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ABSTRACT. — In this paper we consider the study of standing wave
solutions for a nonlinear Schrédinger equation. This problem reduces to
that of finding nonnegative solutions of

EAu—-V (@) u+f(u)=0 in 9,

with finite energy. Here ¢ is a small parameter, {? is a smooth, possibly
unbounded domain, f is an appropriate superlinear function, and V is a
positive potential, bounded away from zero.

It is the purpose of this article to obtain multi-peak solutions in the
“multuple well case”. We find solutions exhibiting concentration at any
prescribed finite set of local minima, possibly degenerate, of the potential.

The proof relies on variational arguments, where a penalization-type
method is developed for the identification of the desired solutions.
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128 M. DEL PINO AND P. L. FELMER

RESUME. — Dans cet article, on considere I’étude des solutions de ondes
permanentes d’une équation de Schrodinger nonlinéaire. Ce probléeme se
réduit a la recherche de solutions non négatives de

2Au -V () u+ f(u)=0 dans Q.

avec une énergie finie. Ici € est un parameétre petit, € est un domaine lisse
qui peut &tre non borné, f est une fonction superlinéaire appropriée et V
est un potentiel positif borné hors de zéro.

L’ objectif de cet article consiste 4 obtenir des solutions a pics multiples
dans le cas de puits multiples. Nous trouvons des solutions qui montrent
une concentration pour tout ensemble choisi fini de minima locaux du
potentiel, qui peuvent étre dégénérés.

La démonstration se base sur des arguments variationnels, ol une méthode
de pénalisation est développée pour identifier les solutions cherchées.
© 1998 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

0. INTRODUCTION

The nonlinear Schriodinger equation in RY

L0y h? , N el ,

ihr = ~%A1/1+W(;I,)1/1—7|1/)| W (0.1)
has been object of extensive research in recent years. In this paper we
consider the study of standing waves of equation (0.1), namely of special
solutions of the form y(x,t) = exp(—iEt/h)v(x), where v(x) > 0. It is
easily checked that a v of this form satisfies equation (0.1) if and only if
the function v(z) solves the elliptic equation

2

%Av — (W(x) = E)Yo+~yv" =0. (0.2)
The problem we will study in this paper is that of existence of positive
solutions with finite energy to this equation when W — E is strictly positive,
away from zero, and the potential W exhibits multiple wells, namely
several, possibly degenerate local minima. & will be regarded as a small
parameter. After absorption of the parameters by scaling, the problem
under consideration may be rewritten as

2Au — V(x)u+ u? = 0, (0.3)
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS 129

where V > o > 0 in R, N > 1. In [5], Floer and Weinstein consider
the case N =1 and p = 3. For a given nondegenerate critical point of the
potential V, assumed globally bounded, they construct a positive solution
u. to (0.3), provided that ¢ is sufficiently small. This solution concentrates
around the critical point as € — 0, in the sense that its shape is a sharp
peak near that point, while it almost vanishes everywhere else.

Their method, based on an interesting Lyapunov-Schmidt finite
dimensional reduction, was extended by Oh in [8], [9] to conclude a
similar result in higher dimensions, provided that 1 < p < j:—f;

Oh restricts himself to potentials with “mild oscillation” at infinity, name-
ly belonging to a Kato class. In case that V is bounded this restriction is
not necessary as noticed by Wang in [14]. Wang also observes that if VV
is nonconstant and nondecreasing in one direction, then equation (0.3) has
no solutions which tend to zero at infinity.

The method in [5] and [8] seems to rely in essential way on the
nondegeneracy of the critical points. In [11], Rabinowitz lifted partially this
requirement introducing a global variational technique to find a solution

with “minimal energy” for all small €, when 1 < p < % and

hminf V(xz) > inf V(z). (0.4)
|| =00 rERN
Rabinowitz’s approach actually covers a broader class of nonlinearities and
the smaliness of ¢ is not required in case that the limit in the left of (0.4)
is +oc. In [14], Wang established that this least energy (mountain pass)
solution indeed concentrates around a global minimum of V' in the special
case of equation (0.3), as ¢ — 0.

In [3], the authors succeeded in proving the local analogue of Wang’s
result. It is shown that if for an open, bounded set one has

inf V< inf V, (0.5)
A A

then (0.3) possesses solutions u. with just one local maximum, which
concentrates around a minimum of V' in A. This local minimum may
exhibit arbitrary degeneracy.

Concerning solutions with multiple concentration points, in [10] Oh
applies the approach developed in [5] and [8] to construct a family of
solutions u. with peaks concentrating around any prescribed finite set of
nondegenerate critical points of V' when N = 1, and indicates how to
proceed in higher dimensions where 1 < p < g—fg

It is the purpose of this article to obtain multi-peak solutions of (0.3) in
the “multiple well case”, exhibiting concentration at any prescribed set of
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130 M. DEL PINO AND P. L. FELMER

possibly degenerate local minima of the potential, namely on K disjoint
sets A where (0.5) holds.

We will actually consider a more general semilinear elliptic problem in
a smooth domain (2, possibly unbounded, of the form

2 Au— V{(z)u+ f(u) =0in ¢
{ Au—V(c)u+ flu)=01in Q (0.6)

w € H} (), u>0inQ.

The potential V' will be assumed throughout this paper locally Holder
continuous and bounded below away from zero, say

Vie)>a>0. forall xe. (0.7)

We will also assume that f : Rt — R is of class C! and satisfies the
following conditions.
(F1) f(€) = o(€) near & > 0.
l\

(f2) glim& %5) =0 for some 1 < s < &&

(f3) For some 2 < # < s+ 1 we have

2
5

O<HF(E) < f(EE forall £€>0 (0.8)

where F(£) = ](f f(rydr.

(f4) The limiting equation
Au—bu+ flu)y=0 in RY (0.9)
possesses a unique solution, up to translation, for any given b > 0.
Our main result for equation (0.6) is the following.
THEOREM 0.1. — Assume that there are bounded domains A;, mutually
disjoint, compactly contained in ), i = 1...., K, such that

mfV <int V. (0.10)
A, DA,

Then there is an ¢ > 0 such that for every 0 < e < gy a positive solution
e € Hé(Q) to problem (0.6) exists. Moreover, u_ possesses exactly K local
maxima x. ;, with . ; in A;. We also have that V(. ;) — inf, V, and

I6;

u(x) < awexp(——|r — w4
€

). (0.11)

forall x € Q\ U;j;Aj, where o and [3 are certain positive constants.
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS 131

We observe that no restriction on the global behavior of V' is required
other than (0.7). In particular, V' is not required to be bounded or to belong
to a Kato class.

On the other hand, the hypotheses on f are milder than those required
in [10]. In particular, hypothesis (f4) is satisfied by a large class of
nonlinearities f including «*, p > 1. See the work in Kwong and Zhang [6],
and Chen and Lin [1]. Moreover, this assumption can be further relaxed to

(f4’) The mountain pass value in Hj(f2) of the energy functional
associated to (0.9) is the smallest nontrivial critical value and it is isolated.

See the remark at the end of §2.

It is interesting to observe the relationship between the result of
Theorem 0.1 and the work by Coti-Zelati and Rabinowitz [2] on multi-
bump solutions in spatially-periodic problems. For the case of equation
03), 1 <p< % and V periodic on each of its variables, it follows
from their results that for a fixed, not necessarily small e, solutions in
HY(RY™) with exactly K bumps exist for each integer K, provided that
the associated energy functional satisfies the so-called (*) nondegeneracy
condition. This assumption states that ali critical points at energy levels in
[(:., ¢+ 8) are isolated, where ¢ denotes the mountain pass minimax value of
the associated functional, and 6 > 0. These solutions have energy level close
to K'¢. On the other hand, Theorem 0.1 is applicable to construct a K-bump
solution in this situation when e is small, just assuming that V' possesses

one local minimum. We do not know whether (x) holds in this case.

The proof of Theorem 0.1 is variational, and uses ideas in the spirit of
those in our previous work [3], where a penalization method enabling the
identification of local mountain passes was developed. Roughly speaking,
the main argument there consists of defining a suitable modification of the
nonlinearity for which the mountain pass theorem is directly applicable to
the associated energy. Then, taking advantage of the energy-minimality of
the mountain pass solution, one finally shows that it becomes a solution to
the original problem with the desired characteristics when ¢ is sufficiently
small.

Our current framework is more delicate, since the solutions we look for
are at higher energy levels. They are not just rough mountain passes, so
that energy-minimality is lost. We are able to overcome this difficulty by
adding a new penalization term. In fact, we introduce a modification of
the nonlinearity similar to that in [3] in order to prevent the occurrence of
concentration outside the open sets A;, and then a new term which provides
a “balance” among the energies inside the distinct A;’s, in order to obtain
exactly K-bumps. The solution is captured as a simple minimax quantity
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132 M. DEL PINO AND P. L. FELMER

on a class of K -dimensional maps, and eventually shown to be a solution
to the original equation with the appropriate features.

Finally, we would like to mention that the construction of solutions of
(0.3) with an infinite number of bumps (hence not with finite energy)
has been recently carried out by Thandi [13] in the nondegenerate case.
Infinite-bump solutions in the framework of [2] were found by Spradlin
in [12].

The organization of this paper is as follows: In §1 we define the
modification of the functional needed for the proof of Theorem 0.1, and
prove some preliminary results. §2 is devoted to the proof of Theorem 0.1.

1. PRELIMINARIES

This section is devoted to the definition and preliminary study of the
penalized functional.

We introduce an appropriate penalization so that the concentration outside
the sets A; is avoided and an adequate balance in the concentration is
achieved. Then we prove that the penalized functional satisfies the Palais
Smale condition (P.S.), and we set up the minimax scheme in order to obtain
critical points of it. We provide next some estimates on the critical points.

In the framework of Theorem 0.1, associated to equation (0.6) we have
the “energy” functional

L[, , 2 '
1. (u) = 3 / E2|\Vul? + V(r)u® — /Q F(u). (1.1)
Jo .

which is well defined for « € H, where
H={ue Hj() / / Vr)® < ol 1.11
Ja

H becomes a Hilbert space, continuously embedded in H;(§2), when
endowed with the inner product

< U >Sg= / Vu Vo4 V{x)u (1.2)
Jo

whose associated norm we denote by ||-{|g.

In the definitions above, and in what follows we assume that f, V and (2
satisfy the hypotheses of Theorem 0.1, and that the function f is extended
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS 133

as 0 on the negative axis. Under those assumptions it is standard to check
that the nontrivial critical points of I. correspond exactly to the positive
classical solutions in H}(Q) of equation (0.6).

Next we define the first modification of our functional. Let o be as in
(0.7), and let us choose a > 0 so that

£

) _«o f©)
£ 2

forall 0 < ¢ <a, and T > ——< forall £ > a.
a

This choice of ¢ can be made since (f1) and (£f3) hold. Let us set

o= {8, 1 e as
and define
9 &) = xaf(€) + (1 = xa) F(£). (1.4)

where A = UL A;, with the bounded domains A; as in the assumptions
of Theorem 0.1, and x, denoting its characteristic function. It is easy to
check that (f1)-(f3) implies that g defined in this way is a Caratheodory
function and it satisfies the following

(gl) g(x,&) = o(&) near £ = 0 uniformly in x € Q.

(g2) limg_ J(' VICEI )| uniformly in x € €, for some 1 < s < N+2 if
N > 3, and no restriction on s if N = 1.2.

(g3) (i) 0 < 0G(1,.8) < gz, )¢ forall =€ A, €> 0.
and ’
(i) 0 < 2G(x.€) < g(" §E<4€ forall € Q\AEeRT.
Here we have denoted G(x,&) = fo x, T)dT.

Now we define the modiﬁed functional J. : H — R as

Jo(u) = %/sz 2| Vul* + V(x)u? ——/G(:l;,'u,) . uw€H. (1.5)

JQ

The functional J. is of class C! in H and its critical points are the positive
solutions of the equation

2 Au — V() u+ g(x,u) =0 in ).

Next we introduce the second modification of the functional. For this
purpose we assume, without loss of generality, that the sets A; have smooth
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134 M. DEL PINO AND P. L. FELMER

boundary. We define the numbers b, = inf{V(z)/x € A;} and we let
o > 0 be so that

supV < b, + 6. (1.6)
A
We will need the ‘limiting functional’ I” : H*(R"Y) — R defined as
b 1 . 2 2 i -
Plu) == |[Vu|* + bu® — F(u), (1.7)
2 JRN JRN

whose mountain pass critical value will be denoted by ¢(b). Critical points of
I° are the solutions of (0.9). We define ¢; = ¢(b;) and o; = ¢(b; + 6) — ¢;.
We assume that

K
1
Z(f,:< §IIliII{C;|i:l,...,K}. (1.8)
i=1

This can be achieved by making A; and é smaller if necessary. It will be
convenient to consider mutually disjoint open sets A; compactly containing
A;, for all 4 = 1,..., K. Then we define on H the functional

; 1 f . "
JHu) = 3 /& E2|Vul* + V(x)u® — /& Gz, u), we H. (1.9)

and the penalization

1
=€

N
=

2

(i +a,,;)%}+ (1.10)

1Ay
Pow) = MY { (i)
=1

The constant M will be chosen later. Finally the penalized functional
E. : H — R is defined as

E-(w) = J(u) + P(u). (1.11)

The functionals J. and P. are of class C' and so is E.. We show next
that E. has good compactness properties, that is £, satisfies the Palais
Smale condition.

LemMa 1.1. — Let {u, } be a sequence in H such that E.(w,,) is bounded
and Esl(un) — 0. Then w,, has a convergent subsequence.
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS 135

Proof. — We first prove that the sequence {u,} is bounded in H. Using
property (g3) we easily see that

/ 2|V + V() — / q<u>u>
. o\A

194

6 -2
’]E(u‘")_%Jg/(un)un Z W(

from where, using (g3) again, we obtain

Jo(uy,) — —;—Jé(u,l)un > C/ 2|V, |> + V(x)ul. (1.12)
Ja
In a similar fashion we find
J;(u,,,,) — %ng(u”)u" > C/ 62]Vu,,|2 -+ V(:I:)ui. (1.13)
A

We observe that (1.13) still holds if we replace ¢ by any number g€ (2,6).
Then, for the penalization functional we have

I
1 N L
PE(un) - gpé(un)un Z “‘MET(Ci + 0-1.)5 Z

> —Ce? Po(ug)?. (1.14)
From where there exists a constant C' so that
1 7
P.(un) — = Pl{uy)u, > -C. (1.15)

0 £

We observe that the constant C is a multiple of .

Thus, it follows from (1.12), (1.15) and the assumptions on {u,} that
this sequence is bounded as desired.

Let us choose a subsequence, still denoted by {u,,}, weakly convergent
to » in H. This convergence is actually strong. Indeed, it suffices to show
that, given v > 0, there is an R > 0 such that

lim Sllp/ {®|Vu, > + V(z)ul} < 1, (1.16)
O\Br

n—oo

where Bp denotes the ball with center 0 and radius 7. We may assume
that R is chosen so that A C Bpg/.
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136 M. DEL PINO AND P. L. FELMER

Let nr be a cut-off function so that ng = 0 on Bprss,ng = 1 on
Q\ Br.0 < nr <1 and |Vng| < ¢/R. Since {u,} is a P.S. sequence,
we have that

< E(u,).nru, >= 0,(1),

where 0, (1) — 0 as n — . Then, as {u,} is bounded

{EQIV’U,,,IQ + V() yyr + / 1w, Vi, - Vyr =
Jo Jo

1

= / glrow, uang + 0,(1) < 5 V{uing + 0,(1).
Jo Q

We conclude that

C
<

< R||un“L»’(SZ)||vun,||L3(S2) +0,(1).

/ |V, |2 4 V(i )u?
JO\Bpg
from where (1.16) follows. [

The previous lemma makes possible to use Critical Point Theory to
find critical points of the functional E.. We will formulate an appropriate
minimax problem for F..

We start defining a class of functions I' over which we minimax. A
continuous function v : [0,1]% — H is in T if there are continuous
functions ¢, : [0.1] — H, i = 1..... K such that

(i) supp{g.(7)} C A; forall T € [0.1].

Gi) (1. Ti) = zf;lg;,,(r,;) for all (7y.....7x) € 9[0. 1%,

(iii) ¢:(0) = 0 and J.(g;(1)) < 0

(iv) E-(v(1)) < N0 ¢, — o) forall e 90, 1]~

where 0 < 0 < tMin{¢; |7 = 1,..., K} is a fixed number.
We can define the minimax value associated to the class I' as follows

C.=1inf sup FE.(v(t)).
€T te0, )X

In the following lemma we provide the key estimates on the minimax value
C.. In particular we show that T" is nor empty.

LemMa 1.2.

K

C. =V e +o(1). (1.17)

=1
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Here, and in what follows, we denote by o(1) a quantity approaching zero
as ¢ — 0.

The proof of this lemma will require the study of an auxiliary Neumann
problem. We may consider the the functional .J/ on H'(A;). Let d’ be the
mountain pass value of .J7, namely

d. = inf sup Ji(vi(7)),
v €l 7€[0,1]

where I'; is the class of all continuous curves ; : [0,1] — Hl([\i) such
that 7;(0) = 0 and Ji(~;(1)) < 0. Then we have

LEMMA 1.3. - The mountain pass critical value d' of the Neumann
problem satisfies

di = (ci + o(1))e. (1.18)
For the sake of continuity in the arguments, we postpone the proof of
this lemma to the Appendix.

Proof of Lemma 1.2. — Since ¢; is the mountain pass value for the limiting
functional I*', given any & > 0 there exists a path «, : [0,1] — H'(RY)
such that v;(0) = 0, I%(v;(1)) < 0 and

o
¢; < Tlél[%’)i] Ib’('y,j(T)) < ¢+ T (1.19)

We assume from now on that § < min{e, Ko;}. Next, given € > 0, we
define the path 4; : [0.1] — H as

I3

5i(r) ) = mil)n(r) ( - ) veQ.

Here z; € A, satisfies b, = V(;), and 7; is a C™ cut off function with
compact support in A;, taking the value 1 except for a small neighborhood
of JA;. Tt is not hard to check that

J-(Fi() = NI (vi(7)) + o(1)), forall 7 €]0,1], (1.20)

with o(1) independent of 7 € [0, 1].
Now we define the continuous function ~q : [0, 1]* — H as

K
V(71 i) = D Film). forall (m,...7x) € [0,1]F.
=1
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138 M. DEL PINO AND P. L. FELMER

The function 7, belongs to I'. In fact, properties (i)-(ii) are trivially true,
and (iii)-(iv) are satisfied in view of (1.19) and (1.20), when ¢ is small
enough. Thus, the minimax value C; is well defined as a real number, for
all £ > 0 small enough.

We observe that, by the choice of ¢ and from (1.19) and (1.20), the
penalization term in E. vanishes on (¢ for all # € [0.1]".

We also obtain from (1.19) and (1.20), that for small ¢

N
E.(7() <N e +06). forall telo.1]".
i=1

so that

O i
lim sup :\i < Z i 6.
i=1

s—0

f;] ci 4+ o(1)).
We prove the lower estimate next. First we observe that given any v € '
and any curve ¢(s) joining {0} x [0, T)" =1 with {T} x [0, )" !, the path

As & is arbitrary, we obtain the upper estimate C. < ™ (3

Y =yoclj, isin I,
and then it follows from Lemma 1.3 that

sup JEvi(7)) > N(e +o(1).
rel0.1]

We have an inequality of this form for every « = 1...., K. Thus we can

repeat the argument given by Coti-Zelati and Rabinowitz in [2] in the proof
of Proposition 3.4 to obtain, for every v € I', the existence of a point
t € [0,T)* such that

JH(E) > e (e + o(1)) forall i=1.....K.

From here, and from the form of .J. outside the ]\,-’s, we have
K K K

sup  Jo(v(£) > sup Y i) =Y JUyE) =D (eito(1)).

IE[U.,T]"' fE[QT]K i=1 i=1 i=1

finishing the proof. [
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS 139

The functional E. satisfies the Palais Smale condition, the class I" is not
empty, and estimate (1.17) holds, then there exits a critical point u. € H
of F. such that E.(u.) = C..

We define the local weight
w. = M{ (Ji(ue)g)? —

and then the function
K
We = ZWéX&I (121)
i=1

The critical point u. is a weak solution of the equation
2div((1+w)Vu) —(1+w )V () ut+(1+w)g(e,u) =0 in  Q, (1.22)
so that u. satisfies

P2Au-V(t)u+ glzu)=0 in O. (1.23)

for every set O C €2 not intersecting (UK A;).

We define the sets 2. = {y € RY /ey € Q}, A = {y e RV /ey € A;}
and A = {y € RV /ey € A;}. We rescale the function w. as
v-(y) = u(ey) for y € Q.. This function v, belongs to H}(.) and
then to H'(R"), and it satisfies in a weak sense the equation

div((1+ we(ey)) V) = (1 + we(ey))V(ey)u
+ (1 4+ w.(ey)gley.u) =0 in €., (1.24)

and over sets O, subsets of . not intersecting d(UX | A%), the function
v, satisfies

Au—V(ey)u+ gley,u) =0 in O. (1.25)

Finally, proceeding as in the first part of the proof of Lemma 1.1, we obtain
from the estimates on C. given in Lemma 1.2 that

/ 2| Vu.|? +u? < CeN
Q
and then for the function v. we have the uniform H'-estimate

/ |Voe|? + 02 < C. (1.26)
Jo.
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140 M. DEL PINO AND P. L. FELMER
2. PROOF OF THEOREM 0.1

In this section we will carry out the proof of Theorem 0.1. Using the
estimates obtained in the previous section. we will show that if M in the
definition of E. is chosen a priori sufficiently large, then w. will be a
critical point of the original functional I. whenever ¢ is sufficiently small.
Toward this end, the following lemma constitutes a crucial step. It tells
us in particular that if M was large then the penalization term P-(u.)
becomes zero for all sufficiently small <.

LeMMA 2.1. — If in the definition of E. in (1.10) and (1.11), M > 0 was
chosen sufficiently large, then

lim sup Ji."(’ug)s_‘\' <eci+o;, foral i=1,... K. (2.1)

£—0

For the proof of this result some preliminaries are required. It is useful to
work with the rescaling of u. given by v., as defined at the end of the last
section. Given R > 0, we denote by Ng(A®) the set {y | dist(y. A®) < R},
a similar definition has the set Ng(A7). The next lemma states that v. is

small in H'-norm away from the set A° = U AS.

LEMMA 2.2. — There exists a C' > 0 such that, given R > 0, one has
. 2 2 C o
Vo |+ v < =, (2.2)
JQANR(AT) R

for all € sufficiently small.

Proof. — Given R > 0, £ > 0, we may choose smooth cut-off functions
0 < ¢fp < 1 such that
- 1 if dist(y, A )
Wi ply) = e ’ 2.3
Viry) {0 if dist(y, A (2.3)

and |V; p| < A/R. Then set i = 1 — >, 7 5. Using the test function
nRve in (1.24), equation satisfied weakly by v., one gets

|+ wten <|ws|2 #{View) - 1 }> -

Q. \Af £

- / (1+ we(ey))Vnir Voo, (2.4)
Jos\as

where w, is given by (1.21). Observe that w. is uniformly bounded, by a
bound possibly depending on M. Using this, the choice of 7%, the fact that
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS 141

ve is uniformly bounded in H'(R™) and the definition of f, the desired
estimate (2.2) follows immediately from (2.4). [l

A second preliminary result we will need is given in the following
lemma inspired by the work in [4].

Lemma 2.3, — Let v € HYRY) N C(RY) be a solution of the equation
Av = b+ x(a, <0y F(0) + X501 f(0) = 0. (2.5)

where b > (. Then v < a for 11 > 0, so that v actually solves

Av —bo+ f(v) = 0. (2.6)
Proof. — We begin by showing that v < a on {11 = 0}. Standard
regularity arguments yield that v is in CY{(R™) N H*(RY). Moreover,
v(a), V’U(") — 0 as o] — oc.
Using - fl as a test function in equation (2.5), we obtain

/ di / ‘—()—({V’UF + bo?)da;
JRN L J —oo ().’171
+ / (F(v(0, ")) = F(0(0,2")))da’ = 0.
Rf\lﬁl

But the first summand in the above quantity is zero, while F(s) > F(s),
with equality only if s < «a. Thus, »(0,2’) < «. Finally, to prove
that w(xy,2’) < a for 2y > 0, we just consider the test function
¢ = (v—a)s+X (s >0y € H(RY) in equation (2.5), and the conclusion
¢ = 0 readily follows. [J

Proof of Lemma 2.1. — We will base the proof in an indirect argument.
Thus, assume that (2.1) does not hold, namely that for some sequence
e; — 0 we have

lim ]’ (uE NS ei+o (2.7)

J—oo

We will see that (2.7) is impossible provided that M was chosen sufficiently
large. In fact this is a consequence of the following claim, main step in
the proof: if (2.7) holds, then

liminf J¢ (ue; e TN > 2, (2.8)

j—oo
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We will show (2.8). We start proving that the sequence wu., concentrates
somewhere near A;’, more precisely, we show that there exist numbers
S >0, p > 0 such that

sup / v? >p forall j>jo. (2.9)
yeAs I Bsly)

To see this, we first observe that from (2.7), there is a A > 0 such that

/ V., [? + 2

W N
A’l

> A,

then, Lemma 2.2 imply that for all B > 0 large enough
' A
/ Ve Pl =S (2.10)
. L'\Yl{(i\:j) ‘ ‘ 2

Now assume that (2.9) is false. Then we may assume that for all S > 0
we have

sup / /Uzj — (). (2.11)
yEAjJ JBg(y)

Let us set vf = d)}?'()sj, where d}{? = "/’f,"zn is given by (2.3). Then clearly

sup / (’I)JB)Z -0 (2.12)
yERY B (y)

for all § > 0. Moreover, {v*} is a bounded sequence in H'(R"). Then
applying the concentration compactness principle (see Lemma L1 in [7] or
Lemma 2.18 in [2]), we obtain that

. (v =0 forall 2<q<2N/(N -2),

for each R > 0, then, in particular

/ 3Tt Q.
= S :
JNp(AT)

where s is as in (f2). Using ’U]R as a test function in (1.25), the equation
satisfied by v, we get

[ A0 P+ Vet o
JA

- / . /UEJVIMQVUSJ‘ + [ g(Ejy’UC‘J ),UEJ@[);{ < E + / (A" )/UZ‘;H'
. RS SN SN

A
i
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Hence, choosing R and j large enough, we obtain from the above estimate,
an immediate contradiction with (2.10). This shows the validity of (2.9).
Thus, we may assume there is a sequence y; € A’ with

/ v} >p>0 foral ;2 jo (2.13)
. BS‘(UJ)

Let us now write v;(y) = v.,(y; + y). Since v; is a bounded sequence in
H'(RY), we may assume it converges weakly to a v € H}(R"). Assume
first that

dist(y;, OA]7) — oo.

Set z; = €;y; € A; and assume that ; — I € A;. Since v; satisfies in
{—y;} + A}’ the equation

Av; = V(z; +e;y)v; + fvj) =0, (2.14)
it follows that v satisfies in RY,
Av—bv+ f(v) =0, (2.15)

where b = V(Z). Moreover, v # 0, thanks to (2.13). On the other hand,
if dist(y;,0A;’) < C < oo, we will have that v satisfies an equation of
the form (2.5), so that Lemma 2.3 implies that v satisfies (2.15). In both
cases v is the unique critical point of the functional /® defined in (1.7),
with b < sup{V(z)|z € A;} < b; + 6. Then we have

¢ < Ib('u) < ¢; + 0;.

On the other hand, elliptic regularity implies, in particular, that v,
converges strongly in the Hl-sense over compacts. Passing to a further
subsequence if necessary, we may find a sequence of positive numbers
R; — +oc such that

) 1
i [ )(i{lwﬁ|2+v<ejy>v3]}—a<ejy,ua))dy=f”<v>5ci+a,¢.
r; (y;

Joo0

(2.16)
Thus, combining (2.7) and (2.16) we find that there exists 1 > 0 such
that for all large j

0<n< /.5 Vo, | + 'u?}. (2.17)
ASN\Br, (v))
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Using (2.17) and applying a concentration-compactness argument, similar
to that we used above, to the sequence obtained after multiplying v. by
a suitable cut-off function vanishing on By (y;), we will end up with the
existence of an § > 0 and a sequence j; € A}’ \ Bpr,(y;) such that

/ vl > p>0. (2.18)
B9

Thus, we have again, after passing to a subsequence, the weak convergence
of v (-+9;) to a nonzero ¢ € H'(RY). Moreover, 7 satisties the equation

Av —bir+ f(D) =0,

where b = V(#), with & € A;. From (2.18) % # 0, hence ') > e
Our next claim is that

liw J (), ™Y > () + 1°(0) > 26, (2.19)

o
To verify this, we recall that v. satisfies on /\,’ the equation
Av., — Viejy)ve, + glejy.v-,) = 0. (2.20)
We use in this equation a test function of the form
¢ =v- {0y — y;l/R) + (ly — 451/ R)}-
where ¢ is a C™> function with #(s) = 0 for s < 1 and +(s) = 1 for

s > 2. Denoting Ng(y;.y;) = DB(y;,R) U B(y;.R). the conclusion we
obtain, after a direct estimate is that

/ |V, |2 + V(qy)'nf/
> ‘\:'7\A\v;>lt(y_/-g,) !

. 1
> / — glesy.ve,)ve, +O<‘>
. j\:’,\l\vl(’(yj‘,g.l) R

' 1
>2 / ) G(Ejy,'“\fj)dlh()(_)'
JA NN gy, 80) ' R

Then, it follows that
i -N
JE (ue))e;

’ 1 1
> / <§{|V’U€J |2+ V(sjy)vfj} - Gleyy, 'Ugj))d;l/ + 0 (E)
J Nr(y;.4;) ’
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so that

. . i 1
lim Jcﬁ_(u,gj)ej_‘N > / (—{|Vu|2 + bv?} — F(v))
g BR(O) 2

J—oo
+/ (1{|V7|2+ff2} F(A)> +o(1)
—- 1 DU — v — ],
B]((U) 2 R

from where (2.19) follows since R is arbitrary, and the claim (2.8) is
thus checked.

We observe that a similar argument applies to the functional .J., so we
also have

G -N s
liminf J. (u:,)e; ™" > 2¢;.

The definition of the total functional E. in (1.10) and (1.11), thus yields

litn inf Eg_,,(ug‘,)ej”‘w > 2¢; + M{(2¢)Y? — (¢; + 0;)1/2}1.

j—oc

But, using the upper estimate in the critical value C., = E. (u.,) provided
by Lemma 1.2, and the inequality above, we obtain

K
M{2e)"? = (ci+ o)} <> e
i=1

Therefore, if M was such that

211;1 Ci.

we obtain that our original assumption (2.7) was impossible. This concludes
the proof of Lemma 2.1. I

We assume in the rest of this section that M was chosen so large that
Lemma 2.1 holds true. Our next lemma is

Lemma 2.4
lime_oJ (us)e™ =¢; forall i=1,.... K. (2.21)
Proof. — We begin by showing
lim iélf Ju)e™ >¢; forall i=1,... K. (2.22)
£
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Notice that it suffices to show that

liminf J (w)e™ >0 forall i=1.....k (2.23)

gl

In fact, concentration arguments similar to those employed in the proof of
Lemma 2.1 give that then

I inf J;(’u.:.)s"V > [”(’n) > ¢, (2.24)

==

where b = V (&), with 7 € A,.
Then assume that (2.23) does not hold for some z, say ¢« = 1. Then,
along a sequence ¢; — 0 we get

lim J! ue, e 7\ = (. (2.25)
Jx o
But Lemma 2.1 implies that, for all i = 1..... K
limm sup /' e, )5;"\7 < ¢+ 0. (2.26)
/"'\

The definition of E., together with (2.25), (2.26), and Lemma 2.2 then yields

Iy

Z(ti = limsup J. (u.,)e; N < Z( + o;. (2.27)

i=1 I

that is certainly impossible by the choice of the o, made in (1.8). This
concludes the proof of (2.22).

Next we show that (2.21) holds. Assume that for ¢ = 1 we have along
a sequence that

¢+ A= lim ]l (e e ‘f"\' > 0.

o0
Then we will get, from estimate (2.22) and Lemma 2.1,
K K

Z(, = lim F. (u. )e N> (N + Z(:,- (2.28)

FRnles

i=1 i=2
which is impossible. This concludes the proof of Lemma 2.4. [

Conclusion of the Proof of Theorem 0.1. — To begin with, we show that

supu, — 0 as e — 0 forall :=1,...,K. (2.29)
DA,

In fact, otherwise there would exist a sequence ¢; — 0 and z; € JA; with
ue (x;) > & > 0. Assuming x; — 7 € 9A;, and using Lemma 2.3, we
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obtain that the sequence v;(y) = u.,(x; + €;y) converges weakly in H'
to a nonzero solution v of

Av —bo+ f(v)=0.
Since b = V(&) > b;, we have that I°(v) > ¢;. But this imply that
liminf J! (u ), ™ 2 I*(0) > ¢ (2.30)

j—o
which is impossible in view of Lemma 2.4. Hence (2.29) holds. Note that
(2.29) implies, in particular, that u. < a on 9A; forall i = 1,... K, if
e is sufficiently small.

Thus the function ¢ = (u: — @)y xo\a) 18 in Hj(£2). and we can use it
as a test function in (1.22), the equation satisfied by «.. We immediately
conclude that actually ¢ = 0, in other words, « < a on © \ A. The
conclusion is that u. is actually a solution to the original equation (0.6) for
all small £, one of the desired features of u..

Finally, the fact that lim._oJi(u.)e”™ = ¢ > 0 implies that
concentration must occur around some I € A;. We must then have
V(z) = b;, for otherwise a contradiction similar to (2.28) would arise.

The concentration fact implies the presence of at least one local maximum
in each A;, so that u_ is a K -peak solution. The uniqueness of these maxima,
as well as the remaining decay assertions of the theorem follow similarly
to their analogues shown in [3] for the one-peak case. This concludes the
proof of the theorem. [

Remark 2.1. — If instead of hypothesis (f4) we assume (f4’), as indicated
in the introduction, the proof of Theorem 0.1 can be carried out in a similar
way, after choosing o; so small that no critical value of the functional I°,
other than ¢(b), exist in (0, ¢; + 30;), forall b € (b;,b; +6).i=1,.... K.
We modity the penalization as

1

- 4
P = MY { () = ¥ e+ 2008}

and choose M so that Mo, is large enough.

3. APPENDIX

We devote the Appendix to the proof of Lemma 1.3. Since many steps
in the proof use arguments already given in Section 2, at certain points
we don’t give all details.
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Proof of Lemma 1.3. — An upper estimate of the form
db < (e +o(1)e™ (3.1)

follows from the use of a test path constructed as in the beginning of the
proof of Lemma 1.2

On the other hand, it is standard to check that the functional L’ satisfies
P.S. in H'(A;), so that the Mountain Pass Theorem implies that d' is a
critical value for it. Let w. be an associated critical point. Then w. is a

nonzero solution of the equation

e2Aw — V(t)w +gle,w) =0 in A, (3.2)
dw L3
— =40 dA;.
on on

We begin by observing that the definition of g{x, ) and the Maximum
Principle makes it impossible that w,. attains a local maximum somewhere
in cl(A;) \ A,. Thus let #. € A; be a maximum of w.. Then we have
w. > & > 0, uniformly in e. We consider the rescaling of w,. given by
v-(y) = w.(x. +ey), and take a sequence £; — 0. Then, for a subsequence
of ¢; which we relabel in the same way., we have that x., — T € A
Moreover, estimate (3.1) and the fact that w. solves equation (3.2) imply
that ||w.||zn < Ce, or equivalently, ||v.||x < C. This fact and elliptic
estimates allow us to assume, without loss of generality, that v., — v
weakly in H' and locally strongly in the C''-sense, where v is a nontrivial
solution of an equation of the form (2.5), so that Lemma 2.3 is applicable
to conclude that v satisfies

Ay —V(x)v+ f(v)=0.

Set b = V(Z). Then b > b, and, using arguments as in the proof of Lemma
2.1, we must have

lim J; (w,)e; 7N > I"(v). (3.3)
J—00

where I® was defined in (1.7).

Butb = V(%) > b;, so we have that I*(v) > ¢;. Since we have established
that every sequence £; — 0 has a subsequence such that (3.3) holds, we
then conclude di > (¢; + o(1))e™ as desired. This finishes the proof. [J
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