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ABSTRACT. - In this paper we consider the study of standing wave 
solutions for a nonlinear Schrodinger equation. This problem reduces to 
that of finding nonnegative solutions of 

E~AU - V (:c) u + f (u) = 0 in 0. 

with finite energy. Here E is a small parameter, R is a smooth, possibly 
unbounded domain, f is an appropriate superlinear function, and V is a 
positive potential, bounded away from zero. 

It is the purpose of this article to obtain multi-peak solutions in the 
“multiple well case”. We find solutions exhibiting concentration at any 
prescribed finite set of local minima, possibly degenerate, of the potential. 

The proof relies on variational arguments, where a penalization-type 
method is developed for the identification of the desired solutions. 
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128 M. DEL PIN0 AND P. L. FELMER 

RGGuMB. - Dans cet article, on considttre 1’Ctude des solutions de otzdes 
permanentes d’une equation de Schriidinger nonlineaire. Ce problkme se 
rkduit 5 la recherche de solutions non nCgatives de 

E”AV - v (.I:) ‘U + f (u) = 0 tlans (2. 

avec une Cnergie finie. Ici E est un paramktre petit, 12 est un domaine lisse 
qui peut &tre non borne, f est une fonction superlineaire appropriCe et V 
est un potentiel positif born6 hors de z&o. 

L’objectif de cet article consiste B obtenir des solutions ti pits multiples 
dans le cas de puits multiples. Nous trouvons des solutions qui montrent 
une concentration pour tout ensemble choisi fini de minima locaux du 
potentiel, qui peuvent &tre dCg6nCrCs. 

La dCmonstration se base sur des arguments variationnels, oti une mCthode 
de pCnalisation est dCve1oppCe pour identifier les solutions cherchCes. 
0 Elsevier, Paris 

0. INTRODUCTION 

The nonlinear Schriidinger equation in Iw>’ 

(0.1) 

has been object of extensive research in recent years. In this paper we 
consider the study of standing wave.s of equation (O.l), namely of special 
solutions of the form $(:I:, t) = cxp(-zEt/~)lr(:l:), where ‘I?(X) > 0. It is 
easily checked that a 4; of this form satisfies equation (0.1) if and only if 
the function U(X) solves the elliptic equation 

gn*t: - (W(T) - E)u + yd = 0. (0.2) 
The problem we will study in this paper is that of existence of positive 
solutions with finite energy to this equation when W - E is strictly positive. 
away from zero, and the potential W exhibits multiple wells, namely 
several, possibly degenerate local minima. fr, will be regarded as a small 
parameter. After absorption of the parameters by scaling, the problem 
under consideration may be rewritten as 

f2A?L - V(:c)u + ZLP = 0, (0.3) 
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MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRijDINGER EQUATIONS 129 

where V > a > 0 in WN, N 2 1. In [5], Floer and Weinstein consider 
the case N = 1 and p = 3. For a given nondegenerate critical point of the 
potential V, assumed globally bounded, they construct a positive solution 
‘uu, to (0.3), provided that E is sufficiently small. This solution concentrates 
around the critical point as E -+ 0, in the sense that its shape is a sharp 
peak near that point, while it almost vanishes everywhere else. 

Their method, based on an interesting Lyapunov-Schmidt finite 
dimensional reduction, was extended by Oh in [8], [9] to conclude a 
similar result in higher dimensions, provided that 1 < p < E. 

Oh restricts himself to potentials with “mild oscillation” at infinity, name- 
ly belonging to a Kato class. In case that V is bounded this restriction is 
not necessary as noticed by Wang in [ 141. Wang also observes that if I’ 
is nonconstant and nondecreasing in one direction, then equation (0.3) has 
no solutions which tend to zero at infinity. 

The method in [5] and [S] seems to rely in essential way on the 
nondegeneracy of the critical points. In [ 1 11, Rabinowitz lifted partially this 
requirement introducing a global variational technique to find a solution 
with “minimal energy” for all small E, when 1 < p < s and 

Rabinowitz’s approach actually covers a broader class of nonlinearities and 
the smallness of E is not required in case that the limit in the left of (0.4) 
is +x. In [14], Wang established that this least energy (mountain pass) 
solution indeed concentrates around a global minimum of V in the special 
case of equation (0.3), as E --f 0. 

In [3], the authors succeeded in proving the local analogue of Wang’s 
result. It is shown that if for an open, bounded set one has 

i!;f V < 1,:” V, (0.5) 

then (0.3) possesses solutions ?L, with just one local maximum, which 
concentrates around a minimum of V in A. This local minimum may 
exhibit arbitrary degeneracy. 

Concerning solutions with multiple concentration points, in [lo] Oh 
applies the approach developed in [5] and [8] to construct a family of 
solutions U, with peaks concentrating around any prescribed finite set of 
nondegenerate critical points of V when N = 1, and indicates how to 
proceed in higher dimensions where 1 < 1-, < s. 

It is the purpose of this article to obtain multi-peak solutions of (0.3) in 
the “multiple well case”, exhibiting concentration at any prescribed set of 
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130 M. DEL PlNo AND P. 1.. FELMEK 

possibly degenerate local minima of the potential, namely on I{ disjoint 
sets A where (0.5) holds. 

We will actually consider a more general semilinear elliptic problem in 
a smooth domain 12, possibly unbounded, of the form 

1 ,c”Au - V(:r:)u + f(u) = 0 in 62 
(I E H,1 (I 2). II, > 0 in Q. 

(05) 

The potential V will be assumed throughout this paper locally Holder 
continuous and bounded below away from zero. say 

V(:I:) > 0 > 0. for all :I’ E 12. (0.7) 

We will also assume that .f : iw+ + R’ is of class C1 and satisfies the 
following conditions. 

(fl) f(t) = f)(E) near < 2 0. 

(f2) ,1$; +$ = 0 for some 1 < s < E. 

(f3) For some 2 < H 5 s + 1 we have 

0 < OF(<) < P(E)< for all < > 0 (0.8) 

where F(E) = ,I% f(r)&. 

(f4) The limiting equation 

Au -  bu + f(u) = 0 
in p 

(0.9) 

possesses a unique solution, up to translation, for any given b > 0. 

Our main result for equation (0.6) is the following. 

THEOREM 0. I. - Assume that there are bounded domains &, mutuall) 
disjoint, compactly contained in 0, i = 1,. . , K, such that 

i,+ V < irif V. 
a.\, 

(0.10) 

Then there is an EQ > 0 such that for every 0 < E < Ed a positive solution 
u, E Hi (0) to problem (0.6) exists. Moreover, 1~~ possesses exactly K local 
maxima :c,,i, with :C,,i in A;. We also have that V(.c,,,) + inf.,, V, and 

2L,(X) 5 M!xpi-~/:r~ - :ce.,l). (0.11) 

for all :I: E R \ U,+R,, where CY and [j are certain positive constants. 
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We observe that no restriction on the global behavior of V is required 
other than (0.7). In particular, V is not required to be bounded or to belong 
to a Kato class. 

On the other hand, the hypotheses on f are milder than those required 
in [IO]. In particular, hypothesis (f4) is satisfied by a large class of 
nonlinearities f including UP, y > 1. See the work in Kwong and Zhang [6], 
and Chen and Lin [I]. Moreover, this assumption can be further relaxed to 

(f4’) The mountain pass value in H;(0) of the energy functional 
associated to (0.9) is the smallest nontrivial critical value and it is isolated. 

See the remark at the end of $2. 
It is interesting to observe the relationship between the result of 

Theorem 0.1 and the work by Coti-Zelati and Rabinowitz [2] on multi- 
bump solutions in spatially-periodic problems. For the case of equation 
(0.3) 1 < p < z, and V periodic on each of its variables, it follows 
from their results that for a fixed, not necessarily small E, solutions in 
Hl(IW”) with exactly K bumps exist for each integer K, provided that 
the associated energy functional satisfies the so-called (*) nondegeneracy 
condition. This assumption states that all critical points at energy levels in 
[c, c + n) are isolated, where c denotes the mountain pass minimax value of 
the associated functional, and S > 0. These solutions have energy level close 
to Kc. On the other hand, Theorem 0.1 is applicable to construct a K-bump 
solution in this situation when E is small, just assuming that V possesses 
one local minimum. We do not know whether (*) holds in this case. 

The proof of Theorem 0. I is variational, and uses ideas in the spirit of 
those in our previous work [3], where a penalization method enabling the 
identification of local mountain passes was developed. Roughly speaking, 
the main argument there consists of defining a suitable modification of the 
nonlinearity for which the mountain pass theorem is directly applicable to 
the associated energy. Then, taking advantage of the energy-minimality of 
the mountain pass solution, one finally shows that it becomes a solution to 
the original problem with the desired characteristics when E is sufficiently 
small. 

Our current framework is more delicate, since the solutions we look for 
are at higher energy levels. They are not just rough mountain passes, so 
that energy-minimality is lost. We are able to overcome this difficulty by 
adding a new penalization term. In fact, we introduce a modification of 
the nonlinearity similar to that in [3] in order to prevent the occurrence of 
concentration outside the open sets Ai, and then a new term which provides 
a “balance” among the energies inside the distinct h;‘s, in order to obtain 
exactly K-bumps. The solution is captured as a simple minimax quantity 
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132 M. DEL PIN0 AND P. L. FELMER 

on a class of K-dimensional maps, and eventually shown to be a solution 
to the original equation with the appropriate features. 

Finally, we would like to mention that the construction of solutions of 
(0.3) with an infinite number of bumps (hence not with finite energy) 
has been recently carried out by Thandi [ 131 in the nondegenerate case. 
Infinite-bump solutions in the framework of [2] were found by Spradlin 
in [12]. 

The organization of this paper is as follows: In $1 we defne the 
modification of the functional needed for the proof of Theorem 0.1, and 
prove some preliminary results. $2 is devoted to the proof of Theorem 0.1. 

1. PRELIMINARIES 

This section is devoted to the definition and preliminary study of the 
penalized functional. 

We introduce an appropriate penalization so that the concentration outside 
the sets A; is avoided and an adequate balance in the concentration is 
achieved. Then we prove that the penalized functional satisfies the Palais 
Smale condition (P.S.), and we set up the minimax scheme in order to obtain 
critical points of it. We provide next some estimates on the critical points. 

In the framework of Theorem 0.1, associated to equation (0.6) we have 
the “energy” functional 

which is well defined for II, E ,Fi, where 

’ H = {1/s E H;(O) / 
I 

V(.K)U2 < x}. 1.11 
<! 

H becomes a Hilbert space. continuously embedded in Hi(12). when 
endowed with the inner product 

< ‘u,,‘,l >H= 
I’ 

(1.2) 
0 

whose associated norm we denote by ((.l\~. 

In the definitions above, and in what follows we assume that f, V and S2 
satisfy the hypotheses of Theorem 0.1, and that the function f is extended 
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as 0 on the negative axis. Under those assumptions it is standard to check 
that the nontrivial critical points of 1, correspond exactly to the positive 
classical solutions in Hi(Q) of equation (0.6). 

Next we define the first modification of our functional. Let (Y be as in 
(0.7), and let us choose (1. > 0 so that 

f(E) 5 5 ‘(‘) > m 
t 

for all 0 5 < 5 II,, and ~ for all < > (1. 
(-a -’ 

This choice of CL can be made since (fl) and (f3) hold. Let us set 

(1.3) 

and define 

.Y(.. El = X.\f(l) + (1 - X.\)f‘(O (1.4) 

where A = UFi,A;, with the bounded domains A; as in the assumptions 
of Theorem 0.1, and ~~1 denoting its characteristic function. It is easy to 
check that (fl)-(f3) implies that g defined in this way is a Caratheodory 
function and it satisfies the following 

(g 1) !/(:I:. E) = o(l) near < = 0 uniformly in :I: E 12. 
(g2) linq+~ v = 0 uniformly in :I: E 0, for some 1 < s < s if 

N > 3, and no restriction on s if N = 1.2. 
(g3) (i) 0 < HG(:r:. <) 5 g(:t:, [)< for all :I: E A.< > 0. 

and 
(ii) 0 5 ~G(x. <) 5 g(z, I)< 5 $[’ for all :I: E 12 \ A: [ E lR+. 

Here we have denoted G(:c, <) = j;f g(:l:. r)&. 
Now we define the modified functional .JE : H + lR’ as 

The functional <J, is of class C1 in H and its critical points are the positive 
solutions of the equation 

E2&,,, - V(:r:)u + g(:r:. u) = 0 in 12. 

Next we introduce the second modification of the functional. For this 
purpose we assume, without loss of generality, that the sets Ai have smooth 
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134 M. DEL PIN0 AND P. L. FELMER 

boundary. We define the numbers h, = inf{V(:c) / :I: E A;} and we let 
n > 0 be so that 

We will need the ‘limiting functional’ 1” : H’(W’“) -+ R’ defined as 

(1.6) 

(1.7) 

whose mountain pass critical value will be denoted by c( 6). Critical points of 
I” are the solutions of (0.9). We define ci = c(hj) and (T; = c(h, + h) - c:;. 
We assume that 

Ii 
c 0; < i iiiin{c; / i = 1, . . . .K}. (1.8) 

This can be achieved by making hi and n smaller if necessary. It will be 
convenient to consider mutually disjoint open sets Ai compactly containing 
Ai, for all i = 1,. . . K. Then we define on H the functional 

I : E~~V,U~~ + V(X:),U’ - i G(x,u), 
I 

II, E H. (1.9) 
‘1, . ? 

and the penalization 

Ii 

P,(u) = MC {(J(u)+)~ - &:; + oo+>:. (1.10) 

i=l 

The constant M will be chosen later. Finally the penalized functional 
E, : H + R is defined as 

E,(u) = .J,(u) + P,(u). (1.11) 

The functionals J, and I’, are of class C1 and so is E,. We show next 
that E, has good compactness properties, that is E, satisfies the Palais 
Smale condition. 

LEMMA 1.1. - Let {u,,} be a sequence in H such that EE( u,, ) is bounded 
and EE’(u7,) -+ 0. Then IL,, has a convergent subsequence. 
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Pruo$ - We first prove that the sequence {url} is bounded in H. Using 
property (g3) we easily see that 

from where, using (g3) again, we obtain 

In a similar fashion we find 

We observe that ( 1.13) still holds if we replace 6’ by any number 8 E (2,H). 
Then, for the penalization functional we have 

From where there exists a constant C so that 

We observe that the constant C is a multiple of E-~. 
Thus, it follows from (1.12), (1.15) and the assumptions on {‘all} that 

this sequence is bounded as desired. 
Let us choose a subsequence, still denoted by {uV1}, weakly convergent 

to u in H. This convergence is actually strong. Indeed, it suffices to show 
that, given y > 0, there is an R > 0 such that 

lim sup 
./ 

{~2p7?12 + V(+L,2,} -=c Y, (1.16) 
IL’02 Q\BR 

where BR denotes the ball with center 0 and radius R. We may assume 
that R is chosen so that A c BRp. 

Vol. 15, no Z-1998. 



136 M. DEL PIN0 AND P. L. FELMEK 

Let YiR be a cut-off function so that Y/R = 0 on Bnp, r/R = 1 on 
12 \ DR.0 < r/R < 1 and ]vrj~] < c/R. Since {IL,,} is a P.S. sequence, 
we have that 

< E;‘(?/,,,). ‘f/R’/L,, >= o,,( 1). 

from where (1.16) follows. 0 

The previous lemma makes possible to use Critical Point Theory to 
find critical points of the functional E,. We will formulate an appropriate 
minimax problem for E,. 

We start defining a class of functions r over which we minimax. A 
continuous function 7 : [0, 11” + N is in lY if there are continuous 
functions ~1, : [(I, I] + H. i = 1, . . K such that 

(i) supp{!j;(r)} C -A; for all 7 E [O. 11. 

(ii) Y(rr. . rJ<) = Cf?, !j;(7;) for all (71. . . . . TI<) E a[O. I]“, 

(iii) g;(O) = 0 and .I,(!l;(l)) < 0 

(iv) ES(7(t)) 5 F”(CE~ c, - ‘T) for all t E i)[O. 11”. 
where 0 < CT < $Min{c; I % = 1, . . . . K} is a fixed number. 

We can define the minimax value associated to the class l? as follows 

C, = inf sup E,(y(f)). 
‘Ertqo.T]‘\ 

In the following lemma we provide the key estimates on the minimax value 
C,. In particular we show that r is nor empty. 

LEMMA 1.2. 

c, = 2(C c; + o(1)). (1.17) 
,=l 
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Here, and in what follows, we denote by o(1) a quantity approaching zero 
as E -+ 0. 

The proof of this lemma will require the study of an auxiliary Neumann 
problem. We may consider the the functional ?I: on H’(&). Let ‘t: be the 
mountain pass value of Jf, namely 

where I’; is the class of all continuous curves yi : [O. l] --+ H1(ii) such 
that r;(O) = 0 and .Ii(yi(l)) < 0. Then we have 

LEMMA 1.3. - The mountain pass critical value d: qf the Neumann 
problem satisfies 

ct: = (C, + o(l))P. (1.18) 

For the sake of continuity in the arguments, we postpone the proof of 
this lemma to the Appendix. 

Proof of Lemma 1.2. - Since c; is the mountain pass value for the limiting 
functional I”?, given any S > 0 there exists a path y, : [0, l] -+ Hl(R”) 
such that y;(O) = 0. I”? (y,(l)) < 0 and 

(1.19) 

We assume from now on that 6 < min{a, Kg;}. Next, given E > 0, we 
define the path ;Y; : [O. l] -+ H as 

Here Xi E A; satisfies b; = V(:ci), and ~1; is a C” cut off function with 
compact support in Ai, taking the value 1 except for a small neighborhood 
of 814;. It is not hard to check that 

J,(+j(r)) = E”(I”‘(yi(r)) + O(l)), for all 7 E [O: I], (1.20) 

with o( 1) independent of r E [0, I]. 

Now we define the continuous function y. : [0, l]Ii -+ H as 

Y()(Tl. ...3 71<) = &i(T,j. for all (Tr, . . . . rI<) E [0, 11”. 
i=l 
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The function yo belongs to I?. In fact, properties (i)-(ii) are trivially true, 
and (iii)-(iv) are satisfied in view of (1.19) and (I .20), when ,c is small 
enough. Thus, the minimax value C?, is well defined as a real number, for 
all E > 0 small enough. 

We observe that. by the choice of n and from (1.19) and (1.20), the 
penalization term in E,: vanishes on ye(t) for all 1 E [O. 11“‘. 

We also obtain from (I. 19) and (1.20), that for small E 

EZ(rc,(t)) 5 P(k c; + h). for all 1 E [O. l]‘<. 
i=L 

so that 

Ii 

liIf’~;p 2 5 C (‘, + n. 
i=l 

As n is arbitrary, we obtain the upper estimate CT: < c”(cf?, (‘, + o(I)). 

We prove the lower estimate next. First we observe that given any y E I‘ 
and any curve c(s) joining (0) x [0, T]“-’ with (‘7) x [O, ?‘]“-I : the path 

Yl = Y O (’ I.\, is in Pl. 

and then it follows from Lemma 1.3 that 

sup J’(y,(7)) > ,‘“(c, + o(1)). 
TE[O.l] 

We have an inequality of this form for every % = 1. . . . K. Thus we can 
repeat the argument given by Coti-Zelati and Rabinowitz in [2] in the proof 
of Proposition 3.4 to obtain, for every y E I?, the existence of a point 
t E [O,T]” such that 

.Z(y(f)) > P(c, + o(1)) for all i = 1.. K. 

From here, and from the form of J, outside the &‘s, we have 

finishing the proof. 0 
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The functional EE satisfies the Palais Smale condition, the class l- is not 
empty, and estimate (1.17) holds, then there exits a critical point 1~~ E H 
of E, such that EE(u,) = C,. 

We define the local weight 

w; = M{ (J(u)+)+ - EQ + ~;)~}+(Jj(l,,~))-~. 

and then the function 

Ii 

WE = c wL Xi, (1.21) 
i=l 

The critical point ‘YL~ is a weak solution of the equation 

~2tfiv((l+W,)Vls)-(I+W,)V(:I:)16+(l+W~)~~(~f', 71,) = 0 in 12, (1.22) 

so that U, satisfies 

2Au - V(:r:)w + g(:c. 7~) = 0 in 0. (1.23) 

for every set 0 C 62 not intersecting O(U~~,i,). 

We-define the sets 12, = (~1 E Riv /ET/ E $I}, A: = { !/ E R-v / E:~J E A; } 
and hf = {:(I E Riy / EY E Aj}. We rescale the function IL., as 
U-(W) = u,(E:~/) for r/ E 12,. This function *v, belongs to Hi (0,) and 
then to H’(R”), and it satisfies in a weak sense the equation 

div((1 + w~(~~J))OU) - (1 + wc(Ey))V(q)u 

+ (1 + wE(q))y(q.u) = 0 in 0,. (1.24) 

and over sets 0, subsets of Q, not intersecting i3(L$!,i’), the function 
‘0, satisfies 

Au - V(&y)u + g(q. IL) = 0 in 0. (1.25) 

Finally, proceeding as in the first part of the proof of Lemma 1.1, we obtain 
from the estimates on C, given in Lemma 1.2 that 

and then for the function V, we have the uniform HI-estimate 

I 
IV7Je1* + ,u,” < c. (1.26) 

* n, 
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2. PROOF OF THEOREM 0.1 

In this section we will carry out the proof of Theorem 0.1. Using the 
estimates obtained in the previous section. we will show that if M in the 
definition of E, is chosen a priori sufficiently large, then ‘YL, will be a 
critical point of the original functional 1, whenever E is sufficiently small. 
Toward this end, the following lemma constitutes a crucial step. It tells 
us in particular that if M was large then the penalization term PE(u,) 
becomes zero for all sufficiently small C. 

LEMMA 2.1. - !f in the dejnition of E, in (I. 10) und (1. I I), N > 0 wus 
chosen s~jjiicientiy large, then 

lirrisup ,J~(~l,)cr-“~ < c, + 0,. jbr all % = 1. . K. (2.1) 
540 

For the proof of this result some preliminaries are required. It is useful to 
work with the resealing of ‘YL, given by ‘oE. as defined at the end of the last 
section. Given l? > 0, we denote by Nn(A’) the set {v 1 dist(;y. A’) < R}. 
a similar definition has the set Nx(AF). The next lemma states that (jt is 
small in H1-norm away from the set A’ = Uf~,fl~. 

LEMMA 2.2. - There exists a C > 0 such that, given R > 0, one has 

(2.2) 

for all E sefjciently small. 

Pro@ - Given R > 0, E > 0, we may choose smooth cut-off functions 
0 < $:,R I: 1 such that 

l/l;,R(;y) = 
1 if dist(y,RT) < R/2, 
0 if tlist(:y, AT) > R, 

(2.3) 

and 10$;RI < A/R. Then set ,r& = 1 - C, dj:,,. Using the test function 
&v~ in (1.24), equation satisfied weakly by ?I,, one gets 

where w, is given by (1.21). Observe that wE is uniformly bounded, by a 
bound possibly depending on M. Using this, the choice of &, the fact that 
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11, is uniformly bounded in H1(R”) and the definition of i, the desired 
estimate (2.2) follows immediately from (2.4). q i. 

A second preliminary result we will need is given in the following 
lemma inspired by the work in [4]. 

LEMMA 2.3. - Ler ‘II E H1(R”) n C(R’v) h e cI solution of the equation 

PrmJ: - We begin by showing that SC 2 CL on {:I:~ = 0). Standard 
regularity arguments yield that 71 is in C1(R’v) n H’(R”“). Moreover. 
7f(:r).Th1(:1.) --+ 0 as /xl + x. 

Using c as a test function in equation (2.5). we obtain 

But the first summand in the above quantity is zero, while F(s) 2 F(s), 
with equality only if s 5 CL. Thus, ~~(0, :I:‘) 2 u. Finally, to prove 
that v(x:~,:I.‘) < (I for x1 > 0, we just consider the test function 
(/!I = (II - u) /y + I,, ,>o} E H1(k’ ) in equation (2.5). and the conclusion 
C/I 3 0 readily follows. 0 

Proof of Lemma 2.1. - We will base the proof in an indirect argument. 
Thus, assume that (2.1) does not hold, namely that for some sequence 
E., -+ 0 we have 

liru .I:, (lL,J)Ej-iv > C; + fJ;. 
j-CC 

(2.7) 

We will see that (2.7) is impossible provided that nil was chosen sufficiently 
large. In fact this is a consequence of the following claim, main step in 
the proof: if (2.7) holds, then 

(2.8) 
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We will show (2.8). We start proving that the sequence TL,, concentrates 
somewhere near A:‘, more precisely, we show that there exist numbers 
S > 0, 0 > 0 such that 

sup 
I 

for all ,j > ,j0. (2.9) 
yc.j;’ Bq(cl) 

,V~,~ > Q 

To see this, we first observe that from (2.7) there is a X > 0 such that 

then, Lemma 2.2 imply that for all R > 0 large enough 

(2.10) 

Now assume that (2.9) is false. Then we may assume that for all S > 0 
we have 

sup 
I .yE.lj’ ’ B5CY) 

71;, + 0. (2.11) 

Let us set 113 = Y~/&II~, . where $A = $& is given by (2.3). Then clearly 

Slip 
I 

(,,,f)” --i 0 (2.12) 
YEW!> Bs(l/) 

for all 5’ > 0. Moreover, {v?} is a bounded sequence in H’(RK). Then 
applying the concentration compactness principle (see Lemma I.1 in [7] or 
Lemma 2.18 in [2]), we obtain that 

.! 
(,u,“)Y + 0 for all 2 < 4 < 2N/(N - 2). 

w.v 

for each R > 0, then, in particular 

i’ ‘v,<(.Z;‘) 
sll;+l --f 0. , 

where s is as in (f2). Using ,uy as a test function in (1.25), the equation 
satisfied by ‘tlej, we get 
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Hence, choosing R and j large enough, we obtain from the above estimate, 
an immediate contradiction with (2.10). This shows the validity of (2.9). 
Thus, we may assume there is a sequence yj E AT’ with 

I 
*,,E” >p>o for all 

. B,(Y.,) ,- j L .jo. (2.13) 

Let US now write ,lij(y) = u,, (T/j + y). Since uJ is a bounded sequence in 
Hl(lR”), we may assume it converges weakly to a II E H1(WN). Assume 
first that 

Set “j = Ej:l/j E f!i and assume that ~j --f :C E A;. Since ‘iJj satisfies in 
{-yj} + AZ” the equation 

Avj - V(:C, -t Ej:1/)tr, + f(vj) = 0, (2.13) 

it follows that u satisfies in R”, 

Au - bu + f(‘u) = 0, (2.15) 

where b = V(Z). Moreover, u $ 0, thanks to (2.13). On the other hand, 
if dist(yj, i3R”) < C < 00, we will have that II satisfies an equation of 
the form (2.5) so that Lemma 2.3 implies that ‘u satisfies (2.15). In both 
cases ‘u is the unique critical point of the functional I” defined in (I.?‘), 
with b < sup{V(x) 1 x E A;} < b; + b. Then we have 

On the other hand, elliptic regularity implies, in particular, that v,, 
converges strongly in the H1-sense over compacts. Passing to a further 
subsequence if necessary, we may find a sequence of positive numbers 
Rj -+ +m such that 

Thus, combining (2.7) and (2.16) we find that there exists rl > 0 such 
that for all large j 

(2.17) 
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Using (2.17) and applying a concentration-compactness argument, similar 
to that we used above, to the sequence obtained after multiplying ‘oCi by 
a suitable cut-off function vanishing on Bn,! (yj), we will end up with the 
existence of an S > 0 and a sequence !i,j E Af ’ \ L3r,i (:l/j) such that 

(2.18) 

Thus, we have again, after passing to a subsequence, the weak convergence 
of II,, (. + !i,) to a nonzero h E H’(Rs). Moreover, il satisfies the equation 

where i = V(:t), with :? E A%,. From (2.18) *fi $ 0, hence /h(SLl) > c,. 
Our next claim is that 

To verify this, we recall that ‘v,, satisfies on n:-’ the equation 

AV,) - v(~,,y)u,, + ,q(f,,:y’orJ) = 0. 

We use in this equation a test function of the form 

where ,li, is a C” function with $(s) = 0 for s 5 1 and JJ(,s) 

(2.20) 

I for 
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so that 

from where (2.19) follows since R is arbitrary, and the claim (2.8) is 
thus checked. 

We observe that a similar argument applies to the functional *J,, so we 
also have 

lim inf .JF, (Us, )E,j-” > 2(:, . 
j+a 

The definition of the total functional E, in (1.10) and (1. I l), thus yields 

lu~i~f EE,(TLC,)Ej-nT > 2(:, + M{(2c;)l/’ - (c; + ~i)1/2}:. 

But, using the upper estimate in the critical value Cc, = Et, (,u,! ) provided 
by Lemma 1.2, and the inequality above, we obtain 

Ii 
M{ (2e;y* - (Ci + 0;)1’2}$ 5 c C’,. 

i=l 

Therefore, if A4 was such that 

g, c;. 

M > min{((2cj)1/2 - (Ci + fli)l12)* 1% = 1,. . . : K}’ 

we obtain that our original assumption (2.7) was impossible. This concludes 
the proof of Lemma 2.1. Cl 

We assume in the rest of this section that M was chosen so large that 
Lemma 2.1 holds true. Our next lemma is 

LEMMA 2.4 

lirn E+,~.Jj(uE)~-N = c; for all a = 1,. . . . K. (2.21) 

ProojI - We begin by showing 

li;$;rf .J~(u~)E-” > ci for all % = 1, . . . K. (2.22) 
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Notice that it suffices to show that 

lini+i;f J~(~/.-)c-” > 0 for all i = 1.. . k. (2.23) 

In fact, concentration arguments similar to those employed in the proof of 
Lemma 2.1 give that then 

(2.24) 

where h = I/(.?), with .F t 11,. 

Then assume that (2.23) does not hold for some %, say 7 = 1. Then, 
along a sequence c,, - 0 we get 

But Lemma 2.1 implies that, for all % = 1. . . K 

lim sup .Ji I (16; I )-cJ’\’ 5 (‘, + 0,. 
j-x 

(2.26) 

The definition of EC, together with (2.25). (2.26), and Lemma 2.2 then yields 

that is certainly impossible by the choice of the (T, made in (I .8). This 
concludes the proof of (2.22). 

Next we show that (2.21) holds. Assume that for % = 1 we have along 
a sequence that 

Then we will get, from estimate (2.22) and Lemma 2.1. 

Ii l i 

c c, = lim E,) (u,,)c,,-1’ 2 (I:~ + A) + C (‘, (2.28) 
/=1 

./-r 
i=2 

which is impossible. This concludes the proof of Lemma 2.4. 0 

Conclusion qf the Proof of Theorem 0.1. - To begin with, we show that 

sup u, i 0 as E ---f 0 forall r=l....,K. (2.29) 
Xl, 

In fact, otherwise there would exist a sequence t, + 0 and z:j E 0ziz.j with 
Q, (x,) > 6 > 0. Assuming :cj + z E i)h,, and using Lemma 2.3, we 
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obtain that the sequence Tij(g) = */Lo.) (:“j + ejl//) converges weakly in H1 
to a nonzero solution of of 

Since b = V(T) > 0,. we have that I”(U) > c,. But this imply that 

(2.30) 

which is impossible in view of Lemma 2.4. Hence (2.29) holds. Note that 
(2.29) implies, in particular, that U, 5 II. on i)h; for all i = 1,. . . , K, if 
f is sufficiently small. 

Thus the function (i E (u, - ~~,)+xlo\.~l is in Hi (0). and we can use it 
as a test function in (1.22). the equation satisfied by II,. We immediately 
conclude that actually (j E 0, in other words, II < (1, on (1 \ 12. The 
conclusion is that U, is actually a solution to the original equation (0.6) for 
all small E’. one of the desired features of S/L,. 

Finally, the fact that l&,0 .J~(u=)Ec~‘~ = C; > 0 implies that 
concentration must occur around some :C E Ai. We must then have 
V(Z) = b,, for otherwise a contradiction similar to (2.28) would arise. 

The concentration fact implies the presence of at least one local maximum 
in each Ai, so that U? is a K-peak solution. The uniqueness of these maxima, 
as well as the remaining decay assertions of the theorem follow similarly 
to their analogues shown in ]3] for the one-peak case. This concludes the 
proof of the theorem. 0 

Remark 2.1. - If instead of hypothesis (f4) we assume (f4’), as indicated 
in the introduction, the proof of Theorem 0.1 can be carried out in a similar 
way, after choosing U; so small that no critical value of the functional I”, 
other than r(b), exist in (0, C; + 3n;), for all 1) E (h,. bj + ~5). % = 1,. . . , K. 
We modify the penalization as 

and choose M so that Mcr; is large enough. 

3. APPENDIX 

We devote the Appendix to the proof of Lemma 1.3. Since many steps 
in the proof use arguments already given in Section 2, at certain points 
we don’t give all details. 
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Proof of Lemma I .3. - An upper estimate of the form 

follows from the use of a test path constructed as in the beginning of the 
proof of Lemma 1.2. 

On the other hand, it is standard to check that the functional Jj satisfies 
P.S. in Hl(ili), so that the Mountain Pass Theorem implies that (1: is a 
critical value for it. Let ‘YII, be an associated critical point. Then ~1, is a 
nonzero solution of the equation 

E”AW - V(:r:)w + y(x, II,) = 0 in ii;, (3.2) 

We begin by observing that the definition of ,CJ(X. 1~) and the Maximum 
Principle makes it impossible that %u= attains a local maximum somewhere - 
in cl(&) \ A;. Thus let :c, E A, be a maximum of UI,. Then we have 
‘~1~ > ~5 > 0, uniformly in E. We consider the resealing of ~1, given by 
‘v~(YJ) = ‘YU, (:I:, + EIJ), and take a sequence Ej -+ 0. Then, for a subsequence 
of &j which we relabel in the same way, we have that .I:;, + .? E A,. 
Moreover, estimate (3.1) and the fact that ~1, solves equation (3.2) imply 
that IIw=IIHI < G&v, or equivalently, [[u~/~HI 5 C. This fact and elliptic 
estimates allow us to assume, without loss of generality, that ~~~~~ + 11 
weakly in H1 and locally strongly in the Cl-sense, where 41 is a nontrivial 
solution of an equation of the form (2.5) so that Lemma 2.3 is applicable 
to conclude that 11 satisfies 

Set b = V(Z). Then b 2 b, and, using arguments as in the proof of Lemma 
2.1, we must have 

where Ib was defined in (1.7). 

But b = V(2) 2 b,, so we have that I”(U) > c,. Since we have established 
that every sequence Ej + 0 has a subsequence such that (3.3) holds, we 
then conclude di > (ci + o(l))e” as desired. This finishes the proof. 0 

Amudes de I’lt~rtirut Henri Pc,iwrtrC Analyse non h&kc 



MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRijDlNGER EQUATIONS 149 

REFERENCES 

[ II C. C. CHEN and C. S. LIN, Uniqueness of the ground state solutions of no + ,f(r~) = 0 in 
R ‘, N > 3 Comm. in P.D.E. lb. Vol. S-Y, 1991, pp. 1549-1572. 

121 V. CurI ZCL.AI and P. RABINOWITZ. ’ Homoclinic type solutions for semilinear elliptic PDE 
on W “, Cotnnl. Purr nml Applied Mdz, Vol. XLV, 1992, pp. I2 I7- 1269. 

[ 3 1 M. D~I- PINK and P. FELMEK, Local mountain passes for semilinear elliptic problems in 
unbounded domains. C&ulu.s r!f’ kritrtim.c trrd PDE, Vol. 4. 1996, pp. I2 I - 137. 

[4] M. J. Es’r!zBAN and P. L. LIONS Existence and non-existence result\ for semilinear problems 
in unbounded domains. PI-w. Roy. Sot. Edits.. Vol. Y3A, 1982. pp. I- 14. 

[S] A. FI.OCK and A. WEINS~‘EIN. Nonspreadin, 0 Wave Packets for the Cubic SchrGdingel 
Equation with a Bounded Potential, Jortruol of‘ Fw~c~tiomrl trwlxxis. Vol. 69. 19X6. 
pp. 397-408. 

161 M. K. KWONG and L. ZHANG. Uniqueness of positive solutions of A,~I + ,f( 11) = 0 in an 
annulus D#~rentitr/ nml Int~grd Efpntiom . Vol. 4, I99 I. pp. 583-599. 

171 P. L. LIOI\S, The concentration-compactness principle in the calculus of variations. The 
locally compacl case. Part II Antr/wr Nonliu., Vol. 1, 1984. pp. 223-283. 

181 Y. J. OH. Existence of semi-classical bound states of nonlinear Schrijdinger equations with 
potential on the class (1 ‘),, Comrn. fcrrtirrl ,!I#. Eq. Vol. 13, 1988. pp. l499- I5 19. 

191 Y. J. OH. Corrections to Existence of semi-classical bound states of nonlinear Schriidinger 
equations with potential on the class (I,‘),,., Co/ru~~. Ptrr.ritr/ !Ii[f EL/. Vol. 14, 19X9. 
pp. 833-834. 

[IO] Y. .I. OH. On positive multi-lump bound states nonlinear Schriidinger equations under 
multiple well potential. Con~rn. Mtrth. Plrp., Vol. 131. 1990. pp. 223-253. 

[ I I ] P. RAL~NOWIT~, On a class of nonlinear Schriidinger equations. Z. tr,lgeu’ Mrrth P/I~,~\. 
Vol. 43, 1992, pp. 270-291. 

[ I21 G. SPKAIIL.IN, Ph. D. Thesis University of Wisconsin. 1994. 
[ 131 N. THANI)I. Ph. D. Thesis University of Wisconsin. 1995. 
[ 141 X. WANG. On concentration of positive bound states of nonlinear Schriidingcr equations. 

Conwr. Mtrth. Ply\.. Vol. 153. No 2. 1993. pp. 229-243. 

Vol. IS, Ilo 2.1998 


