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ABSTRACT. - We prove here that for any pair of regular Cantor sets in 
the line, either its arithmetic sum has Lebesgue measure zero or the pair 
can be approximated (through the image of a smooth diffeomorphism) by 
another one whose arithmetic sum contains an interval. The latter occurs 
when the Hausdorff dimension of the product of the sets is bigger than one. 

RI%UMI?. - Nous dtmontrons que pour toute paire d’ensembles de Cantor 
rkguliers sur la droite, ou bien leur somme arithmktique est de mesure de 
Lebesgue nulle, ou bien la paire peut &tre approchCe (par l’image d’un 
diffkomorphisme) par une autre dont la somme arithmitique contient un 
intervalle. Le dernier cas se produit quand la dimension de Hausdorff du 
produit des ensembles est plus grande que 1. 

1. INTRODUCTION 

Besides its perhaps more classical role in number theory and related 
topics, as it can be seen in the reference to Hall in [PT2], the arithmetic 
sum (difference) of Cantor sets plays a central role in dynamic bifurcations, 
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especially homoclinic bifurcations. These bifurcations in turn, can be a 
key to better understand the dark realm of dynamics: we conjecture 
that bifurcating homoclinic systems are dense in the complement of the 
hyperbolic or stable ones [PT2, Ch. 71. 

Roughly speaking, the arithmetic sum of Cantor sets appear naturally 
in dynamics, when we analyse the set of intersections (often the set of 
tangencies) of invariant foliations, say one-dimensional stable and unstable 
foliations, and how this set varies with a parameter. If such foliations are 
associated to the same invariant hyperbolic set and their leaves are tangent 
along a transversal line, we are lead to analyse the sum of the two Cantor 
sets thus obtained, to study the bifurcations that appear when varying 
the diffeomorphism. They include, in the dissipative case, infinitely many 
simultaneous sinks, strange attractors, and cascades of period doubling 
bifurcations (see [PT2]). The only known way to produce infinitely many 
sinks, due to Newhouse, is to show that the sum of the Cantor sets contains 
intervals. That is what we prove here for a dense subset of pairs of regular 
Cantor sets whose Cartesian product has Hausdorff dimension bigger than 
one. The precise statement is presented in Section 2. Notice that if the 
Hausdorff dimension of the product of the Cantor sets is smaller than 
one, then its sum has Lebesgue measure zero [PT2]. In this last situation, 
in the context of homoclinic bifurcations, we have a total prevalence of 
hyperbolicity for the nearby diffeomorphisms [PTl], whereas in the latter 
it is shown with techniques quite different from the ones exhibited here, 
that this is definitively not the case [PY]. 

Finally, we have been conjecturing for more than a decade that the result 
in the present paper should be true for generic, or even an open and dense 
subset of pairs of regular Cantor sets and also for affine Cantor sets in 
general [PI. The conjecture may be of central interest in bifurcations of 
homoclinic tangencies. 

2. DEFINITIONS AND RESULTS 

We consider the following setting: 
- a compact non trivial interval I; 

- C1+a diffeomorphisms (pi, . . . , ‘pp of I onto disjoint subintervals of I, 
which satisfy ]D+o~(x)] < 1, 1 < i < p, z E I. 

- a matrix A = (a;j), 1 5 i,j 5 p, with aij E (-1, l}. 
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We assume that the subshift of finite type CA of the full shift on p 
elements is injinite and topologically mixing. For 1 I: i, 5 p, let: 

~(4 = u f-j cpil . . . cpik (1) 
k>l 

the union being taken over all sequences (iO, ii . . .) such that aiki,+, = 1 
for k: 2 0. This is a Cantor subset of 1; a Cantor subset of R obtained 
in this way is called reguhzr. 

The K(i,), for 1 < i, 5 p, are called twin regular Cantor sets. 
The diffeomorphic image of a regular Cantor set is regular: conjugate 

the cpi by the diffeomorphism. 
For K = K(i,) as above, we define: 

(P(K) = {‘p = ‘pi, . . . vik 1 lc > 1, uipiF+l = 1 for 0 5 f? < k}. 

For cp = cpil . . . (pip E Q(K), we have: 

(1) p(l) n K(k) = $+(ik)). 

This shows that the cylinder ~(1) n K(i,) is regular; ~(1) is the box 
of ~(1) fl K(i,). Two cylinders (or boxes) are either disjoint, or one is 
contained in the other. 

We recall that the arithmetic sum of two subsets A’ and A” of the line 
is defined as 

A’ + A” = {t E R; 3 a’ E A', a” E A” such that a’ + u” = t} 

We can now state our result. 

THEOREM. - Let K’, K” be two regular Cantor sets, of respective 
Hausdorf dimensions d’, d”. Assume that d’ + d” > 1. Then, given 6 > 0, 
one can jind C” diffeomorphisms h of R, arbitrarily near the identity, 
such that any point in h(K’) + K” is at a distance less than 6 from some 
nontrivial interval in h(K’) + K”. 

It is actually sufficient to find h such that h(K’) + K” contains one 
nontrivial interval. Indeed, let Ji, . . . , JL and Jc, . . . , J[ be disjoint 
cylinders of K’ and K”, respectively, such that any point in K’ + K” 
contains some J,! + Jr in its 6/2 neighbourhood. Gluing together 
diffeomorphisms hl . . . hk near the identity such that hi( Jl) + J,!’ contains 
one nontrivial interval, we get the conclusion of the theorem (observe 
that Jl, resp. JT, is regular with the same Hausdorff dimension as K’, 
respectively K”). 
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3. BASIC ESTIMATES 

We give here the basic estimates for the regular set K’, with constants 
c;. c; . . . . Similar estimates hold for K”, with constants cy. c:/ . . . Let I’, 
cpi, . . ! cpb be as in 2., defining K’. 

There exist c:, CL, c;, C$ such that: 

(4) I log ID&z)I - log IDqqy)l I 5 c$ -?/I”, 1 5 i < p> 1L’, J/ E I’. 

From (2) and (4), we get: 

Distortion estimate. - For cp E @(K’), x, y E I’. 

(5) ) log II+J(x)l - log ]D++J)l I 5 c; = ci(l - cF)-lII’I? 

Let Q’ = cp(I’), cp E @(K’), b e a box of K’, with Q’ # I’. Writing 
‘p = cp’cp:, we have IQ’1 _ ‘I ‘I < ca I max IDc#I and the distance from Q’ to 
K’ - Q’ is at least ci-’ min ]Dp’l. Hence we get from (5): 

64 d(Q’, K’ - Q’) > &‘lQ’l. with ~4 = tie’; &,]I’/. 

Let m’ be the d/-dimensional Hausdorff measure. Because of the 
topologically mixing property, each twin of K’ contains a diffeomorphic 
image of any other, so they all have Hausdot-ff dimension d’. Moreover, 
regularity implies that there are constants ~4, C$ such that: 

(7) 0 < c-’ < m’(K;) < ,::, 

for any Ki twin of K’ (including itself). See [F], [PT2]. 

LEMMA 1. - Let J’ be a cylinder of K’, with box Q’; one has: 

with c$ = c~exp(~gd’)II’I~‘, ci(, = ckexp(ckd’)II’I-d’. 
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Proof. - One has J’ = cp(Ki), Q’ = ~(1’) for some cp E a(W) and 
some twin Ki of K’. From this, we get: 

IQ’1 = IDp( 11’1, for some z, E I’ 

m’(J’) = 
.I 

p$f+#’ dm’(2) = m’(K;)p~(zl)(d’ 
K; 

for some z1 E I’. The lemma then follows from (5) and (7). 0 

Let ,B > 0. A P-decomposition of K’ is a partition of K’ in (disjoint) 
cylinders whose boxes have length between ,8 and ciP1 [j. Such a 
decomposition exists and is non trivial if p < 11’1 (see (2)). Let 7r’ be 
a ,&decomposition of K’. 

LEMMA 2. - We have: 

m'( Ji) < cil m’(Ji), for JI, Ji E n’ 

with cil = c&)c’1” . 

Proof. - Trivial from Lemma 1 and the definition of a P-decompo- 
sition. 0 

LEMMA 3. - Let Qb of length greater than 0. The number N of elements 
of E’ contained in Qb satisfies: 

&‘(~-‘IQ~l)d’ 5 N I c;,(P-‘lQ;l)“’ 

with ci2 = c’gciO ci3 = c$&,c~~‘. 

Proof. - One has, if Jh is the cylinder of Qb: 

CL-’ IQbl”’ 5 m’(.&) < c~,JQ~Id’, by Lemma 1; 

m’(J;) = c nl’(J’), 
J’Err’ 
J’ca; 

and c$-l czPd’ /Jd’ 5 m’( J’) 5 c’&“’ for J’ E 7r’. 

The lemma follows. •! 

Vol. 14, IlO 4-1997. 



444 J. PALIS AND J. C. YOCCOZ 

4. THE ENERGY ESTIMATES 

We now consider K’, K” as in the theorem. We let K = K’ x K” c R2, 
D = d’ + d” > 1, mD = m’ x *m” the D-dimensional Hausdorff measure 
on K. The Euclidean metrics on R2 is noted 11 1 I. 

A /Sdecomposition of K is a partition of K which is product of two 
P-decompositions of K’, K”. In a similar way, we define cylinders and 
boxes for K. 

For simplicity, we assume that: 

(8) [I’( i 1, II”1 2 1, 11’1 + II”1 L 1, 

which can be obtained by an homothety of the same ratio on K’, K”. We 
also assume that ci, cy have been taken so that: 

(9) 11’1 > c;-l: II”/ 2 cp, 

in such that a way that ~(0) = {K} is a l-decomposition of K. 
Let x be a P-decomposition of K. 

LEMMA 4. - For Jl, .J2 E T, one has: 

mD(J1) < ~11 mu, with cl1 = c$~c~~ 

Proof. - Direct consequence of Lemma 2. 

LEMMA 5. - Let ,& < (ci + cy ) - ’ /3 and 7r1 a ,&-decomposition of K. For 
J E ~0, the number N of elements of ~1 contained in J satisjes: 

/d’ //d” with cl4 = c$c~c~oc~ocl cl . 

Proof. - Use Lemma 3, knowing that if Q’ x Q” is the box of J, one 
has c’,-‘p < I&‘[ 5 ,0, cy-‘/3 5 IQ”/ 5 /3. q 

DEFINITION. - The energy of a cylinder J of K is the value of the integral: 

dmD(z) hD(z’) 

lb - 2’11 
LEMMA 6. - One has 

Z(K) < cl5 = 2O(l - 2l-“) -’ ~~~‘c~~“(ckc~)~ exp(cQd’ + cid”). 

Proof. - Let z = (zr’, (L.“) E K, 7’ > 0, and I&.(Z) the Euclidean 
ball of center z, radius T. Let Q = Q’ x Q” be the smallest box 
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of K containing &.(z) n K; write Q’ = $(I’), Q” = ~“(1”) with 
cp’ E @(K’), (p” E $(K”). Let i (resp. j) be such that z’ E cp’cpL(l’) (resp. 
.ic” E cp”cp~(I”)). By the minimality of Q, the interval of center 5’ (resp. 
5”) and radius T must intersect cp’cp’,(l’) (resp. cp”cpF(l”)) for some k # 1: 
(resp. e # ;j). Then, we get from (3) that: 

T 2 (inf IDv’I)ci-l 
T > (inf IDq7”l)c~-l. 

If J’, J” are the cylinders associated to Q’, Q”, we obtain (using (5)): 

m’(J’) = 
s 

IDq’(y)ld’ dm,‘(y) 5 (c’3T)d’ CL exp(@‘) 
K: 

m”(J”) III 
.I 

prp”(y)ld” dd’(y) 5 (&qd” c; exp(c’Sd”), 
K; 

where Ki, Kr are twins of K’, K”. This gives: 

mo(&.(z) n K) 5 crfj P, with cl6 = &!&d’c;“” exp(c’,d’ + C$,“). 

One has K c E&(Z) by (8), so we can write 

K - (2) = fi ((Bzl-E(~) - Lo+) n K), 
k=O 

to get 

. I  

dm&‘) O” 

K  ,,z _ z , , ,  5 ~2k~16(21-k)u = 2%& -  z’-L’)-1. 
k-0 

Using mD(K) 2 cbci, we get the lemma. 0 

LEMMA 7. - Let J be an element of a ,&decomposition of K. One has: 

z(J) 5 c17/32D--1 with q7 = ~~5~~~~‘~:/~~“~~~~~‘+~~:‘~” ~a &CL, ,aye”L’ 
( > 

. 

Proof. - Write J = J’ x J”, Q’, Q” for the boxes of J’, J”; let 
p’ E a(K), p” E (P(K”) b e such that Q’ = v’(P), Q” = ,“(I”), 
J’ = cp’(Ki), J” = @‘(KY), for some twins Ki, KY of K’, K”. The 
estimate of Lemma 6 holds with K1 = Ki x KY instead of K. One has: 

inf I@‘1 > e-“:IQ’I 11’1-1 1 e-‘~ ci-‘/J (see (8)) 
inf ID/j 2 e-“; c’,‘-‘p 
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and, for z = (x’.:~“), z’ = (r/j’. I(/“) E K1: 

IIp’ X p”(z) - p’ x p”(z’)lj 2 min(inf IDp’J, inf lDcp”l)llz - z/J/. 

We then get: 
. . 

II 
flmD (Z)d711D (2’) 

. . .Jx .J II2 - Z’II 
< 
-II 

dmD(Z)dn1g(Z’)ID~‘(Z’)l~‘ID~‘(~‘)l(1’ID~”(:c”)J’~1’ID~“(y”)I~f” 
. . Ii, Xii, llz - z’(I min(inf JD$(, inf ID/I) 

2 j3-‘c15 max(c’,e”$. cye”y ) exp(2cljd’ + 2 !‘d”) , cj , ( lI,l)z”(~)2”~~ IQ’I 

which gives the lemma, using (9). 0 

5. MEASURE OF PROJECTIONS 

For X > 0, let 7r~ the linear map from R2 to R defined by: 

Let J be a cylinder of K. We write VI,J for the restriction of rrhD to ./ 
and rr1,r.x for the image of ~t,,1 by TX. 

LEMMA. - Let .I be an element of a [j-decomposition T of K. Assume that 
,for some A E [l/2.1], ?; > 0, w>e have: 

+;z. 
(10) 

I,, 
1 20-l Ir?l.J.J(~)l* cl< 5 y- B . 

Let .JCl be a measurable subset of .I satisfying rnD(JCl) 2 kmD(,J), with 
0 < k 5 1. Then, one has: 

m(rr&);)) 2 “;$*y/l with m the Lebesgue measure on R 

and cl8 = 
( 

, // Id’(,/Id” * cgcgq 1 > 
Proof. - Let mJO be the restriction of V&J to .J,, and v&.J,3~ its image by 

7r~. The hypothesis implies that m,J,A (resp. VAJ,,X) is absolutely continuous 
with respect to m and its density g (resp. 90) satisfy: +C= *+x (11) J (.9o(?N flu 5 I (g(*u# du < y-l/PD-l. 

--oo . --co 
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By Cauchy-Schwarz’s inequality, one has: 

+m 
(12) 7q7h(Jo)) 

.I, 
(d7LN2dU 2 [ ~+)~4du]2. 

On the other hand, one has, with 

by Lemma l-Lemma 8 follows from (lo), (12), (13). 0 

LEMMA 9. - Let ,& < (ci + c~)-~O, xl a @l-decomposition of K and 
J E 7r. Let Jo be the union of at least one eight of all elements of ~1 which 
are contained in J. If A, y are as in Lemma 8 and (10) holds, then we have: 

with clg = 64c1j&. 

Proof - By Lemma 4, we can take Ic = ic;: in Lemma 8. 0 

LEMMA 10. - There is a universal constant c such that, for any cylinder 
J of K, we have: 

Proof. - This is a trivial consequence of a deep inequality of Kaufman; 
see the proof of Marstrand’s theorem in [F]. Cl 

6. TWO COUNTING LEMMAS 

LEMMA Il.-LetE=&U... U EN be a partition of a finite set E. Then 
at least half of the elements of E belong to a Ej such that #Ej > &#E. 

Proof. - Immediate. q 
Let /Yl < (ci + <!i)-’ [j, and x1 (resp. 7r) a PI (resp. /J) decomposition 

of K. We consider a subset irl of 7rl such that: 

(14) #%l 2 (1 - Pl)#Tl, 
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with some p1 E [O; l/2]. We then define, for J E T: 

and 

~2= .~tnl#711(J)>~(l-l’i)#“I(.I)J 
I 

LEMMA. - We have 

#r2 2 (1 - P)# T. with p = 4cf, pl. 

Proof - By definition of 7r2, one has: 

which implies: 

Using Lemma 5, we get (as p1 5 l/2): 

7. STARTING THE CONSTRUCTION 

The construction we are going to make depends on a certain number of 
parameters, which are: 

- an integer N > 1; 
- a positive number E E (0.1/2] 
- a decreasing sequence 1 = PO > /jr > . . f > /& > 0 

These parameters will be specified later. 
We define ~(0) = {K} an c d h oose, for 1 < i 5 2N, a &-decomposition 

r(i) = r’(i) x r”(i) of K. 

We assume that 
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so that each element of 7r(i + 1) is contained in one element of r(i). From 
Lemmas 7 and 10, we have: 

From this we deduce: 

(17) 

I” [E 2-ip~-2D[#7r(i)]-’ c ./‘, l??Qx(()12 dC] nx < 2cc17. 
. 1-E i=o JE7r(i) --OO 

We can therefore find X E [l - E, I], ji xe in the following such that we d 
have, for 0 5 1: < 2N: 

(18) [#T(i)]-’ c 1’” (7?L.~,~(~)12 d( 2 2z+1E-5x17p~D-1. 
.JEa(i) --33 

For 1 5 % < 2N, let 7rl(i) be the subset of ~(1:) formed by the J which 
satisfy: 

with c20 = 1&x17. 

From (IS), (19), we get: 

#7rl(i) > (1 - f(8c:,)1-i)#n(i). 

We now define inductively subsets ?(‘1) of ~(‘1). Define p; = ~(Bc~~)~-‘, 
for 1 5 % 5 2N. Let: 

ii(2N) = 7rl(2N). 

For % < 2N, if jT(1. + 1) has already been defined, let 

(21) 7r2(i) = 
1 

J E r(i) 1 #ii(i + 1, J) > ;(I - pi+1)#~(1: + 1, J) 

where the notations 7r(i + 1, J), 7f(i + 1, J) is as before Lemma 12: the 
sets of elements of ~(i + l), ?r(i + 1) which are contained in J. Then let 

(22) 5(i) = 7rl(i) n 7rz(i) 
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We show inductively that 

(23) #7?(i) > (1 - /lj)#7r(i). 

This is true for % = 2N by (20). Assuming it true for i + 1, one can apply 
Lemma 12 to get: 

which, taking (20), (22) into account, gives (23). Observe that p1 = +, and 
pi E [0,1/2] for 1 2 % < 2N. Finally, we define: 

5(O) = n(0) = {K}. 

8. THE MAIN ESTIMATES 

8.1. For 1 2 % 5 2N, k: E Z, let: 

M(i, k) = [(2k - 2)/jj. (2k + 2)&i]. 

For .J E x(i), the diameter of TX(J) is less than ‘L/j+, so we have 
7rx(J) c M(2, k) for at least one (and at most 3) k: E Z. 

We choose a partition of r(a) in subsets 7r(B> Xr) such that .I E 7r(1:, k:) 
implies TX( .I) c M(i. k). We use the notation: 

7r(i + 1, J, k) = 7T(i + 1: IC) n n(i + 1, .I) 

qi + 1. J, /?) = 7r(4 + 1. k) n q1. + 1, .I). .I E 7r(2). 

8.2. Let 0 < % 5 2N - 1, .I E 7?(B). 

By (21), (22) and Lemma 5. one has: 

On the other hand, the number of ,4z E Z such that M(i + 1, k) intersects 
r~ (J) (whose diameter is < 2,&) is at most 3 + ,/I$&!, , therefore assuming 
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Let A(i + 1, J) be the set of Ic E Z such that: 

(27) #ii(i + 1, J, Ic) 2 (16~14)-~ (&3z5!1)D-‘. 

From Lemma 11, we have: 

If we define: 

.J, = U J I> 
&it(i+l,J) 

J1E*(‘+l,J,G) 

we can apply Lemma 9, using (19) and (28) to conclude that: 

(29) m(m(Jo>) 2 c;;cp ED,, with c2i = clgc2a, ~22 = 16~:~. 

As 7rA ( .Jo) is included in the union of M(i + 1, Ic) for /C E A(i + 1, J), 
one deduces from (29) that: 

(30) #A(i + 1, J) 2 (&I)- l c;p &?*$. 

8.3. Keeping the same notations as above, we assume i 5 2N - 2. For 
L E Z, .J1 E ii(i + 1, J), we define: 

x(l,.Jl) = 1 if ir(i+2,Ji,b) #(b 
= 0 if ir(Z + 2, Ji, e) = f$. 

From (30), we have 

(31) c X(e, JI) > (&I)-~ 4;24+~ljj& 

Let Ic E A(i f 1, J), and let x(!, Ic) = c XC& 51). If x(6 k) # 03 
.JI ~ir(i+l,J,k) 

M(a + 2, e) must intersect M(i + 1, !G), so there are at most 2@,+i,&12 
such e. On the other hand, by (31): 

(32) c x(t, k) > (4C# c;; ~/$+&~~#+f(i + 1, .J, k). 
e 

Let I?(1 + 2, J, !c) be the set of e E Z such that: 

(33) x(/J, k) > (l6~2l)-‘&” E #?r(i + 1, J, Ic). 

Then we have by (32) and the remark preceding it: 

(34) C x(l,k) 2 (8~2~)-‘&‘~/3~~+l/3’~~#it(i + l,J,k). 
ea(i+2,J,k) 

As trivially x(e, Jc) 5 #%(i + 1, J, Ic), we conclude that: 

(35) #B(i + 2, J, k) 2 (~czI)-~ c;; 4%+1P& 
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9. PERTURBATIONS 

We choose once and for all a C” function rl on R which satisfies: 

q(x) = 0: for .7: 5 -2, r/(z) = 1 for II; 2 -1, 0 5 q(z) < 1, tJz. 

Let Q’ be a box of n’(i), 1 < Z < 2N; by (6) we have: 

(36) d(Q’? K’ - Q’) > c;. /jz. with c23 = ckci. 

Define qQr by (if Q’ = [a> b]): 

(37) ~QI(X) = 71(6~23,0~-'(:~ - CA)) + ~(6~23o~-'(b - x)) - 1. 

The following properties hold: 

(38) q&t(x) = 1 if d(z, Q’) 5 (6~23)~~ &; 

(39) qQf (2) = 0 if d(z, Q’) 2 (kzs)-l ,& 

(40) 0 5 qQ,(x) 5 1, tjx 

(41) I(@ qQ,I,C” < (6c23~~~~1)klIDkrllIc~,! fOI- k 2 0. 

For t E [-l/2,+1/2], define a map hQr.t by: 

(42) hQr,t(x) = :I: + 16,d;+ltv~,(~). 

We require that 

(43) 48c2~l)~77lb /%+I < ii& 

so that, by (41), hQf.t is a C” diffeomorphism. 
Let T = (t(Q’))Q,E+(i) be a family with t(Q’) E [-l/2,1/2] for all 

Q’. Then hQ; ,t(Q; 1 - Id and hQ;,t(Q;) - Id, for distinct Q’, , Q’, E 7r’( i), 
have disjoint support by (39), (36); hence the various hQf,t(Qr) glue in a 
diffeomorphism hT which satisfy, by (41): 

(44) II@(hT - idR)I(c” 5 8~i+1(6~23~3” Il~“11Ib. 

We denote by C(i) the cube [ - i7 i] r’(i), equipped the Lebesgue measure 
m. 

If h is a diffeomorphism of the form h = hT, o hTc+l 0.. . o hTLVmi, with 
Tj E C(j) for i < j < 2N, we get from (40), (42) that: 

(45) (h(x) - x( L 8 c Pj I 16&+1 by (25). 
j>i 
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10. INDUCTION 

10.1. We begin with some easy consequences of the estimates in 8. For 
0 5 i 2 2N - 2, J E g(i), let: 

B(i + 2, J) = u B(i+2,J,k). 
&A(i+l,J) 

If e E B(i + 2, J. k), M(i + 2,q must intersect ill(i + 1, Ic), so ! can 
belong to at most 3 of the B(i + 2, J, k). 

Then using (30) and (39, we obtain: 

(46) #B(i + 2, J) 2 c&z;; c2/3;/3,-,1,, 

with ~2.3 = 96c$,c~~, ~25 = cz2. 

Let e E B(i + 2, J), and N(& J) be the number of J1 E %(i + 1, J) such 
that ii(i + 2, J,,l) # 4. By (33) and (27), one has: 

(47) N(e, J) > C&j E (pi&;lI)D-l, c26 = 256~~~~~~~;;. 

10.2. Let Jl, J2 E %(i + 1, J), such that 7i(i + 2, Jp,t) # C$ for p = 1,2, 
and let al, n2 be the smallest points of TA( J,), XA (Jz). If we assume 
that J1, Ja have the same component in r’(i + l), one must have, like in 
(36), Ial - aPI > iC;i ,&+1, where &a = cgct. On the other hand, q,(J,) 
intersects M(i + 2, e) and has diameter less than 2&+1 for p = 1,2, . . ., 
hence Ia1 - a21 1. 2!Ii+l + 4/$+2 5 4pi+l. We conclude that at most 
(SC2s + 1) elements J_of %(i + 1, J) with the same component in x’(i + 1) 
can verify ii(i + 2, J,i!) # 4. 

Using (47), we see that for e E B(i + 2, J), we can find wi elements 
Jl E ;i(i + 1, J) with distinct components in r’(i + 1) such that 
-ir(i + 2, J,,l) # 4, where: 

(48) W, = c$c~~c(I?_,,~?~~~)~-~, ~27 = ~26(8F23 + 1). 

10.3. We now construct a diffeomorphism of the form: 

!1 = hi, o ham 0.. . o h”~~~~,, with T2jc1 E C(2j + 1). 

Denote hj = hTl,+l o . . . o hTz,-, so that hN = id, hj = hTzj+l o hj+l, 
h = h,. We will determine the T2j+l inductively, starting from T2N-1 = 0, 
in order to have the following property: 

P(i) : For any J E -ir(2i), and any e E B(2i + 2, J), 
any point in &f(2i + 2, e) is at a distance less than 4pzrv 

from rx (hi( J’) x J”), where J = J’ x J”. 

Vol. 14. Ilo 4.1997. 
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We take Taiv-l = 0, so that hNel = id. Each interval M(2N,!) has 
diameter 4&~, so P(N - 1) is a consequence of the definition of B(2N. .I). 

We now assume that Tzi+r>. . . . TzN-~ have been determined in order to 
have P(i), and we will choose Ta;-r in order to satisfy P(i - 1). 

Let J E ir(2i - 2), ! E B(2i, ,I), and :c E M(2i,C); by 10.2 one can find 
J Juum~ l,..., E %(2a - 1. J), having disjoint projections <Ii, . .J{,.L,mJ 
on K’, such that: 

M, = U G(2i + 2: n), 

ntB(zi+2.7~) 

where %(2i + 2, n) is the interval with same centre and half length than 
M(2i + 2, n). The M(21: + 2, n) have disjoint interiors so, by (46): 

- 
As each M(2i + 2, n) must intersect M(2i,.!), Mk is contained in the 
interval of center x, radius 5[&. On the other hand, let 

We assume E < $, hence X E [$, I], and we get, from (49): 

(50) 
1 -2% 2 m(E(.J, II:, I?)) 5 1 - (tk24)- cz5 E . 

Consider now the subset E(J, x) of C(21; - 1) formed by the Tz~-~ such 
that, for 1 < Ic < w2i-2, the coordinate th of T2ipl corresponding to JL 
belongs to E(J, 2, Ic). As these coordinates are distinct, we obtain: 

(51) rn(E(J>~!z)) < (1 - (~c~~)-~c~~‘E’)~~‘-~. 

We now take the union E of the sets E( ,J, :I:), where J runs over ;i(2i - 2), 
and z is any point of the form p,&i+2, p E Z in M(2i,!) for some 
c! E B(2i, J), some J E +(2l: - 2). The number of these sets is at most 
2[&:, c14&?a (Lemma 5, and (8)). We assume: 

(52) a&& c&p, (1 - @c&l c;zi E2) “12”mL < 1, 

which implies m(E) < 1, and we choose T2i-1 E C(2i - 1) - E. 
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10.4. We now check that P(i - 1) is satisfied by this choice of Tzi-1. Let 
J&x.. . be as above. Let z, = p,&+2, p E Z, be such that X, E M(2i, e) 
and Iz - x,\ < ,i&+~. AS Tz;-1 $ E(J,z,), there exists 1 < Ic 5 wzi-2 
such that z, - 16PaiXtl, E Mk (where tk is the coordinate of T2?,-1 -, 
corresponding to JL). This means that 2, - lG&iXtk E M(2i + 2, n,) for 
some n E L3(21: + 2, &); as Iz - z,I < &i+2, z - lG/&Xtk E M-(2i + 2, r~). 
By the induction hypothesis (P(i)), there exists z = (2’; 2”) E Jk such that: 

which can be rewritten as: 

Finally, from (38), (42), (45) we have hi@‘) + l6Paitk = h~~,-~ o h;(z’) 
if we assume that 

(53) 96C23P2i+1 < P2i. 

This proves P(i - 1). 

11. CONCLUSION 

11.1. We have made on the ,&‘s the assumptions (15), (25), (43), (53) and 
(52) the first four reduce to a single assumption: 

(54) [3i > c~&+~ for 0 5 i < 2N. 

On the other hand, as e’ < (1 - x)-’ for 0 < 11: < 1, and using formula 
(48) for w2i-2, (52) is implied by: 

(55) pz;i2 < @A~)-~ PZ-, exp 
[ 
c&;; E”@-*a,‘.,)“-’ 1 

with ca9 = SC~~C~~C;~~, c30 = c&c~~, for 1 5 i 2 N - 1. 

11.2. We now choose the injinite sequence (pi),,o as: - 

pi = P, ni = a2’ - CL, 

for some a > 1. It is then easy to check that ,&, = 1, and (54), (55) are 
satisfied if we have a > c s1 (where car depends only on c28, c2s, c30, cl4 
and D, but not on E). 
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We now fix a closed neighbourhood U of the identity in Dir(R). It is 
not difficult (but fastidious) to check that one can choose E and a > czll 
such that the following hold: 

If we fix N > 1 and construct from the finite sequence 0, = 1. . . . . /&, 
a number X E [l - E, l] as in 7. and a diffeomorphism h as in lo., then, 
for the diffeomorphism HN = Ah, we have: 

(a) HN E U, for all N 2 1, 

(b) the sequence HN - Id is bounded in the C” topology. for all r’ 2 1. 
Then we can extract from HN a subsequence which converges in the 

C”-topology to a C” diffeomorphism H in U. By P(0) for HLv,, each 
diffeomorphism H-17, in this subsequence has at least one interval I, of 
length 4&, such that any point in 1, is at distance less than 4[j2.wI from 
HN~ (K’) + K”. There exists an interval I length 2/& which is contained in 
infinitely many I,. Passing to the limit, I must be contained in H(K’) +K”. 

This proves the theorem. Cl 
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