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ABSTRACT. - It is shown that the regularity problem at the free boundary 
of two-dimensional stationary harmonic maps can be reduced to the 
corresponding problem for two-dimensional minimal surfaces and that 
the analogous regularity results hold true. 0 Elsevier, Paris 

RBsuMB. - On montre que le probleme de la regular&! a la frontiere libre 
d’une application harmonique stationnaire bidimensionnelle peut &tre reduit 
au probleme analogue pour les surfaces minimales, et que les resultats de 
regularit correspondants sont encore vrais. 0 Elsevier, Paris 

1. INTRODUCTION 

Since the direct method of the calculus of variations in general produces 
weak solutions one of the basic questions is the regularity problem. Is 
the generalized solution a classical solution, does it have singularities, 
how large can the singular set be? In the theory of harmonic mappings 
between Riemannian manifolds there is a big difference - regarding these 
questions - between the two-dimensional and the higher dimensional case. 
If the domain of definition of the mappings has dimension n 2 3 even 
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152 M. CRijTER 

minimizers of the energy functional may have singular points. A simple 
example is the mapping u() : Iw” -+ S’+l given by ~Q~(:c) = :K/]:I:I, c.f. [ 171. 

Here, we are concerned with the two-dimensional case. In contrast to 
higher dimensions it had already been proved by C.B. Morrey in [ 181 that 
in two dimensions energy minimizing harmonic maps are regular. In fact, 
Morrey’s method works more generally for variational integrals growing 
quadratically w.r.t. the gradient of the map. However, in many situations 
one is interested not only in the minimizers but also wants to know the 
whole set of critical points. 

As is well known there is an intimate connection between two- 
dimensional harmonic maps and two-dimensional minimal surfaces. For 
example, if N is a Riemannian manifold it turns out that every harmonic 
map II : S2 + N is in fact a parametric minimal surface (or constant). In 
general, a harmonic map is a parametric minima1 surface (possibly with 
branch points) provided it is conformally parametrized. In this case the 
energy integral equals twice the area of the mapping. 

Since in [6] the author proved that weak H-surfaces with finite area are 
regular in the interior it follows that conformally parametrized harmonic 
maps having finite energy also are regular in the interior. In [lo], see also 
[3], it was then shown that the method of [6] can be modified to work for 
minimal surfaces with a free boundary. Later, technical improvements and 
generalizations were given in [4], [I I], [9], [ 141, and [ 151. The behaviour of 
minimizers near the free boundary had before been investigated by H. Lewy 
[ 161 and W. Jager [ 131. For more references the reader is referred to the 
relevant sections of [I] and ]2] as well as to the earlier monographs by 
J.C.C. Nitsche [19]. and 1201. 

Let us now turn to harmonic maps which are not necessarily conformally 
parametrized. Nevertheless, in the smooth case there still is a certain 
holomorphic function (a holomorphic quadratic differential if the domain 
of definition is a Riemann surface) associated to the map. For example. 
if II E CY’([w*.[w,‘) satisfies 

(1) Au”’ = 0 in R2 (A:= l.....N). 

then the function Cp : C + C (2 = :I: + a~) given by 

(2) @( 2) := IIL,,. 12 - llLy 12 - 2%lL,. . ‘U!, 

can easily be checked to be holomorphic. 

In the case that TL is only known to be weakly harmonic one may argue 
as follows. Suppose that in addition u is a stationary point of the energy 
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integral w.r.t. inner variations (see section 2 for precise definitions). Then, 
by well known arguments it can be shown that the function @ defined 
in (2) (respectively its analogue in the Riemannian case) is a weakly 
holomorphic L1-function. Using this observation and a simple construction 
c.f. [8], and [22] for a slightly more complicated argument, the question 
of interior regularity for stationary harmonic maps could be reduced to the 
case treated in [6]. 

In this paper we are going to show how these arguments can be modified 
to give regularity for stationary harmonic maps with a free boundary. 

Let us mention here that the regularity question for weakly harmonic 
maps in the interior case has successfully been solved by F. HClein in [12]. 
Later, J. Qing [21] using Helein’s result was able to show regularity at the 
fixed boundary (Dirichlet conditions) for weakly harmonic maps. The case 
of a free boundary is currently under investigation. 

This paper is organized as follows. In section 2 we treat the Euclidean 
case in fair detail because already here the main idea becomes clear and 
one can avoid the technical complications necessary in other cases. Section 
3 is then devoted to more general problems that can be handled in this 
way. In particular, we indicate how to treat more general functionals, the 
Riemannian case, as well as the case where the supporting surface is 
allowed to have a non-empty boundary (a kind of Signorini problem). 

2. THE MODEL CASE 

Here, we consider the following situation. 

The two-dimensional Euclidean space R2 is identified with the complex 
plane C, and accordingly points in Iw* are written as w = (II.. II) = ‘~1, + %?I. 

As a parameter domain we choose the open semi-disk 

I?+ := {w E R2 : 174 < 1: ‘0 > O}. 

Let C denote the closed circular arc 

and I the open interval 

I := {w E w2 : IW < 1, ?I = O} = (-1.1) x {O}, 

so that i3@ = C ti I (disjoint union). 

Vol. IS. n” 2.1998 



154 M. GRiiTER 

Furthermore. assume that S is a smooth two-dimensional surface in W3 
- the so called supporting surffncr. We want to investigate the regularity 
properties of harmonic maps 

which map I into S, i.e. the boundary values ‘XI := *Xl1 are allowed to 
vary freely on the supporting surface. Of course, the only problem is the 
regularity near the free boundary 1. It is instructive to look at the following 

Exumple. - On B+ consider the real-valued function f E Hi(@) 
defined by 

so that flc G 0. 

Denote by ~0 E Hi (B+) the harmonic function having the same 
boundary values as ,f, e.g. minimize the Dirichlet integral 

D(z) := .I lDZ[” 
B’ 

in the class 

c :I {,z g II;@?+) : z - f E Ii&B+)). 

As a supporting surface we take the hyperplane 

and define X E Hi(B+. W”) by 

Obviously, we have 

AX” = 0 in B+ (k: = 1.2; 3). 

X,(, = I+. 

X(I) c s. 

but X $Z’ C’(P); indeed, X is not even bounded near the free 
boundary. q 
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Remarks. - Of course, one can construct discontinuous bounded harmonic 
maps in the same way. 

Note that the finiteness of the Dirichlet integral or the boundedness of a 
harmonic function imply that singular sets of capacity zero in the interior 
are removable. 0 

In view of this counterexample we are led to consider sthmary harmonic 
maps. To be more precise we make the following assumptions. 

Let 
C(S) := {X E H,‘(l?f,W”) : X(I) c S}. 

where the free boundary condition X(I) c S is to be understood in the 
sense that the L2-trace XI of X maps almost all of I into S. 

Here, the two-dimensional surface S c Iw’ is supposed to satisfy the 
following 

Assumption (A) 

There are numbers pa > 0, Ku > 0 and K > 1 such that the following 
holds: 

For each point zr:a E S there is a (full) neighbourhood U of :I:~ in Iw” and 
a C2-diffeomorphism :c = /l(:y) of R” onto itself with the following two 
properties. Firstly, the inverse h-r maps :I:~ onto 0 and 24 onto the open 
ball B,,,, = { :q E Iw” : I:yI < pa) such that S fl U corresponds to the set 

t w E BP,, : 1~” = 0) on the hyperplane {r~/” = 0). 
Secondly, if we set ’ 

(Al) S.jk(?/) := lLyJ (?/I ’ lr+,‘. (?I) 
then 

(A21 K-11E12 I !Ijk(?/)EJ<” 5 Kltl2 
for all E, :I/ E R’, as well as 

for all :y E Iw” and j,k.Z E {1,2.3}. 0 

Obviously, every compact (without boundary) C*-submanifold of R” 
satisfies assumption (A). Each submanifold of BB”, compact or non-compact. 
for which assumption (A) holds, is a complete Riemannian manifold 
with respect to the induced metric of W”. For non-compact surfaces S, 
assumption (A) imposes a certain uniformity condition on the metric 

’ Here and in the following the summation convention is used. 

Vol. IS. Ilo 2-1998. 
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ds* = gjk.(l~)d$ cly” at infinity and is thus somewhat more stringent than 
the sole condition S E C2. Therefore, a C’-submanifold of R” satisfying 
(A) will be called a strict G2-swfuce in R". 

DEFINITION 1. - An adnzi.ssih/r variation of a su$uce X E C(S) is a 
jznily of suyfuces ,Y, E C(S), ItI < t 0 or some number to > 0, ~~~hrw .f 

~xf>lt,.f” is of one of the ,fdlowing two types. 

TYPE I. - (Inner vuriutions) 
The surfaces X, are of the form X, = X o rt, where {rt}iIl<ti, is a 

family of diffeomorphisms from B + to itself such that 70 is the identity, 
r(1~. t) = T~(UUI) is of class C1 on B+ x (-to. to), and such that 

TYPE II. - (Outer vuriution.s) 

The surfaces X+ are of the form 

(2) X~(W) = ,Y(w) + fQ(w. f) 

where 
D(Q(..t)) < C for ItI < f. 

with C independent of t, spt 9(.. t) c K c B+ U I, with K compact and 
independent of f, and such that 

(3) ~(~w. f) i P(w) as t + 0 

for a.e. ‘(~1 E B+ for some QJ” E Hi (B+, UP). 0 

Remarks. - Note, that condition (1) is equivalent to the requirement that 
the diffeomorphisms 7t leave a neighbourhood of Cjxed. For an admissible 
variation of type II it follows from (3) that for 7-L’-almost all ‘~1) E I the 
vector *“(VI) is tungent to S at X(,UI). 0 

DEFINITION 2. - We call X E C(S) a stutionuty harmonic rnup if the 
Dirichlet integral D(X) is stationary w.r.t. every admissible variation {X} 
of X. i.e. if 

CONSEQUENCES OF STATIONNARITY. - As is well known, stationarity w.r.t. 
admissible variations of type I implies 
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for any vectorfield [ E C~(B+ U 1: R2) which is “real” on I (i.e. tangential 
along I>. 

On the other hand, from admissible variations of type II we conclude 

for any Q?O E Hi(B+:R”) such that qyc = 0 and 9”(u)) E Tan~(,,,~S 
for 7-f l-almost all 111 E 1. 

Taking < E C:(B+.R2) in (5) one easily checks that 

(7) @(111) := (Ix,,(w)12 - IX,,(l#) - 2iX,,(m). X,.(w) 

is a holomorphic function on B+. 

Alternatively, this can also be deduced from the fact that (6) implies 

(take a0 E ii(B+, W”)) the harmonicity of X: 

(8) AX” = 0 in B+ (x: = 1,2.3). 

An important step in the regularity proof will be the fact that (5) implies 
that Cp is regular up to the boundary 1. Although this is more or less well 
known, for the convenience of the reader we repeat the short proof given 
in 1231, see also [5]. First, note that (5) is equivalent to the equation 

for every c E C:(B, C) with Ii1 real. 

Here, B := {,w E C : 1~11 < l} is the unit disk, and 0 = i(L),, + id,.), 
i, = ;(?I,, - ,id,,) d enote the Wirtinger operators. Now. (9) implies that - 
in a weak sense - @ is real-valued on I. Thus, if Cp is extended to B as 
an L2-function by 

(l()) Q(?u) := cP*(?rr) := @(%lr) for 111 E B with TV), < 0. 

it follows - by the famous Schwarz reflection principle - that @ is (weakly) 
holomorphic on B. To see this consider any < E C,!( B. C) and using (9) 
and a(<*) = (a<)* check that 
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because < + <* E cj(B+ U I. C) and (< + $*)I~ = 2 Re <lr. Thus, the 
extended function Q is L’-equivalent to a holomorphic function on B 
(again called a). In particular, we conclude from (10) that 

(11) G is real-valued on I. 

which can be interpreted as 

(12) x,, . -Y,. = 0 on I. 

Remarks. - As has first been observed by W. Jager [ 131 relation (6) 
implies that in a weak sense the surface X is orthogonal to the supporting 
surface S along I. Hence, for smooth (up to the free boundary I) maps 
X E C(S) which are stationary w.r.t. outer variations the equation (12) is 
automatically satisfied in view of the fact that in this case X,, is tangent 
to S along I. 0 

Now. define & : B + a3 by 

so that 

and from (11) we conclude 

(13) 6 is real-valued on 1. 

The holomorphicity of 6 obviously implies that 

Suppose now that X E C(S) IS a stationary harmonic map in the sense 
of Definition 2 and define 

by 
Y(w) = (X(711), w + 6(w)). 

An easy calculation, cf. [a], shows that Y now is conformally parametrized 
on B+, i.e. 

1YJ* = pq2 and Y,, Y,. = 0. 
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Since in addition 

LIY”=O inB+ (k = 1,2,. . . .Tj) 

we conclude that Y is a two-dimensional parametric minimal surjace in R”. 
The next step is to show that Y is a stationary minimal surface for some 

new free boundary problem. To this end let 

s := s x (R x (0)) c R”: 

so that ,$ is a three-dimensional surface in R”, namely the right cylinder 
over S in W” viewed as a subset of W5. As is easily checked, the C2- 
submanifold 3 of R5 is in fact a strict C2-submanifold of W” in the 
(appropriately generalized) sense of assumption (A). 

For any 0 < R < 1 the new class of comparison surfaces is defined by 

C,(S) := (2 E H,1(B,+,W”) : rip,) c S}. 

Since for a.e. ‘w E I we have X(,w) E 5’ and W + 6(w) E R it follows 
that Y E CR(~). 

LEMMA. - For any 0 < R < 1 the map Y E CR(~) de$ned above is a 
stationary point of the Dirichlet integral (w.r.t. inner tind outer variations). 

Remarks. - Since Y is conformally parametrized the analogue (5’) 
of equation (5) is obviously satisfied, in fact (5’) will hold for any 
< E C1 (Bi, R2). However, for the regularity proof no inner variations will 
be needed once it is known that the solution is conformally parametrized. 

ProojI - Because of the preceding remark it suffices to check the analogue 
of (6), i.e. 

(V J B,i [y,, . *‘,, + Y,: . qdud?J = 0 
holds for any 9 E H:(Bi, R5) such that 91~~ E 0 and q’(w) E TanI-(. 
for ‘H1-almost all w E In. To see this, first note that for any r~ = (z, 2) E 3 
we have 

(14) Tan,3 = Tan&S x (W x (0)). 

Next, write any 9 as in (6’) as 
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Then, in view of (6) the conditions on @ imply that 

/ 
[Y,,4,+Y,4,]dudw= 

. B; 

I 
. B+ ((LO) + k) . $b + ((0, -1) + 3%) . y&, dudv = 

-1 ((o,-l)+~,,)~$(lu=-/ (0 -1-a(/X,~12-/X,:l’)).1/1dzl=o. > 
IR * In 

Here, we used (14) together with (11) and the fact that 

Thus, (6’) has been established and the Lemma is proved. 0 
In this way we have reduced the regularity problem for stationary 

harmonic maps to the analogous regularity problem for stationary minimal 
surfaces. Therefore, the reasoning of [lo] can be applied almost verbatim 
to deduce the continuity of Y up to the free boundary 1,. This in particular 
implies the continuity of our original harmonic map X. 

THEOREM 1. - Let S c W3 be a strict C*-suface, and suppose that X(w) 
is a stationary harmonic map in the class C(S). Then X(w) is continuous 
on B+ U I. 0 

Remarks. - For a detailed proof of the corresponding result for stationary 
minimal surfaces the reader is referred to the nice presentation in section 7.6 
of [2]. One easily checks that the restriction to two-dimensional surfaces 
in W3 is not essential. 0 

HIGHER REGULARITY. - Once continuity of X on Bf U I is known one 
can prove higher regularity by methods well known to experts, e.g. Holder- 
continuity, Cm>” -regularity, as well as analyticity, provided the supporting 
surface is sufficiently regular. In particular, for a strict C2-surface as in 
Theorem 1 one gets X E C1@(B+ U I, R3) for any (1 E (0. l), and the 
image surface X(B+UI) meets the supporting surface S orthogonally in the 
classical sense. For more precise statements compare section 7.8 of [2]. 0 

3. GENERALIZATIONS 

First, we are going to look at more general functionals than the Dirichlet 
integral. We shall only outline the arguments indicating the necessary 
changes from the conformally parametrized case. 

Ann&s de l’lnstitut Henri Poincur6 Analyse non lintaire 
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In [7] it was shown that every conformally invariant variational integral 
on W2 

where 
F : RN x W2” --+ R’ 

satisfies 

as well as 

F(.,p) E C1(RN), F(u,-) E C2(W2”) 

can be written in the form 2 

(2) I[u] = 
J’ 

Gjk(u)D 72 . Du” + Bjk(u) det(IM, Dd). 

Here, the (n x n)-matrix (Gjk)j,k=t,,..,~ is symmetric and positive definite, 
while (Bj,+)j,kZ1,,,,,N is skew-symmetric. It follows from [8] that the interior 
regularity theory for stationary points of (2) can be reduced to the case 
where the solutions are conformally parametrized. Hence, the results of 
[6] are applicable. 

A prominent example of such a functional is 

(3) 
J’ 

IDu12 + 4Q(u) . (u, A uY) dz dy 
(2 

for a domain R c W2, u E Hi(R, W3), and a smooth vector field Q on R3. 
The corresponding Euler equations are 

(4) Au = 2div Q(u) u, A uY in 0, 

and if u is conformally parametrized it follows that at regular points the 
mean curvature of the surface u(R) C R3 is given by H(u) = div Q(U). 

Let us now return to the general functional (2). 
If u is a stationary point of the integral I the function (Z = z + iy E 

a3 = W2) 

‘ B 

(5) i@(z) := Gjk(u) g g - Gjk(u) $ $. - 2&‘&4 g $$ 

* Summation convention for j, k = 1.2.. , N. 

Vol. 15, no 2.1998. 
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is holomorphic in the interior. Here, stationarity is to be understood w.r.t. 
inner and outer variations (always fixing the boundary values). That + does 
not depend on the coefficients (L?,k) follows from the fact that the integral 

is invuriant under orientation preserving diffeomorphisms of the domain of 
definition of the mapping U. Hence, inner variations of this integral do not 
contribute to the first variation. 

Suppose now that S is a k-dimensional (1 5 X: < N) strict C2- 
submanifold of R”’ in the (suitably generalized) sense of assumsption 
(A) in section 2. 

As before, we define the class 

C(S) := (1L E H;(B+. UP) : u(I) c S}: 

the notion of admissible variation is defined as in Definition 1, and 
stationary points of the integral I are defined as in Definition 2. In the 
conformally parametrized case the integral (3) has been treated in [ 1 I]. 

By the same reasoning as in the model case we may again conclude that 

(7) @ is real-valued on 1. 

Geometrically speaking this condition means that the tangent vectors YL, 
and ~~~ are orthogonal to each other along the free boundary I if lRIV is 
equipped with the Riemannian metric given by (Gjk)j,k=i,,,,,jv. 

The original problem is now replaced by a free boundary problem in 

JU := (RAv+ (Gjk)) X (R*: (h,,,,,)) 

for the (k + l)-dimensional supporting submanifold 

3 := s x (R x (0)) c M. 

Note, that M is topologically just lRV+” but with a different Riemannian 
structure. 

If 710 E C(S) is a stationary point of I the new mapping U” : R+ - M 
given by 

U”(Z) := (u&p + 3?(z)) 

will then be conformally parametrized (w.r.t. the Riemannian metric on M). 
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The new functional i will again be conformally invariant, and its 
coefficients are given by 

(8) 

and 

(‘3) 

Hence, for U 

Cl()) 

1 <j,k:< N 
N+l <j.r;< N+2 
otherwise 

2” . l<.jf<N 
, otherwtse. 

: (1~; 1)) we have the decomposition 

I[U] = I[u] + D(u), 

and it is straightforward to check that the analogue of the Lemma in section 
2 holds, i.e. U. is a stationary point of i. 

To be able to apply the arguments from [ 1 I] one has to impose an 
additional compatibility condition on the supporting surface S and the 
coefficients in the original functional I. In the case of the integral (3) one 
had to assume that the vector field Q is tangential along S. This condition 
turns out to be equivalent to the fact that the surface ~a(@) intersects 
the supporting surface S orthogonally along the free boundary 1. However, 
since it is not clear that such a condition is really necessary we shall not 
be more explicit here. 

Let us now turn our attention to the case of harmonic maps which are 
stationary for a free boundary problem in a Riemannian manifold. The 
corresponding problem for minimal surfaces (= conformally parametrized 
harmonic maps) has been investigated by J. Jost in [ 14] and [ 151. First, we 
are going to consider the situation treated in [14]. There, Jost showed 
regularity for minimal surfaces in Riemannian manifolds of bounded 
geometry .1 with a free boundary on a supporting hypersurface of class 
C’ with bounded second fundamental form and a uniform neighbourhood 
in which the nearest point projection onto this hypersurface is uniquely 
defined. Obviously, this is the appropriate generalization of what we termed 
strict C*-sur$ace in R” in section 2. In section 5 of [ 151 the result of [ 141 
was generalized from the hypersurface situation to the case where the 
supporting surface is allowed to have arbitrary codimension (2 1). Since 

’ i.e. the sectional curvature is bounded and the injectivity radius is bounded away from zero. 

Vol. IS, Ilo 2.1998 
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our method reduces the case of stationary harmonic maps to the case of 
stationary minimal surfaces in a higher dimensional manifold we may as 
well consider the situation where the supporting submanifold has arbitrary 
codimension. The reasoning illustrated in the model case will then give the 
following result which we state without proof. 

THEOREM 2. - Suppose that M is a complete n-dimensional 
Riemannian manifold qf bounded geometry, C is a C2-submanifold of M 
without boundary with bounded second fundamental form and a uniform 
neighbourhood in which the nearest point projection onto C is uniquely 
deJned. Let C(C) := {X E Hi(B+. M) : X(I) C C} and assume that 
X E C(C) is a stationary harmonic map in the sense of Definition 2. Then 
X is of class Cl>“(B+ U I, M) ,for any o E (0,l). IfC is of class C” then 
X E C2-“(B+ u I, M) for any CL E (0: 1). q 

Remarks. - 1. For the proof one only has to note that as in section 2 

(11) @(w) := (X,,(W), X,,(W)) - (X&&X,&u)) - 2i(X&);X,,(w)) 

is again holomorphic on Bf, continuous in B+ U I, and real-valued on I. 
Here, (., .) denotes the scalar product in the tangent space TM. Thus, we 
replace M by &f := M x a3, C by 2 := C x W C &?, and X by Y where 
Y(w) := (X(w),W + 6(w)); c.f. section 2 for the notation. Then we are 
locally in the situation considered in [ 141 respectively in section 5 of [ 1.51. 
The result proved by Jost now implies Theorem 2. 

2. Our method also works in the piecewise smooth case considered in 
[15] and yields continuity just as for stationary minimal surfaces. 0 

Instead of entering the general framework let us finally explain the case 
of a supporting surface with non-empty boundary in the Euclidean situation. 

Here, one considers a surface S c R3 of class (at least) C2 such that the 
boundary dS of the manifold S is a regular one-dimensional submanifold 
of class C2 such that the following assumption is satisfied (compare [lo] 
and section 7.6 of [2]). 

DEFINITION 3. - A supporting surface 5’ is said to fulfil Assumption (B) 
if the following holds true: 

There are numbers 0 < p. < 1, Ka > 0, and K > 1 such that we have: 
For each point zo E S there is a (full) neighbourhood l4 of 20 in IQ” and 

a C2-diffeomorphism h of W3 onto itself with the properties (Bl)-(B4). 
(Bl) The inverse y := h-l maps U onto the open ball B,, := {w E Iw” : 

Iy\ < po} such that g(zo) = 0. 
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(B2) There exists some number 0 = O(Q) E [-1, 0] such that 

and 
g(dS r-l U) = {y E B,, : y3 = 0, yl = CT}. 

IfzaEdSthena=O,anda<-poifdSflU=O. 

(B3) If sjdd := h,j (Y) . hyk (Y) are the components of the fundamental 
tensor of R” w.r.t. to the curvilinear coordinates y then 

K-%3* F !&k(Y)ljE” 5 ~1112 

for all [, y E W3. 
(B4) For any y E W3 and any j, L, I E {1,2,3} we have 

For the convenience of the reader we have chosen to give the precise 
definition as in [2], because it is now straightforward to check that the 
new supporting submanifold S = S x W c W5 = R3 x 43 satisfies a similar 
condition. For example, 

and 
ljps II ti) = {y E B,, : y3 = y5 = 0, y1 = a}. 

Here, Z? denotes a neighbourhood in R5 and B,, c R” the open ball of 
radius p. centered at the origin. The class C(S) is defined exactly as in 
section 2. As before, if Y : B+ + W5 is the new harmonic map the proof 
of Y E C”(B+ U I, R5) proceeds in the same way as the proof of Theorem 
1 in section 7.6 of [2] with the obvious slight modifications that are due to 
the fact that S c R5 is no longer a hypersurface. 

To show Holder-continuity of the original map X one uses Widman’s 
hole filling technique for the new map Y which is conformally parametrized. 
Note, that the conformality condition now implies that 

(12) pYll* 2 K*(pY*l* + lDY”l’ + pY”l* + IDY512) 

Using (12) the proof of Theorem 2 in section 7.6 of [2] then shows 
that Y E C’>“(B+ U I, R”) for some Q E (0; l), in particular the 
Holder-continuity of X. 

Vol. 15, Ilo 2.1998. 
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THEOREM 3. - Let S c W” be a supporting C2-sur$ace satisfying 
assumption (B), and suppose that X E C(S) is a stationary harmonic 
map. Then, .for some o: E (0,l) we have 

x E co+ (I?+ u 1. W). q 

Remarks. - The question of higher regularity - note that C1.1/2 is optimal 
in the minimal surface case if i3S # 0 - will not be discussed here. Instead, 
the interested reader is referred to section 7.7 of [2]. 0 
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