E C, 

with Dirichlet or Neumann boundary conditions: 

(1.l.b) t?u = 0 for (z, y) E W x dw, 

The boundary condition (1.1 b) is either Dirichlet or Neumann: BU = u or 

BU = 2. Problem (1.1) is complemented by the initial datum 

(1.l.c) 40, z, Y) = 210(x, Y). 

In the whole paper, the functions a(y) and g(y, U) will satisfy 

(1.2) t2 E C2t6(W) for some 6 > 0; g E C3(W x R) 

This is enough to ensure the existence of a local classical solution to 
(1 .I). It will be denoted by S(t) uo in the sequel, or simply u(t) when no 
confusion is possible. 

We shall make two sorts of assumptions on g. The first series of 
assumptions that we can make is g(y,u) = g(u), with g(0) = g(1) = 0. 
This is the natural generalisation of the well-known one-dimensional model 

(1.3) Ut - vm = 9(u), 

which has received thorough treatment, and is which is now fully 
understood. The relevant references are stated in [27] and [22]; we will not 
come back to them. Let us only mention the celebrated reference [ 111. In 
this framework, the function g will fall into one of the following cases. 
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Case Al. There exists 19 l ]0,1[ such that 

(1.4.a) g < 0 in ]O,e[ and g > 0 in ]0,1[. 

Moreover 

(1.4.6) g’(0) < 0, g’(1) < 0. 

This case will be referred to as the “bistable case”; it often arises in genetics 
or population dynamics; see [2], [3], [ 111. A typical example is the cubic 
nonlinearity g(u) = ~(1 - U)(U - 19). 

Case A2. There exists 19 ~]0,1[ such that 

(1.5.a) g z 0 in IO, g[ and g > 0 in ]0,1[. 

Moreover 

(1.5.b) g’(1) < 0. 

This case arises in combustion theory, in the framework of the thermo- 
diffusive approximation; see [28] for the physical background; see also [6]. 
We will sometimes refer to it as the “ignition temperature case”. 

Case A3. The function g satisfies g > 0 on 10, l[, and 

(1.6) g’(0) > 0 > g’(1). 

When s H g(s)/ s is decreasing, this case is often referred to as the Fisher 
model in population dynamics, or also KPP model. Another interesting 
subcase, namely the ZFK model [31], arises in combustion theory; in 

J 

1 

this context g’(0) is assumed to be small and g(u) du is large. This 

assumption will be more precisely quantified in 8 . ectrons 2 and 3; we will 
refer to it as Case A3/ZFK. 

Case B. The second sort of assumption that we can make concerns 
y-dependent nonlinearities. Assume that the solutions of the problem 

(1.7) 
-4~ = dy, u) in w 

Bu = 0 on dw 

are such that 

(‘Hl) l there exist two solutions $&(y) < $~~(y) such that pl(-AY - 
Su(Y,?h)) > 09 
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(X2) l each solution $ such that li,i < ‘(1 < & has jrl( -A, - 
.9U(Y! $1) < 0. 

Here, for a second-order elliptic operator A in w with boundary operator 
13, we denote by pl(A) its first eigenvalue. We notice that Case B contains 
Case Al, but not A2-A3. Therefore in the sequel the emphasis will be 
laid on the two latter cases. We also notice that it is possible to make 
assumptions on Problem (1.7) that would contain Case A3; see [32]. We 
will not make them first because we do not wish to make the paper too 
complicated, second because the physically relevant situation is really Case 
A3/ZFK. 

Let us once and for all make the operator B precise. In Case A the 
natural boundary operator is the Neumann one; we will therefore always 
take t?u = a. i)v 

In Case B, it is more or less equivalent to take Dirichlet and Neumann 
boundary data, the Dirichlet conditions being more technically delicate to 
handle. Therefore we will always take Bu = u. 

Finally, we will also investigate the following system, which is a slight 
generalisation of Case A2: 

(1.8.n) 
ut - Au + u!(:y)u,. = ?if(U) 

lit - AU + <~(?/)11.~ = --7,f(~) 
for (:I:, 7~) E C. 

(1.8.b) 
&I. av -z--=0 
du au 

for (:c: VJ) E lR x i3w. 

(1.8X) 
I 

u(t, -cc, 9) = 0: u(L +cx), y) = 1 

?j(t, -cm, y) = 1, n(t, +m. w) = 0 
for :y E 15 

The function .f will be smooth, and of “ignition temperature” type, i.e. 

(1.9) f E 0 on [0, H]. f > 0 on ]H. +co[. 

Physically speaking, in (1.8), %L is a temperature and TJ a mass fraction. 
When u. + ~0 z 1, we notice that u + 11 E 1, and that (1.8) reduces to (1. I), 
with g(u) = (1 - u)~(u). This system shares a lot of features with case 
A2, but we will see that the convergence to the waves is not exponential. 
It will be treated separately. 

In each case Al-A3 and B, Problem (1.1 .a), (1. I .b) admits travelling 
front solutions, i.e. solutions of (l.l.a), (1 .l .b) of the form u(t, X, y) = 
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$(x + et, y). They have first been studied in [6] (case A2), then in [9] 
(cases Al and A3). These results have been generalised to y-dependent 
nonlinearities in [32]. The waves are unique in each case except Case A3, 
where there exists a continuum of speeds c, which is bounded from below. 
In [7] and [26], the waves of Case A2 were found to be asymptotically 
stable; therefore the question which comes next is whether the solution of 
(1.1) will converge to a travelling front. We proved in [27] that it was 
indeed true for cases Al and A2, provided that ?lo was nondecreasing in 2. 
Because of the z-translational invariance, we did not see any way to carry 
over the result for nondecreasing data to more general data. 

In [22] we treated case A3 in collaboration with J.F. Mallordy, and 
classified the long-time behaviour of the solution according to the behaviour 
at :c = --3o of 1~~. We could basically do so because the wave solutions were 
stable in weighted spaces where the z-translations were not continuous. 
However, for Case A3/ZFK, we did not manage to get rid of the 
nondecreasing assumption for the minimal speed. 

The aim of this paper is to extend the results of [27] for cases Al- 
A3/ZFK and B to non necessarily nondecreasing initial data, and to apply 
these results to various generalisations, such as the study of propagation 
versus extinction problems, which are of interest in combustion theory, or 
to system (1.8). In doing so, we put an end to the problem of the long-time 
behaviour of solutions of the above class of reaction-diffusion equations. In 
particular, we generalise to the multidimensional setting the convergence 
theorems of Fife and McLeod [ 1 I] for case A 1. 

In proving exponential convergence theorems, one usually proceeds 
in three steps: asymptotic stability, compactness of the orbits, and 
quasiconvergence. The first step is fully treated in [7] and [26] for case A2; 
cases Al, A3/ZFK and B are similar, up to technical details. The second 
step relies, as in [I 11, on the construction of sub and super solutions having 
uniform-in-time spatial decay properties. 

The ultimate step, namely the existence of a sequence t,, -+ +cc such that 

together with the asymptotic stability, implies the exponential convergence. 
In the case Q E Constant it is easy to obtain such a sequence (tn), by 
considering the Liapounov function 

V(t) = / e-(c+cr)z ( i/8u12 - C(~L)) dzdy, 
c 
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or Uperhaps a slightly modified one in case Al (see [ 1 I]); here G(u) = 

J g(v) dw. The function V(t) is time-decreasing; this, with compactness 

afguments, yields the sequence (&),. In the case Q # Constant things 
are unfortunately not so easy; in fact it seems to be impossible to find a 
suitable Liapounov function. As an alternative solution, one could think of 
adapting of a deep result of Hirsch [17] about strongly monotone semiflows. 
Let X be an ordered Banach space, such that the positive cone X, has 
nonempty interior; such a space is called strongly ordered. If a local 
compact semiflow S(t) on X is such that 

V(u,w) E x2, 7~ < 7) * Vt > 0, S(t)w - S(t)u E IntX,, 

Hirsch’s result states that almost every trajectory is quasi-convergent. This 
result solves the problem for second-order parabolic equations in bounded 
domains with Neumann boundary conditions, but does not apply to our case. 
Matano [23], [24] proves similar results under less stringent hypotheses; in 
particular he does not need the nonempty interior assumption. However, he 
assumes the semiflow to be strongly order preserving, i.e., for u < u and 
t > 0, there exists S(t) > 0 such that 
(1.10) 

byu’, w’) E x2, ((u’ - uII*y, llw’ - wJ12y 5 S(t) ==+ S(t)u’ < cs(t)w’. 

As is easily seen, the semiflow generated by a parabolic equation in C is 
not strongly order preserving, and to weaken significantly (1 .lO) seems to 
be a very difficult task. Therefore our work has the merit of providing a 
nontrivial example of convergence to equilibrium solutions in a setting to 
which none of the known theorems applies. 

Our approach is different from the above-mentionned ones, and relies on 
the eventual x-monotonicity of the solution on every compact of E. This 
idea that the solution of a parabolic equation will asymptotically bear the 
same qualitative properties as the elliptic solutions dates back to Jones [19]. 
He proves, in a weak sense, asymptotic spherical symmetry for initially 
compactly supported solutions of wzt - au = g(u) in RN, with a bistable g. 
His work, based on reflection-type arguments, is the parabolic analogue of 
Gidas, Ni, Nirenberg [ 131. Our method is not unlike the “sliding method” 
developped by Berestycki and Nirenberg in [lo]; it is in fact its parabolic 
analogue. 

The present work is organised as follows. In Section 2 we collect some 
results on existence, uniqueness and stability of travelling waves; most of 
them - but not all - are proved in other papers. In Section 3 we state 
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our results precisely; Section 4 is devoted to compactness. The results of 
Section 3 for Cases Al-A3/ZFK are then proved in Sections 5 to 8. In 
Section 7, multiplicity theorems for the solutions of the steady problem 
in a finite cylinder are given, and their implications discussed. Section 9 
is devoted to Case B, and Section 10 to a system (1.8). Possible further 
investigations are discussed in Section 11. Finally, additional results on 
asymptotic stability are proved in Appendix. 

2. EXISTENCE AND ASYMPTOTIC 
STABILITY OF TRAVELLING FRONTS 

Travelling wave solutions of (l.l.a), (1.l.b) satisfy: 

(2.1.u) -4 + Cc + Q~(Y))& = d?/, 4) for (x:,Y/) E C, 

(2.1.b) Bu = 0 for (x, y) E R x dw, 

(2.l.c) qq-00, Y) = $Jl(Y), dJ(+w Y) = dJ2CY). for y E W 

In Cases Al-A3, we will always impose: r/~r E 0 and $5 s 1. This is the 
natural conditions to impose in cases Al and A3; in Case A2 one could 
take any constant between 0 and 0. In Case B, we recall that $r and 42 
are described in the introduction. 

There are three paragraphs in this section. The first one sums up known 
existence, uniqueness and qualitative properties of travelling fronts for cases 
Al, A2 and B. The second one is devoted to the precise definition of Case 
A3/ZFK and to the asymptotic behaviour as 2 -+ -cc of the wave of 
minimal speed. In the third one, precise statement of orbital stability results 
in the form that will be of use to us are given. 

2.1. Existence, uniqueness and qualitative properties: Cases Al, A2 
and B 

We collect here existence, uniqueness and asymptotic behaviour - as 
1x1 -+ +CXJ - of solutions to (2.1) from the papers of Berestycki, 
Larrouturou, Lions [6], and Berestyeki, Nirenberg [8],f9] in cases Al-A2. 
For Case B, they are taken from Vega [32]. 

Let us begin with uniqueness results and qualitative properties. In cases 
Al-A2 and B, there is at most one solution (c, 4) to Problem (2.1) in the 
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following sense: c is unique and 4 is unique up to a translation of the 
origin in the s-direction. Moreover 4 satisfies: 4,. > 0. Finally, there exist 
X+ > 0, X- > 0 and two C2 functions: 4_(y), (6+(y), which are positive 
on ij, such that the following estimates hold: 

(2.2.b) 
)($2(y) - 4(x, .) - e-x+."q5+ll~l,"(~, 5 Ce-(X++').P. 

llq&.(11:, .) - A+e-A+~~+llco,~(rj) 5 Ce-(X++E).' 

in c 
+1 

for some E > 0. The function eX-.’ 4-(y) is a positive exponential solution 
of 

(2.3.a) 
-Au + (c + a(?y))u, - gy(y, $J~)u = 0 in C- 

13~ = 0 on R- x aw 

and the function “-‘+.I’$J+(~) is a osi ive exponential solution of p ‘t‘ 

(23.0) 
-Au + (c + n(y))u, - ,qy(y, yI12)u = 0 in C+, 

t3u = 0 on WC x L)w 

A proof of these results may be found in [8]. 
As for the existence results, they depend on whether case A I, A2 or B 

holds. In case Al, Berestycki and Nirenberg have proved the existence of 
a solution (c, 4) for (2.1) when w is convex; a proof of this result may be 
found in [9]. In case A2, Berestycki, Larrouturou and Lions [6] have shown 
the existence of a solution to (2.1) for any smooth domain ui. Furthermore, 
still in case A2, we have c + <cu> > 0, where <u> is the mean value of 
o in w. Finally, in case B, Vega [32] showed the existence of a solution 
(c,$h) to (2.1). It is to be noticed that Case Al, with w convex, implies 
Assumptions (Xl) and (‘X2). 

Let y. E w be given. In the sequel we will often denote by 4 the unique 
solution of (2.1) which satisfies: 

(2.4) 
$qo,vo) = vh(Yo) + li/dYo) 

.< 2 . 

Moreover, we will always assume that, when we treat case A, problem (2.1) 
has solutions; the above statements show that this is true in at least a 
nontrivial case. 
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2.2. The case A3lZFK: existence and asymptotic properties of the 
waves 

In the framework of case A3, there exists a real number c* such that, for 
c > c*, there exists a unique-up to translations-wave solution $,-, which is 
z-increasing in c; see [8]. There exists a minimal real number c, denoted 
by ca such that the equation in X 

Pl( - ay + qc + a(?,/))) = x2 + g’(0) 

has real solutions; for c > ce there are two positive solutions Xmaz(c) > 
AYin( see [8]. In all cases, we have c, > co; the case A3/ZFK will 

I 
1 

be defined by c* > co. This is true when g’(0) is small and g(s) ds 

is large; see [S]. This is precisely the physical assumptions oJf”[33], and 
we shall see that in this case, the wave 4C, has common features with 
the wave of case A2. 

For c > c*, the wave c/+ satisfies (see [S]) estimates (2.2.b), and estimates 
(2.2.a) with the exponent X”‘“(c). For c = c, something different occurs. 

THEOREM 2.1. - The wave qbc, satisjies (2.2.a), with exponent X’Yz(c*). 

Proof. - Assume this is not true, and that (2.2.a) holds with exponent 
/\Yin (c,). For small real number d, we try to solve 

--Au + (c* + d + N(y))% = g(u) for (x, w) E C! 

(2.6) U ” = 0 for (n:,~) E R x dw, 

,u( -cm, y) = 0, t&(+00, y) = 1 for ~j E W 

with U, close to 4:. Because c* > CO, equation (2.3.a) with c = c* + d, and 
with Id/ < c, - CO, has two solutions. Let 43, correspond to the function 
q!- in (2.2.a). Let 4; +d I correspond to (2.5) with X = A”“” (c, + d), and 
such that 

lim M,+d 
d-0 

- 4, /ICI = 0. 

Obviously, XYi”(c, + d) --+ X?” (c,) as d + 0. Let us set, for small d: 

e,(q y) = qj~-+,(y)eX”““(“‘+“). 

Let l? be the usual C” nonnegative function which takes the value 1 for 
1c 5 0, and 0 for n: 2 1. We shall look for u under the form 

u(z, y) = dk, + (4x, Y) - e0C.2, y))r(z) + w(z, y). 
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Let us set 

r = rnin ( 
P”(c*) + Xmaz(C*) 

2 
) 2h3)). 

We shall ask w(z, 9) = O(er”). The equation for w reads, after a tedious 
but straightforward calculation: 

- Aw + (ce + d + a(g))&w 

- (g’(h, + (ed - @jr) + .fd(z, 9, w)b = hd(? ?4Y) 

(1 + eVTz)w E L”(C) 

with 

fd(Z, y, w) =g(4c* + ( 
ed - eO)r -k w) - g(&, + ted - eo>r) 

W 

- g’(h, + (ed - eCI)r) 

=0(w) 

and (1 + e-l’“) hd bounded and uniformly continuous in c. Let us recall 
(see [22], Theorem 5.1) that the operator 

L = -A + (c + a(y)& - g’(4) 

with Neumann boundary conditions, is an isomorphism from its domain 
to a&,0 -see Definition (2.7) below -. Therefore, for d small enough, the 
above equation is uniquely solvable in w. This contradicts the definition 
of c*. 0 

Remark. - This result has already been proved in the one-dimensional 
framework in [5], where it seems to appear for the first time. 

2.3. Asymptotic stability and nonautonomous equations 

Everything is now stated in the reference frame of a travelling front, i.e. 
every wave 4 is now a steady solution. Let UC(%) be the space of all 
bounded, uniformly continuous functions in C. For T ~10, X- [, we set: 

(2.7) 
Define the space 

wr(x, y) = 1+ e-Tz. 

B,,,T)o = {u E UC(E) : w,u E UC(E)}, 

equipped with the norm: ]]u]]~~,O = J]w,(z, y)~(z, y)]lm. The space &,,.,a 
is used in [26] to prove a nonlinear stability result for the travelling waves 
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of case B, with a suitably chosen real number T. In the framework of case 
Al, the relevant space is UC(c). 

Notations 

1. Let 2 be a Banach space of continuous functions in c. For u E Z and 
S > 0, the ball of Z with centre u and radius S will be denoted by Dz (u, 6). 

2. For h E R, the x-translation operator will be denoted by rh, and 
defined by (7hu)(x,y) = ~(5 + h,y). 

3. Let A be the (unbounded) operator of X with suitable domain 
D(A) (including the Neumann boundary conditions), given by A = 
-a + (c + a(y))&. 

4. We will denote by X the Banach space UC(z) 
( 

resp. &,?,a with 

T < $, resp. XYi”(c*) < T < XY(c*) 
> 

in cases Al and B (resp. case 

A2, resp. case A3/ZFK). Further, we will denote by X’ the space UC(c) 
(resp. &,,u) in case Al and B (resp. case A2 and A3/ZFK). 

5. Finally, following Sattinger [27], it will sometimes be useful to work 
with the two Banach spaces, defined for every w > 0: 

X” = {w(t) E C(W+,X) : mfew”IIw(t)llx < +cm} 

E” = {w(t) E C(R+, R) : ;$e“t[u(t)l < +CQ} 
- 

We will need two kinds of results. The first one is a summary of our 
asymptotic stability results for the wave, and will be used in Sections 4 
and 5. The second one, which is a corollary, is a stability result with respect 
to small time-dependant perturbations; it will be of use in Section 7. 

THEOREM 2.2. - For 110(x, y) E X, let u(t, 2, y) be the solution of 

(2.8) u’ + Au = g(u), uo(O, 2, Y) = 4(X> Y) + ~o(~, Y). 

There exist a positive real number SO, one constant w > 0 and a function 
Y E q&x+4 SO)? ‘w) such that, for all ‘~0 E 23~(0, So), the function 
u - ry(vo)q5 belongs to X”. 

Theorem 2.2 for case A2 is basically proved in [26]. Its proof for cases 
Al, A3/ZFK and B is the same as in case A2 in the main lines, but a few 
details differ in cases Al and B. 

COROLLARY 2.3. - For uo(x, y) E X and h E X2”, let u(t,x, y) be the 
solution of 

(2.8) u’ + Au = g(u) + h(t), uo(O, z, Y) = 4(x, Y) + Uo(? Y). 
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There exist positive real numbers 00, ~,u,o, one constant w > 0 and a ,function 
y E q?,y(O, 5”) x B,L (0. /Lo). R) such that, ,for all q) E B~(0.6,~) and 
h E B-YLL (0: pg), the,fLmction II - r,(,.,,.,,)41) belongs to X”. 

Both proofs will be sketched in Appendix. 

3. LONG-TIME BEHAVIOUR RESULTS 

First consider Cases Al-A_?/ZFK. The initial datum u(~ will always be 
assumed to be between 0 and 1. For Cases A 1 and A2, it will be below H for 
large negative :I:. We will see that, according to how big the set {YQ) > H} 
is, the solution will either converge to a unique front, or asymptotically 
vanish, or develop into a pair of two travelling fronts. 

3.1. Convergence to travelling fronts 

The initial datum is assumed to have different limits at fc~. In all cases, 
this implies convergence to a front. In what follows, let us recall that 
~(t, X, y) is the solution of the Cauchy problem (l.l.a)-( 1.1.~). 

THEOREM 3.1. -Assume case Al holds and take UU~ in UC(c). Additionally 
assume that there exist HP < H. H+ > H such that: 

(3.1) lim sup 7ro( :I;‘, jj) < H- . 
.Pi-,x 

hy)rtf ~LO(:I:, :fj) > 0,. 

Then there exist :I‘O E R and w > 0 such that 

Qt > 0. sup lu(t, x: ?/) - qq.c + 20 + ct, y)l = O(cq. 

(.r..y)EP 

Theorem 3.1 will be proved at the same time as Theorem 3.7 below about 
Case B. Turn to case A2 and A3/ZFK. It is now clear why we shall only 
treat the waves with minimal speed: the wave is stable in spaces where the 
translation operator is continuous, contrary to the waves with higher speeds. 

THEOREM 3.2. - Assume case A2 or A3/ZFK holds and take ILO in rJC(c). 
tn case A2, assume that there exists 0, > 0 and 7’ > 0 satisfying 

110 E &!,.,W hlhIlk&,?/) > H+, in Case A2 

(3.2) 7’ > pyc*)) 

‘Uo E &I( ,O? ‘,‘EFirf 710(X, w) > 0; in Case A3/ZFK 

Then the conclusion of Theorem 3.1 is valid, 
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We have not only improved the results of [27] by removing the 
monotonicity assumption, but also by allowing any exponential decay at 
-3c;, which is natural in view of the nonlinear stability assumptions in 
[26]. In [27], we basically needed ~0 to remain between two translates of 
(i for :c + -x. 

3.2. Propagation and extinction results 

Let (E, 4) be the travelling front solution of (1.1 .a), (1.1 .b) satisfying 
&cx;, y) = 1, &+3o,rJ) = 0, and (2.4). In case A2, the inequalities 
(a + <tr> > 0, -i: - <a> > 0, imply C < c. In case Al, we just suppose 
that this inequality is true; for N = 1 it holds as soon as the total mass 
of 9 is positive. As for Case A3/ZFK, we shall denote by (x1, the maximal 
admissible speed. Set CL :=] - L. L[xw. 

THEOREM 3.3. -Assume case Al holds, and that C < c. Take ug E UC(c) 
satisfving the following condition: there exist S > 0, rt > 0, L > 0 such that 

Then 

1. IfS and L are small enough, then Ilu(t)/jW = 0(e-&+)forsome w > 0, 

2. Jf L is large enough, then there exist :cl. ~2 E F% and w > 0 such that 

THEOREM 3.4. - Assume case A2 holds. Take ~0 for which there exist 
6 > 0, r > 0, rt > 0 and L > 0 such that 

(3.3) 
7~0 > H+rj in CL, TLO 5 8-q in C\CL+hr Iuo(5, y)j = C(e-‘I”‘) asz + +W 

Then 

1. If L and 6 are small enough, then S(t)uo goes uniformly to 0, 

2. !f L is large enough, then there exist z1,22 E R and w > 0 such that 

sup 
(J-,Y)EF 

Iu(t,x, y) - @(x + Xl + et, y) + $3(x+x;, + Et, y) - 1) I= 0(eY). 

Turn to Case A3/ZFK. We only consider initial data with compact 
supports; the generalisation to data having prescribed exponential decays at 
fm can be made by the interested reader with the aid of [22]. 
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THEOREM 3.5. - Assume case A3/ZFK holds. Take ug E UC(c) with 
nonempty compact support. There exist x1, x2 E R and w > 0 such that 

sup 
(X,Y)EC 

Iu(t, x, y)- (&* (x+z1+c*t, y)+&, (x+52+E*t, y)-1) )= qe-q. 

Theorems 3.3 and 3.4 are the multidimensional analogues of Theorem 3.2 
in [l l] and Theorem 3.2 in [2]. Theorem 3.5 seems to appear for the first 
time, even in the 1D case. In this latter case, the reader may see that, if u. 
does not have a compact support but decays exponentially at one or two 
of the ends of the cylinder, one may have many combinations of diverging 
fronts. These three results will be proved in Sections 6 and 7. 

The first four theorems admit a corollary, which describes the long-time 
behaviour of the solution when u. is assumed to be above 0 only in 
cylinders of the form R x w’, with w’ c w, and this is the purpose of 
Theorem 3.6 below. We will restrict ourselves to Case A2, because the 
applications that we really have in mind are related to the thermo-diffusive 
model for flame propagation. The interested reader may state analogous 
results for the bistable case. 

For w’ c w, w’ measurable, we set CL,~, =] -L, L[ xw’ and C,, = Rx w’. 

THEOREM 3.6. - Assume case A2 holds, and take ug E UC(~), compactly 
supported. 

1. Assume there exist w” c w’ c w and 71 ~10, t?[ such that 

If ]w”] and ]w’\w”] are small enough, then S(t)uo drops uniformly below 
0 in jnite time. Conversely, if ]w\w”] is small enough, then the conclusion 
of Theorem 3.2 holds. 

2. Assume there exist w” c w’ c w, 6 > 0, 81’ > 0, 17 > 0 and L > 0 
such that 

(3.5.b) 
u0 2 d + rl in CL,J,, 7~0 < 19 - rj in C\CL+~,~, : 

)uo(x, y) 1 =O(e-7’1z1) as :L -+ foe. 

If L is large enough and ]w\w”] is small enough, then the conclusion of 
Theorem 3.4 holds. 

Theorem 3.6 has a very practical meaning: if one believes in the accuracy 
of the thermo-diffusive model, one sees that a flame has to be initiated in 
a large part of the cylinder, if one wishes it to propagate. 
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Theorem 3.6 is proved in Sections 6-7, as a corollary of Theorems 3.2 
and 3.4. 

3.3. Generalisations 

First, let us consider case B. A reasonable assumption on u. is to ask 
$r 5 u. <_ $~s. To formulate a slightly more general assumption, we 
introduce the problem 

(3.6) 
tit-AlCl=g(y,$) inw 

q!J=o on dw 

Let PO > 0 such that, if II$o - $JIII~ < PO (rev. 1140 - $211m < PO), then 

the solution of (3.6) starting from go is attracted by $i (resp. $J~). Let 
us set, for 2~0 E UC(C): 

(3.7) 

rll(u0) = max(limsu~suplu~(~,~) - @I(Y 
z--)-cc yeA 

l;yyJ;F; bob Y) - Th(Y)l) 

~26~0) = max(IIIb0lL - $J,, IIII~oIL - +211,> 

THEOREM 3.7. - Assume Case B holds, and assume that 
max(vl (uo), r/z(uo)) 5 PO. Then the conclusion of Theorem 3.1 holds. 

It finally remains to deal with System (1.8). 

THEOREM 3.8. - Assume that the initial datum (uo, vo), together with 
satisfying (1.8.c), is such that ~0 and 1 - v. belong to BWT,Ofo~ some T > 0. 
Then there exists x0 E Rsuch that 

,)=I, SUP (M&x, Y) - 4qx + 20 + cc Y)I 
(%Y)EC 

Theorems 3.7 and 3.8 are closely related to Theorems 3.1 and 3.2. They 
will be treated in separate sections, with the emphasis laid on the additional 
difficulties. 

4. COMPACTNESS IN X 

In [ 111, Fife and McLeod get compactness by confining S(t)uc between 
two functions 1 and 21, each of them converging to a travelling front. In this 
scope, they constructed two functions qi(t) + 0 and <i(t) -+ EzF E W, such 
that%(t) = 4(x++Ct+Ei(t))-qi(t) (resp. E(t) = $(x+ct+Ez(t))--42(t)) 
is a subsolution (resp. a supersolution). 
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Their construction can be very easily extended to the multi-D setting in 
case Al, and we did so in [27]; however we could not carry it over to case 
A2 with the natural assumption. We give here an alternative construction, 
based on Theorem 2.2. It will be convenient to work in the reference frame 
of a travelling wave; we still denote by :I: and my the new coordinates. 

LEMMA 4.1. 

1. (Case Al and B). Let IQ be as in Theorem 3.1 or 3.7. There exist q > 0, 
w > 0, and <I < 12 such that, .for to large enough, there holds: 

(4.1) v’t > to: T[, q5 - qPt < S(i)U() < r&c+5 + qc-+ 

2. (Case A2 and A3/ZFK). Let ‘~0 be as in Theorem 3.2. For to > 0 large 
enough there exist q > 0, w > 0, and <I < (2 such that: 

(4.2) ‘v”t 2 to, rc, (4 - q/w5e -q < S(t)210 2 7-~,($ + q/*w@) 

The proof relies on Theorem 2.1. The following lemma will be useful. 

LEMMA 4.2. 

1. Assume case AI or B holds, and let uug fall in the relevant assumptions. 
Let q be defined as in (3.7). Then 

(4.3) &gVl (S(QLO) + r/2 (Wuo)) = 0. 

2. Assume case A2 or A3/ZFK holds, and that ~0 is as in Theorem 3.2. 
Then, for all t 2 0, <u(t) belongs to B,,:, .(); moreover it satisfies 

(4.4) lilix(hrl~t_f u(t, :c, y)) = 1. 

Proof. - As for rll, the proof is an easy adaptation of Lemmas 2.2 
and 2.3 in [27]; therefore it will be omitted. As for rf2, it is hardly more 
complicated: we simply have 

W($l + ‘Il*(u”)) I s(t)% I W($l + Q’uo)); 

Proof of Lemma 4.1. 

1. Bistable case. Let C/J be a travelling wave. Set ljo E 1, and notice that 
60 

ljo E X; let 60 > 0 be as in Theorem 2.1 and set E = -. From Lemma 
2 

4.2, part 1, select to > 0 large enough so that 
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Therefore there exists M > 0 such that 

From the maximum principle, we have, for all t > to: 

S(t - to&&h - EWO))< S(t)uo 5 qt - to)(?u(4 + ,,Io,>. 

The equation and boundary conditions being x-independant, the semigroup 
S(t) commutes with the z-translation operator; we get therefore 

T-Ar(q - to)(4 - E’UO))I S(t)lLo < r,,(qt - to)($h + EWO)) 

Application of Theorem 2.1 to $J f E~J~ and use of the continuity in X of 
the z-translation operator exactly yields (4.11, with “cl = -A4 - ET(-E), 
x2 = M + &Y(E) and some 4 > 0. 

2. Ignition temperature case. It should be noticed that, in Theorem 3.2, 
T may be assumed to be so small that Theorem 2.1 holds in BW,7,0. This 
will be understood to hold without further notice. 

Let 4 be a travelling wave. Set v. = l/w;, and select e. > 0 so small 
that Theorem 2.1 holds with E and uo. Choose to large enough so that, by 
virtue of Lemma 4.2, part 2, one has: 

l&Aninu(to,x,y) > 1- ;, 

and remember that S(ta)zla still lies in &.a. Therefore one may find 
M > 0 large enough so that 

Arguing as in part 1 of this lemma yields (4.2). 

3. ZFK case. Same treatment as the ignition temperature case. l 

COROLLARY 4.3. - Select S > 0. In cases Al-A3/ZFK and B, the set 
{S(t)uo, t > S} is relatively compact in X. 

The proof relies on Lemma 4.1 and Ascoli’s Theorem; it is by now 
standard and we omit it. The reader may refer to [ll]. 

Armed with Lemmas 4.1 and 4.3, we may start the proof of the first 
three convergence theorems. 
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5. QUASICONVERGENCE AND PROOFS 
OF THEOREMS 3.1-3.2 

This section presents the basic version of our results, namely Theorems 
3.1 and 3.2. The cornerstone of our argument is Proposition 5.2 below, 
which states that any w-limit contains at least one x-increasing element. 
The section is divided into three paragraphs: in the first one, we state a 
boundary form of the Hart-rack inequalities; in the second one, we state and 
prove Proposition 5.2. Finally, we end the proofs of Theorems 3.1 and 3.2. 
As in Section 4, we work in the reference frame of a travelling front. 

5.1. A boundary form of the parabolic Harnack inequalities 

On Q = R+ x C consider a nonnegative strong solution of 

(5.1) ut - Au + B(t, z, y).Vu. + c(t, 2, ~J)U = O> 

with Neumann boundary conditions. The coefficients B and c belong to 
C6>S (Q); moreover we assume 

(5.2) II%-(Q) + kdb(Q, 2 b 

From the usual Harnack inequalities [ 181 one can prove 

PROPOSITION 5.1. - For every M > 0, there exists T(M) > 0, 
ST(M) < T(M) and K(M, p) 2 0 such that: 

(5.3) V’t e]T(M), +co[, 

r>,>ti-n6fT(.hi) 4.~ 5, Y) 2 K(M> P) sup 4% z, Y). 
- r-T(nr)+or(M)~.~t-T(hl) 

(I,Y)ECAf (.Z,Y)ECM 

The elliptic version of this result may be found in [4]. We have stated the 
form that will be of use to us. Proof and comments can be found in [27]. 

5.2. A property of the w-limit sets 

Recall that the w-limit set of ~0 E X with respect to the semiflow S(t) 
is the set 

W(UO) := {$ E X : 3(t,)n/ lim t,, = +oc and lim S(t,)uo = r/j}. TL-+CE n-+52 

In both cases A and B, any w-limit set is nonempty and compact by 
Corollary 4.3; moreover, as is well-known, it is connected and positively 
invariant. We want to prove the following 
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PROPOSITION 5.2. - For every u. E X, there exists $ E w(uo) which is 
x-increasing. 

We will see that this property forces the solution to become x-increasing 
on every compact subset of c in finite time. Notice that, due to the standard 
parabolic estimates [20], the function $ belongs to W3@ (C). Furthermore, 
we may suppose that & > 0 in c. Indeed, if it were not true, we would 
still have (S( l)$),> 0 in E, due to the strong maximum principle. 

Let ~0 E X be selected once and for all. From Lemma 4.1, there exist 
two real numbers hl 5 h2 such that 

Denote by h the following application, defined on w(uo): 

V$ E w(zL~), h(Q) = Inf{h > 0 : Vk 2 h,Tk$ 2 $}; 

from (5.4) we see that h(g) is finite for $ E W(Q). Also, as can 
easily be noticed, the function h is nonnegative lower semicontinuous 
on w(uo); therefore, by compactness, it attains its minimum ho at some 
point $0 E W(UO). We will prove by contradiction that ho = 0. 

Assume therefore that ho > 0. Notice that, from the definition of ho and 
the maximum principle, we have h(S(t)qbo) = ho. The contradiction will 
follow from two intermediate lemmas. 

LEMMA 5.3. - There exists IL > 0 such that 

(5.5) vt 2 0, SUP (W$ob +ho,~) - S(t)$o(z,z/)) 2 K 
(%Y)EC 

Proof. - If this were not true, there would exist a sequence (t,), such that: 

However, whether t, belongs to Iw or not, (iii) cannot be true because 
of (5.4). Hence Lemma 5.3 holds.0 

For every 6 E R, let d(t, x, y) be defined as 

(5.6) 2.‘% x, y) = W$o(z + ho - 4 Y) - S(t)Qo(x, Y) 

We will turn estimate (5.5) into a lower estimate for v6 on every compact. 
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LEMMA 5.4. - For every M > 0 large enough, there exist do(M) ~10, ILO[ 
and p(M) > 0 such that 

Proof. - Let ta > 1 be as in Lemma 4.1; also assume that it is large enough 
so that, for all M > 0 large enough and for all t > to, the left handside of 
inequality (5.5) is attained on C,r. The function v” is a solution of 

notice that the coefficients of the equation satisfy assumptions (5.2) and 
that t/O is nonnegative. From Lemma 5.3, the quantity sup ItO@. 2. y) 

(J-J)ECAf 
is estimated from below on [to, +co[ by a positive constant; by the strong 
maximum principle we may in fact write 

inf( sup 
f21 (J-,?/)E?=AI 

,d’(t, :c, y)) > 2/h(M). 

for some p(M) > 0. But we have ~up(~,~,~)~n~, ~~(t, 2, y) < +W from the 
standard parabolic estimates; hence the existence of 6,(M) is guaranteed. l 

Proof of Proposition 5.2. - Let 8i be defined as follows: 
1. There exists y > 0 such that y’ 2 -y on [I - 01,1], 
2. If case Al holds, there exists 7 > 0 such that 9’ 5 -y on [0, Hi]; 

if case A2 holds then H1 5 i. 

3. If case AUZFK holds, then there exists y > 0 such that g’ < y on 
[0,&l, and Problem (2.5) with y instead of g’(O), has two real positive 
solutions 

From (5.4), there exists M > 0 such that 

V(t, x, y) E R,] - 3~. -M] x w, 0 < S(t)yilo(z + k, 1/) 5 01: 

(5.7) v’k E [O, ho], 

V(t, x> y) E.R+[M. +m[ xw. 1 - 81 5 Cs(t)Q$)(z + Ic,lJ) 5 1. 

If case Al or A2 holds, we take 19~ E ] . ( . 0 inf H 1 - H .h)[.LetM>Obe 

chosen once and for all such that both Lemma 5.4 and (5.7) hold for M. 



EVENTUAL MONOTONICITY AND CONVERGENCE 519 

We are now going to study the evolution of S(t)@++ By compactness, 
there exist a sequence (tn), and ticxs E W(Q) such that 

From the definition of ho and Lemma 5.4, we know that, for all (2, y) E En1 
and k 2 ho - So, &(x + k,y) > $,(~,y). Let us see what happens for 
II: > M. From Point 1 of the definition of 0i, there exists a continuous 
function p(t, IC, y) 5 -y such that, or all 5 E [0, &I, the function v6 satisfies 

,I: + Ad’ - p(t, 2, y)v* = 0 for (2, y) E]M. +ec[xw, 

dd 
~ = 0 for (5, y) E]M, +c0[xdw, 
3v 

v”(uf,y) > 0. 

Therefore, by the maximum principle, there exists q > 0 such that, for 
all (x.,Y) E Pf, + 03 xw, the inequality: rib(t, X, y) 2 -qe-7’ holds. This [ 
implies that gQ3(x -t !~,y) > $J~(x,Y) for (z,y) E [M, +oo[xw and 
k > h(, - b(). 

To see what happens for x 5 -M, we have to distinguish between each 
case Al -A3. The same argument as above works for case Al, therefore 
turn to case A2. This is not much more complicated, because 2r6 is larger 
than a negative solution of te pure convection-diffusion equation in the half 
cylinder, with a zero limit at z = -co. Lemma 6.1 below asserts that such 
a solution tends to zero as t + +oo. 

It therefore remains to treat Case A3/ZFK. We follow an idea of [26]. 
Set /& = c, + <a>; recall that j% > 0. For any n E]O,&[ let p(n) be 

the principal generalized eigenvalue for the problem: 

(5.8.a) -a,+ + ++/)- <a> +7?)‘(/1 = (r2 + y)?) in w! 

ayi, -=o 
dv 

on dw. 

Let rl be chosen once and for all so small that 0 < p(v) < 
XY(C*) + XyyC*) 

The existence of p(q), follows from point 3 and [8], 
Section 3.2We denote by p the real number p(n), and by d,-(y) one of the 
corresponding positive eigenfunctions. The function Gb(t, x, y), defined by 

‘d(t,x,y) = e~z”yl/L(y)iP(t,.T,~y) 
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satisfies the equation 

(c* + a(y) - a,g 
+ (PA + @(t> z, y))G” = 0 in ] - co, -M[xw, 

dG” 
- = 0 for (z:,y) E] - co, -M[Xdw> 
au 
,ityt, -M, y) 2 0 dyt, -co, y) = 0. 

The coefficient IJ is nonnegative. Therefore, there exists q > 0 such that, for 
all (x, y) E] - cc, -M[xw, the inequality: ~~(t,,r, y) 2 -qe-PP*t holds. 

To sum up, we have just constructed, in all the three cases, $m E w(uc) 
such that, for every k 2 ha - So, the inequality rk$oo > JI& holds, which 
implies: /I($,) 5 ho - So. This contradicts the definition of ho. l 

5.3. Eventual monotonicity and convergence 

We are now able to prove, in a few lines, Theorems 3.1 and 3.2. 
However, a consequence of Proposition 5.2 is finite time monotonicity on 
every compact set. We are going to dwell on this property for a while, 
because this is really the effect that allows convergence. 

PROPOSITION 5.5. - For every M > 0, there exists T(M) > 0 such that, 
for all t 2 T(M), we have: (S(t)u~)~ > 0 on Cn;r. 

Proof. - Let II, E w(ua) be such that $, > 0 in c, and let (C,),be such 
that IlS(t,)u~ - $4~ and Il(S(t,)u~)~ - TLIIx go to 0. 

A consequence of Propositions 4.4 and 5.3 of [27] is the fact that every 
z-nondecreasing orbit is L”-stable; in particular there exist C($) > 0 
and co($) > 0 such that, for E 5 eo(lj/), and for all ua E Bx/($,E), the 
following inequality holds: 

Further, from Proposition 5.1 and (5.4), for every M > 0, there exists 
,u(M) > 0 such that (S(t)y5)z 2 p(M) for every t > to on CM. This 
proves Proposition 5.5. 0 

We could appeal to Proposition 5.5 to end the proof of our convergence 
theorems. However, in [27], we obtained convergence results for z- 
nondecreasing orbits; so we are going to use them. 
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Proof of Theorem 3.1 and 3.2. - Theorems 1,l and 1.2 of [27] assert the 
following: when ~0, besides satisfying assumptions (3.1) (bistable case) or 
(3.2) (ignition temperature case), is z-nondecreasing, then Spa converges 
to a travelling front. As for Case A3/ZFK, we use Theorem 12 of [22]. In 
fact, in the ignition temperature case, Theorem 1.2 is stated when 5 is 

between two constants, but it works perfectly with assumptions (3.2): what 
we in fact needed was Lemma 4.1. 

Let once again $J E W(UO) be such that $z > 0 in c. From (5.4), it 
perfectly fulfils the assumptions of Theorems 1.1 and 1.2 of [27]. From 
these theorems, we infer that S(t)+ converges to ~4, for some real 
number h. From the closedness of w(uo), rh4 E w(‘IL~). This is exactly 
quasiconvergence. Now, as we said in introduction, this property, together 
with asymptotic stability, implies the convergence of S(t)uO towards ~~4.0 

6. CONVECTION-DIFFUSION EQUATION, EXTINCTION, 
REFINED CONDITIONS FOR THE CREATION OF ONE FRONT 

In [2] and [3], Aronson and Weinberger noticed that exctinction occurs 
when the part of C in which the initial datum is above 0 is small enough; 
their analysis required two ingredients. The first one is the time-decay 
property of the linear heat equation; the second is the possibility of 
converting an initial L2-estimate into a not much bigger L” estimate for 
later time. All that we will have to do is really to check these two properties, 
and this section is nothing but rewriting in terms of our nonselfadjoint 
problem the estimates of [2] and [3] for the particular case of the heat 
equation. In what follows, Ar, will always be understood with Neumann 
boundary conditions. 

LEMMA 6.1. - Let p > N be chosen. 
1. There exists C, > 0 such that, for all IV0 E LP(C): 

vt > 0, lle-tA~Oll~-(~) 5 Cp 1+ -$ II~oIIL~(c). 
( .) 

2. There exists C, > 0 such that, for all $0 E LP(w): 

3. Let IV0 E UC(c) b e such that ,,kym Wo(z, y) = 0. Then 

lim I]e-tA 
t++cc WOlIP(C) = 0. 
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ProoJ - This lemma is well-known. Points 1 and 2 stem from the fact 
that (resp. etAy ) is an analytic semigroup in every D’(C) [ 161. As for 
Point 3, a proof involving detailed asymptotics of the fundamental solution 
can be found in [ 121. Here is a quick - but less precise-argument. 

Set W(t) = c~;‘I&‘~~. The semigroup e-t-A 1s a semigroup of contractions, 
therefore we assume that WC, has compact support in c; the result follows by 
density. Multiplication of the equation for W by W and integration yields 

(6.1) W(t)’ dxdy + t lVW12 dsdxdy = 

From the maximum principle, identity (6.1) and parabolic estimates, the 

function t H 
.I 

IVW(t)12 dxdy IS uniformly continuous; therefore, from 
c 

(6.1), it goes to 0 as t + +c. Further, the function t H 
I 

W(t)’ dxdy 
.z 

goes to a limit as t + SIX, and there exists (&),, such that 
(W(t,,)), converges in HtO,(C) to some function W”. In view of the 
above remarks, W” is constant, and therefore W” z 0. This implies 
,;=1, IIWlIH’(C) = 0. 

At this point, one only has to apply a classical bootstrap procedure to 
reach decay in L”. l 

For the extinction results, we prove that I := S(t)uo falls under t? in 
finite time by following the idea of Aronson-Weinberger [2], [3]. As for the 
convergence part of Theorem 3.6, paragraph 1, we just have to examine 
the limiting equation for u - as z + +co for large-but finite-time. 

Proof of Theorem 3.4, part 1. - The set of initial data ~~~ will be chosen 
below a reference initial datum, denoted by ?lo, such that (3.4) is true for 
Ua, with given Lo, &, ~0 and ro. 

From the integral identity 

/’ 

t 
(6.2) u(t) = ‘7LO + “-(t-+Ag(7L(s)) ds, 

. 0 

one may write, from Lemma 6.1 and for p > N: 

However we have, from (6.2) and the fact that is contracting in LP(C): 

ll(U(t) - H)+IlLP(C) 5 (L + 2b)V + IlSllLip ,l’ II(7L(s) - e)+ll~~J(~) ds* 
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which implies, by Gronwall’s Lemma: I[(u(~) - H)+IIL~cc, < (L + 
2fi)vei~.9~~~~i~t~ To sum up, we have obtained the following inequality, for 
some large C: 

From Lemma 6.1, there exists to such that e-tOil~g 5 ;; therefore, 

if we choose (L + 2s)~ 5 $,e-~~~l~~~~~t~ 
Li 

we have u(to) 5 8, and 

,u(t) = c- (t-tO)il~(tO) for t >‘z. A second application of Lemma 6.1 
yields Part 1 of Theorem 3.4: l 

Proqfof Theorem 3.3, part 1. - Let ?& E UC(%) be equal to 1 on CL+*, 
and equal to B - rl on C\CL+~~. Let G(t) be the solution of 

(6.3) E’ + Au = g(z), u(O) = ?&,, 

with ij = 0 on [O,e] and ij = g on [Q, 11. Then so, 5 ?I; moreover the 
same argument as above, applied to E(t) - 0 + 7, shows that ?L(t) falls 
under B - 5 in finite time, say, after to. Therefore, so, is dominated, 

for f. > to, by the solution of the equation U’ = ,9(~), u(to) = i, which 
converges exponentially to 0. 0 

To prove Part 1 of Theorem 3.6, we examine the asymptotic behaviour 
of the solutions of the problem 

(6.4) I& - A,$ = .9(G) in w ?I,$ = 0 on i3w. 

LEMMA 6.2. - Assume that $(t, y) is a solution of (6.4) with $(O, y) E 
[O; 11. Then $(t, y) g oes to a constant which either belongs to [O, 01 or which 
is equal to 1. 

Assume*further that there exist w” C w’ C w and q ~10, e[ such that 

(6.5) 11,(O) > 19 + rj in w”! 7)(O) 5 19 - rj in w\W’. 

If Iw”I and (w’\w”I are small enough, then $(t) drops uniformly below @ 
in finite time. Conversely, if Iw\w”I is small enough, then ti(t) goes to I 
umformly. 

Proof. - The maximum principle and the Hopf lemma tell us that the only 
steady solutions of (6.4) are the constants in [0,8] or 1. Further, for every 
1c, E [OJI u {11, we have x,(-A, - g’($)) 2 0. Since 0 5 $(O) < 1, the 
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w-limit-set of g(O) is nonempty; further, Theorem 11.1, part (ii) of Lions 
[21] asserts that it is a singleton. 

Therefore, it only remains to give sufficient conditions ensuring that q(t) 
will either converge to 1, or to some constant less than 8, but this is not too 
difficult: indeed, if ]w”] and ]w’\w”] are small enough, the same argument 
as in the proof of Theorem 3.4, part I proves that ii,(t) drops uniformly 
below H in finite time. On the other hand, if ]w\w”] is small enough, then 

r/ + 30 
<q(O)>> H + z, and since $(t) > e+“$(O), then $(t) > i for 
large enough t. l 

Proof of Theorem 3.6, part 1. - Straightforward in view of Lemma 6.2: 
if Iw”] and ]u’\w”] are small enough, it is possible to construct $, > 1~0 
satisfying (6.5) - possibly with different w’ and w” - such that the solution 
7/l(t) of (6.4) with initial datum ?i/c will eventually drop below t)a and 
extinction will occur. Conversely, if ]w\w”] is small enough, then by 
Lemma 6.2 once again: lim,+m(lim inf,X.+oo u(t, 2. y)) = 1; therefore 
S(to)ua satisfies the assumptions of Theorem 3.2 for to > 0 large enough. l 

7. AN ELLIPTIC PROBLEM IN A FINITE CYLINDER 

If we wish to prove propagation theorems in Case A2, we have, as 
it will be clear later, to prove that the solution goes to 1 somewhere. 
This can be done very quickly by noticing that the solution of the ODE 
ii = g(u),v(O) > 0 goes to 1 as t. + +oo. It is also possible to take a 
much longer way, which gives us an insight in the solutions of the steady 
problem in a finite strip. This insight is of independent interest, and this 
is why we are going to spend some time on it now. For L > 0 let us 
consider the problem 

--A$ + cx(y)&. = g(q) in CL 

(7.1) 
&jl 
- =0 on] -L,L[xi)w 
i3v 

$(fL,y) = 0 in w 

Let us notice that, trivially, all the solutions of (7.1) remain between 0 
and 1; this will not be said again. Let us also point out that, in one space 
dimension, the problem is fully understood; see [30], Chapter 13. 

For a solution Q of (7.1), we set 

PI($) := /11( - A + 4vPz - g’(Q)) 
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THEOREM 7.1. - Assume g satisfies the assumptions of case A2, and 
that o has zero mean. For L > 0 large enough, Problem (7.1) has at 
least three nonnegative solutions: the zero solutions, and two positive 
solutions $L < 7+!~,‘, which additionally satisfy pi(O) > 0, pl($,L) < 0 
and ,LL~($~) > 0. Finally there holds, uniformly on compact subsets of %: 

An open problem is the number of solutions between 0 and 4,‘. 
Only the “ignition temperature” case is be treated, once again because 

this is really the one we have in mind. The bistable case will be examined 
somewhere else. 

Adapting the method of [6], we see that there exists a unique solution 
$” to the problem 

(7.2) %=O 
all 

0nR xdw + 

ti,(o, Y) = 0 $,(+m Y) = 1 

Moreover, $J,” > 0 in C. In the same vein, there exists a unique $-W 
solution of the same PDE as in (7.2), but posed in C-, and such that 
r+&(-co, y) = 1, rj”(O, y) = 0. In this case we have r/&, < 0. This 
implies the two following lemmas, that will be useful to us in the proof 
of Theorem 7.1. 

LEMMA 7.2. - Let ($J~)~ b e a branch of nontrivial solutions of (7.1) in 
CL. Then one of the two statements holds. 

1. There exists (L,), going to +co, such that, uniformly on EL,, there 
holds 

lim sup $,L, 5 0. 
n-++CXZ 

In this case, there exists an interval I, of ] -L,, L, [, with L lily, IL,/ = +co, 

such that $JL, tends to 0 on I, x W. Furthermore, pl($~y) < 0. 
2. There holds I---L$L + Gcu, uniformly on the compact subsets of c+. 

In this case, there exists z(L) > 0, such that min(]z(L) - I;(, IX(L) + LI) 
is a bounded function of L, and such that there holds 

Finally, there exists S > 0 such that p1 ($,L) 2 6. 
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Proof. - Let the assumption of Statement 1 hold. In this case, there 
exists (z,,, :y,) E CL,, such that $L,, (:I:,, i yn) > 8. By elliptic estimates, 
and because g(0) = 0, there exists two sequences E,, + 0 and (I,,, + +x 
such that $L,, > 0 - c3, on [:I:,, - a,,, x,,, + (-L,,] n CL,, , which proves the 
existence of the interval 1,. To end the proof of statement l., we use a very 
classical argument: let us indeed recall that the assumptions on g imply the 
existence of ~10 > 0 such that ~(16) < u,g’(u) on the interval [O. H + *rlO]. 
Therefore the function ‘u := s$L,, > 0 satisfies 

-Au + Q(Y)G 5 .9’($~,, 17~ in CL 
i)u 
-=0 on]-L,L[xi)w 
?I71 

u(fL, y) = 0 in w 

which implies 1-1~ ($jL,, ) < 0. 

If now the assumption of Statement 1 does not hold, there exists H1 > H 
independent of L, and (zL,yL) E CL such that lJ/L(zL,gIL) > Hi. From 
now on, we denote by XL the smallest II: for which there exists y such that 
$&>Y) = 01. W e k now that the quantity ]ZL + Ll is bounded; otherwise 
there would exist a sequence L,, + +co such that (rs,,,, ‘(l/~,, )I, would 
converge to go0 solution of (7. l), but this time in C, with $,cu(O. :ym) = 19i, 
for some y, E W. By elliptic regularity, ]]$A~]]~~(F) < +oc. Let u < 0 < 11; 
integrating the equation for y’,w on [a, b] x w we get 

which proves that g(d),) E L1 (C). Therefore, multiplying the equation for 
$a and integrating we see that Vgoo E L2(C), which in turn implies, by 
regularity, that ]V$oo] goes to 0 as (z] -+ +oc, uniformly in y E W. By 
compactness there exist two sequences a, + --3o and b, --f +cx; such that 

in C’(W); since Or/j, vanishes as IX;/ -+ +CX the functions $&y) are 
constants, which we still denote by $+. 
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Now, the integral identity for g(4), with a = a, and b = b, yields, 
for large n: 

4, 

JJ 
’ g($m) dxdy = 

J 
a(~)($+ - $-) dy + o(l); 

a,, w’ w 

letting n + +oo and taking into account < (Y > = 0 we get: 

J’ 
g(g) dzdy = 0. As a consequence, either 11, 5 6’ or $ s 1; the two 

pgssibilities being absurd due to the fact that 11/,(0, yJcxI) = 01. 
The uniqueness of the solution $J” to (7.2) implies exactly that 

rLlj/~ -+ 4, uniformly on the compact subsets of c+. 

Let us now prove the assertion on the set { $,L > T}. If this were 

not true, there would exist a sequence L, + +cc, and a sequence (x,, y,),, 
of EL,, such that min( 12, - LnI! Jx, + L,I) tends to fco, and such that 

Letting n --f +oo and arguing as above on the sequence rZn$~,, , we end 
up with a nonconstant solution of (7.1), but this time on the whole cylinder 
C. This is absurd because Q has zero mean. 

It remains to prove that hl($~) is controlled from below. We recall that 
there exists A4 > 0 such that -M 5 ,~r(y5~) 5 M. Let us introduce an 
associated eigenfunction UL, and let (ZL, 9~) be defined such that 

There exists a sequence L, + +cc such that (rZI,, u), converges in CFO,, 
as n --+ +co, towards a function u,; moreover I-L~(~J/~,, ) + pm. Two cases 
have to be examined. 

Case 1. For a subsequence still denoted by (L,),, the quantity 
min(xl?, + L,, L, - XL,,) tends to +co. In this case we have 

-Au, + a(y)~zum - g’(l)u, = pL,u, in C 
d&C -=0 onRx3w 
av 

which obviously implies U, E 1 and pm = -g’( 1). 
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Case 2. the quantity min(zl + L: L - XL) is bounded. Assume that the 
first argument of the min is bounded; in this case we have 

-au, + n(y)&um - g’(pY)w, = p,u, in C+ 
&A, 
- = 0 

au 
on R+ x &J 

Because & > 0 in C, an argument similar to the one in [7], Proposition 
5.7, shows that pM > 0. Finally, in case the second argument of the min 
is bounded, one only has to introduce the solution 4 of(7.2), but this time 
in C-. l 

LEMMA. - Let O1 > 0 beJixed. For Lo > 0 large enough, there exists at 
most one solution I+!I~ of (7.1) such that 

If such a brunch (II, L L exists, it satisjes Statement 1 of Lemma 7.2. ) 

Proof. - Assume that there is a sequence L, --+ fco such that there exist 
4L, # GL,, satisfying the assumptions of the lemma. Set 

(7.3) 
GL,, - 4L,, 

cn := IWL - GL,, lIL-qC,,J 

Let (z,, yn) E c be such that &(zn, yjlL) = 1. The proof of the lemma 
can be obtained by deriving an equation for rz,, &, and arguing as in the 
end of the proof of Lemma 7.2. l 

Proofof Theorem 7.1. - It is based on the construction of a sub-solution. 
1. For O1 ~]0,1[ and b > 0, there exists a solution zJ,(z! y) of 

-Ati + Q(Y)PL = s($) in Ch 
ali) - = 0 
au 

on] - b,b[xdw 

$(ztb, y) = 19~ in w 

Indeed 19~ is a subsolution to (7.4), and 1 is a supersolution. 
2. For 6 > 0, we now want to solve the following problem: 

-A$ + a(y)qz = 0 in C- 

(7.5) ?fT = 0 
du 

on W- x dw 

,$(O, y) = HI, ,liIIl~ @g = 6 
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Let us first seek solutions of (7.5) - except the condition at x = 0 - of the 
form es(z, 9) = Sz i- 46(y). Obviously, for every given S > 0, there exists 
a unique solution of that form, since 46 has to solve -Ay+s + So(y) = 0 
in w, with Neumann boundary conditions (Recall that <n>= 0). Now, 
for A > 0, set 7/1(:1:,y) = eb(z, y) + A, 9(x, y) = eh(x, y) - A. For A 
large enough, $ (resp. $) is a supersolution (resp. a subsolution) of (7.5). 
A straightforward adaptation of the method of sub and supersolutions - 
solve (7.5) on ] - n,O[xw first, with $(-a,~) = eb(-a,!]); then pass to 
the limit a, -+ +cc - yields the existence of a solution of (7.5), which 
will be denoted by @. 

Let us now prove that 

(7.6) ;l,mo IPdP (0, .) IIP (w) = 0. 

By Theorem 5.6 of [1], Theorem 2.3 of [9] and the fact that e6 - A 5 ti6 2 
eg + A for large A, there exists E > 0 such that the following asymptotics 
hold, uniformly in y E W: 

7)*(x, y) = Sz + $6(y) + O(eEr) 
8zyP(x~ y) = 6 + O(e’,“) 

as 1c -+ -co. 

This proves, in particular, that 8z,1c16 > 0. Now, let (S,), be a sequence 
going to 0. There exists a subsequence - still denoted by (S,), - such that 
q%, + $)” m Cl(K), for every compact K c c-. Notice that the comer 
(0) x aw is not too annoying because of the Neumann boundary condition, 
which allows a local extension by reflection of $“, and so, in particular, 
convergence in (0) x ij. The function $” is still z-nondecreasing, therefore 
it has a limit 1(y) as x + -co. However, in view of Theorem 5.6 of [I], 
this limit has to satisfy -A,1 = 0 in w with Neumann boundary conditions; 
hence 1(y) E Constant := 1. Let us prove that 1 = 01. If it were not true, 
then &r/Y > 0. In view of Theorem 5.6 of [1] and Theorems 2.1 and 2.3 
of [9], r+P would have the following asymptotics: 

pY(2~, y) = l + e^-“(x”&(y) + 0(x?)) as :c + --03. 

The function eX-“$- (y) is an exponential solution of the first two equations 
of (7.5), and therefore changes sign if nonzero. Since a,$~” > 0, this would 
mean that in fact & G 0, and therefore that $” - 1 would decay faster 
than any exponential. However, for E ~]0,0,[ and A4 > 0 large enough, 
the function e(z, y) := cenlx satisfies 

-AC + a(y)e, = (-M2 + Mcu(y))e < 0 in C- 
de 
z = 0 
au 

on Iw- x dw 

do, Y) < 01, lim e(z, y) = 0 .ccI--w 
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Therefore we would have 1 + c 5 Y/I”, a contradiction. As a consequence 
II = Bt, and $” E HI. This implies (7.6). 

3. We are now in a position to construct a weak subsolution. The 
function $a of paragraph 1 of this proof is such that there exists IL > 0 
such that d,.$~~(-b, TJ) > 211, i),.$,(b, ?/) < -‘Z/L. From our considerations 
of paragraph 2 of the present proof, there exist $,(x. 71) (resp. $,(:c, 1~)) 
solution of 

-‘A$) + @(y)li/.r = 0 in ] - x, -b[xw (resp. ]h, +co[xw) 

w - = 0 
31~ 

on ] - x, -h[xi-)w (resp. 16, +oo[xi)w) 

$(-b, y) = 01 (resp. li/(b, y) = 0,) 

,ilIl ,4(X? Y) ___ > 0 
( 

resp. lim ___ 
ci,(x.y) < () 

s---30 :I; .I’ - + 32 2 > 
which additionally satisfy: &$,(-!I. y) 5 /L, i3,$~~(b: 1~) > -1~. Further, 
the set {$Q(x,~) = 0} (resp. {$a(:~:,:~) = 0)) has the form ((icr(y)!y). 
y E W) (resp.{zs(y);?/), ~1 E W}), where zi(y) belong to C’(G) and have 
XI(~) < -b, z~(y) > 6. for all 1~ E W. 

Now, the function yilL (3;. :v) defined by 

0 in {(x,~J) : 3: 5 21(y), TJ E w} 

&,(x,:r/) in {(x,y) : q(y) 5 n: 5 -6. y t w} 

(7.7) $,(LC.g) = &(x7?/) in x6 

&(:IL, y) in {(z, y) : b(Fy) < :c < x3(y). y E w} 

0 in {(XI. w) : :zj(:y) 5 .z’. :q E w} 

is a weak subsolution to the stationary problem corresponding to (1. I), 
which is in addition < 0a. 

4. Let us notice that, at this stage, we have not proved yet any information 
that is valuable enough to justify the above long developments. Let us do it 
now by examining the implications (7.7). Fix Lo > 0 such that 2, can be 
defined by (7.7). For every L > Lo, the function $J, - suitably gxtended 
by 0 outside CL” - is a subsolution to (7.1); therefo;e for every L > Lo 
there exists $2 > Y&(, solution of (7.1), such that pl($II/L+) 2 0. Because 

of Lemma 7.1, ,L~(‘JI~) > S for L > La large enough, and the asymptotic 
behaviour of Q,’ is obvious. 

Finally, let us deal with 1//L, by a classical degree argument - cf [30], 
Chap. 13 -. We transform CL into a fixed domain, and make L a bifurcation 
parameter via the change of variables :c H f. Set 

E = {u E C(cl). ~-1, .) = ~(1, .) = 0; -1 < u < 1) 
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Problem (7.1) may be written as F(L, U) = 0, F being a locally compact 
map from R+ x E to E. Let L > 0 be chosen so that ii/i exists. Let Ro be 
the ball of E with centre 0 and radius E, and let 62, be the ball of E with 
centre 41-4 and radius E. For E > 0 small enough, 0 (resp. ii/L) is the only 
solution of F(L, U) = 0 in no (resp. a+), and we have 

deg(F(L, .), Q), 0) = deg(F(L. .): (I+, 0) = 1. 

For L > 0 small enough, we have deg(F(L, ,)? E. 0) = 1; therefore, 
by invariance of the degree under homotopy, there exists a solution 
iii; E E\(Q) u a+) such that pl(djL) < 0. The asymptotic behaviour 
of V/I, is given by the combination of Lemmas 7.2 and 7.3. l 

8. CREATION OF TWO FRONTS 

A key ingredient is the time-exponential convergence to 1 on every subset 
of the form {(t, :I:) : & 5 n: 2 c’t} x w, with 2: < 2 < c’ < c. In [I I], 
Fife and McLeod proceed by sub and supersolutions, and we imitate them. 
To make the notations simpler we assume, until the end of the paragraph, 
and without loss of generality, that <tr>= 0. This implies C < 0 < c. 

The sub and supersolutions can readily be constructed as in [I I] for 
Case Al; and a little less easily for Case A2. A perturbation argument 
is then used. 

8.1. Sub and supersolutions 

Let us first deal with case Al. As said above, Lemma 8.1 below can be 
proved as in [ 1 I], Lemma 6.1, and its proof will not be given. 

LEMMA 8.1. - Let 1~0 be as in Theorem 3.3. Then, when L is large enough, 
there exist constants ~1, ~2, q > 0, w > 0 such that 

As for case A2, we first need the analogue of Lemma 4.2; this is 
unfortunately a little more intricate. We set Z&(X) = UI~( -:I:), for every 
r > 0. 

LEMMA 8.2. - Let uo be as in Theorem 3.4 and L be large enough so that 
Theorem 7.1 applies. There exist x1, x2, q > 0, w > 0 and to > 0 such 
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that, for all t > to, there holds: 

Proof 

1. We first prove the upper bound. The same method as in Lemma 4.1 
yields the existence of z2 such that 

S(t)uo L 4(x + .x2 + ct, y) + q/w5 (:l:)epYt. 

By possibly taking 52 large enough, we can also show: 

S(t)uo I $q:z + x2 + ct, :y) + q/‘w$ (-:lT)e?F 

The infimum of the right handside of the above two estimates is dominated 
by the right handside of (8.1), by estimates (2.2.b). 

2. The next four steps are devoted to the left handside. Let u!: first prove 
that S(t)uo tends to 1 uniformly on the compact subsets of :, as long as 
L is large enough. Choose $2 l ]0,6’ + v[ and a subsolution $ < 82 as in 
(7.7). When L > 0 is large enough, $J 5 1~~; therefore S(t)3 5 So. 
The function S(t)$ is time-increasing - because 41 is a subsolution -; as a 
consequence, by standard C2 estimates, it conver@s to a solution Y/) of 

on every compact of c. By the same arguments as in the proof of Lemma 
7.2, we can only have $ z 1. 

3. Define the functions *w(z.:y) and ,ti(:~:.y) as in (5.8), by 

10(3:, y) = fY”7fL(y): 1U(:l.,y) = e-fi%&J): 

the functions $- and *(i;- being positive solutions of 

(8.2) -A,li, + 7.(a(y)- <tr> +m/)‘ljl = r24i, in w, 2 = 0 on i)w. 

with rl small enough and E = 1, 7‘ = p (resp. E = -1, T = -5) if 
I,!J = I/- (resp. $1 = 7/;-). They will be chosen so that I\&[[, < 1. (resp. 
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9’(1) such that -9’ 2 -- 2 in [l-4&,1] 
and choose A > 0 once and for all such that 

(8.3~~) 
\J(‘ F -A + 1, $(C, Y> I 01, 1 - $(C> Y) 5 01 

K > A - 1, &S, Y) i 01, 1 - 4(<3 Y) 5 01 

In the whole sequel, we will set 5 = :c + A4 + ct, and e = z - A4 + Ct, 
with M > 0 to be chosen later. We require the functions T~J(< - A, y) and 
G(< - A, y) to be such that 

(8.4.6) MC - A, Y) = w(< - A, Y)) ==+ (WC< - A, Y) > 0 

It is enough to ask (8.3.b) to hold for t = 0; this is equivalent to impose: 

(8.3.~) 

Under this condition, there exist two functions Xl(t: y) < Xz(t: y) such 
that the following holds: 
(8.3.d) 

w((; - A) if II: < Xl(t, y) 

inf(1, ?u(< - A), G(t - A)) = 1 if z E [X1(& Y)> X2(4 Y)] 

G(< - A) if II: > X2@, y) 

We set c&t, 2, y) = inf (1, ~u(( - A), G(< - A)). Finally, we require in 
addition that 

(8.4) M>2A+2 

4. We look for a subsolution of (1.1) in the form 

(8.4) g(t, x) = (b(< + I(t)> y) + $(i + i(t), y) - 1 - rl(t)cp(t, :z, y). 

We furthermore require the following conditions to hold: 

(Cl) q(t) > 0; 9’(t) < o> 

(C2) c’(t) < 0, p(t) > 0, 

(C3) E(O) = 6(O) = 0, It(t)1 I 1, lE@)l L 1. 
Denote by N the nonlinear operator JVZL = ut - Au + C&)ZL, - g(u). 
The way to construct 9, < and { is now standard: assume that conditions 
(Cl)-(C3) hold, and estimate NE with barehands. 

Vol. 14, Ilo 4.1997 



534 J.-M. ROQUEJOFFRE 

Two parameters will need special attention: the initial value of y, denoted 
by E, and the real number M. Therefore, in the whole sequel, C will denote 
a nonnegative constant which does no depend on these parameters. Three 
cases are to be examined. 

Case 1. C 5 -A. 

This means that { < -A as well. In view of the definition of Hi, (8.2), 
(8.3) and (C3), we have cp(t, IC: y) = ZU(< - A, y) and 

However, we have, by denoting A+ the exponent playing the same role 
for 4 as the real number A+ in (2.2.b): g($(C + i(t).?))) 5 Cc’+? < 
Ce-2;\+nl,,x+c.,-(c-r)t 

We therefore require q to satisfy the inequality - notice that 7, and 
therefore p and ,ij may be chosen small enough to be < j\+ - : 

(8.5.U#) q'(t) + p(c - 71)q(t) > -&&w-iJf 

Case 2. -A < { 2 A. 

This time we still have c 5 -A and cp(t,z,y) = YJ(< - A,y). We get: 

HI& =r’w& + E(t). Y) + r,(cL(< + i(t). IY) 

- (q'(f) + P(C - 'rl)+(C - AY) + d&t + t(t), Y)) - g(x) 

However there holds: 

Set m = inf 
(T.Y/)ECA 

&.(2, y); it is sufficient to require: 

(8.5.b) tyt) < q’(t) ll.dl~iP 
m 

-&- (q(t) + ce-“i+*f.e-(c-y 

Case 3. < 2 A. 

In this case three subcases have to be considered, namely: < 2 A, 
< E [-A, A], c 5 -A. The two first subcases lead to inequations similar 
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to (8.5.a) and (8.5.b); the only differences is that they now involve i and c 
instead of < and 5. Therefore turn to the case < 5 -A. In view of (8.3.a) 
and (2.2) there exists y > 0, C > 0 such that there holds: 

Na IS“(W.r(C + I(t); Y) + Ex’w7L(C + I(t), Y) 

- m4t, :c; Y> + .!d4(< + c(t)> Y)) + d&1 + I(f), Y)) - !A) 

5 - (q’(t) + yq(t))cp(t! IC, y) + Cinf(ePXC, exi) 

-Y’(l) Here we have set X = inf(x+, X+). The real number y is equal to + 
L 

(  .  

resp -g’(l) + p(c -  7) -g’(l) 

2 
, - + #qq - C) 

2 1 
if cp(t,2, y) is equal to 1 

(iesp. w(< - A,y), G(< - A,y).) 

There holds: inf(eexc, eXc) = O(e-2xh’e-(“-‘)t). Therefore we ask y to 
satisfy a a similar inequality as (8.5.a). 

To sum up, if we wish u(t, z, y) defined by (8.4) to be a subsolution, 
the functions q, [ and ,$ have to satisfy the following three additional 
conditions, for some C > 0, X > 0 and y ~10, X[: 

(C4) y’(t) + yq(t) 2 Ce-2x”‘.e-(“-‘)t, q(O) = E, 

(a) <‘(t),E’(t) < C(q’@) - q(t) - e-2%-(c-F)t) 

Clearly, conditions (Cl)-(C5) are fulfilled as soon as E is small enough 
and M is large enough. Therefore, once they are chosen, u(t, z, y) defined 
by (8.4) is a subsolution. 

5. The conclusion is now easy: if 17 > 0 is chosen small enough in 
(8.2), then there exists b > 0 such that ~(0) < 0 on C\&,. Further, 
~(0) < 1, by construction. By Lemma 8.1, there exists to > 0 such that 
qkl)~o L u(O), and Lemma 8.2 follows from the maximum principle, 
with T small enough. l . 

8.2. Proofs of the propagation theorems 

In this paragraph, we drop the assumption <a >= 0. Let I’(z) be a 
nondecreasing, C” function, such that: I’(z) = 0 if 11: 5 0 and I‘(z) = 1 if 
:I: > 1. As in [ 111, we introduce the “left truncation” of S(t)uo: 

i 

S(t)uo if z 5 
c+c 
-t 

,d(t, z, y) = 2 

1 - I(z)(l - S(t)uo) if 2 > Ft 
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The “right truncation” PY is defined in a symmetric way. We will show 
that u1 converges exponentially to a travelling front; the same result can be 
proved in a similar way for 71”. This will imply our theorems. 

We come back to the reference frame of +5, still denoting by x and y the 
new coordinates. As in Section 4, we have the 

COROLLARY 8.3. - Select b > 0. In both cases Al and A2, the set 
{vyt + .), t > S} is relatively compact in Cloc( [0, +cc[, X). 

Proof of Theorem 3.3 and 3.4, part 2. - Let w(s&) be the w-limit set of VA; 
from Corollary 8.3 it is nonempty; therefore chose *~a E w( 1,;). By Lemmas 
8.1 and 8.2, there exist h1 5 h2 such that 71L, & < 7~ 5 rh.,+. Therefore, 
by Theorem 3.1 (bistable case) or Theorem 3.2 (ignition temperature case) 
there exists k E R such that S(t)~u converges towards ~4. 

Consider now the real numbers 00 and pa such that Corollary 2.2 works 
with ~4, and select S ~10, ba[. Denote the convergence exponent of Spa 
to rk$ by 2w; for every /I ~10, ,~a[, we may always assume - possibly 
by performing a sufficiently large translation in time - that 11’ satisfies an 
evolution equation of the type (2.8), with ]]h]ls~- L: jr. Select T > 0 
such that 

from Corollary 8.3 there exists some large to such that 

b 
IlvYh + q - S(T)uolls I -. 2 

Application of Corollary 2.2 shows that n”(t) converges to some translate 
of ~4 of order 6 + pu; since 6 and 11 are arbitrarily small, v”(t) converges 
to ~k$. The exponential convergence is also guaranteed by Corollary 2.2. l 

It should be noticed that there is an intermediate behaviour between 
propagation of two flame fronts and extinction. To be convinced of this, 
one only has to notice that, due to the preceding results, propagation and 
extinction are both “open” properties, i.e. that if one of the two behaviours 
holds for an initial datum, it will hold for all nearby initial data. This is 

true because S(t) 
t9 

ua has to be below j in finite time for extinction, or to 

be above a nontrivial solution of (7.2). Therefore what really plays a role 
here is the continuous dependence with respect to the initial data. As a 
consequence, by connectedness, there has to be an in-between behaviour. 
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Proof of Theorem 3.5. - It suffices to prove an inequality of the type 
(8.1) with c = c*. The upper bound is easily obtained, due to the fact that 
u. is compactly supported. 

The lower bound requires more care. Let g be a C3 function such that - 

g(O) = 0, g’(O) = g’(O), g is concave. 

There exists a unique fir > 0 such that g(0,) = 0. From Theorem 3.2 of 
[22], we see that S(t)uo becomes greater-than 8i on every compact subset 
of c. Let us then consider a sequence (ge)e>a such that, for all 0 > 0, go 
satisfies the assumptions of Case A2, and 

go 59 Fyi70 = g in C([O,ll). 

Let c0 and 2~ the corresponding wave speeds; from [9] we know: 

lim co = c*, 
0-O 

lim &j = C,. 
H-0 

Applying Lemma 8.2 to every go - it works uniformly for all 0’ < ; - 
then passing to the limit 8 + 0 yields the desired inequality. l 

Proof of Theorem 3.6, part 2. - Once again, nothing more sophisticated 
than continuity of the nonlinear semigroup and parabolic regularity is 
involved in this result. Let L > 0, S > 0 and ~0 E UC(C) be chosen so that 

(9 ~0 # 710 only on CL,+~~, 
(ii) u. satisfies (3.4) 

(iii) Theorem 3.4 holds with L - 1 and z instead of L and r/. 

Choose p > 71. By elementary P-continuity of S(t) - the reader who is 
still unfamiliar with the argument may consult [16] - we have, for every 
t > 0: 

IP(t)uo - s(t) II tlug LP(C) 5 2cPfI]Uo - VOIILP(~) < LCeCtlW\W”l. 

By abstract regularizing effect (see [16], Chapter 3) we have, for possibly 
different C: 

IlS(l)7Jo - ql),~ollL==(-q 5 -qw\q. 
Choosing Iw\w”I small enough leads to the fact that, at time t = 1, the 
solution S(t)uo is above 0 + 5 on CL. In view of (iii), S(t)uo develops 
into a pair of two fronts, and this terminates the proof of our long-time 
behaviour results. l 
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9. DIRICHLET BOUNDARY CONDITIONS 

This is devoted to case B, and we come back to the arguments of Section 
5. Since they have already been presented in detail, we will only insist on 
the technical differences. The section is divided into three paragraphs: in 
the first one, we state a uniform - possibly known - positivity result; in 
the second one, we prove Theorem 3.7. As in Section 5, we work in the 
reference frame of a travelling front. 

9.1. Refined Hopf Lemma 

We state the form that will be of use to us. On d) = R+ x C consider 
a nonnegative strong solution of 

(9.1) ‘/L+ - A,//, + qt. 3’. y).Vu + r:(f, :I’. :y)11 = 0. 
I 

with Dirichlet boundary conditions. The coefficients 1) and (’ belong to 
(9 f (Q); moreover we assume 

From the usual Hopf Lemma 1301 we shall prove 

PROPOSITION 9. I. - For every iLl > 0, there exists p(M) > 0 such that: 

(9.3) qt,:r:.y) E [1,+X[XX!,[. <qt. :I:, ;y) > ~L(l%f)d(~y, isw). 

Proof. - Assume the existence of a sequence (tn)71 going to +m, and 
of a sequence (:I:,, . ?J~,),, E C,YI such that 

(9.3) ?i 

We may assume that (:I;,,. :yrl) 4 (:I:,, ~1~) E c:,[. For t E [O. I], 
(.7:. !I) E c,q, and 71 large enough, let us set w,,(t. :I:. 1)) = ‘t~(t,, - 1 + f. cc. :y). 

Due to the smoothness assumptions (9.2) and the classical Schauder 
estimates, the sequence (,u,~),, converges, in C+“.‘+S([O, l] x C,,), to 
a solution TL, of an equation of the form 

(9.4) 11,t - au + o,(t, xc, :y).Vu, + c,(t. 3:. :y)?L, = 0. 

with Dirichlet boundary conditions. Two cases hold: 
- Case 1. ~1 E w. Then (9.3) implies u(~..I:,, :yoo) = 0, a situation 

precluded by the strong maximum principle. 
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- Case 2. r~ E Bw. Then (9.3) implies ~(1, :I;,: ylx;) = ~~(1, azoo, 1~~) = 
0, a situation which is this tipme precluded by the Hopf boundary Lemma. 

Therefore Proposition 9.1 is proved. l 

Remark. - This proposition could also have served us in the proof of 
Proposition 5.2. However, the Harnack inequalities could be readily used. 
Moreover, they need less smoothness than (9.2). 

9.2. Convergence for :x-increasing initial data, eventual monotonicity 
and convergence 

We first prove the equivalent to Proposition 4.4 in [27]. We take 
the notations of Section 2, 2.3. In X, let Y be the space of those 
functions u which are z-increasing, and such that lim u(:E, y) = &(;v) .1”-m 
and :,.$F~ *r/,(5, :l/) = &(?/-l). 

PROPOSITION 9.2. - Let ulo belong to Y. There exists EO(UI,~ > 0 and a 
constunt C such that, for every E < EO(U~“) and ,for awry ~~2~1 E (~1~~. E), 
the ,following estimate holds: 

Prmf!f: - In two steps. The new one is really the first. 

1. Let y(:r:) be a standard regularisation of the distribution ho, and H the 
heaviside function. For i E { 1,2} let (6? be a positive eigenvector associated 
to PI(-4, - CJ,~(M; ,Jli)), and let US set 

(9.5) p(:r:. y) = /‘” , --?; y(2: - :C’)(H(-:c’)c~l(U) + Hi/&)) dz’. 

Obviously, there holds 

(CM.(L) 
fp = C/Q on ] - cc, -21 x w 

p = cj2 on [2.+x[xw 

and the following estimate is easily checked 

(95.6) I - Acp + (c + 4y))cp.v + 14 5 CQ//, 8~) 

2. A subsolution to (1 .l) is looked under the form 

TL(t, 2, y) = S(f)u10(7), y/) - KX~p(r,. y) 

with q = z + E1 (t). For the choice of A, <i (t) and E, one basically proceeds 
as in [27], Section 4, by adding the following ingredients: for 7 outside 
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a large cylinder CAB, by reducing E a first time and taking (9.6.a) into 
account. one chooses 

Inside CAr, we have to choose, by virtue of estimate (9.6.b): 

E:(t) (% - EP,) F o(E)e-Xtd(yy, aw). 

Proposition 9.1 and estimate (9.6.b) again allow us to choose <r(i) = O(E), 
which ends the proof of Proposition 9.2. l 

Proof of Theorem 3.7. - From Proposition 9.2, the set of initial data ug 
such that S(t)uo converges to a front s open and closed in Y; moreover. 
due to local stability, it is nonempty. Therefore, it is Y itself. Therefore 
it suffices to prove that, for ‘u. E X, w(uo) n Y is nonempty. To do so 
we simply have to follow the scheme of the proof of Proposition 5.2, the 
only difference being that, this time, Proposition 9.1 instead of Proposition 
5.1 applies. 0 

10. THE CASE OF THE SYSTEM 

This part is devoted to the proof of Theorem 3.8 on System (1 A). We 
immediately set ourselves in the reference frame of a wave, and we set, 
still keeping the notations :c and ;v/: 

W(L :I:. y) = u(t. :I:, y) + v(L x. y) - I 

We may write (1.8) under the form 

(lO.l.a) ‘Ut - AU + (c + f$/))IL,. = g(u) + f(U)VV for (:I:, ~1) E C, 

(10.1.6) 
&L 
- = 0 
3v 

for (z,~) E R x i)w. 

Therefore System (1.8) is a perturbation of (1 .I). What prevents us from 
applying directly Corollary 2.3, as we had done in the preceding sections, 
is that W(t) does not decay exponentially as t + $00. Therefore we have 
to use an additional result, which is a slight variant of a theorem of [14]. 
Here is the precise result. 
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Let X c 2 be two Banach spaces, with continuous injection from X to 
2:. Let A be a sectorial operator in X and x, and f a C2 function of X. 
Assume that the equation Au = f(~) admits a C2 manifold of solutions: 

We are interested in the stability of the 4~ with respect to the evolution 
problem 

2 + Au = f(u) + g(t). 

The Cauchy Problem for (10.3), associated to an initial datum ?ho, has a 
local solution denoted by S(t) ~0. Let denote by CA the operator A - f’(q5~). 
Its spectrum in X (resp. X) will be denoted by as(Cx) (resp. g,(Lx)). 

THEOREM 10.1. - Assume that the three following assumptions hold. 
1. The function f is C2 in. X. Furthermore, the function g satis$es the 

folloxing assumptions: 

,J=; 119(t)Ildy = 0, g E X” for some w > 0. 

For the meaning of the notation, see Notation 4 in Section 2. 

2. For any given X E R, N(Cx) is spanned by 4x; moreover the 
decompositions 

X = N(Cx) @ R,(&), 2 = N(.C,A) $ R,(&) 

hold, with algebraic and topological sum. Further, crs ( ,CC, ) \ { 0) is contained 
in a cone of the complex plane with positive vertex and aperture < r. 

3. For any given X, let ez be such that < e:, 4~’ >= 1 and LAei = 0. 
There is a positive function p(t), such that t liym cp(t) = 0, such that there 

holds, for all ‘~0 E X: 

Let x0 E R and vo E X be given. The Cauchy datum u. is taken under 
the form uo = +A, + ~0, ~0 E X. Zf 11~011~~ and ~~g~~~~~ are small enough, 
there exists X” such that 

lim S(t)710 = dx, in X. 
t--tic2 
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When X = X, the above result is nothing else than Exercise 6 page 108 
in [16], and the convergence of Spa to $A, is exponential. The proof 
of the general case will therefore closely follow the one in [ 161. 

Proof. - When ‘~1~ is small enough we may write, at least for short 
times: IL(~) = p ( X(+) + ,!l(t), with ~(2) E R(LA,,). The problem is to show 
the validity of this formula for large times. Let II be the projection onto 
R(Cx,,), and let us set 

where C(U, II) is locally bounded. Equation (10.3) may be written under 
the form 

with 

R.(t, ?I>) = 
I 
. (II .fwx(t, f ww(4x(t) - 4lx,,).u dfl 

Let us assume, as is usual: IA(t) - X0/ + ]l~~(t)llz 1. 7. We operate in X; 
writing down the integral formula for v(t), using the formula for X(t) and 
carrying on with the usual estimtes yields the existence of w > 0 and two 
constants Cl and C, (7/), bounded for small 17, such that 

Looking at the equation for X(t) in (10.4) we infer the existence of a 
constant Q > 0 and a function 42(q), with lilix~qz(r~) = 0 such that 

Ip( 2 I J& (11412 + IX - &I) lblls 

Annales de i'lnstitut Henri P&car& Analyse non ImCaire 
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Therefore, when r/ and l\gllAqw are really small enough, we have /A-Xol 5 71. 
and there exists C’s(v) such that 

(10.5) 

It now remains to prove that Ilv(t) I(zy actually remains below 71. The above 
formulas will from then on be valid, and the theorem will be proved. We 
write the integral formula for w in 2, and we use (10.5); this yields 

Therefore, when /IV a 1 1s small enough, we have Il*u(t)llz 5 ~1. l II47 
Theorem 10.1 will provide us for an equivalent version of the 

compactness theorems in Section 4. 

LEMMA 10.2. - Let u. and vg be as in Theorem 3.8. For to > 0 large 
enough there exist y > 0, w > 0, and p(t) > 0, such that ,li$ p(t) = 0, 
and such that: 

Proof. -We remark that the function W(t) satisfies ,@= IllV(t)lloo = 0; 
moreover, for every E > 0, there exists t, > 0 such that 

-cy 5 e-TV(t) 5 &e? for t > t, 

Therefore we only have to apply Theorem 10.1 with 

x = (7L : e-““u E UC(C)}. 

and the following choice of nonautonomous terms: gl(t) = -&ecwt for the 
lower bound, and g2(t) = &eMwt for the upper bound. l 

Proof of Theorem 3.8. - Same as the proofs of Theorems 3.3 and 3.4, 
Part 2. 0 

11. EXTENSIONS AND CONCLUDING REMARKS 

The method that we have developped in this paper for proving eventual 
monotonicity, combined to the techniques that we have used in our previous 
papers [7], [22], [261, 1271, also allows us to handle more general differential 
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operators, namely to replace the term -Au in (1.1) by an expression of the 

type -( C ~jb u)%,,~, u), or also of the type -(div(D(:i/. u)VU)). 
l<i,j<N 

In particular, for N = 1, one can prove in a similar way as above that the 
travelling front solutions of the problem 

y being as in case Al-A3/ZFK or B, are globally stable. Local stability 
has been known for a long time (it can easily be deduced from [29]), but 
global stability, up to our knowledge, is new. 

In the same vein, we can also prove convergence to travelling waves 
for the solutions viscous regularisations of hyperbolic equations, namely 
equations of the form 

ut - pu,., + (,f(?l)).r = g(u) :): E R 

u(t, -cc) = 1; u(t, +co) = 0. 

The term g may satisfy A 1, and the term f is taken to be strictly convex. 
There exists an z-decreasing wave 4 connecting 0 to 1, which is a 
regularisation of the entropic shock wave H(x - (it), with (T = f( 1) - f(0); 
see [30] for the background. The stability of 4 is once again well-known; 
see [16] or [22]; we provide here a method for proving its global stability, 
and the result is once again new. 

In bounded domains, a similar study could be made in order to treat a 
problem of the form 

see Berestycki and Nirenberg [lo] for the right assumptions of F and the 
appropriate boundary conditions. Once sufficiently stong a priori estimates 
are known, a solution of the above problem becomes monotone in finite 
time in the whole domain. Such a result, however, has little interest, for the 
theory of Hirsch, combined to [lo], asserts that every solution converges 
towards the unique monotone equilibrium state. 

Let us now come back for a moment to Problem (7.1). The whole 
structure of the solution set is still to be understood. In particular, we 
have not yet fully exploited the fact that we were working in a continuous 
family of cylinders, which should yield a much more precise description 
of this solution set. 

In the same way, we have said nearly nothing about the intermediate 
behaviour that we have noticed in Section 7.3. In one space dimension, at 
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least for even initial data, one could effortlessly be a little more explicit. 
However, the full study of this critical behaviour would have led us too far 
from the main stream of this paper, and will be performed somewhere else. 

Let us finally conclude with a question that we leave open, and whose 
answer might require other techniques than the ones we have displayed. In 
[22], where case A3 is investigated, we prove that the long-time behaviour 
of S(t)uo, strongly depends on the asymptotic behaviour at z = --oo; 
namely the decay rate selects the speed of the front; we are even able to 
give an explicit expression of the asymptotic shift. 

Here nothing like this happens; in fact, our convergence proof, which 
relies on a connectedness argument, is perfectly non-constructive. The 
problem occurs in one space dimension as well, for the Liapunov function 
which naturally comes up only tells that quasiconvergence to some 
equilibrium occurs, but never specifies which one is chosen, and why. 
Most certainIy, it does not occur as in the KPP case, and here is a very 
simple reason why. For U,O E X, let h(~g) be such that S(t)~o converges 
to Q.(u”)$. 

PROPOSITION 11.1. - For every T: L > 0, for evev function n(y) E 
C(W! R+), there exists (UL> ~1,) E X2 such that 

(i) 7~~ = vL 011 ] - co? -L] x w, 
(ii) lim u~(2, ~)e-“‘~ = a(w) as 2 -+ -00, uniformly in y E w and 

.1’---oo 
such that h(uL) - /~,(a~) > L. 

Proof. - This is nothing else than an application of Theorem 2. I to 
two suitably chosen initial data. We use the notations of Section 2 and 
Theorem 2.1. 

Let ‘(1,~ and ?iL be defined as follows: 

a(:~j)e~~ in ] - 00, -L] x w 

UI,(:E,?/) = linear in n: in [-L, -L + 11 

$(x, y) in [-L + 1, +CQ[~W 

a(y)c rsin]-oo;-L]xw 

7&/g) = linear in :c in [-L> -L + l] 

L~~c#I(~;, :y) in [-L + 1, +xj[xw 

When L > 0 is large enough, the quantities ]]UL - 4ll.x and )]7~2~ - dl1.y 
become < So, and Theorem 2.1 applies, which yields: 
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in other words: 

This proves Proposition 1 1. I l 

Thus we see that convergence occurs in a totally different manner than 
in the KPP case: indeed, for 1’ > 0 small enough, assumptions (i) and (ii) 
of Proposition 9.1 would imply /?,(rsl;) = h(~~). 

Therefore we think that understanding how the asymptotic shift is selected 
in the bistable case and in the ignition temperature case would undoubtedly 
be mathematically quite interesting. 

APPENDIX 

This appendix contains an outline of the proof of Theorem 2.1 in the 
bistable case, of the proof of Corollary 2.2 in both cases. To be complete, 
we should also include the Dirichlet case: however it is quite similar to the 
proof that we are going to give now. First, turn to Theorem 2.1. 

In the framework of the bistable case, recall that X = U?(c). Let L be 
the linearised operator about (i,. with domain 

(A.1.a) D(L) = 
{ 

&I. 
IL E x’. Au E x. - = 0 011 Iw x dw 

&I 1 

and whose expression is given by 

(R.1.b) L?1 = -a?l, + /+/)?s,,. - f&5)11 

For X E C, a solution of Lu = Au is an element u # 0 of D(L) such that 
Lv = AU. Two steps are required for Theorem 2.1, each of them being the 
subject of one paper in the ignition temperature case. 

Step 1. Linear stability 

It suffices to copy word by word the proofs of [7], so we will not dwell 
on this point any longer. 

Step 2. Nonlinear stability 

This part corresponds to [26]. There are once again two steps: first, one 
has to show that a(L)\(O) 1’ res in a cone of the complex plane, with angle 

Aw~ule.s r/c I ‘lmtit~rt HWI? Poirwnm~ Analyse non linhirc 
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< $, and with vertex on the positive real axis. Second, one has to show 
that 0 is a simple - in the geometric as well as in the algebraic sense - of L. 
The conclusion of the proof of Theorem 2.1 relies on an Implicit Functions 
Theorem argument due to Sattinger [29]. 

1. Localisation of the spectrum. - For (L > 0 and fl E 

denote the cone of the complex plane 

let C,,,, 

(A.21 ca., = {A E a3 : Jarg(X - a)\ < N}. 
PROPOSITION A. 1. - The operator L is sectorial in X. Further, there exist 

n > 0 and 0 E 1 [ 0, : such that a(L)\(O) c C,,,,,,. Moreover, for every 

h ~10. a[ and X $ (C,,,, U Bb), there holds: 

(A.3) 

Proof. - The fact that L is sectorial is an extension of a result of Stewart 
[31]; see [26]. As for the existence of C,L,, we construct two operators T 
and 5’ of X, such that L = S + T, R.e o(L) > y for some y > 0, and 
ST-l is compact. A result of Gohberg [ 1.51, combined to the fact that L is 
sectorial, yields the existence of C,,,,. Estimation (A.3) follows easily. 

As for the operators 5’ and T, let I’(Z) be a C” nondecreasing function, 
zero for z 1. 0, equal to 1 pour z 2 1. We set: 

q(2) = g'(O)ryz) +.9'(1)(1 - r(x)). 

There exists y > 0 such that -q(2) > y. 
We set D(T) = D(L), and, for u E D(T): 

then, for u E X, Su = [q(x) - g’(4)]u. We notice that S and T satisfy 
all the required properties (easy adaptation of [26], Section 4, Lemmas 
4.6 and 4.7). l 

2. multiplicity of the eigenvalue 0. - In fact, we only have to prove 
that 0 is geometrically simple; the algebraic simplicity being obtained by 
copying the proof of Theorem 3.1 in [26]. 

PROPOSITION A.2. - Let u E D(L) be such that Lu = 0. Then Y has the 
form Constant X &. 
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Proof. - We may assume that 11, is real-valued. By the same argument as 
in Proposition 3.4 of [26], there exist CY+ and Q- such that 

We have to distinguish the case N- = CV+ and the case a- # CY+. 
If Ct- = o!+, the same argument as in Proposition 3.4 of [26] proves 
u = GJ+~,.. Therefore it remains to prove that CY_ # CY+ is impossible. 

In order to do so, we always may assume that n/- = 0, and N+ > 0. 
On the other hand we know - see [9] - that there exist A- > 0 and 
d-(v) > 0 such that: 

$,c(:lT, y) = e^-“4-(y) + O(e(X-+E)“.) 

as 1x1 + -co, for some E > 0. The maximum principle applied to u d&c 
yields: u > 0 in %. Let us prove by induction the following claim: for 
every n. E JV, u(z, y) = O(e(7LXm--E11)Z) as 1x1 -+ -M, with 0 < E,, < G. 

This is indeed true for n = 1 and ~1 = k; therefore assume it is true up 
to the order R, and let us prove that it is true up to the order r), + 1. The 
equation Lu = 0 may be written as follows: 

(A.5) L(yu :== -au + P(y)tb - .9’(@ = (9’(d - .9’(0))7~ 

From Lemma 5.2 of [25] and the induction assumption, there exist 
no E D(L) solution of Lou ’ = 0 and u* E D(L) solution of 

Lou* = (,q’@) - g’(O))u. 

such that u = UO + u+, and: 

b4.6) %1*(x, y) = O(e ((n+l)X--z,,-&)Z) 

From [9], there exist y- E R, &+i > A- and &+r(y) such that: 
- the function un+’ := ex-+l”$,+l(y) belongs to D(L), and satisfies 

Laun+’ = 0; moreover the function &+I is nonzero and changes sign in W, 
- the function u” may be written as: 

u” = y-e’-“&(y) + un+l(.x,y) + o(e Lr+ly. 
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Since Q- = 0, then y- = 0. Since the function $n+l changes sign in W 
and since u > 0 in %, we get: 

x n+1 2 (n + 1)X- - E,, - &. 

Finally, setting E,,+~ = E, + $, we see that: 0 < E,+~ < +. This 
proves our claim, since u = u” + u*. 

Therefore, u decays faster than any exponential as 2 -+ -co. However, 
for A > 0 large enough, the function g(z) = eA7 satisfies: Lg 5 0 
in C. On the other hand, let za < 0 be such that g’(4) 2 0 in 
] - 00, x0] x w. Since u > 0 in c, there exists S > 0 small enough 
so that: u(za, .) 2 Su(zc, .), which implies, by the maximum principle: 
U(IC, y) > SZA(Z:, 9) for (5, y) E] - co, ~a] x w. Contradiction. l 

Remark. - When dealing with Dirichlet conditions, one should avoid 
divisions by &, and rather work with solutions of the form u + I&, for 
suitably chosen k. 

Once we know what we have to know, the end of the proof of Theorem 
2.1 is a particular case of the proof of Corollary 2.2, with h(t) = 0. This 
is what we are going to see now. 

Proof of Theorem 2.1. and Corollary 2.2. - We transform Problem (2.8) 
into the following problem: find v(t) E X” and y E R such that 

(A.71 
g+Lv=R(h,v:y) 

40) = 210 - r4z - k(Y) 

the functions R an Ic being the second-order terms: 

We set: w(t) = ~(t)$~ + c(t), with c(t) E R(L): see [26], Section 5 
to see why we may do so. Let e* E X* (the dual space of X) be such 
that L*e* = 0, ]]e*]] = 1 and <e*,&>= 1. The equations for p(t) and 
c(t) read: 

2 + QLC = QR(h, 0, Y) 

(A-9) dp z =<e*, R(h, v)> 

((0) = &(VO - k(y)), ~(0) =<e*,v0> - Y- <e*,k(y)> 
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Here, Q = Id.\-- <c*. . > d,r; we know that there exists w > 0 such that 

Problem (A.9) is equivalent to the following problem: find C(t) E QX&. 
p(t) E E” and y E [w such that: 
(A.10) 

i(t) - e-yu” - k(y)) - i’ c,-(t-“)eLR(lr:v(s), y) ds = 0 
. 0 

.f% 
P(f) + I 

<e*, R(h, 7/(S), y)> ds = 0 
. t 

.+x 
y- <et: 7/o> + <e*. k:(y)> - 

I 
<c*, R(h,u(s)>y)> ds = (1 

. 0 

We write (A.lO) in compact form: 

(A.11) ~I(C,P,Y> 00, h) = 3*((.p:y,710. h) = 33(<,p.y, PI(). IL) = 0. 

and set: 3 = (31,32,3a). The mapping 3 is C1 from QXU x E” x Iw x 
X x X2” to QXw x E” x R; moreover 3(O) = 0. Further, as easily seen we 
have 8c,p.53(0) = I&J-Y- 8 Id J+ 8 Idn, which clearly is an isomorphism 
of QX; x E” x Iw. Application of the Implicit Function Theorem ends 
the proof of Corollary 2.2. l 
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