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Reaction-diffusion problems in cylinders 
with no invariance by translation. 

Part I: Small perturbations 

Franqois HAMEL 
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ABSTRACT. - This paper deals with existence and uniqueness of solutions 
(c, U) of reaction-convection-diffusion equations mainly derived from 
combustion models and set in infinite cylinders C = { (zr , y) E W x W} 

i 

a(z1, y, u, v+u - (c + Q(Y)plu + <(a, y, u, Vu) . \Ju 

+f(u) + g(zl, y, u, Vu) = 0 in C 

8,~ = 0 on dC 
u(-m, .) = 0, u(+c?o, .) = 1 

The functions a, (Y, $ f and g are given. The section w is a bounded smooth 
domain with outward unit normal V. The existence of (c, U) is proved under 
various normalization conditions when the perturbative terms a, ;, g are 
close to (1, 8, 0), and a continuity result as (a, $9) -+ (1, 8,O) is stated. 

Key words: Nonlinear PDE’s, small perturbations, sliding method, implicit function 
theorem. 

RESUME. - Cet article traite de l’existence et de l’unicite de 
solutions (c, U) d’equations de reaction-convection-diffusion provenant 
essentiellement de modeles de combustion et pokes dans des cylindres 
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infinis C = ((~1.9) E [w x w} 

i 

a(q, y, ?L, V?L)AU - (c + fv(y))&?L + q+(Xl; y, u, V1L) . vv 
+f(v) + g(zr, y, U, VU) = 0 dans C 

i),,u = 0 sur 2X 
lL(-co. .) = 0, u(+x, .) = 1 

Les fonctions a, a, <, f et g sont donnees. La section w est un domaine 
borne regulier de normale exterieure unitaire 71. L’existence de (c, U) est 
prouvee pour differentes conditions de normalisation quand les termes 
perturbatifs a, $, g sont proches de (1, 6, 0), et on &once un resultat de 
continuite quand (CL, q! 9) -+ (1,o’. 0). 

1. INTRODUCTION 

The paper deals with existence and uniqueness of solutions (c, U) of 
semilinear reaction-convection-diffusion equations 

U(Xl, y, 11, Vu)Au - (c + n(y))31lL + g:q, y, IL> 07L) V?L 

+ f(lL) + 9(“h, y, 11, Vu) = 0 (1) 

set in infinite cylinders C = { (zr ,r~) E R x w}. Homogenous Neumann 
boundary conditions are imposed on dC as well as uniform Dirichlet 
conditions u(--00, .) = 0, ~(+a, .) = 1 as :I:~ + foe. The given 
heterogeneous and nonlinear diffusion term c~(:r;~ ~ y. U, VU)AU is close 
to the uniform isotropic diffusion AU. The given flow is the sum of a 
main divergence free, monodirectional flow (o(y), 0, . . (0) and a small 
heterogeneous nonlinear multidirectional flow 9’(z1, y, TL, Vu). In the same 
way, the reaction term is the sum of a main source term f(?~) and a small 
heterogeneous one 9(x1, y; U, VU). 

The unknowns of this problem are firstly the stationnary function U, only 
depending on the space variables (zr, y) and not on the time t, which 
goes from 0 as :I:~ -+ -cc (the left) and 1 at +OS (the right). This means 
that there is steady transformation between two given states 0 and 1. The 
second unknown is the real c, a speed, which is added to the velocity field 
(4Y>, 07. . . , 0) + Q’ and makes possible this steady transformation. 

When a G 1, f~ 0, g E 0, this problem is now well-known. The goal of 
this work is to set existence and uniqueness results for the equation (1) for 
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REACTION-DIFFUSION PROBLEMS IN CYLINDERS 459 

general and non uniform coefficients a, $, g depending on (~1, y, U, Vu), 
but close to (1, 6,O): they are called “small perturbations”. 

The nonlinear function f, which is the reaction or source term is assumed 
to have one the following two profiles on [0, l] which are currently 
mentionned in the literature: 

- first case: 30 E (0, I), f = 0 on [0,0] U {l}, f > 0 on (@; 1) (ignition 
temperature case), 

- second case 38 E (0, l), f(0) = f(0) = f(1) = 0, f < 0 on (0, e), 
f > 0 on (0,l) (bistable case). 

These nonlinear reaction terms have two different physical meanings and 
correspond to two different physical motivations. 

In the first case, equation (1) is motivated by combustion theory. 
Roughly speaking, the starting point is the thermo-diffusive model for 
curved deflagration flame in an infinite tube where a simple chemical 
reaction A -+ 13 takes place between two premixed gases A and f3, the 
Lewis number of the reactant A being equal to 1. The function u is the 
renormalized temperature of the mixture and 1 - w, is the renormalized 
concentration of the reactant A (see the synthetic works of Berestycki, 
Buckmaster, Larrouturou, Ludford, Sivashinsky and Williams for instance 
[41, Llll, 1261, VW. 

In this model of one single stationnary, i.e. time-independant equation, 
the small perturbations a - 1, Q’, 9 may take into account the basic 
physical phenomena of turbulence or may be due to small changes of 
density (c$ [lo]). When there is no source term f(u) + g(xi,y,u,Vu), 
the medium has the velocity field (a(y), 0, . . . , 0) + @‘. The profile of the 
unknown function u solution of (1) represents a stationnary and stabilized 
flame in the flow (c + a(y), 0,. . . ) 0) + 9’. The real c may thus be viewed 
as a flame speed. 

More explicitely, in models of combustion, the real 6’ represents an 
ignition temperature below which no reaction happens. The source term f 
takes into account the mass action law and Arrhenius’s law. The boundary 
condition 3,~ = 0 on 3C means that there is no flow across the walls of 
the cylinder. The limits u(--00, .) = 0 and U(+CXJ? .) = 1 mean that the 
fresh mixture is on the left and the burnt gases on the right. 

The second case of profile f, called “bistable”, comes from the study 
of growth of populations, gene developments or nerve propagation (c$ [2], 
[121). 

In dimension 1, with (~,a,{,,) = (1,0,6,0), equation (1) reduces to 
I, 21. - cu’ + f(u) = 0. There are many results initiated by the works of 

Kolmogorov-Petrovsky-Piskunov, Zeldovic-Frank-Kamenetskii and Kanel’ 
(c$ [121, [181, 1191, [331). 
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460 F. HAMEL 

The multidimensional case with (a, Q’, g) = (1, o’, 0) corresponds to non 
planar solutions. It was especially studied by Berestycki, Larrouturou, Lions, 
Nirenberg and Vega (cf [5], [6], [9], [27]). These authors proved that there 
exists a solution (co, ~a). With additional smoothness assumptions on f, 
the real co is unique and the function u. is unique up to translation in zl- 
direction. Such results are highly related to the invariance of the equation 
by translation with respect to x1, one of the main tools being the sliding 
method. 

In case (a, $ g) = (1, o’, 0), a system of two reaction-convection-diffusion 
equations of type (1) set in infinite cylinders C was studied in [7] for Lewis 
numbers close to 1. In one of these two equations, the diffusion term has 
the form Au and in the other one, it is dAv where d N 1. Existence 
and uniqueness results were proved. But the structure of the solutions is 
exactly the same as in the case of one single equation, due especially to 
the invariance in z1 of the investigated system. 

Similar problems were studied in the works of Xin and Papanicolaou 
(cJ [22], [29], [30], [31]) in periodic media R x T, where T is the unit 
torus in RN-‘. The problem reads 

(V, + h+)(A(y)(V, + &$J> + G(Y) 
.(V, + ,%&)U+ c&U+ f(U) = 0 in R x T 

where the unknowns are the real c, which is a speed in the given direction 
i, and the function U(s, y) in R x T, periodic in y E T. When f 
is of ignition temperature type, for free divergence velocity field b’ and 
for symmetric positive matrices A(y), there is existence and uniqueness 
of (c, U) and monotonicity properties for U. This is proved by a very 
interesting continuation method. But, as above, the results are related to the 
invariance of this problem with respect to s. In the bistable case, results 
are obtained only for c(y) = (w(y), 0,. . . ,O), w small and a(y) 2 Id by 
the use of Fourier transforms and the implicit function theorem. 

At the end, let us notice some onedimensional works of Barrow-Bates 
and Hagan when the nonlinear terms f are perturbed [3], [ 131. 

With respect to the above works, one the main interests of the present 
paper is the study of equations (1) in which the coefficients depend on 
the main space variable 21. This seems to be the first study of such 
multidimensional reaction-convection-diffusion problems. In other words, 
we loose the very important property of invariance by translation in the 
xl-direction, which implied uniqueness and monotonicity properties for 
the profiles solutions. If (c, u) is a solution of (1) and 20 E R, then the 
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REACTION-DIFFUSION PROBLEMS IN CYLINDERS 461 

pair (c, (x1, y) H u(zi + ~0, y)) is a priori not a solution. Besides, all 
the coefficients are perturbed, the diffusion term a, the multidimensional 
convection term ;, which is multidirectional and not of divergence free, and 
lastly the reaction term f + g. At the end, these coefficients also depend on 
u and Vu, this introduces new nonlinear phenomena. Various existence and 
uniqueness results are nevertheless proved for small perturbations (a, <, g) 
of (1,&O). 

We mention that an equation similar to (1) is studied in [14] where 
;= (P(a),O;.., 0) and 4 + g = f( zr , u), and ,!3 and f are increasing 
in x1. The new phenomenon is that the set of the speeds c solutions is an 
interval1 and not a single point. 

Lastly, some weaker results than those presented in this paper were 
announced in [ 151 and proved in [16]. In this paper, the proofs are completly 
different and the results are more general than those of [16]. The author 
thanks Professor J.-M. Roquejoffre for his suggestions in the advance of 
this work. 

2. SETTING OF THE RESULTS 

2.1. Some useful results and notations 

We first set some results and introduce some notations which will be 
useful in the sequel. 

Let C = Rxw = {(zr,y), zr E R, y E w} be an infinite cylinder in RN 
whose section w is a bounded and smooth connected domain with outward 
unit normal v. The variable y can also be denoted by y = (~a,. . . , xN). 
We set C* = R* x w. Let a(y) be a function defined in Z, of class C2>” 
for some 6 > 0. 

Let f be a C3 function defined in [0, 11. We assume one of the following 
assumptions: 

38 E (0, l), f E 0 on [0,0] U {l}, f > 0 on (0,1), f’(1) < 0 (2) 

30 E (0, I), f(0) = f(0) = f(1) = 0, f < 0 on (O,@), f > 0 on (0, l), 

f’(O), f’(1) < 0 and w is convex (3) 

The first case is called “ignition temperature” case and the second one is 
called the “bistable” case. Besides, in each of these cases, f is extended 
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outside [0, l] by: 

F. HAMEL 

f(s) = f’(O)s on ] - CG, O] 
f(s) = f’(l)(s - 1) on [l.+co[ 

If f satisfies (2) or (3), from results of Berestycki, Larrouturou, Lions, 
Nirenberg (cJ [5], [6], [9]), there exists a solution (coYuO) E R x C;;:(C) 
of the problem 

1 

AUK - (cc + a(y))di~a + f(ua) = 0 in C 
i&u0 = 0 on dC (4) 

u”(-co, .) = 0, uo(+ca: .) = 1 

where di and d, are the partial derivatives with respect to x1 and v. In 
this paper, the limits as lcl -+ fx are always uniform in g E W. Besides, 
we have 0 < ua < 1 and dluo > 0 in !?. The speed ca is unique and the 
function ua is unique up to any translation in the x1-direction, that is if 
(c,v) is solution of (4), then c = co and v(zi,g) = uo(zl + p, y) in c for 
some p E W. The function ‘u. has exponential behaviours as x1 + foe: 

i 

uo(zl~y) = eX”‘q5(y) + o(eXxl) as 3~~ i --3ci 
Vua(zl,y) = V(ex”14(y)) + o(eXZ1) as x1 + --xi 
uo(zl,y) = 1 - efLzl$(y) + o(P’) as x1 + +oc (5) 

Vua(zi, y) = -V(ef’,‘l$(y)) + o(fFL) as :rl -+ +X 

where the reals X > 0 and p < 0 are unique and the continuous and 
positive functions 4 and 4) on Z are unique modulo normalization. They 
are solutions of 

i 
A$ - X(ca + a(y))+ + f’(O)+ + X2+ = 0 in G 

dvq5 = 0 on i)w 

i 
Ali/ - ~(CO + a(y))$ + f’(l)+ + p2$ = 0 in W 

I!$,,$ = 0 on dw 
These behaviours are based on general results of Agmon-Nirenberg and 
Pazy ([n 1231). 

Hence, the integral .[=_ uo(2i, y) dzl$y is well defined and the function 

is continuous, increasing, goes to 0 as p 4 --oo and +cc as p + +a. 
Thus, for any 7 E R;, there exists a unique real p(r) such that the function 
uo(a + P(T)? YL 

f(T) which we note uo,r or u. satisfies 
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Besides, the function p(r) is of class C2(lR;) and we have in particular 
PW = l/ J, uoM47Y)dY > 0. 

Some notations 

We note UC@, II@) the set of bounded and uniformly continuous 
functions defined in C with range in W” (we often omit R” by simplicity 
when there is no possible confusion), and UCa(E, W”) the set of functions 
21 of UC(C, R”) such that 11~11 --) 0 as x1 -+ -cc. 

Let now T > 0 fixed once for all in (0, X/2). For any p E R, we set 

and 

wP(z1, y) = 1 + e-r(zl+p), 

BP = {u E UCo(c), wpu E UCo(c)} 

Dp = {u E BP, Au E BP, &u = 0 on XX} 

Actually, DP = Do and BP = B” for any p E IR. The space BP is a Banach 
space endowed with the norm 

ll4lBP = IIwp41cc 
It is easy to check that, for any p, p’ E W, the norms in BP and BP’ 
are equivalent and 

where z+ = max(z,O) for any 2 E W. 
From (5), by the choice of T- and the standard elliptic estimates up to 

the boundary, we remark that 

Vp E R, Vr E R;, UO,~, VUO,~, dipo,~ E BP (7) 

The set of solutions (c, U) of (4) is the C2 manifold {(co, u~.~), r E R;} 
in R x BP, for any p E W. 

For any r E IS;, we define the operator L’ in Bpcr) by its domain 
DP(‘) and its expression 

L’u = -Au + (co + a(y))&u - f’(uo& 

The operator L’ is unbounded and closed. The space DpcT) is a Banach 
space with the norm 

II4 DP(T) = II&?dr) + IILrull~~(Y 
Vol. 14. no 4-1997 



464 F. HAMEL 

We remark that the spaces Dp(r) do not depend of T, but their norms 
actually depend on 7. But, if T, T’ E IS;, the norms in PC’) and PC”) 
are actually equivalent. Indeed, for any u E PC’) = P(“), we have 

L’u = L%, + (fyup) - f’(u$“))U 

Hence, 

IIL’4I BP(r) 5 lILT”LLIIBPW + 2llf’llcoll43P(~~ 
< er(p(~‘)-p(T))+(IILr’U(IBp(TI) + 211f’llmJIUI(BP(T’)) 

At the end. 

IIull~d~~ 5 2er(P(“)-P(r))+(l + llf’llm)ll~(lDP~~~~ (8) 

Besides, from standard elliptic estimates, there exists a constant CO such 
that if ‘1~ E P(‘), then 

IIWI BP(T) I GlI+Pw , llA&~(e 5 Gll~ll~~(~) 

Lastly, we note 

yd+) = R x g/4’) 

(9) 

We now define the suitably choosen spaces for the small perturbations 
a, (7 and g. Let us set 

A = {u = u(q,y,s,p) E UC(c x R x RN,R), 

d(,,,)U E UC(E x w x RN, qw x RN, R))}, 

Q = AN, 

and 

G = {g E A, g(a,y,O,p) = g(a,y, 1,~) = 0 Y~,Y,P) E =Z x RN) 

We define X = A x Q x G and the norm 

Il(% cr’,g)IIX = IbllA + lIdI + kdG 

where 

IbllA = IbIlG = IbIlp(C~~~w’y + Il~dIp(Cx~xiq 

+ Il44 L~(CXRXRN,L(RN,W)) 
IldlQ = hII. + . . . + IlqNllA 
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The space X is a Banach space, as well as the product X x Yp(r) endowed 
with the norm 

\I(% s’,g, c, ~)llXixYP(4 = Ilb, 4’, 9)11x + ICI + IblIDP(‘) 
2.2. Theorems 

2.2.1. “Local” existence for small perturbations 
of the coefficients and the solutions 

THEOREM 1. - Let f of class C3([0, 11) satisfying (2) or (3), and 
{( co, UO,T , ) 7 E W;} be the set of solutions of (4). Let po E R, and 
~0 E 5JF be the unique real such that ~(70) = po. 

Let I a bounded interval1 in R; such that inf I > 0. There exist 6,~ > 0 
such that, for any 7 E I, if (1 (a - 1, @‘, g) IIx < 6, there exists a unique pair 
(c, U) in Y p0 soZution of 

4x1, Y, u, Vu)Au - (c + a(y>)b + $(x1, Y, 21, Vu) . Vu 
+f(u)+g(x~,y,u,Vu) = 0 in C 

d,u = 0 on 6% (10) 

u(-co, .) = 0, u(+cQ, .) = 1 

and 

.I 
u dxldy = I- (normalization condition) 

c- 
such that II(c - co>u - ~O,T)IIYPO < rl. 

Furthermore, the map 

*‘r : I x &d(L o’, o),q + BYQO ((co, O), rl) 

(11) 

is of class Cl. 
In a general way, BE(x, r) denotes the open ball with center z and 

radius T > 0 in the Banach space E. The term “local” in the title of this 
theorem means that the normalization condition (11) is required only for 
bounded values of r. 

An example of application of this theorem is the existence of solutions 
(c, U) of equations of type (4), that is the existence of travelling waves 
v(t, xi, y) = ~(2~ + et, y) of the reaction-diffusion equation 

&v = Au - cr(y)&v+ j-(v) 

when the nonlinear terms f” are small perturbations of ignition temperature 
or bistable nonlinearities. For instance, J may be a function close to 0 
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on [0,19], but which oscillates near 0. This is new with respect to the 
results of [9]. 

These theorems also prove the existence of travelling waves solutions of 
reaction-convection-diffusion equations 

for F > 0 small enough (p, y > 0). Here, the diffusion and convection 
terms may take into account models of turbulence with different scales. 

For equation (4), we know that for any h E (0, l), there exists a unique 
solution (c, U) such that 

max ~(0, .) = h 
z 

This function u is of the form u(x~, y) = ~$~)(zr, y) = ~a(~cr + I. y). 
A corrolary of theorem 2 is the following theorem, where the normalization 
condition (11) is replaced by another of “max” type. 

THEOREM 2. - Let f satisjjGng the same assumptions as in theorem I. For 
any 0 < a < b < 1, there exist 6, 71 > 0 such that for any h E [a, b], if 
[[(a - l,$,g)l/~ < 6, then there exists a pair (c,u) in Yp(h) solution of 
(10) and the normalization condition 

rn? ~(0, .) = h, (12) 

such that jI(c - Q,U - u$~))//~+(,,) < vl. 

Remark 2.1. - The same result holds if the normalization condition 
max, ~(0, .) is replaced by maxc U. 

Remark 2.2. - Whereas theorem 1 delt with local existence and 
uniqueness for small perturbations of the coefficients and of the solutions, 
theorem 2 only ensures the existence of such solutions with this new 
normalization. A uniqueness result for this “max” normalization seems to 
be more difficult. 

2.2.2. “Global” existence for small perturbations of the coefficients 

THEOREM 3. - Let f as in theorem I and assume moreover g(xl! y, s, p) > 0 
for s < 0 in the ignition temperature case. There exist 6, q > 0 such that, 
for any 7 E R;, if II(u - l,$,g)]j.v < 6, then there exists a solution (c,u) 
of (10) in W x Do such that SC- ‘u. = 7 (11) and Jc - CO/ < 7. 
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The term “global” means that the normalization condition (11) may take 
any value r E R;. On the other hand, we loose the uniqueness properties of 
the solutions u and the uniform bounds for U. But the bounds for c are kept. 

2.2.3. Uniqueness results for small perturbations of the coefficients 

From the previous theorems, we know the existence of solutions (c, U) 
of (10) for small perturbations of the coefficients. Besides, with suitable 
normalization conditions, the solutions are constructed to be closed to the 
solutions of equation (4). The aim of the following theorem is to show 
that, for suitable and small enough perturbations of the coefficients, all 
the solutions of (10) with suitable normalization condition are closed to 
the ones of (4). 

THEOREM 4. - Let f be a Lipschitz-continuous function dejned in [0, I], 
but not necessarly C”. 

tit ~)(~I,Y,s,P) (1 I 4.~’ 2 N), P(~,Y,s,P) andg”(zl,y,s,p) be 
bounded, continuous and of class Co@ functions dejned in c x R x RN (for 
some a: > 0). The functions a;,, qy and g” are lipschitz continuous in s and 
P. Assume I~~~(Q,Y,s,P) - h~llcoj II~~~I,Y,s,P)II~~ Ilgn(~:l,~l,s,~)llm 
+ 0 as r~ --+ +cc and assume that, for any n E N, there exists a solution 
(c?,lP) of 

i 

a;(zl, y, un, vUn)a+Ln - (c” + a(y))a,u~L 
+p(zl, y, un, VU”) . VU” + f(u”) + gn(xl, y, u”, Vu”) = 0 in C 

d,u” = 0 on dC (13) 

7P(-cm, .) = 0, tP(+co, .) = 1. 

a) Zf f satisjies (2), is of class Cl,’ near 1 and if there exists p > 0 
such that 

then 

Zf f satisfies (3) and is of class C1,s ([0, 11) for some 6 > 0, then the 
same result holds. 

6) Let f satisfy (2) and assume that there exists n > 0 such that 
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(16) 

then 
P(T) un + u(j7 = u. in Dpcr) and Wl”d,” (C) for any p > 1. 

c) With the assumptions of b), if max un = h” + h E (0,l) as n --i 00, - c- 
then 

un + u;(h) in DPCh) and F@:(C) for any p > 1. 

Remark 2.3. - For results b) and c) on convergence of the functions 
u” to some solution of (4), the normalization conditions of type SC- un or 
maxc-un are necessary. Otherwise, we could have un --f 0 or U” -+ 1: take 
for instance a; = &j, p = 0, g” = 0 and (cn, u”) = (CO, ug(zr f n, w)). 
Besides, for technical reasons, these results b) and c) do not hold clearly 
for a bistable function f. 

Remark 2.4. - We are not able to get a priori monotonicity properties 
for the solutions un of (13). But, when ll(ai - &j, p, gn) ]loo is small 
enough, the solutions 2~” are close enough to some fixed solution of (4) 
in C$,6(c) (with some suitable normalization condition for IL’“). Hence, 
for any compact K in c, the solutions un are increasing in 21 in K for 
n large enough. 

2.3. Comparison between existence and uniqueness results 

From theorems 1 and 4, we conclude that if f satisfies (2) and 
a$ = &&(a,y,s,p), (a”,g’“,g”) E X, Il(a’l - lrPrgn)ll,~ + 0, then 
there exist solutions ( cn , un) of (13) and (16) (theorem 1). If (15) holds, 
then these solutions are the only ones (theorem 4 and formula (8)). 

In theorems 1-3, we only consider matrices (aij) of the form a&j because 
of the definition of the spaces D P(T) for which the useful properties of the 
operators L’ are available. 

2.4. Methods and structure of the paper 

Existence theorem 1 is based on the uniform contraction mapping 
theorem, or a uniform implicit function theorem. We linearize equation 
(10) near (co, u~,~) and have to use spectral properties of some operators 
taking L’ into account, and especially their invertibility when SC_ u is fixed. 
We apply some results of Roquejoffre and Sattinger similar to the ones of 
Krein-Rutman (cJ [20], [24], [25]). The same properties, joined with the 

Ann&s de I’hstitut Henri Poincd Analyse non linthire 



REACTION-DIFFUSION PROBLEMS IN CYLINDERS 469 

application of an implicit function theorem, was used by Roquejoffre for 
the analysis of the nonlinear stability of the solutions of (4) [24]. Theorem 2 
is a direct consequence of theorem 1 by a continuity argument. Theorem 3 
comes from the study of equation (10) translated in x1 by any step p. 

The uniqueness results of theorem 4 are proved in a very different way. 
The boundedness of the speeds cn is a consequence of comparison of nn to 
onedimensional fixed functions, and the convergence of cn to co comes from 
comparison of un with travelling waves solutions of (4) for nonlinearities 
ff close to f. These comparisons can be made by a sliding method and the 
essential tools are the maximum principle and the Hopf lemma. By a study 
of the exponential decay of the function 2~” as z1 -+ --oo when SC_ urL is 
bounded, we conclude to the convergence of un to some solution of (4). 

The next two sections are respectively devoted to the proofs of existence 
theorems 1-3, and uniqueness theorem 4. The last section presents some 
open questions related to this work. 

3. EXISTENCE RESULTS FOR SMALL 
PERTURBATIONS OF THE COEFFICIENTS 

3.1. Local existence and uniqueness when SC- u is bounded 

This section is devoted to the proof of theorem 1. Let f be of class 
C3([0, 11) and C’(W) satisfying (1) or (2). Let pa E W. From section 2, 
pa is of the form pa = ~(70). Let 1 be a bounded interval1 in W; such 
that inf1 > 0. 

For n - 1, Q’, g small enough in X and for any r E I, we look for 
solutions (c, U) of (10) in YPo. Setting u = u~,~ + ‘u, this is equivalent to 
solve the following equations: 

Fl(T, a, ifI 9,c, u) := av - (co + &/>)&v + f(UO,T + u) - f(‘lLO,T) 

+(4n, Y, uo,r + vu, V(uo,., + u)) - l)A(uo,7 + 71) 

-cc - coPl(?~o,T + u> + ;(a, YY, uo,7 + v, quo,, + 71)) . V(UO,T + 71) 

+s(zl, y, UO,~ + 21, V(UO,~ + u)> = 0 in C, 

d,v = 0 on dC, 

u(-Co, .) = v(+cq .) = 0 

F2(7, a, ii, 9, c, u) := 
.I 

II = 0 
cm 
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In the following lemma, we actually prove that in order to solve the previous 
problem for (c, U) E YPo, it is enough to solve Fi = 0 and F2 = 0 when 
a - 1, g and 2’ are small enough in A, G and PO. In other words, conditions 
?)(+cc, .) = 0 and &,u = 0 are redundant. 

LEMMA 3.1. - Let g E G and a E ,4 such that ll.qllG < l/2 If’(l)] 
and Ila - 111.4 5 l/2. There exists 70 > 0 such that, if v E DpCj satisfies 
Fl(T, a, y’,g, c;u) = 0 and IIu[~~, < 710, then u(fcc, .) = 0 and i),v = 0 
on X2. 

Proof. - The conditions ?I( --oo, .) = 0 and &?I = 0 are actually included 
in the definition of DpO. It only remains to prove u(+cco, .) = 1 where 
‘II. = SILO,, + 71 is solution of 

du - (c + c~(y))i)~u + ff. Vu + f(~) + g(xi, y, IL, VU) = 0 in C 

We first remark that if ](a - l]]A 5 l/2, then ]]n - 111, 5 l/2, whence 
a E [l/2,3/2]. S ince f is Cl(R). lli?sgjlm 5 l/2 If’(l)1 and f’(l) < 0, 
there exists ~0 > 0 such that 

2f’(l) < d,&(Q, y: s,p) + f’(s) < l/4 S’(1). 
v’s E [l - 7pJ: 1 + 7]& (Xl. y,p) E c x Iw” 

(17) 

Let now ‘u = ‘(1. - uo,r such that ]]v]]~~~ < ~a. This yields ]]~~]]~ < 710, 

hence -no < u < u + 710 in c and 

Let us suppose that I = lims~p,~,+, u > 1. Then there exist points 
(G, Yn) E c. 2, + +cG:, such that u(x,, , yn) -+ I E (1,l + 70). In the 
compact K = [-1, l] x W, we define u,,(z~,Y) = ~(21 + :c,,.y). This 
function is solution of 

+f(wL(a, Y)) + S(Zl + 5?1, y,,~,(2~,~),Vv,,(zl,y)) = 0 in K 

Since l/2 < a 2 3/2, @‘is bounded, U, is bounded in [-no, 1 + rjo], f is 
continuous, g(xi , y, s, p) is lipschitz continuous in s and vanishes for s = 0 
or 1, we deduce from the standard elliptic estimates that the (u,)‘s are 
bounded in W2,p(K) for any 1 < p < CU. From the Sobolev injections, it 
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comes that for some subsequence that we rename (n), we have u, ---) U, 
in Cl>“(K) for any Q E (0,l). 

On the other side, since u and @‘are bounded and uniformly continuous 
in c x R! x 58”. the functions 

u,(:l:1,y) = a(z1 +5?L,Y,U,(ICl,Y)?011,,(51,Y)) 

and 
&(a, y) = $(x1 + XT,, Y, wL(a, Y), v%(a,Y)) 

are bounded and uniformly equicontinuous in the compact K. From Ascoli’s 
theorem, up to extraction of some subsequence, they converge in L”(K) 
to some continuous functions noo(zr, y) and &(xI, y). We obviously have 
urn E [w,3/21. 

For n large enough, we have 1 - 70 < u,( XI, y) < 1 + 770 in K from (18). 
The term f(u,) + g(zr + ~,,y,u,,Vv,) can be written 

Since f’ is uniformly continuous on the compact [l - 70,1+ 7101 and 3,g is 
uniformly continuous, the sequence of functions c, : K x [ 1 - qo,l +~a] -+ 
R, (51, y, S) ++ hg(2b + z,, Y, s, Vh(m, Y)) + f’(s) converge, up to 
extraction of some subsequence, in L”(K x [ 1 - 70, 1 + ~01) to some 
function c(zr, y, s) continuous such that 2f’(l) 5 c(z~, y, s) < 1/4f’(l) 
from (17). Hence, the function K --+ R, (z~,y) I-+ f(u,(zl,y)) + 
g(zr + z,, y, u,(zr, y), Vu,(zr, y)) converge in L”(K) to a function 
c,,(zI,Y)(u,(~:~,Y) - 1) where 2f’(l) I c,(Q,Y) 5 1/4f’(l). 

At the end, the function u,(zr , y) E W’,“(K) satisfies 

uoc(zl, ypu, - (c + ~(Y)>~lwx + &c(n, IY) 

. VU, + c,(zr,y)(~~ - 1) = 0 in K 

and u~(O,Y) = r! = maxh- U, for some y E Z. From the previous equation 
and the Sobolev injections, we have au, is continuous. Since 1 < 1 and 
c 2 0, it comes from the strong maximum principle that u, z 1 in K. 
This is impossible since c, 5 1/4f’(l) < 0 in K. 

We then conclude that limsup,l,+m u 2 1. With the same arguments, 
we have liminf,, ++o3 u 2 1. Finally, we get 

u(+co, .) = 1 

This achieves the proof of lemma 3.1. 
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Definition and properties of the map F = ( Fl, F2) 

Let ZPo = BP0 x R, this is a Banach space with the product norm. Let 
F defined as follows: 

F : I x x x YPO --+ zpO 

This map is well defined. Indeed, firstly, for any 71 E PO, we have 
2, = o(erzl) as lcl -+ -00, whence SC- ?J converges. Moreover, from (7) 
and (9) and since a and {are bounded and uniformly continuous in all their 
arguments, each of the terms AU, (ca+a(y))&~, a(zi, y, Q~+v, V(uo,,+ 
~)A(uo,~ + II>, (c - CO)&(?LO,~ + ~1, Q’(Q, Y, ‘ZLO,~ + vu, V(uo,T + ,u)) . 
V(ua,., + u) is in BPO. Lastly, the functions (xi, y) H f((~~ + ~)(zi, y)), 
f(~O,&l> Y>>> d zl, Y , ~0,~ + ?I, V(UQ +v)) are uniformly continuous and 
bounded on z (the function g is bounded and uniformly continuous in all its 
arguments). Since f(0) = 0, g(zi, y, 0,~) = 0 V(zi, y,p) E C x RN, since 
f’ and 8,s are bounded and ~0.~. ‘u = o(el’Xc’) as x1 -+ -00, we conclude 
that ~(uo,~ + ~1, ~(uo,~), g(a, Y,TLO,~ + w, V(UO,~ + ~1) are in BpO. 

A very clear but tedious calculation shows that the function F is of 
class Ci in all its arguments: this uses in particular the facts that f’ 
is uniformly continuous in R’ from its definition oustide [0, l], that a, 
qi, g are Ci with respect to (s, p) and their derivatives d, and 8r are 
bounded and uniformly continuous functions in L”(y x R x RN, R) and 
L”(c x R x RN, .C(RN, W)). For the C1 dependance in 7, we need that 
A&r+ E BP0 (this comes from Schauder’s standard elliptic estimates 
since LT&uo,, = 0 and di~~,~ E BP”) and we have already written that 
p(r) is of class Cl. 

We observe that F(T, 1, 8, 0, CO, 0) = (0,O) in ZPa for any r E I. 
In order to prove the existence of solution (c, 71) close to (CO, 0) of 
F(T, ~1, $, g, c, w) = (0, 0), for (a, f, g) close to (1, 6,O) and for any r E I, 
we apply a uniform mapping theorem. To do this we have to study the 
operator ~~,,,~F(T, 1; o’,O, CO, 0). 

LEMMA 3.2. -For any T E R;, the operator 3T = i3c,,,,lF(~, 1, 6, 0, CO, 0) 
E C(YPo, ZP”) is an isomorphism and 

where the function A remains bounded as r and 7-l are bounded, and 
A -+ +oo as T -+ 0 or +co. 

Annalrs de I’lnsritur Henri Poincark - Analyse non ImCaire 



REACTION-DIFFUSION PROBLEMS IN CYLINDERS 413 

Proof. - Let 7 E R;. From the definition of F, we have 

3T’ : ypo -+ zpo 

where L’ was defined in section 2 by its domain DP(‘) and its expression 

L’ : BP(‘) we, BP(‘) 

u ++ -Av + (co + +./))&w - P’(uo,& 

Let (w, 7) E ZPO . We have to solve the following system with unknowns 
cc, VI: 

Here, we use some important properties of the operator L’. We need in 
particular the assumption 0 < r < A/2 where wp = 1 + e--r(rlfp). The 
following assertions are proved in [8] and [24] in this multidimensional 
situation, and previously in the onedimensional case by Sattinger and 
Henry [25], [17]. 

a) The kernel N(L’) is onedimensional and spanned by &~a,~. This 
property is the analogous to the Krein-Rutman theorem for elliptic operators 
in bounded domains (c$ [20]). 

b) The decomposition 

BP(‘) = N(L’) Ed R(L’) 

holds in algebraic and topological sense, where R(L’) is the range of L’. 
c) The kernel N((L’)*) of the adjoint of L’ is onedimensional, spanned 

by a linear form e7* E BP(‘)’ (the dual of BPcT)). We may take e’* such that 

< e’*, 6~0,~ >(Bp(7)/,Bp(T,)= 1 

d> The restriction M’ of L’ to R(L’) is an isomorphism between the 
Banach spaces DP(‘) n R(L’) and R(L’) endowed with the norm ]I ]],+c~, . 

Hence, equation (19) has a solution II if and only if < e’*, w+cdr~o,~ >= 
0, that is c = - < e7-* , w >. The set of solutions u of (19) is then 

{-(M’)-l(w- < eT*, w > &uo,~) + V~IUO,,, v E R} 
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Equation (20) determines u in a unique way: 

To summarize, F” is a bijection and 

(~TYW~ Y) 
1 

( 
- < (Jr* , 711 >. -(M’)-l(~ui- < er*, ‘W > 817&) 

+ 
y + Jr_ (W)-‘(w- < er*,w > 31UrJT) 

Jc_ &uo,, 
&uo,, (21) 

1 

We now have to evaluate the norm of (F’)-’ in ,C(ZPo, YPo). Firstly, 
from the definition of eT*, we have 

Secondly, we prove that the norms of the operators (&P-l in L(B”(‘) ) 
are independant of 7. 

LEMMA 3.3. - For any r E R;, we have 

where ~(70) = po. 

Proof of lemma 3.3. - From assertion d> above, we know that AP, 
the restriction of L’ to R(L’) is an isomorphism from PC’) n R(L’) to 
R(L’). For any p E R and for any function u defined in F, we note ?I,~ 
the function ~Q(xl,y) = ~(2~1 + p!y). 

Since uo,r = u$~), we have, for any v E DJ’(‘) = DPrl, 

LTV = -au + (co + a(y))&v - f’(uo(51 + p(7), y))v 

But ua(zl + p(r), y) = u~.~~(xJ~ + l)(r) - pa: y). Hence, we have 

L’( ,()) = pm (7/Po -P(T) >I P(T)-Po (23) 

Ann&s de i’lmritut Henri Poinmr6 Analyse non linkaire 
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Let now w E R(L’). There exists ‘u E D’(‘) such that w = LTu, whence 
u) = [L~o’OuPO-f(r))]f(r)- PO. The function wP~--p(~) = LTo(u”o-P(‘)) is in 
R(LTo). From assertion d) above applied to TO, let 

This function ~0 is of the form v. = L? where z E Dp”. Thus, 

from (23) applied two times. From the definition of M’, we have 

Finally, with elementary arguments, we conclude 

II(~‘)-lII~(R(LT),Bp(T)) = sup 
II(~~o)-l(,Wfo-f(r))llBPO 

w#O,ER(L~) ll4lW) 

II sup 
Il(~~o)-l(wfo--p(r))ll~Po 

w#O,ER(L~) llWP~-qlBP" 

= Il(~‘“)-lII~(R(L’o),BP~) 

since R(L’)PO-P(‘) = R(LTo) from (23). 

End of the proof of lemma 3.2. - We are now able to evaluate the 
norm of (F’)-‘, i.e. II(-?-‘(w~ r>ll nX ~~~ given by (21). From (22) and 
lemma 3.3, we have 

1 < e7*, w > I 5 ll~Iu~lIBo IIa3P(~) 

L ,li),u~llBo e’(fO-f(‘))+ llwllBIto : 

Il(~T’(w- < eT*, w > dlu~,~)ll~d~~ 

I 2n llwll~~(~) 5 2ae +o-f(T))+ I(WIIBPO ) 

(24) 

(25) 
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II(‘(w- < er* . w > ~IUO,~)IIBP~ F 2a e r’~(+-p”‘llw~I~po. 

Besides, 

LTo((M’)-l(w- < e’*, w > dlu~)) 
= w- < eT*, w > &uo~, 

+ (f’(u$‘) ) - f’(u~))(M’)-l(w- < er*, w > dlu~,~) 

From (24) and the previous inequality, we get 

llL”((fW-‘(w- < e’*, w > dlu~,~))ll~~~ 
< [l + edfo-f(T))+ - + 4ullf’llooerlP(r)-PoI] II’uII(B~~ 

Let us now get an upper bound in D P0 for the last term of (21): odium,,. 
First of all, we have 

J 
’ &uo.r = 

c- / * u UO(P(T), YPY L I4 m$ UO(P(.~), .I 

From (23, it comes 

.I 
=._ (Ad’)-l(w- < e’*, w > dlu~.~) 

< ‘& e’(fD-P(‘))+ llwIIE~o I4 s_:, 1 + e-T;il+p(7)) dz1 

= 2alwl 
ln( 1 + eTpCT)) 

r 
er(fo-f(r))+ llwllpo 

Thus, 

I4 5 
1 

IYI +244 
ln( 1 + erPC7)) 

lwl min, UO(P(T), .) 7” 

and 

hence 
(ILTOdlu~,TII~PO 5 211f’(lae’(P(‘)-Po)+ I~~IuoIIBo. 

Summarizing all the previous inequalities in the definition (2 1) of ( FT) -‘, 
we get after a straightforward calculation: 
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where 

A(T) =l+ 1+ 
1 

lk%UOllBPo > 
e~(Po-P(~))+ 

+ Iw, mini ]ro(P(T), .) (1 + W’llm)ll~l~OII~~ er(p(r)--po)+ 

+ 
241 + w’llm) 

2a + 4akf’lIm + min- uo(p(T) ) lk%UOllB” 

ln(1 + eTPcT)) 

w 3 . r 1 
It is clear that A is a continuous function of r and that A(T) remains 
bounded as r and r-l remain bounded in WY. Furthermore, since 
uo(-co, .) = 0, p(o+) = - cc and p(+co) = +cc, we conclude 

A(T) -+ +cc as 7 + Of or + cc 

This achieves the proof of lemma 3.2. 

In order to apply a uniform contraction mapping theorem, we set 

G : R; xXxYpO -+YpO 

(7, a, 6 9, c, u> H Cc, ~1 - (3T)-‘F(r, a, iii 9, c + CO, ~1 

The operators 3’ are actually of class C1 with respect to r in L(YPo, Zpo). 
This is easy to check and uses the fact that p(r) is of class C2 and f is of 
class C3([0, 11). H ence, from the result of lemma 3.2 and straightforward 
arguments, the operators (F”)-’ are also of class C1 of r in L(ZPo, Y”“). 
Finally, since F is of class C’, we get that the map G is of class Cl from 
w; x x x Ypa to YPO. 

Moreover, we have 

G(r, l,o’, O,O, 0) = (0,O) 

for any r E RF. 

and 

Hence, with the notations of lemma 3.1, in order to achieve the 
proof of theorem 1, is is enough to prove the existence of reals 
6; 77 > 0, 6 E (0, min(l/2,1/2]f’(l)])) and n E (0, vo) such that, if 
7 E 1, II(a - Lc7,g)ll~~ < 6, ll(c,~)II~~~ < rl, then 

Il+c,u)G(~, a, f,g, c,~~)II.c(YP~) 5 l/2, 

Ild(a,f,g)G(~, a, (1’,g, c, v)IIL(s,I’~~) 5 C 

and CS < l/2 n. 
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Once the previous inequalities are proved, from the uniform contraction 
mapping theorem, for any (T, 0,. <? ,CJ) in I x Bs (( 1; 0’. 0), S), there exists a 
unique pair (c, II) in &-,.,, ((0. 0), rl) solution of G(r, CI, 6 !/: f’. 1:) = (0. 0), 
i.e. F(T, I~; fj+. g?c + co5 II)= (0,O) in 2 P0 . In other words, (C + co, (1. + ~~~~~~~~ ) 
is solution of (10) with the normalization condition (11). 

Proof of (26). - We have 

(7, w) t-+ (y, w) - (FT)-1if((..I.)F(7; u; $g, c + co; ,!I) . (y: w) 

= (F-‘[a,,,,,,F(T. 1.6.0. co. 0) - i)(,.,,.)F(T. a, f,g, c + co. ?I)] . (y; w) 

It is easy to check that 

From lemma 3.2 and (9) we conclude that 

ll+..c;,G(~: CL. f. g, c: ,t!)II~:(y’o) 

I A(+‘ok~l + Coll4l~m + (Il&4xz + Coll@llzo) 
x (Il~~~~ollcc + coll~~llD”o) + Glla - ~11, 
+ (Il&dlx + coll~pdlcB3)(llv~& + coll+v’II) 

+ Glldlcx + ll&9llx + c0114J,911cc1 * 

From the definition of the norm in X, assertion (26) is now clear. 

Remark 3.1. - From the properties of the function A, the positive reals h 
and q constructed by this method go to 0 as T + O+ or +cc. 

Proof of (27). - We have 
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Thus, by lemma (3.2) and formula (9), and since g(~;t, y, 0,~) = 0 
V(xl;y~y) E C x R”, we get 

a, a,q’&(~ a, 4’, 9, c> u> . (6, i> 9) 
5 A(7)[11Tlll~(llA~oll~oe’(~(~)-“‘)+ + CO~[W[~DP~) 

+ Ikllcu(llvuOIboe T(p(i)-pn)+ + COI17JIlDP”) 

+ Ilds~llco(ll~OllB~e”P’~‘-““‘t + ~~~~~Dw )I 

Hence, if 7 E 1: ]](a - l,cj’,g)lls < 6, llvll~po < v, 

Lastly, we can choose 6 > 0 small enough such that C6 < l/271. This 
achieves the proof of theorem 1. 

Remark 3.2. - The smoothness assumption f E C3([0, 11) was crucial 
in the proof. The linearized operator L’” takes f’ into account, and a 
continuous dependance of I] (MrO))r ]I with respect to f’ does not seem 
to be clear. 

Remark 3.3. - Since the functions ~0,~ are of class Cl in DP” with respect 
to 7, we infer that for any (a, $ g) E BX (( 1, 6, 0), S), the set of solutions 
(c, 11,) of (10) contains the Cl manifold {@1(7, (L, $ g) + (0,7~0,~), r E I}. 
Unfortunately, since A(T) + +oo as r + Of or +co, this result cannot be 
extended with the same method to the interval1 I = R:. 

3.2. Local existence when max= ~(0, .) 
is bounded: proof of theorem 2 

Let 0 < u < b < 1 and p. E W. We recall that for any h E (0, l), p(h) is 
defined by max, uo(p(h), .) = h. In other words, &h) = uo(. + p(h), .) 
satisfies maxF u$~)(O, .) = h. 

Let (L’ = a/2 and 6’ = (1 + b)/2 and I = ppl(p([d,b’])) = 
[7,in, ~max ] c R;. From theorem 1, there exist 6, rj > 0 such that if 
(7, a, $, g) E I x Bs(( l,o’,O), 6), there exists a unique solution (c, u) of 
(10) such that (c,~L - u~,~) E Bnx~PO((~O,O),~). From the proof of the 
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previous section, we can choose 6 and q small enough in such a way that 
11 < min(a - a’, b’ - h). 

Let now [[(a - 1,{>,~)11~ < 6. The function 

T ++ *AT, a, Z 9) = (C(T), 4~)) H mg= (~0,~ + 4~))(0, .) 

isonmauy on the interval1 I. We have ll~(r))l, < ~~~(r)JIDPO < rl < 

max UO,~,,,,, (0, .) = n-g u. w 
fiq,, .) = u’, 

w 

whence M(T,;,) < (I. In the same way, M(z,~~~~) > b. Hence, for any 
h E [a, b], there exists r E 1 such that M(r) = h. In other words, 
there exists a pair (c, U) = ( c r , uO,r + ~(7)) solution of (10) such that ( ) 
max, ~(0, .) = h, Ic - co1 < 7 and 

lllb - lLO,rllDPo < T/ cw 

Thus, max, z&h)-’ = h - q < max, u$~) P(h)+v < h + v = max, ?lo , 
that is to say 

p(h - 77) < p(7) < P(h + 71) 

Since 11 is lipschitz-continuous and I(~lIliP 5 Ilb)i~~ll~, we have 

b(h) - ~(711 F Il~l~ollmv 

From (28), it comes 

Ilu - 7(yh) IlDP” < 7 + IJtp - 7pIIDP0 

I rl+ Il~~~~Ollooll~l~~Oll~~e ~max((~(h)-po)+.(p(7)-po)+) 

+ 7111&~~011m(2C0 + Ilf’lloo)ll&~O1l~ot: Tmax((~(rl)-P,)+,(P(T)-/~~)t) 

Since p(r), and thus p(h) are bounded, the right hand side is bounded by a 
constant only depending on a and b. Besides, the norms in D’” and Dp(h) 
are uniformly equivalent from (8) because ,p(h) remains bounded. Finally, 
this gives the existence of a real v1 in the assertion of theorem 2. 

Remark 3.4. - The same arguments also hold for other normalization 
conditions like maxF u = h or when the max is replaced by the min. 
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3.3. Global existence for small perturbations of the coefficients 

Let 1a be a fixed interval1 in W; such that inf& > 0 and the interior of 
1, is not empty. Let p. = 0. By theorem 1, there exist 6, r~ > 0 such that 
if [\(a - l,$,g)llx < 6 and r E IO, then there exists a solution (c,u) of 
(10) in R x Do such that SC- u = r and II(c - co,u - ~c,~)IIn~oo < v. 
Besides, the map 

is of class Cl. 
Let r. in the interior of IO and T E R;. Let (u,g,g) E BX((l,&O),S). 

For any t E W, we note at(zrl,y,s,~) = a(zi + t,y,s,p) and in the same 
way 3 and gt. We obvioulsy have (at, $, gt) E BAx (( 1, 6, 0, S), hence we 
can set (ct,ut) = (a(ra,at,g,gt). 

In the proof of theorem 1, we choosed S > 0 small enough such 
that [Ia - 111, 5 l/2 and, in the case where f satisfies (3) (bistable 
case), ll&gll~ 5 1/2lf’(O)l. In the case where f satisfies (2) (ignition 
temperature), we only consider functions g such that g(zi, y, s,p) > 0 if 
s 5 0. Hence, we always have f(s) + g(zi, y, s,p) 2 0 if s 5 0. Since 
ut -+ 0 and 1 as x1 + foe, it comes from the strong maximum principle 
and the Hopf lemma that ut > 0 in F. Besides, we can choose (6, q) small 
enough such that 7 < l/2 IwI. 

Since ut = o(erzl) as x1 -+ -cc and ut -+ 1 as .x1 + +co, in the same 
way as for uo, the function k : v H SC- ut(zrl + v, y) is an increasing 
and continuous bijection from W to RT. Hence, there exists a unique real 
v(t) such that 

We note u;(t) = ut (zl + v(t), y). The pair (et, uLct)) is solution of 

ht+qq, y, u;@), Vu,“(t))Au~(t) - (et + a(y))dlp 
+g+“(Q (x1 ) y, Uty@) ) Vzp) . Vzp 

in C, 
(29) 

In order to achieve the proof of theorem 3, it is enough to show the 
existence of t E R such that t + v(t) = 0, indeed the pair (ct , uLct)) will 
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then be solution of (10) and SC_ u,“(‘) = 7, with Ict - co1 < 71. To do this, 
we prove the following lemma: 

LEMMA 3.4. - 7’hefunction R + R, t H v(t) is continuous and bounded. 

Proof. - The function W + X! t H (tzt: q, y”) is continuous since a, 
sf g are uniformly continuous as well as their derivatives with respect to s 
and p. Besides, when if .f is of ignition temperature type, f satisfies (2). 
the property g(~ci, :y: s,p) < 0 for s _< 0 is preserved for gt. In the same 
way, II&& 5 Wl.f’VU P is reserved for gf (for the b&able case). 

From theorem 1, the function t H (ct. ut) solution of ( 10) and 
SE-- %I~ = ru with (a’, g. gt) is then continuous from W to W x D”. For the 
continuity of the function 11, it only remains to prove that the function 

II”’ = {II E D”, ‘7~ > 0 in C} i R 

where P(U) is the unique real such that J,_ uI’(~) = 7, is continuous. Let 
u,, + ‘IL in Do as n. --f CC such that U, E Do’ and u E Do’. There exists 
a sequence E, + 0 such that, for any 71, 

This yields 

en ln( 1 + e+w-F)) - + ,/&11)--I 
r I . c. 

I s 
,uf41L)-c < & ln( 1 + e”(Pw’)) 

II - I’ 
,&+f + 

c- . c-~ r 

The right hand side of these inequalities goes to d,_ uP(*‘)-’ < r as 
7~ + +co. Hence, for n large enough, we have 

In the same way, we have, for rb large enough: 
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This proves that the function b is continuous, so the function t H y(t) 
is continuous. 

Let us now prove that this function v is bounded. We know that for any 
t E R, )Iut - UO,,, llD~~ < q. Hence, 

77 r/ - 1 + e--7’rl + TLO,T” < TJt < %7l + 1 + e-7T1 

This gives 

7j ln( 1 + ervct)) - + u(t) 

=.i I 

I 
UO,TO < ?- 

. c- 

(30) 

The right hand side goes to 0 as v(t) + -CG. Since T > 0, there exists 
a constant A(r, v) such that 

Since Q,(+cc, .) = 1, the integral SC- ~~~~~~ v(t) is greater than 1/2lwlv(t) if 
v(t) is large enough. But we choosed 77 small enough such that v < 1/2/w]. 
Hence the left hand side of (30) goes to foe as r/(t) + See, so there 
exists a constant B(T,~) such that 

vt E R, v(t) < B(T,r)) 

This achieves the proof of lemma 3.4. The function t I-+ t + v(t) is then 
continuous and its range is R since v is bounded. Thus, there exists to E R’ 
such that to + v(to) = 0. From (29), the pair (et,,) 1~” u(to)) is solution of (IO) 
and SC_ z$“) = r for the perturbation (n, Q’> 9). Moreover, ]ctcl - c < sr/. 

Remark 3.5. - Let a = 1/2]f’(O)] if f satisfies (3) and +oc if f 
satisfes (2). If we note (61, ~1) the pair (6,~) constructed in theorem 1 for 
any interval1 1 c ‘w; such that inf1 > 0, then theorem 3 actually holds 
for 6 = min(sup, 61,~). 

4. UNIQUENESS OF SOLUTIONS (c, us) FOR SMALL 
PERTURBATIONS OF THE COEFFICIENTS: 

PROOF OF THEOREM 4 

In this part, we assume that f is a lipschitz-continuous function defined 
on [0, 11, of class Cl,” near 0 and 1, and such that f(0) = f(1) = 0. 
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This function is extended outside [0, l] as in section 2. Let a;(zi, 9, s,p), 
p(xi,y,s,p), gn(xl,y,s,p) be bounded, continuous functions defined on 
c x R x R”. Besides, they are assumed to be of class Co,’ with respect 
to (xi, y) and nyi, q; and g’” are assumed to be lipschitz-continuous with 
respect to (s,p). We assume that ]]u; - &]I,, ]I?]]=, Jl.9nllm + 0 as 
n + 00. Assume there exists a solution (c”, u”) of (13) for any 11. For 
n large enough, the matrices (aG)ilz,j<N are elliptic; by the smoothness 
assumptions and the standard elliptic estimates, it comes that the 1~“‘s are 
in WILd,p( C) and even in C “,“(c). We always assume in the sequel that r~ 
is large enough in such a way that the previous properties are satisfied. 

4.1. Convergence of the speeds cTL to co 

LEMMA 4.1. - There exists a real K such that V n,: Ic”‘I 5 K 

Proof.-Let l+v” betheuniquereal > 1 such that f(l+n”) = -]]gnJloc. 
We have n” -+ 0 as n, + 00, and 

f(s) +g”(zl;y,s,p) < 0 v’s > I+$, V(%Y>P) E-TX RN 

In the same way, if f satisfies (3) (bistable nonlinearity), there exists 
fn > 0, --+ o+, such that f(s) + g”(~r,y,s,p) > 0 Vs < --en, 
V(eLy,p) E C x R”. If f satisfies (2) (ignition temperature case), then 
f(s) + gn(xl, y, s,p) > 0 Vs 5 0, V(zl, y,p) E c x RN by (14). From the 
maximum principle and the Hopf lemma, we get 

C 0 < un < 1 + 7j~‘~ if f satisfies (2) 
--tn < uT1 5 1 + 7” if f satisfies (3) (31) 

We now define a fixed function fx 2 f on an interval1 [E, 1 + t] for 6 
small enough. If f satisfies (2), let 0 < t < l/2 min(/l, 0). We set 

i 

0 on [t, 261 
f= f+(u-2f)(l+f-7~) on [2e,l] 

(7~ - 2t)(l + t - 7~) on [l, 1 + ~1 

If f satisfies (3), let 0 < F < l/2 8. We set 

-i 

0 on [t, 2t] 
(7~ - 26)(1 + E - U) on [2e, 191 

‘= f+(~-26)(1+6-u) on [19,1] 
(u - 2e)(l+ E - U) on [I, 1 + E] 

Annales de I’lnstitut Henri Paincart! Analyse non 1inCaire 
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In each of these cases, the function f is of ignition temperature type. Hence, 
there exists a unique pair (k, w) solution of 

{ 

V" - kw’ + j(v) = 0 in W 
v(-co) = t, v(+cX$=l+t (32) 

The real k is positive. The function ‘u is unique up to translation, and 
21’ > 0 in W. 

Since IIa; - 6~11, and ~~g71~~03 --f 0 as n + 03, we then infer that, for 
n large enough, we have minCxRxRN a;i > 0 and 

For any p E R, the function vP(zi, y) := v(zi + p) satisfies 

Ad’ : = aT?&jvP -(C" +Cr(y))dltf +p .VVp + f(V")+9(~1~Y~VP~v%rP) 

= ay1(21, y, up, VwP) 
[ 
up” - cn + Q!(Y) - 4; @! + f(@) + 9” 

a;, a;1 1 
Let us now assume that 

cn + minGa - max~xnxRN q; 

maXCx~x~N a?l 
2 k > 0. Since 

w’ 2 0, aTl > 0, and from (32) and (33), we infer that for n large enough, 

Vp E W, AuP < ayl(zl, y, up, VZI”)[ZI~” - kd” + f(v”)] = 0 in C (34) 

On the other side, let n large enough such that nn < E and the previous 
inequalities hold. From the limits of un and v as z1 + &cc, there exists 
a real p1 such that up1 > un in C. Sliding zlP1 to the right, there exists 
a real p such that 

up 2 un in E with equality somewhere 

Let z = VP - un. From (34) and (13), we have 

0 > AuP - Au” 

= aG(21, y, VP, VwP)&jvP - aG(zl, y, un, VUn)dijUn 

- (c” + Ly(y))alz + T(Zl, y, VP, V@) . ‘c7vp 
- p(Ic1, y, un, Vu”) . Vu” 

+ f(v”) - f(G) + f(21, y, VP, V@) - f(a, Y, un, Vu”) 
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B2 = ~~“[a;~(x~> y. 11 P. vwq - uyl(TLl, :y, 7Ln, VW”)] 

B3 = *vP”[a;,(xl. y,dl. Bvp) - u;~(~~, y,dL, Vu”)] 

Since 21” is bounded and n;“i is lipschitz-continuous with respect to s and 
p, there exist bounded functions b2 and bi such that 

The other terms of A@ ; Au” are treated in the same way. Finally, there 
exist bounded functions b(zl. :y) and c(z~, y) such that 

From the strong maximum principle and the Hopf lemma, we conclude 
that x E 0 in C. This is clearly impossible because of the behaviours of 
un and v as z1 -+ kc. 

Hence, this proves that 
c” + min,cr - maxE,uXRB” q;” 

ma%xRBxw a;1 
< k. In other 

words, 
c” < K1 

for n large enough, where K1 is independant of n. 

In the same way, we can define, for F > 0 fixed and small enough, a 
function f on [-F, 1 - F] such that f = 0 on {-t} U [l - 2~. 1 - E], f < 0 
on (-6, c-- 2t), and such that the%equality 

f(s) + gy:q, y. s,p) 
G1(a: Y. .%P) 

> f(s) V’S E [--F, 1 - C]. Y(Xi, y,p) E c x R” 

holds for 7~ large enough. With the same arguments as above, we conclude 
the existence of K2 independant of n such that en > -Kz. This achieves 
the proof of lemma 4.1. 

End of the proof of the convergence of en to co 

We argue in several steps. 

Annalrr de I’lrzrrirut Hmn’ PoirrmrP Analyw non h&ire 



REACTION-DIFFUSION PROBLEMS IN CYLINDERS 487 

a) From lemma 4.1, there exists a subsequence that we rename (n) and 
a real c such that 

cn -+ c as n + +oc 

b) Let pLn = l19”llm + 0 as n -+ o;), and $ > 0 such that un < 1 + qlL 
in c. From the beginning of the proof of lemma 4.1, we can choose vn in 
such a way that $ + 0 as n -+ 00. From the profile of f near 1, there 
exists a > 0, fixed once for all small enough such that 

{ 

f(S) > f’(l)/2 (1 - s) Vl - N < s 5 1 
f(s) 2 -3/2f’(l) (s - 1) Yl 5 s 5 1 + c): 

For n large enough, we have 7” 5 a and 0 2 CP := 2~” - 2/f’( 1) hLn < a. 
It is easy to check that 

f(s) - /P > -f’(l)/2 (1 - Qln - 5) v 1 - a! 5 s 5 1 + qn (35) 

c) Since ~~(-33, .) = 0, nn(+cc, .) = 1 and 0 < 1 - cr < 1, there exists 
a unique real ? such that 

g u”(. + TV, .) = rn$ Un(?, .) = 1 - 0 

We set C = IL~(Z~ + 7n, r~). The functions (rP)‘s satisfy the equations: 

.;(2h + Tn, y, vn, VVn)d~jVR - (C” + CK(Y))dlVn 

+ q”(q + Tn> y, vn, Vu”) Vdl 

+ f(v”) + g(zl + P, y, vn, VU”) = 0 in C 

Since IluG - &jllm, l14”11m~ llg”llm + 0 as n --+ cc and since the speed 
(c”)‘s are bounded and the (nn)‘s remain in [-l/2,3/2] for n large enough, 
we conclude from the standard elliptic estimates that, up to extraction of 
some subsequence, we have z)~ -+ 21 in W12F(C) (VP > 1) and u is 
solution of 

i 

Au - (c + a(y))&v + f(v) = 0 in C 
d,v = 0 on dC 

min, ~(0, .) = 1 - ct = mint+ II 
0 < ‘u < 1 in c (from the strong maximum principle) 

d) We note L” the elliptic operator (for n large enough): 

L”u =ag,, + ?, y, ?P, VvTy&u - (c” + a(y))&u 

+T(q +77L,y,Iln, VtP) . vu + f’(l)/2 w 

(36) 
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From (39, we have, Vl - @ 5 s 5 1 + q”, Y(zi, ?//,p) E c X RN, 

f(s) + f(n+ Tn, y> s,p) > -f’(l)/2 (1 - Nn - s) 

In C+, we have 1 - Q < 9 5 1 + n”. Hence 

L”(1 - CY’~ - w”) > 0 in C+ 

We now look for a supersolution for L” of the form w = ep”l, p < 0. 
We have, for n large enough, 

= epzl [a;L1(xl + -7, y, wn, Vv”)p2 - (c” + (u(y))p 

+ $(a + Tn, Y, ffL> vVn)h + f’w4 
< ep”‘[3/2p2 + (-c” - a(y) + q;L(zl + TV, y, TP, V21n))p + f’(l)/21 - 

There exists a constant b such that ]c”+a(y) -q;(xl+P, y, un, VU”)] 5 b 
V(zi, y) E C. Let p be the negative root of 3/2X2 - bX + f’(l)/2 = 0, it 
exists since f’(1) < 0. Then we have, for n large enough, 

L”efix’ 5 0 in C 

Let ,p = 1 - an - uTL - (a - an)epzl. We get 

Lnzn 2 0 in C+ 

and ~~(0, .) = 1 - o? - wyo, .) - (a - a”) = 1 - n - wyo, .) 5 0, 
Zn(+co,-) = -an 5 0. Since f’(1) < 0, it comes from the maximum 
principle and the Hopf lemma that ,zn < 0 in C+, that is to say 

wn > 1 - o? - (o - on)eGzl in C+ 

We recall that o? --+ 0 as r~ --t cc. Passing to the limit n + cc, this yields 

21 2 1 - ae’l”’ in C+ 

e) For any 19 > E > 0, we define a new function ft on [--cl I] such that: 
- if f is of ignition temperature case (2), 

fc = 0 on [-t,O] 
fe = f on LO, 11 
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- if f is of bistable type (3), 

fc(s) = f(s) - f(--EMS/E) in f-f, 11 
where p is a fixed C”(W) function such that p E 1 on ] - m, - 11, p E 0 
on [l, +cc [ and 0 < p < 1 on (- l,l). The function fF is of bistable type 
on [-t, l] and is still of class C1,6([-~, 11). 

In any case, we have ft 2 f and there exists a pair (c,, all), unique up 
to translation in x1 for vu,, solution of 

{ 

Aw, - (cc + ~1(y))~~7b + fc(wc> = 0 in C 

d,w, = 0 on dC 
w,(-03, .) = -E, 21,(+q .) = 1 

From results of [9], we have c, < CO and c, + CO as e --+ Of. Stricto 
sensu, this was only proved for case (2), but this can be easily extended 
for the bistable case, with the same ideas in 5 6 of [9]: the functions 
(v,)‘s, after two suitable normalizations, converge to two- functions u and 
w solutions of Au - (c’ + a(y))&u + f(u) = 0 in C with v(--co, .) = 0 
and w( +oo, .) = 1 and c’ = lime-,0 c,. After comparison of w and w to 
the function u. by a sliding method similar to the one used in the proof 
of lemma 4.1, we conclude that c’ = CO. 

j) We now compare this function ZJ, to the function w constructed in c). 
Let us assume c, > c. We have w,(+oc), .) = W(+KI, .) = 1 and II,, v < 1. 
From the results of [l], [23], [9], it comes 

w(21,y) = 1 - eVZ’4(y) + o(eVZ1) as x1 --f +cc 

w, = 1 - eV’Z1$,,(y) + o(eV’Z1) as 21 + +CX 

where v < V, < 0 and $, $J), > 0 on W. Hence, after translation of the 
function w, to the right and then to the left, there exists a real r such that 

w : = w,(z~ + r, y) 2 w(xl, y) in z with equality somewhere 

The function z = w: - w 5 0 satisfies 

AZ - (c + a(y>)%z + f&:) - f<(w) = (cc - c)&v: + f(w) - .fc(u) 2 0 

since f 2 fE, c, > c and div, > 0. But fc is lipschitz-continous, whence 

AZ - (c + c~(y))&.z + c(~i, y)z 2 0 in C 
d,z = 0 on dC 
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for some bounded function c(:cr . y). From the strong maximum principle 
and the Hopf lemma, we infer that z z 0 in c. This is impossible since 
?I:(--cx), .) = --F and ‘V 2 0 in -6. 

Hence, we have cc < c, for any f small enough. By e), we have cF + co 
as F + 0. We finally conclude that 

8) Conclusion in the bistable case (3). 
We can write again the parts b) to fl with a normalization of ?1,“of the 

type maxY 71 ” = maxs- ~“‘(0, .) = (2 where V” = ~1,~ (1);.r + ?. y) and o is 
suitably choosen small enough. We then conclude with the same arguments 
to the inequality 

and at the end 

c = co 

h) Conclusion in the ignition temperature case (3). 
We have to work just a little more. We assumed in this case that there 

exists h > 0 such that (14) holds. We can choose LL 5 8. Let us now define 
T “’ and rP = u~(z~ + 7”” i y) in such a way that 

max ,fY 
c- 

= m:x a’“(0. .) = /L 

Up to extraction of some subsequence, we have II” + 71 in W:>:(C) where 
r~ is solution of Au - (c + (v(y))iJl~ + f(r)) = 0 and max;; ?I((), .) = 
maxK v = LL. In C-, we have 0 < ,tin < 11, thus 

Besides, cTL + c > co and we know from [9] that J,(co + o(y))& > 0 
(this comes from integration on C of the equation (4) satisfied by 74). 

Hence, there exists c’ < co and 6 > 0 such that Ju(c’ + a(y))dy > 0 and 
cn 2 c’ + F for n large enough. By 5 3 of [9], there exists a function 
& = $‘“’ 4’(y) solution of 

Aw’ - (c’ + tr(y))&w’ = 0 in C: i3,~u’ = 0 on i)C 
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with X’ > 0 and 4’ > 0 on W. We can assume that min;j@ = 1. Let now 
prove that this function w’ is a supersolution of L” for n large enough. 
Indeed, after an easy calculation, 

LrLw’ = eAfzl [C&*(a~j(xl + P, ?P, VW”) - 6&Q#J’(y) 

+ X’C,N,,(a;l,(21 + F) Y”, V7P) 
+ .gx, + P. wn, vw”))ajgqy) 

+ X2(a;l,(q + P, wTL ) VW”) - l)#‘(y) + A’(c’ - c”)qb’(y) 
+ x’q;(q + P, 7P, Vv”)c#l’(y) 

+ c,N_*qJyz1 + 7- /n : un, VoQ$(Yl)l 
=e x’zcl [Y(x,, y) + X’(c’ - c’“)@(y)] 

The reals E, X > 0 and the function 4’ > 1 are fixed. We have 
X’(c’ - en)@ 5 --EX’ < 0 and S” + 0 uniformly in c as n + 30. 
Hence, for n large enough, we have 

For 7~ large enough, the operators L” are elliptic. Since v”( -00, .) = 0 
and ~~(0, .) 5 CL, we finally deduce from the maximum principle and the 
Hopf lemma that 

wn(xlr y) 5 peX’Z1g5’(y) in C- 

At the limit n -+ 00, we get 

w 5 peXrz14’(y) in C- 

and we have already written 

rnp ~(0, .) = h 

We can now argue as in part e) andfi. If we compare u to some function 
V’ solution of AU’ - (c’ + cy(y))&‘uc + f’(7~‘) = 0 in C, d,~’ = 0 on 
dC, wf(-co, .) = 0, 7f(+ cc, .) = 1 + E, where f’ 2 f and f’ > 0 on 
(8,l + t), f” = 0 on [0,0] U (1 + t}, we get c 5 cE by a sliding method. 
Since c’ + CO as t + 0, we deduce c 5 co and finally 

c = co 

Remark 4.1. - Since the limit CO is unique, the whole sequence en goes 
to co as n -i 03. 
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4.2. Convergence of zP to uo,T when J’l- IL” 
is bounded, for iginiton temperature case: 

proof of part b) of theorem 4 

Let f satisfy (2) and g” satisfy the assumption of uniform ignition 
temperature p (15). Let (en, u”) be solution of (13), with moreover the 
normalization condition (16). From the previous section, we know that 
en -3 co as n -+ 00. 

Let 2, be the unique real such that 

max 
1-00,s,,1xw 

?ln = max Un(x,,.) = p 
w 

Let c’ = co - F such that J, c’ + ~(9) > 0 and w’ = ex’Z1 4’(y) solution 
of Aw’ - (c’ + a(y))8 rw’ = 0, &w’ = 0 with X’ > 0 and 4’ > 1 in Z. 
We can even choose X’ > T since X’ -+ X as c’ + c from [9] (the reals 
A and T are defined in section 2). As in the previous subsection, we have. 
for n large enough, 

From standard elliptic estimates, the functions rP(~r, y) := u”(x~ + CC,, y) 
converge (at least for some subsequence) in Wr:T(C) to some function 
U, solution of 

AVX - (CO + ~(Y))&W, + f(v,) = 0 in C (38) 

and 
0 < 71,(5~,y) 2 p~~‘~1$‘(y) in C- 

max ,uu, (0, .) = max 21, = CL 
w - c- 

As a consequence, as for (5), we have 

11,(2~,y) = ye’“‘c+b(y) + o(eX”‘) as x1 -+ -cc 

uo(zl, y) = exzl#(y) + o(e’“‘) as 21 -+ -cc 

If uu,(+co, .) = 1, then U, = u: for some p E W from the uniqueness result 
of [9] recalled in section 2. In the other case, we infer limsupZl i+m 21, 2 0 
since SC f(w,) < +CC (from integration of (38) on C and the nonnegativity 
of f) and VW, is bounded. Hence, we can still compare uo to the function 

Ann&~ de I’lnstitut Henri Poincark - Analyse non h&ire 
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w, with a sliding method and then conclude to a contradiction, using 
furthermore lemma 4.1 of [9]. 

Thus, the functions (0”)‘s converge in W:dcp(C) to the function U: for 
some p E R. We now prove that the sequence (x~) is bounded. Otherwise, 
there exists a subsequence, that we rename (x~) such that 2, + +oo or 
2, + -co. In the first case, we have from (37) and for n large enough 
such that z, 2 0: 

un 2 p~-“~n ~?‘~l~$‘(yl) in C- 

Hence, 

7, = 
J 

un = O(e-“““) as r2 i cc 
cm 

This is impossible since rn -+ r > 0 as n -+ CCL 
In the case z, + -00, we have, for any y E R+, 

But, J[r,-y,z,+y]x3~n = J&]x# go to .&x,4 as n -+ O”. 
Hence r > JL-r,rlxj U; for any p E R+. This is impossible since 
J- -ug++coasy+oc. [ Y,YlXW 

We then deduce that the sequence (x~) is bounded and finally that some 
subsequence of (u”) converges to the function u:’ for some p’ E R. 
Besides, we know that u$ = O(e’“‘) as x1 --t -cc and there exists 
A 2 0 such that rP 5 peX’(“l-A)$‘(y) for n large enough and x1 2 A. 
Hence, by elementary arguments, the integrals SC- rP converge to SC_ 2~:’ 

as n -+ co. Thus 7 = J- u0 “. In other words, p’ = P(T) (the function p is 

defined in 5 2) and un converge to u$~) = u~,~ in W,2d,p. This is true for 
the whole sequence (u”) by the uniqueness of the limit. 

It only remains to prove that un + uO,r in PC’). Firstly, we have 

sup _ I(1 + eCrzl)(Un - UO,~)~ -+ 0 as n -+ m, 
(=I ,Y)EC 

otherwise there exists E > 0 and points (x,, yn) E E such that 

(39) 
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The sequence (z~) is not bounded because of the convergence of II?’ to 
?LO,T in Wl”F(C) for any p > 1. 

If X, + -CC (or at least some subsequence), then we have Q~(:c, t y,,) = 
0(eX,Z7L) and u~(x:,,~~,,) = O(C?‘~I) as n -+ CC from the remarks of the 
previous subsection. Since X > 7’ and we have choosen X’ > 7‘. we obtain 
a contradiction. 

In the last case, we have 2, + +x (at least for some subsequence). Since 
UQ(+X. .) = 1, we have u~‘(:E,; yn) 5 l-e/2 for n, large enough. We now 
define :I::~ > z,, in such a way that min[,.:, .+X[Xs ~~~ = min, IL~(.x.:, . .) = 
1 - c-/2. We can choose c such that f(s) > -f’(l)/2 (1 - .s) for 
1 - ~12 2 s < 1. As in the previous subsection, we have, for :I:~ 2 x::,, 
t(Ln > 1 -c/2 ~~%Y -4,) G’(y) where /L’ < 0, ,4’/‘(y) > 1 and w’ = ~l”.‘~$‘(y) 
is solution of CX~’ - (CI $ o(y))&w’ + f’(l)/2 ,w’ = 0, $w’ = 0 for 
some fixed c’ > c. The functions U” = IL~‘(:c:, + x1 : y) go to some 
function ‘u solution of nv - (ca + tr(y))&~ + f(r)) = 0, &U = 0 
and 71 > 1 - c/2 c@‘,‘I$J’(~) in C+, min, ~(0, .) = 1 - c/2. If 
liminf,, t--Q; ~(.r:i. .) > 0, then we conclude by a sliding method as 
in [9] (with lemma 4.1 of [9]) that 11 = U; for some IL E R. Hence, we 
always have liminf,,,_, ?j(~r, .) = 0. Then there exists y > 0 and ya E C? 
such that ~(-7, go) 5 l/2 min(/L, 0). Let il such that u(),~ 2 (1 + H)/2 in 
[A: +X[XW. For 71 large enough, we have then U” > H in [A. A + I] x W, 
:rT:L - y > A + 1 and u”(.G:, - y, yo) = s~“(--y: ya) < min(p, 0). The set 
61 = (A + 1,~;) x w n {u”(:Q.~) < min(p, 0)) is not empty and on 
0, we have AP(u” - min(fL, 0)) E 0 where M” is an elliptic operator 
with no zero-order term. Besides, from the values of ‘IL” at :cl = :I$ or 
A + 1, U” = min(p, 0) on 80. This is in contradiction with the maximum 
principle and ends the proof of (39). 

The sequence zn - ‘TL~),~ goes to 0 in B” and satisfies the equations 

U:Si)ijZn - (C” + tr(Y))d*z” + ~ VZ” 

= (&j - Ul”,)d,jUO,, + (P - CO)&U(),, 

- F . vuo.7 + .f(7Lo,r ) - f(?L”) - .cf~(q. y/. lLTl, V9LT’) 

From (15) and since u~(z~, y) 5 peXiZ1-A’&(y) where X’ > 7’ for some 
A 2 0 and for any n large enough (by the arguments above), the terms 
glL(xi,y, un, VU”) go to 0 in B”. Since f is lipschitz-continuous and 
&‘zLo,n &jUO,T E BO, it finally comes from the standard elliptic estimates 
that &z”, 6’ijZ” to 0 in B”. Hence u” -+ ~0,~ in Do and even in P(‘) 
from the inequalities (8). This achieves the proof of part 6) of theorem 4. 
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4.3. Convergence of un to u$~) when maxr un 
is hounded, for ignition temperature case: 

proof of part c) of theorem 4 

We now assume that max= un = h” --+ h E (0,l). We argue exactly 
as in the previous subsection and define in the same way z, such that 

max 
I-m,2,,]xW 

uR = max u”(2,, .) = p 
5 

The functions ‘Us = un(zl + z,,y) go to U: for some p E R. 
If :x,, -+ -cc (at least for some subsequence), then, for any y > 0, 

we have 

h" = max un 2 max - zP for n large enough 
cm [zn --Y,z:n +-/I x= 

Since u~(+oo, .) = 1 and h” -+ h < 1, we obtain a contradiction. On the 
other side, if 2, + +oo, then un 5 ,&‘(“‘-“-j+‘(y) in C- with X’ > 0, 
and this yields a contradiction. 

Finally, the sequence (1~~) is bounded and we conclude in the same way 
as in the previous subsection. 

5. CONCLUDING REMARKS AND OPEN QUESTIONS 

All the results presented in this paper also hold if the term c + o(y) is 
replaced by p(y, c), where /3 is of class C2>’ with respect to y, increasing in 
c and p(y, c) -+ foe as c + foe (cc [9]). For instance, in some models, 
p(y,c) = m(y) with cy > 0 on W. 

We remarked that the functions u constructed in theorem l-3 are not 
necessarly increasing in x1 although they are close to some function ug 
increasing in x1. Nevertheless, in dimension 1, if f + g has a constant sign, 
then u is increasing from the maximum principle. In higher dimension, we 
cannot apply a sliding method as in [9] for the invariant case by translation, 
or in [ 141 when the coefficients are monotone in zl. As a consequence, 
the question of stability of the solutions constructed for small ((1 - 1,4’; g) 
seems to be intricate. 

If (a,<,,) = (1,6,0),thesetofsolutionsof(lO)is {(ca,u~,~), r ER;} 
which is a C2 manifold in Y”. For I C W;, infI > 0, if (a - 1, {, g) is 
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small enough, we proved that the set of solutions (c, u) of (10) contains a 
C1 manifold {(c(r), u(r), r E I} (theorem I), each u(r) being close to 
~0,~ and such that SC_ u(r) = SC- ~0,~ = 7. In theorem 3, we proved that 
for (u - 1, {, g) small enough and for any r > 0, there exists a solution 
(c, u) of (IO) such that SC- u = r. The final result would be to prove that 
the set of solutions of (10) is actually a C1 manifold, for small (<J - 1 i 6 g). 

In [30], Xin proved the existence of solutions (c, U) of 

(V, + &~(A(Y)(V, + i&>U) 
+ g(y). (V, + kJ,)U + c&U + f(U) = 0 in R x T 

for A(y), c(y) not necessarly close to (Id, 6). By a method of continuation, 
he solv:d the same problem for (At(y), t?(y)) = (1 - t)(ld, 6) + 
t(A(y), b(y)). At any step to E [0, 11, there is a continuation because 
the linearized operator is invertible. This method do not work in our case 
because we have no a priori properties for the linearized operator around a 
solution of (lo), due to the dependance of the coefficients of (10) on ~1 (the 
equations investigated by Xin in [30] were invariant by translation in s). 

We can nevertheless ask the question of the existence of solutions (c, r~) 
of(lO) when II(u-Lu’,g>ll increases. Are there any bifurcation phenomena, 
any non-existence results as for similar problems treated in [32] or [lo] in 
periodic media? or transition between existence and non-existence according 
to the intensity of 1141 like in counterflow flames models in [21]? 

We mentionned in the introduction the existence of solutions of a 
system of two reaction-diffusion equations for Lewis numbers close to 1. 
Under additionnal assumptions, monotone solutions can be constructed for 
systems of reaction-diffusion ordinary differential equations. Because of 
the monotonicity, it could be interesting to investigate small perturbations 
of such systems. 
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