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ABSTRACT. - In this article we prove new results concerning the long- 
time behavior of random fields that are almost surely solutions to a class of 
stochastic parabolic Neumann problems defined on open bounded connected 
subsets of RN. Under appropriate ellipticity and regularity hypotheses, we 
first prove that every such random field stabilizes almost surely in a suitable 
topology around a spatially homogeneous random process whose statistical 
properties are entirely determined by those of the given coefficients in the 
equations. In addition, when the coefficients of the lower-order terms in 
the equations are stationary random processes, the nature of the equations 
that we investigate leads us to consider two complementary situations 
according to whether the average of those processes is zero or not. If their 
average is different from zero and if the processes are ergodic, we prove 
that every random field stabilizes almost surely and exponentially rapidly 
in the uniform topology around a spatially and temporally homogeneous 
asymptotic state, which depends only on the sign of the average. In this 
case we can also determine the corresponding Liapunov exponents exactly. 
In contrast, if the average of the processes is equal to zero we need more 
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structure to identify the asymptotic states properly. The cases where the 
coefficients of the lower-order terms in the equations are either stationary 
random processes whose statistics are governed by the central limit theorem, 
or Gaussian processes that share some of the features of the Ornstein- 
Uhlenbeck process, are of special interest and we investigate them in 
detail. In all cases we can also provide estimates for the average time that 
the random fields spend in small neighborhoods of the asymptotic states. 
Our methods of proof rest chiefly upon the use of parabolic comparison 
principles. 0 Elsevier, Paris 

RBsuMB. - Dans cet article nous demontrons de nouveaux resultats 
concernant le comportement asymptotique en temps de certains champs 
aleatoires possedant la particularite d’etre presque surement solutions d’une 
classe de problemes de Neumann paraboliques stochastiques definis sur 
des ouverts born& connexes de BB *‘. A I’aide d’hypotheses d’ellipticite 
et de regularit convenables nous prouvons tout d’abord que ces champs 
aleatoires se stabilisent presque surement, relativement a une topologie 
appropriee, vers un processus stochastique dont les proprietes statistiques 
sont entierement determinCes par celles des coefficients des equations. 
Nous analysons ensuite le cas ou les coefficients des termes d’ordre 
inferieur des equations sont des processus stationnaires. Ceci nous conduit 
a considerer deux situations complementaires suivant que la moyenne de 
ces processus stationnaires est differente de zero ou non. Dans le premier 
cas, si nous supposons en plus que les processus sont ergodiques, nous 
demontrons que tout champ aleatoire se stabilise presque surement et 
exponentiellement rapidement, relativement a la topologie uniforme, vers un 
&at asymptotique ne dependant que du signe de la moyenne de ces processus 
ergodiques ; dans ce cas nous parvenons Cgalement a determiner exactement 
les exposants de Liapounov correspondants. Dans le second cas, nous avons 
besoin d’hypotheses legerement differentes pour pouvoir identifier les etats 
asymptotiques. Les cas ou les coefficients des termes d’ordre inferieur des 
equations sont soit des processus stationnaires satisfaisant aux hypotheses 
du theoreme limite central, soit des processus gaussiens possedant certaines 
particularites du processus d’ornstein-Uhlenbeck, presentent un interet 
particulier et nous les analysons en detail. Dans tous les cas nous sommes 
Cgalement en mesure d’estimer les temps moyens de sejour des champs 
aleatoires dans des voisinages arbitrairement petits des Ctats asymptotiques. 
Nos methodes de demonstration reposent essentiellement sur l’existence de 
principes de comparaison paraboliques. 0 Elsevier, Paris 
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1. INTRODUCTION AND OUTLINE 

Let (X, 3, P) be a complete probability space with g-algebra T and 
probability measure P. In this article we investigate the long-time behavior 
of real-valued random fields on (X, .T, P’) that are P-almost surely classical 
solutions to quasilinear parabolic Neumann problems of the form 

1 (1.1) 
In relations (1.1) R denotes an open bounded connected subset of R” 
with a sufficiently regular boundary dR, uo,l E R’ with ‘u. < ul, 
cp is a smooth random field such that z --+ cp(.r,w) E C*(a) and 
(p(z,w) E (uo, ui) hold P-almost surely, and the third equation in (1.1) 
stands for the conormal derivative associated with the matrix-valued random 
field k,(z,t,w) = k(z, t, U(Z, t,w),u). We also assume that cp satisfies 
the conormal boundary condition. Moreover, the random field k, the 
random process s and the nonlinearity g satisfy the following hypotheses, 
respectively : 
(K) (k:(:c, t, U, .)) (,c,t,u)EsxR+ xl,UO U1l is a matrix-valued random field on 
(X, .T, P) with real-valued entries’ such that 

ki,j(.,W) = kj,,(.,W) E C*(;2 X R+ X [‘U,o,Ul]) 

holds P-almost surely for every i, j E { 1, . . . , N}. In addition, all partial 
derivatives of the functions Ici,j with respect to (z, t, U) are P-almost surely 
bounded as functions of (z, t, U, w). Finally, there exist positive constants 
4; % E (0, cc) such that the uniform ellipticity condition 

holds P-almost surely for every (z, t, U, y) E 2 x Iw+ x [uo, ui] x R”. In 
relation (1.2), (., .) WN stands for the usual Euclidean scalar product in RN. 

(9 (44 .))ta is a real-valued random process on (X, -T, P) such that the 
Holder continuity of the trajectories t + s(t,w) E CP(R) holds P-almost 
surely for some I-L E (0, 11. 
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(G) We have !/ E C’( [ uO; ,t~i] x 88”) with y(‘uO, 0) = g(“~i. 0) = 0 and 
y(u, 0) > 0 for every 71, E (Q. 1~~). Moreover, there exists a constant 
c E (0, co) such that the inequality 

holds for every (rh. II) E [TQ,, ul] x R”. 
There have been several recent works devoted to the investigation of 

the long-time behavior of solutions to semilinear and non-random versions 
of problems of the form (1.1) when s is periodic, almost-periodic or 
possesses more general recurrence properties ([3], [4], [6], [ 1 l]-[13], [16], 
[ 171, [24]-[28]). One of the reasons for this is that such problems have 
played an increasingly important role in the mathematical treatment of 
many phenomena in various areas of science, ranging from theoretical 
physics to population dynamics, including the theory of heat diffusion, of 
nerve pulse propagation and of population genetics ([2]). In this paper, 
our primary purpose is to investigate the stabilization properties of random 
fields on (X, 3, P) that are $-almost surely classical solutions to Problem 
(1.1) when hypotheses (K), (S) and (G) hold. Hypotheses (K) and (S) 
generalize the models considered thus far in at least two important ways. 
On the one hand, the structure of the second-order differential operator that 
appears in the principal part to (1.1) allows one to encode space -and time- 
dependent random diffusions into the theory. On the other hand, the fact that 
(s(t, .))lEn is a random process makes it possible to consider processes with 
strong mixing and Markov properties such as Ornstein-Uhlenbeck processes, 
rather than just nearly deterministic processes such as the almost-periodic 
ones. With some additional conditions on (s(t, .))tEn and y when ,y depends 
explicitly on Vu, we then prove that the solution to (1.1) stabilizes P-almost 
surely in a suitable topology around a spatially homogeneous random 
process whose statistical properties are entirely determined by those of the 
given data. In addition, when the random process (s(t, .)&n is stationary 
the nature of Problem (1.1) leads us to consider two complementary 
situations according to whether the average of (s(t, .))tEn is zero or not. If 
the average is different from zero and if the process is ergodic, we prove that 
the solution to (1.1) stabilizes p-almost surely and exponentially rapidly 
in the uniform topology around a spatially and temporally homogeneous 
asymptotic state, which depends only on the sign of the average. In this 
case we can also determine the corresponding Liapunov exponents exactly. 
In contrast, if the average of (s(t, .))tEn is equal to zero we need a slightly 
different structure to identify the asymptotic states properly. The cases 
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where (s(t, .))t,n is either a random process whose statistics are governed 
by the central limit theorem or a Gaussian process are of special interest 
and we analyze them in detail. In all cases we can also provide estimates for 
the average time that the solution of (1.1) spends in small neighborhoods 
of the asymptotic states. Our main results are stated precisely and further 
discussed in Section 2. The corresponding proofs are carried out in Section 
3. Our methods of proof there rest upon the use of parabolic maximum 
principles and upon the existence of exponential dichotomies for a family 
of random evolution operators associated with the principal part of (1.1). 
Finally, we devote Section 4 to some concluding remarks and we refer the 
reader to [7] for a short announcement of the results. 

Our work was primarily motivated by the desire to understand the long- 
time behavior of generalized random fields that are solutions in some sense 
to semilinear stochastic problems of the form 

0.4 

In the first equation (1.4), (B(t, .))tEn+ stands for the standard one- 
dimensional Brownian motion starting at the origin and odB(t, .) denotes 
Stratonovitch’s differential. Problems of the form (1.4) define a class 
of semilinear parabolic problems subjected to homogeneous white noise. 
Though the theorems of this article do not apply to the solutions of (1.4) 
directly, it turns out that the analysis of the solutions to (1.4) can be 
reduced to that developed in the present paper through the combination 
of a suitable regularization of the Brownian motion with an appropriate 
limiting procedure. We defer the presentation of the corresponding results 
to separate publications ([8], [9]). 

2. STATEMENTS AND DISCUSSION OF THE MAIN THEOREMS 

When hypotheses (K), (S) and (G) hold, the standard existence -and 
regularity theory for parabolic equations implies that there exists a unique 
random field up which satisfies Problem (1.1) p-almost surely in a classical 
sense ([20]). It also follows from the classical parabolic maximum principle 

Vol. 15, no 2.1998. 



196 1. D. CHUESHOV AND P.-A. VUILLERMOT 

that ~~(5, t,~) E ( ~0, ~1) P-almost surely for every (z:, t) E t x R+ 
([ 151). Our primary objective here is to investigate the behavior of IL,+ 
when t + co. In this respect, hypotheses (K), (S) and (G) are quite general 
and the trade-off for this degree of generality is that our first convergence 
result holds with respect to relatively weak topologies. We illustrate this 
point first, by showing that uy homogeneizes p-almost surely over the 
region 0 in the LP (R)-topology for any p E [l, a). For this we need the 
following additional hypothesis for the nonlinearity 9. 
(QG) There exists a bounded function c : [u(~, 7~~1 + IF!+ such that the 
inequality 

Ig(‘u. (1) - ,9(U: O)l 5 c(u)Ifg (2.1) 

holds for every u E [‘ug: 7~~1 and every 9 E RN. 
We also write E for the mathematical expectation functional on (X, ?‘. $) 

and Il.IIp for the usual L”(b2)- norm. We then have the following. 

THEOREM 2.1. - Assume that hypotheses (K), (S), (G) and (QG) hold. 
Assume also that there exists c E (0, M) such that the inequality I.s(t. w) I < c 
holds P-almost surely ,fi>r every t E F!+. Then there exists a unique 
z-independent random process (C(t, .))tE~ on (X, .F> P) such that the 
relation 

JilE Il~~(..t,w) - *il(t.w)ll, = 0 (2.2) 

holds P-almost surely for every p E [l. 00). Moreover, we have 

pilE(l~u&t: .) - qt, .)II;;) = 0 (2.3) 

for every p, r E [l, ~0). 

Remarks. 

I. We note that both conditions (1.3) and (2.1) hold trivially when g 
does not depend on 9. In this case, the proof of Theorem 2.1 in 
Section 3 reveals that the boundedness of (s(t: .))tE~ is not necessary 
for relations (2.2) and (2.3) to hold. Thus, in case g does not depend 
on q, the three conditions (K), (G), (S) alone are sufficient to imply 
both conclusions of Theorem 2.1. 

2. The random process (*k(t, .)) tEW of Theorem 2.1 turns out to be an 
x-independent and P-almost sure solution to Problem (1 .l) (compare 
with the proof of Theorem 2.1 in Section 3). From this, it follows 
that (fi(t, .))tE~ is necessarily of the form 

ii(t.~) = G-l 
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where G : (~a, ui) H R stands for any primitive of the function 
u -+ l/g(n, 0), G-l denotes the monotone inverse of G and $ is 
the corresponding initial condition. Theorem 2.1 can thus be viewed 
as an existence statement for the random variable Q? that generates 
(&(t, .))tEn through relation (2.4). The fact that the random process 
(c(t, .))t,=n admits the explicit representation (2.4) will be important 
below, particularly when (s(t, .))tEn has statistical properties governed 
by the central limit theorem or when it is a Gaussian process. 

Now let Hi>p(R) be the usual Sobolev space of functions on R whose 
norm we denote by ll.lll,y. It is natural to ask whether we can replace 
IHIP bY ILIILP in Theorem 2.1. Equivalently, we want to know whether 
we can have I(VU,(.,~,W)II~ -+ 0 P-almost surely as t --f eo. A necessary 
condition for this is that the relation 

(2.5) 

holds $-almost surely for every y E (0,30), which we prove in Lemma 3.5 
of Section 3. Condition (2.5) is, however, not sufficient in general to 
ensure the homogeneization of Us with respect to the strong topology of 
Hl>p(R), unless more is known about the matrix-valued random field Ic. 
There is a natural requirement that allows one to dispose of this question 
readily. Write momentarily Aup (t, w) = -div(k,+ (., t, w)V) for the family 
of random linear differential operators that are P-almost surely self-adjoint 
and positive as operators in L’(n), when realized on the time - dependent 
domain D(A1,,, (t, w)) = Hxu,,(0) ; here we write Hz&Q) for the 
vector subspace of L2(0) that consists of all functions of H2,‘(R) which 
satisfy the conormal boundary condition in (1.1). For every T E (0, x) we 
consider the linear evolution problem 

C ilj,u( ., t, w) = div(kUq (., t, w)Vv( ., t, w)), (t, w) E (7, ml) x x 
V(.,T.W) = u’i(.,W)> wcx > 

(2.6) 
in L2 (12). We then introduce the following hypothesis of unique and global 
solvability of Problem (2.6), in which I I.1 I stands for the uniform norm of 
the linear bounded operators on L2 (Cl). 
(LEO) There exists a family of random linear evolution operators 
(U(t, r, w))~>~ in L’(R) associated with Problem (2.6) such that, for every 
T E (O? CQ), there exists a constant c(T) E (0, co) such that the estimate 

II(-div(rE,,~((.,t,~)V))~‘~U(t,7,w)II 5 c(T)It - r1-l” (2.7) 
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holds P-almost surely for every f E (T. r + T]. 
By a family of random linear evolution operators in L’(R) we mean a 

family (U(t,-r,w)),>, of linear bounded operators in L2(R) which satisfy 
all the conditions of definition (5.3) in Chapter 5 of [22]. Then there 
are well-known sufficient conditions that one can impose on the operators 
A,&t, w) for estimate (2.7) to hold ([18], [19], [22]). Estimate (2.7) holds, 
for instance, whenever k,, does not depend on t and U, in which case 
the family (U(t, r, w))~>~ reduces to a linear random semigroup. Writing - 
1 I.1 loo for the uniform norm of continuous functions on n, we then obtain 
the following result. 

THEOREM 2.2. - Assume that all hypotheses qf Theorem 2.1 hold. In 
addition, assume that hypothesis (LEO) holds. Then there exists a unique 
x-independent random process (7i(t. .))$,w qf the form (2.4) on (X, .F, P) 
such that the relation 

/irk I]u~(..~.w) - ;L(t.~)l/t.+ = 0 (2.8) 

holds P-almost surely for every p E [l, CC). In particular, we have P-almost 
surely 

pI& IIu&t,w) - i@,W)ll, = 0 (2.9) 

Moreover, we have 

h&(llu,(..t. .) - qt, .)IIyJ = 0 

and hence 

&&(IIu&t: .) - qt, .)[I;) = 0 (2.11) 

for every p,r E [l, m), 

Remark. - It is worth mentioning that with such a degree of generality, 
the preceding theorems are, to the best of our knowledge, new even in 
the deterministic case. 

We shall now investigate the stabilization properties of uP more closely, 
by keeping the random field lc, quite general while imposing conditions 
of statistical nature on the random process (s(t, .)&n. We describe a first 
important case in the following hypothesis. 
(ES) The process (s(t, .)) ten is a stationary, ergodic random process on 
(X, 3, P) such that 
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Recall that such a process can be associated to any periodic or almost- 
periodic continuous function s in a very natural way ([14])., But the 
notion of ergodicity also encompasses random processes with exponentially 
mixing and Markov properties such as Ornstein-Uhlenbeck processes. For 
this reason, hypothesis (ES) is natural in that it bridges the gap between 
problems of the form (1.1) where s is periodic or almost-periodic and those 
where s has strong stochastic properties. Let <s> denote the average of the 
process (s(t, .))tEn. Because of hypothesis (ES) and the Birkhoff-Khintchin 
pointwise ergodic theorem we have 

I 

t 
<s>= E(s(t, .)) = E(S(O> .)) = ,‘irrk t-l dls(E, w) (2.13) 

. 0 
for every t E R, where the last equality holds P-almost surely. We 

begin by investigating the case where < s > # 0, for which we have the 
following result. 

THEOREM 2.3. -Assume that hypotheses (K), (S), (G) and (ES) hold. Then 
the following statements are valid : 

(I) [f <s> < 0 and ifg’(~g,O) > 0, the relation 
~~~t-lln(ll~,(.,t,w) -u&J =<s> g’(7Lo.o) (2.14) 

holds P-almost surely. 

(2) If <s> > 0 and if g’(ul, 0) < 0, the relation 
~~~t-lln(JIU~(.;t,W) - urllcu) =<s> g’(ur,O) 

holds P-almost surely. 

(2.15) 

Remarks. 

1. The information provided by relations (2.14) and (2.15) is ut- 
most precise in that it provides both upper and lower exponen- 
tial decay estimates for ]]+(.,t,~) - uo,rJJa. For instance, for 
every E E (0, (<s>(g’( ~0, 0)) there exists tc(w) > 0 such that the 
inequalities 

exp[(a> .d(u0,0> - E)tl 5 II+(., t, w) - ~Olloc: 

F exp[(<s> g'(u0,O) + E)t] (2.16) 
hold P-almost surely for every t E (&(w), co). In a completely similar 
way we have P-almost surely the inequalities 

exp[(<s> g’(?Ll,O) - E)t] 5 ](zA~(.,~:w) - ~r](~ 

L exp[(<s> g'(u1,O) + E)t] (2.17) 
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for every E E (0, <s> ]9’( ul, O)j) and for every t E (&(w); CQ). Of 
course, the Liapunov exponents given by relations (2.14) and (2.15) 
are non-random as a consequence of hypothesis (ES). 

2. In the form of relations (2.14) and (2.15), the results of Theorem 2.3 
are new also in the deterministic case. In particular, they complete 
and improve the results of [27] obtained by geometric methods when 
s is almost-periodic. 

3. Obviously, the conclusions of Theorem 2.3 must be consistent with 
those of Theorems 2.1 and 2.2 when the appropriate hypotheses hold. 
What this means is that the homogeneous random process (C(t, .) jtER 
also converges to u,) when < s > < 0 and .y’(~, 0) > 0, or to ‘II~ 
when <s> > 0 and CJ’(U~. 0) < 0. Of course, the statements can be 
directly verified from the explicit form (2.4) by using the Birkhoff- 
Khintchin ergodic theorem. The very existence of homogeneous 
random processes of the form (2.4) that satisfy the above properties 
is one of the key ingredients in the proof of Theorem 2.3 below. 

As a very simple application of Theorem 2.3, we can determine the 
average time that II,~ spends in a small neighborhood of ~1,~ and ~1 when 
t + cc. Let T* E (0: X) be given. If <s> < 0 and if ~‘(YL~. 0) > 0, define 

w E A- : exp[(<s> &ulJ.O) - E)(] 5 Ipup(..<.W) - lL()JIK 

5 oxp[(<s> y'(uo.0) + E)<]} (2.18) 

for every < E [t, t + T*] and for every c E (0, ]<s>lg’(wo, 0)). Similarily, 
if <s> > 0 and if 9’(ui, 0) < 0 we define 

FE+, (0 = { w E x : exp[(<s> g’( w,()) -4Il I Ilwp(..l.w) -~~~lllcc 

< exp[( <s> g’(u1,O) + E,<]} (2.19) 

for every < E [t, t + T*] and for every E E (0, <s> (9’(~i, 0)l). Evidently, 
the sets F,.,,, (E) and E.,,,(O are F-measurable ; let x~.~,,,(<: .) and 
x~,~, (I, .j be th e corresponding indicator functions. It is clear that the 
random variables w -+ j;““ d& E,,lO,l(<, w) measure the fraction of the 
available time lapse T* that the random field uV spends in the corresponding 
neighborhood determined by (2.18) or (2.19). We then have the following 
result. 

COROLLARY 2.4. - The hypotheses are exactly the same as in Theorem 2.3. 
Then the following statements hold : 
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(1) If<s> < 0 and ifg’(uu,O) > 0, we have 

t+T’ 

lim E (2.20) t-co 
for every T* E (0, cm) andfor every E E (0. I<s>lg’(‘uo, 0)). 

(2) If <s> > 0 and ifg’(uI,O) < 0, we have 

(J t+T’ 

lim E dExc,u, (E, .) = T* (2.21) t-lx t 
for every T* E (0, cm) andfor every E E (0; <s> lg’(ul.O)l). 

Remark. - In either case the interpretation of Corollary 2.4 is clear : 
on the average the random field Us p s ends the entire available time lapse 
T* in an arbitrarily small neighborhood of the appropriate asymptotic state 
when t -+ 00. We shall see below that the situation is quite different when 
<s>= 0. 

As already noticed, when <s>= 0 we need a slightly different structure 
to identify the asymptotic states properly. The cases where the statistics 
of (s(t, .))tEn are governed by the central limit theorem or by Gaussian 
distributions are of special interest. We begin with the case of the central 
limit theorem. We say that the statistics of the random process (s(t, .))t,n 
obey the central limit theorem if the following hypothesis holds : 
(CLS) We have w --+ ~(0, w) E L*(X, P), (s(t; .))tEn is stationary and 
the limit 

K .I t 
2 

lim E t-l'* 
t+w 

dJ(s(E‘, .)- <s>) H =cJ*>o (2.22) 
0 

exists ; in addition we have 

hblP{w E x: t-‘qdmW)- <s>) < u*} 
= (27ra*)-1’2 IaT dzex&-g 

co 
(2.23) 

for every a* E Iw U {*co}. 

Recall now that G : (uo, ut) -+ Iw stands for any primitive of the 
function u + l/g(u, 0) (compare with Remark 2 following the statement 
of Theorem 2.1). Our main result concerning the long-time behavior of 
u+, is then the following 
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THEOREM 2.5. - Assume that hypotheses (K), (S), (G) and (CLS) hold. 
Assume also that the initial datum cp is not random, that is the function 
w + y(:~, w) is P-almost surely constant ,for every :I’ E 0. Then the 
following statements are valid : 

( 1) For any ,function II : Iw+ + (UC,. ~1) such that the limit 

(12 = ,liI; t-““(G(U(r-))- <s> t) (2.24) 

exists (with a* = f x allowed), we have 

(2) For any,function b : R’ + (qI: 1~~) such that the limit 

h* = pp’ (G(b(t))- <s> t) (2.26) 

exists (with b* = +W allowed), we have 

,l&‘{w E x : b(t) < IL&.W)} = (27rrr*)-“2 I’% dmxp[g] 
. 1, 

(2.27) 

We note that both statements of Theorem 2.5 concern the convergence 
of probabilities, in contrast to all preceding theorems whose convergence 
statements hold almost surely. While this is in the nature of things because 
of relation (2.23), the trade-off is that Theorem 2.5 allows for alot of 
flexibility in the discussion of the asymptotic behavior since the functions 
(I, and b are essentially arbitrary. A typical example is the following result. 
which turns out to be related to Theorem 2.5. 

THEOREM 2.6. - The hypotheses are exactly the same us in Theorem 2.5. 
Let @ : W+ + R+ be any continuous function such that linlliX a(t) = 0~. 
Then the ,following statements hold : 

(1) lf y’(qLo, 0) # 0 and if the limit 

a* = - /in& t-1’2 
i 

wt) 
9’(“1”, 0) 

+ <s> t 
J 

(2.28) 
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exists (with CL* = fee allowed), we have 

for every c E (0,x). 

(2) [f g’(ul : 0) # 0 and if the limit 

b* = - liln t-l12 
t-n;, 

exists (with b* = f~ allowed), we have 

)$irrP(” E x : IIu& t,w) - Ulllnc, < cexp[-Gqt)]} 

= (27rrr*)-1’2 I== dzxxp[g] 
. 1,. 

(2.31) 

,for every c E (0.0~). 

Remark. - A glance at relations (2.29) and (2.31) shows that the 
asymptotic probabilities depend exclusively on the rate function @, on some 
features of the nonlinearity CJ and on the average of the random process 
(s(t, .))tGn. We also stress the fact that explicit expressions such as (2.28) 
and (2.30) are possible because of the existence of z-independent random 
processes of the form (2.4), and because of the validity of certain parabolic 
comparison principles (compare with the methods of proof of Section 3). 

In contrast to Theorem 2.3, Theorem 2.6 allows for a detailed analysis 
of the case <s>= 0. In fact, we shall see in Section 3 that suitable choices 
of + lead to the following. 

COROLLARY 2.1. - The hypotheses are exactly the same as in Theorem 2.5. 
Then the following conclusions hold : 

( 1) !f <s > < 0 and if ,9’(~, 0) > 0, we have 

Lr~P{L&Y:Cexp[(<s> &U&O) - E)t] L ]]‘uJ.:t,W) - 7Lg]]a 

< cexp[(<s> g’(uo,O)+E)t]} = 1 (2.32) 

for every c E (0, a~) and every E E (0, I<s>lg’(uO, 0)). 
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(2) !f <s> > 0 and [f y’(ul, 0) < 0, we have 

)$$ P{w E x : cexp[( <s> g’( Ul,O) - E)t] I II,Up(.;hW) - *mllcr; 

I cexp[(<s> .y’( u1,O) + E)t]} = 1 (2.33) 

for every c E (0. ‘co) and every E E (0, <s> Ig’(ul,O)l). 

(3) Zf <s >= 0, g’(ug, 0) > 0, g’(ul:O) < 0, and if *? Q* : R+ + 
W are any two continuous functions such that liruti30 Q(t) = 
limtix d- Q*(t) = lirrit,.x, m - W, we have simultaneously 

and 

(2.34) 

&rrrlP 
1 

w E x : cexp[-&*(t)] 5 II?L&t,W) - IL& 

h 
5 cexp -ql(t) [ II - = l/2 

,for every r E (0,a). 

(2.35) 

Of course, with statements (1) and (2) of the preceding corollary, we retrieve 
a weaker variant of Theorem 2.3, or equivalently of relations (2.16) and 
(2.17). But the most interesting conclusion is evidently statement (3), 
whereby the random field Us stabilizes about ~0 and u1 equiprobably. 
We observe here that the value one-half of the asymptotic probabilities 
(2.34) and (2.35) cannot be exceeded by virtue of relations (2.28) and 
(2.30) : while relation (2.28) implies that a* E [-cc, 0] when < s > = 0 
and g’(uo, 0) > 0, relation (2.30) implies that b* E [0, oc] when <s>= 0 
and g’(Ui, 0) < 0. 

The fact that up stabilizes equiprobably around uo and ~1 when <s>= 0 
can be interpreted as an oscillation phenomenon of up between ~0 and 
ul. In order to see this we proceed as in the considerations preceding 
Corollary 2.4. Let T* E (0, co) be given and let 9, +* : I@ --+ Rf be the 
same functions as in Corollary 2.7. For every < E [t, t + T*] and every 
c E (0, oo), consider the events 

CA,(<) = C 
w E x : cexP[-z/F**(l)] L lIwp(.,I>4 - ~ollx 

JT I cexp -s(l) [ II (2.36) 
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and 

be I cw -m [ I> (2.37) 

Let xUO (I, .) and xUI (I, .) be the corresponding indicator functions. Again, 
it is clear that the random variables w --+ .\i+TS d<x,uO 1 (I, w) measure the 
fraction of the available time lapse T* that uV spends in the corresponding 
neighborhood of u. and ?hl determined by (2.36) and (2.37). The precise 
result concerning the average times is then the following. 

COROLLARY 2.8. - The hypotheses are exactly the same as in Theorem 2.5. 
Assume that <s>= 0, g’(uo: 0) > 0, g’(ul. 0) < 0 andlet 4. Q* : R+ --+ R+ 
be any two continuousfunctions such that limt,.x VI(t) = limt,, Q*(t) = 
lim-m m - Ji - W. Then we have simultaneously 

and 

.i+T’ 

lim E t-+x, 

t+T‘ 

lim E t+cx 

(2.38) 

(2.39) 

for every T* E (0, w). 
The conclusion is that on the average and for every T* E (0, CQ), 

the random field Us spends half of the available time lapse T* in an 
arbitrarily small neighborhood of uo and the other half in an arbitrarily 
small neighborhood of ~1, so that an oscillation pattern sets in. Of course, 
the preceding results do not describe the possible large deviations from the 
above average behavior. 

We conclude our analysis of the central limit theorem case by observing 
that both Corollaries 2.4 and 2.8 are special cases of a more general 
result. Our point of departure here is the statement of Theorem 2.6. Let 
T* E (0, oo) be given and let @ : Iw+ -+ W+ be the same function as in 
that theorem. For every < E [t, t + T*] and every c E (0, co), define 

FRANC = {w E X : lIw,d.,~,w) - UOIL I cexp[-WE)]} (2.40) 

and 

F+,,,(I) = {w E X : IIupp(.,I,w) - ~111~ I cexp[-a(<)]} (2.41) 
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Again, these two sets are F-measurable and let x~‘,~” ([, .) and Xck,,L1 (<. .) 
be their indicator functions. Clearly, the meaning of the random variables 

w -+ J1”“’ dlX,.,,,>,, (<, w) is the same as before and we get the following 
result. 

THEOREM 2.9. - The hypotheses are exactly the same as in Theorem 2.5. 
Let Q : R+ -+ Iw+ be any continuous function such that limt,W cP(t) = x. 
Then the following statements hold: 

(1) Zf g’(uo, 0) # 0 and if the limit 

a* = - t”n& t-II2 Q(t) 
.!l’(TL”, 0) 

+ <s> t (2.42) 

exists (with a* = fee allowed), we have 
at+T‘ 

lim E 
t+cc 

(i 
d&,,,,,(~. .) 

. t ) 
= T*(27ra*)-1’2 /u* dxexp[-& 

. --x 
(2.43) 

for every T* E (0, a). 
(2) If g’(uIr 0) # 0 and $ the limit 

b* = - ,“r; t-li2 Q’(f) 
g’(u1.0) 

+ <s> t (2.44) 

exists (with b* = f~ allowed), we have 
.t+1 

lim E t&em 
(J 

@x,.&L, (‘t> .) = T*(27r3P2 
t ) 

(2.45) 
for every T* E (0, m). 

Remark. - The conclusions of Theorems 2.5, 2.6, 2.9 and their corollaries 
hold for an important class of Gaussian processes. Thus, assume that 
(s (t, .))tER is a stationary Gaussian random process on (X, F’, P) of average 
<s> and continuous two-point correlation function p such that hypothesis 
(S) holds. Let B : R’ + R + be the function defined by 

t 
(T(t) = 

.I’ I 
4 t Cdl - F’) (2.46) 

0 . 0 
and assume that limt,oc t-la(t) = cr* > 0. Then it is clear that hypothesis 
(CLS) holds, for we have 

2 
t&T(t) = E 

)) 
(2.47) 
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and 

(2.48) 

for every a* E R U {I!= co } as t -+ 03. It is interesting to note here that the 
class of Gaussian processes just described includes the Ornstein-Uhlenbeck 
process for which <s>= 0 and p(t) = E(s(t, .)s(O, .)) = exp[-ItI], in 
which case we get a(t) = O(t) as t 4 CQ. This process is, of course, not 
only ergodic but also exponentially mixing and Markovian ([lo] , [14], 
[23]). Thus, if (s(t, .)) tee is an Ornstein-Uhlenbeck process the oscillation 
pattern of’u, between the two stationary states uug and *uzl sets in. 

The preceding remark makes it natural to ask whether similar results 
obtain when the statistics of the random process (s(t, .)& are governed 
by normal distributions in such a way that the condition lim+oo t-lo(t) = 
(T* > 0 does not hold. We shall now see that this is indeed the case, which is 
hardly a surprise since normal distributions already lurk in relation (2.23). 
The precise conditions are stated in the following hypothesis. 

(NS) The random process (s(t, .))t,W is a stationary Gaussian process on 
(X, F’, IF’) of average <s> and continuous two-point correlation function 
p such that limtim o(t) = co. 

The following results also play an important role in our analysis of the 
homogeneous multiplicative white noise in [9]. We begin with 

THEOREM 2.10. - Assume that hypotheses (K), (S), (G) and (NS) hold. 
Assume also that the initial datum ‘p is non-random. Then the following 
statements are valid : 

(1) For any function II. : W” + (~0, ~1) such that the limit 

a* = b&c(t))-“‘(G(u(t))- <s> t) (2.49) 

exists (with a* = frx, allowed), we have 

plJ{w E x : Up(.,t,W) 5 a(t)} = (27r-1/2 

(2.50) 
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(2) For any function b : Iw+ --+ (7~~: u1 ) such that the limit 

b* = ;$l(o(r))-““(G(b(t))- <s> t) (2.51) 

exists (with b* = &CC allowed), we have 

&P{w E x: b(t) < ,u&.w)} = (2n)-1”~lrlrlap[-~] 

(2.52) 
Our next result allows us to get the asymptotic probabilities of 

stabilization for up around the stationary states u. and uSl. 

THEOREM 2. I 1. - The hypotheses are exactly the same as in Theorem 2. IO. 
Let @ : R+ + W+ be any continuous function such that limtiX Q(t) = 3~. 
Then the following statements hold : 

(1) [f CJ’(UO. 0) # 0 and if the limit 

a* = - priIr,(“(t))-1’2 Q(t) 
Y’(‘u0 10) 

+ <s> t (2.53) 

exists (with a* = *CC allowed), we have 

(2.54) 

for every c E (0. CC). 
(2) Zf y’(uI. 0) # 0 and [f the limit 

b* = - J&&@(t))-“’ a(t) 
y’(u1. 0) 

+ <s> t (2.55) 

exists (with b* = &CX allowed), we have 

cexp[-aqt)]} 

(2.56) 

for every c E (0, w). 
Finally, our general result concerning the average times is the following. 
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THEOREM 2.12. - The hypotheses are exactly the same as in Theorem 2.10. 
Let @ : R+ -+ W+ be any continuous function such that lim+, a(t) = oc, 
and let x0.,, (I, .) and x~,,, (I, .> be th e indicator functions of the sets 
FD,,, (I) and FQ,,, (0 as &$ned b y relations (2.40) and (2.41). Then the 
following statements hold : 

(I) Zf ,q’(uo,O) # 0 and if the limit 

u* = - LIbI(a(t))-“2 (a(t) 
d(~Lo, 0) 

+ <s> t (2.57) 

exists (with u* = foe allowed), we have 

t+T* 

lirn E tics2 d<x,,,,, (<, .) = LF”(27r-lj2 J’ d:c exp [f] 
-cc 

(2.58) 
for every T* E (0, m). 

(2) Zf g’(ul, 0) # 0 and if the limit 

b* = - /&o(t))-“’ (2.59) 

exists (with b* = foe allowed), we have 

t+T* 

lim E t+oo (i 
dlx,,., (I> .) = T*(~T)- t 

(2.60) 
for every T* E (O,OO). 

The implication of the preceding three theorems is that results similar to 
Corollaries 2.4, 2.7 and 2.8 hold in the Gaussian case as well. In particular, 
the oscillation patterns of the random field 2~~ also take place in the Gaussian 
case when <s>= 0, g’(uo,O) > 0, g’( ul, 0) < 0. Evidently, the condition 
o(t) + 00 implies that the integrated process (s,” d<s(J, .))te~ cannot be P- 
almost surely bounded in time. Oscillation patterns such as those described 
above are therefore related to the unboundedness of t -+ $ d<s(<, .) in 
an essential way. 
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Remarks. 

1. A glance at the proofs given in Section 3 shows that the statements 
of the last eight theorems and corollaries still hold for random initial 
conditions ‘p, provided that there exists a constant c such that the 
inequalities 7~~ + C’ < I++,, U) < 71. r - cs hold P-as. This last condition 
is, however, somewhat artificial. 

2. The random process (s(t. .))fEn and all the indicator functions 
introduced above are continuous in probability. In the first case this 
property follows from hypothesis (S). In the second case it follows 
from the continuity of the fonction a. As is usual, we may therefore 
assume that those random processes are jointly measurable in (t.~) 
and make no further mention of the matter ([ 141). This will justify all 
our subsequent applications of Fubini’s theorem. 

The complete proofs of all results will be given in the next section. 

3. PROOF OF THE MAIN RESULTS 

We begin by outlining briefly our strategy regarding the proof of 
Theorem 2. I. Our analysis rests upon the introduction of a one-parameter 
family of auxiliary random fields oCl : 0 x iw+ x ,Y -+ Iw+ indexed by 
a real parameter ry, which satisfy P-almost surely a parabolic differential 
inequality when loi is sufficiently large. To show what kind of random 
fields we are looking for we first recall that every .r:-independent random 
process (C(t. .)) tEn that solves Problem (1.1) p-almost surely is necessarily 
of the form (2.4). Since G is strictly monotone, we next observe that for 
any 0 E R/(O), we can rewrite relation (2.-i) as 

11 
./ qt>W) = G-l d$s([. w) + (Y-%(1!:,(w)) + G(b) 

I 
(3.1) 

. 0 

for some random variable v,: : X -+ R+ and for some fi, E (u~~.u~). Then, 
given 1~~ that solves Problem (1.1) P-almost surely, we define the U:,S 
as the random fields whose relationship to ‘uuy is formally identical to the 
relationship between 11,: and (C(t, .))tEn in (3.1). This gives 

~(2, t. w) = G-’ d<s((, w) + (2 -llrl(~u,(x; t, w)) + G(ji) 
1 

(3.2) 
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or equivalently 

We then proceed by showing that *II,* stabilizes P-almost surely around 
, * some random variable u,, : X + Iw+ in L1 (0) as t + DC. Of course, this 

will determine Us”, uniquely, which in turn will determine the unique random 
process (fi(t, .))tE~ of Theorem 2.1 by means of relation (3.1). From this 
we shall easily infer both statements of Theorem 2.1. 

The derivation of a parabolic differential inequality for ?I,, requires the 
control of the dependence of y on Vu,. This is accomplished by using 
the quadratic growth estimate of hypothesis (QG). The precise result is 
the following. 

b?MMA 3.1. - Given the random jeld Q, let ‘I),, br the random ,jeld 
gillen by relation (3.3) where CY E R/(O) and [L E (u~~.u~). Then for 11~1 
syfkiently large we have $-almost surely 

1 i)t%(:I:, t. w) < div(k:,,; (:I:. t. w)V~,,(x. t. w)), (:I:, t. W) E R x R+ XX 

ih,, (.r. t, w) = o 
&I>( lLp) ’ 

(:I:, t, w) E ix2 x Iw+ xx 
1 

(3.4) 

Proof. - We first note that 

so that u,, satisfies $-almost surely the homogeneous conormal boundary 
condition in (3.4) since uq does.. In order to prove that the differential 
inequality in (3.4) holds P-almost surely, we calculate each term separately 
from relation (3.3) by making use of the first equation in (1.1). After 
regrouping the various contributions we obtain P-almost surely 

div (k,,+ (CC. t. w)V~,,(:c, t, w)) - &u,,(:c, t: w) 
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Since II,, is positive, we see that the right-hand side of (3.6) is P-almost 
surely non-negative if, and only if, the inequality 

2 as(t, w)g(u&T. t, w). 0) 
x {g(u,(LL t, w). Vw,(z. t, w)) - g(7”&, t, W)‘O)} (3.7) 

holds P-almost surely. In order to prove inequality (3.7) for 1~x1 sufficiently 
large, we now have to distinguish the case cv > 0 from the case CY < 0. If 
o > 0, then relation (3.7) holds if, and only if, the inequality 

0 - ~(llz(r.r.W).o) 
I 

(V7L&&JJ), k(&. t,W)vu,,(:r:, LW))R\ 

> s(t: w)g(u&:. t, w), 0) 
x {g(u&, t. w). Vu,(:c, t> w)) - g(u,(:c, t, w): 0)) (3.8) 

holds P-almost surely. In order to prove this last inequality for CY > 0 
sufficiently large, we construct a lower bound for the left-hand side and an 
upper bound for the right-hand side of (3.8) which still satisfy the above 
inequality for CY > 0 large enough. Let rrt = ~nax,,~[,,~,~,,] g (u, 0) and 
choose u: E W+ n (FE, cx)); on the one hand, by invoking the first inequality 
in (1.2) we obtain 

P-almost surely. On the other hand, owing to the boundedness of 
u -+ S(U, 0), that of the random process (s(t, .))tEn and by using hypothesis 
(QG) we get 

-cpu,(:r:, t. w)l’ 
I s(t,W)g(TLW(S:t:W),O) 

x {g(u&:, t, w), Vu&, 6 w)) - Y(+(? 6 w). 0)) 
< cpu+?(2, t, w)l” (3.10) 

P-almost surely for some c E (0, a). Inequality (3.9) together with 
the right-hand side inequality (3.10) then prove relation (3.8) for 
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Q E lR+ II [?B + c&-l, oc). Now if QI < 0, then relation (3.7) holds if, 
and only if, the inequality 

5 s(t,w)g(u,(n:, t, w), 0) 
x {.dwp(z, t, w), Vu.&, W)) - g(u,(z, t, w). 0)) (3.11) 

holds P-almost surely. In order to prove this inequality for CY < 0 small 
enough, we construct an upper bound for the left-hand side and a lower 
bound for the right-hand side of (3.11) which still satisfy the above 
inequality for u: < 0 sufficiently small. Let D = m&[,,,,,] %(u, 0) and 
choose CY E IF- n (--cc, m); on the one hand, by invoking the ellipticity 
condition of the random field i? once again we obtain 

5 (a! - 7#lVu,(z.t.w)l’ (3.12) 

P-almost surely. Inequality (3.12) and the left-hand side inequality (3.10) 
then prove relation (3.11) for Q E IF!- n (-00: no - &-‘I. The preceding 
considerations show that there exists cllo > 0 such that inequality (3.7) 
holds P-almost surely for every CL E R/{ 0} with ((11 2 CQ. 0 

Remark. - A glance at relation (3.7) shows that if the nonlinearity g 
does not depend on Vu, then the first relation in (3.4) holds if, and only 
if, the inequality 

01 a- $L,(x, t, w), 0) (Vzl,(z, t, w), kup (:t., t, w)vu,&. t; W))~BN 2 0 

(3.13) 
holds P-almost surely. The important point here is that the left-hand side of 
(3.13) does not depend explicitly on the random process (s(t, .))tCn, so that 
inequality (3.13) is true for IcyI sufficiently large without any boundedness 
condition on (s(t, .)) tEn. Thus, in this case the parabolic inequality (3.4) 
holds for all random processes with P-almost surely Holder continuous 
trajectories. 

In order to prove that vu, stabilizes around some positive random variable 
71: : X + R+ in L1(R), we need a few more preparatory results. The first 
one is an easy consequence of Lemma 3.1. 
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LEMMA 3.2. - There exist two random variables 7): : X + Iw+ such 
that the inequalities 

0 < ,11,(w) 5 7!,>(.,t,W) < u,‘(w) < oc (3.14) 

hold $-almost surely,for o > 0 st@iciently large andfor every t E ES+. 

Proof. - Let a0 > 0 be the positive constant in the proof of Lemma 3.1. 
For (ol 2 (yo, define the random variable U:(W) = s~p,~n II,,(:c. 0, w); then 
for every (ZJ, t) E R x IF!+ we have ?I,, (:I:, t, w) < Us < x P-almost 
surely by the parabolic maximum principle applied to Problem (3.4). If 
n 2 no, this implies that U-,,(:c, t, w) = (vJ,,(:I:. f,w))-’ < 71?~~(iu’) P- 

almost surely because of relation (3.3), which means that there exists a 
random variable rr, : X + R+ such that the inequalities 0 < U,(W) 5 
u(, (:K, t; w) hold $-almost surely for every (3;. t) E 2 x W+ ; in fact, it is 
sufficient to choose T:(; = (,tj?l,)-l. 0 

The next result is also critical to our proof of convergence. It involves 
yet another auxiliary random field for which we can prove a property 
of exponential dichotomy in L’(U) by means of a simple version of 
the PoincarbWirtinger inequality. We write 1 for the identity operator in 
L”(n), II.112 for th e usual L2-norm and Q for the orthogonal projection 
operator onto the constant functions, that is CJf = 101-l Jr, d:~:f(:r;) for 
every J E L2(R). 

LEMMA 3.3. - Given the random jield ug, let ‘11, be the random field 
given by relation (3.3). Let r > 0 and let ‘u be the random field that solves 
$-almost surely the linear initial-boundary value problem 

&v(z, t, w) =div (A:,,+ (:I;. t: w)Vw(~: t, w)), (cl:, t: w) E 62 x (7. S) x X 

‘u(:c,r.w)=‘u,,(2.r,w). (:c.w)EnxX 
iJV(G t, w) = () 

an(u,) ’ 
(,c. t, w) Em x (r. cc) x x 

(3.15) 
Then the following statements hold : 

(1) We have v,,(., t,w) 5 ‘u(., t,ti) $-almost surely .for 1~1 su$ticiently 
large and for every t E [r, CO). 

(2) The equality Q’tJ( ., t: w) = &?I~(.. r, w) holds $-almost surely for 
every a E R/(O) and for every t E [r, 30). 

(3) Let b be the elliptic& constant in relation (1.2) and let A1 be the 
largest negative eigenvalue of the L2 ( a)-realization qf Laplace ‘s 



RANDOM PARABOLIC EQUATIONS 215 

operator on Hy. Then the inequality 

Il(r - Q)1/(.,t,w)l12<exp[-lclXll(t - dlll(~ - Q)~&7,~)((2 
(3.16) 

holds p-almost surely for every u E R/(O) and.for every t E [T, 00). 

Proof. - Statement (1) is an immediate consequence of relations (3.4), 
(3.15) and of the parabolic maximum principle applied to the difference 
u,(., t.w) - v(., t,~). As for statement (2), the second relation in (3.15) 
implies that QTI(., 7, w) = Qz~,(., 7, w) so that it is sufficient to prove the 
relation Qv(.:t:w) = Qu(., 7, w) P-almost surely for every t E [T, cc). But 
this relation is clearly satisfied since from the first and third equations in 
(3.15) and owing to the definition of Q we get 

&Qtj(.; t, w) = lf21-1 J’ dx div (Ic+(z, t, w)Vv(z, t, w)) = 0 (3.17) 
I I II 

P-almost surely by invoking Gauss’ divergence theorem. We now prove 
statement (3). We first notice that the projected random field (I-Q)v(., t, w) 
satisfies the same linear initial-boundary value problem as %I does since Q 
commutes with the differential operator in (3.15). This means that we have 
P-almost surely 

/&(I - Q)w(z,~,w) = div(IC.UF(z, t,w)V(I - Q)v(z: t,w)), \ 

(Z&.d) E R x (7,m) xx 

(I - Q)w(z: t, w) = (I - Q)TJ~(z, T, w), 
< (2,w)E2xX > (3.18) 

a(1 - Q)‘u(~> 4 w) = o 
dn(up) ’ 

\ (x,t,W) E 69 x (7,co) xx / 

By using successively relations (3.18), integration by parts and the first 
inequality in (1.2) we then get P-almost surely 

’ = 2 
J 

dz(1 - Q)w(x, t, w) div (‘cU, (z, t, w)V(I - Q)u(z, t, w)) 
12 

Z -2 .I’ n MV(I - QMz, 6 ~1, k+ (x:, t,u)V(I - &)4x, 6 w))w 

I -%llV(~ - QM., 4 411; (3.19) 
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for every t E (7, cc). Now since the operator I - Q amounts to subtracting 
off the spatial average of the function, an L2(R)-version of the Poincare- 
Wirtinger inequality gives 

p-almost surely for every t E (.T, co) (see for instance [5] and [21] for a 
discussion of the general Poincare-Wirtinger inequality). The substitution 
of relation (3.20) into relation (3.19) then leads to 

fll(I - QM.,WII; + 2FIbl ll(r - QM.,W)ll; 5 0 (3.21) 

for every t E (T, co), which immediately implies relation (3.16) because 
of the initial condition in (3.15). 0 

The preceding results now allow us to give the following. 

Proof of Theorem 2.1. - According to the general strategy outlined above 
we first prove that for o! > 0 sufficiently large, there exists a random 
variable V: : X + Iw+ such that I~w~,(.,~:w) - u,*,(w)]]~ -+ 0 $-almost 
surely as t + co. We first note that the operator Q is positivity preserving. 
Then the application of Q on both sides of the differential inequality (3.4) 
along with the boundary condition in (3.4) imply that $Qu, (., t, w) < 0 
P-almost surely. Consequently, the function t --f Qv,(., t! w) is mono- 
tone decreasing on (0, m) and we define the random variable ,uX 
by V:(W) = inf,,R,t QY,,(., t,u) = I’ nut-,, Qu,, (.! t, w). We then have 
$-almost surely the estimates 

Il.L’+4 - af-4l 
5. I Qd+&,t;w) - Qw,(.,t,~)l + IftIIQwn(.;t.~) -wT,(w)l 

= 
s 

dz(w,(z: t, w) - Qw(y(.: t, w))+ 
R 

- , 
I 
ndz(w,(z, t,W) - QG(.. t,u))- + I~lIQ~&W) - w:(w)1 

= 2 
s 

dx(w,(Ic, t.u)-Qu,,(., t:w))++jfllIQz& t,+u;(u)I (3.22) 
R 

where (u~(.> t,u) - Qw,(.: t,u))* denotes the positive and the negative 
part of v,(., t,~) - Qv,(.. t,w), respectively. The last equality in (3.22) 
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follows from the fact that 

.I dl~(11,(x,t,~) - Qua(.;t,~)) = IRl&u,(.,t,~) - ~~~QTI,(.,~,LJ) 
n 

=0x - Qt&t,~))+ 

~z(G(z,~,w) - Qua(.,t,~))- 

Now by definition of the random variable v:, the second term of (3.22) 
converges to zero P-almost surely as t + 00. It remains to show that the first 
term of (3.22) converges to zero as well. For every t E [T; cc), define the set 
0: (w) of those z E R such that the inequality V, (2, t, w) - Qv, (., t, w) 2 0 
holds. Using successively the first two statements of Lemma 3.3, Schwarz 
inequality and the third statement of Lemma 3.3, we obtain P-almost surely 

<1~1”2 /I(1 - Q)&w)112 + lf~lIQ~a(.,w) - QvA.,~.~)I 
11~11/2ex~[-~I~ll(t - ~)l Il(r - Q)G(.,~,w)IIz 

+ InI IQ~J.> t, w) - &~a(., T. w>I 
11~11/2w+~I~ll(t - T>] II~~oi(.,~,~)112 

+ PI IQvx(., 6 w) - QG(., 7, w)l (3.23) 

for every t E [T; oc). Since T > 0 is arbitrary in the first place, we can 
choose T = t/2 and invoke the upper bound of Lemma 3.2 along with 
the fact that t + Qu, (., t, w) is monotone decreasing. From relation (3.23) 
we get P-almost surely 

which implies the desired result as t + cc. Now from relations (3.14) of 
Lemma 3.2 we infer that the inequalities 
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hold P-almost surely. From relations (3.1), (S.2), (3.25), (3.26), the fact 
that GP1 has a uniformly bounded derivative on IF!, we then conclude that 

2 O(1). 
I 
a~1:lln(n,,(3:.l:w)) - hl(U,T(W))I 

< O(1) max((inf yI,,(.l:;t;W))-r. (~uT,(u))-~) /I&:~~:,,(:C.r.~) - ~x(w)I 

2 O(l)rnax((~,~(w))-l,(v,~(w))-l)ll7i~~(.,t,~) - u~(w)[[I 

= 0(1)(w,(w))-ll/a,,(..t.w) - ?J,*,(W)/Il * 0 

P-almost surely as t - X, so that u+,( . . t. w) - ?I(t, w) + 0 P-almost 
surely strongly in Ll(s2). Since w,(.,t.w) E (u~;‘IL~), G(t.u) E (uo;u~) 
P-almost surely for any f E R+, we have 

IIU~(..t,w) - iqt.c.d)lloc, = sllp~?I&:,t.W) - ii(t,w)l < (’ 

.rE5 

P-almost surely for some c E (0, CC), so that relation (2.2) holds for 
every y E [l! CC). Relation (2.3) then follows immediately from dominated 
convergence. 0 

Remark. - A glance at all the preceding proofs shows that the 
boundedness of the random process (s(t, .))tER is required only in Lemma 
3.1. This observation and the remark following the proof of Lemma 3.1 
then lead to the conclusion of Remark (1) following the statement of 
Theorem 2.1. 

We now turn to the proof of Theorem 2.2, for which we need additional 
preparatory results. We begin by stating the existence of some uniform 
bounds that pertain to the random field Q. 

LEMMA 3.4. - There exists a constant c E (0. x) such that the two 
estimates 

““_p, IVup(2; t,w)l < c (3.27) 
(.c,t)ER R-t 

(3.28) 

hold P-almost surely. 
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Proof. - Since we have u,(cE,~,u) E (u~;u~) P-almost surely 
for every (:~,t) E 2 x R+, there exists C E (0, a) such that 
sw(,~~~)~~x~+ I%(? kW)l I C holds P-almost surely. The fact that 
inequality (3.27) holds then follows from the standard n priori estimates 
for quasilinear parabolic equations [20]. The second inequality (3.28) is an 
immediate consequence of (1.3) and (3.27). 0 

Our next preparatory result provides a proof of condition (2.5). 

LEMMA 3.5. - For every y E (0,x1) and every p E [~:cQ) we hnve 
$-almost surely 

Proof. - We first notice that the projected random field (I - Q)u,( ., t. w) 
satisfies P-almost surely the initial-boundary value problem 

&(I - Q)+(z, t, w) = div (kU, (z:, t,w)V(I - Q)u,(z, t, w)) 
+s(t~W)(I-Q)g(u,(z:t,w),Vu,(:c,t;w)), (:c,t,w)~f2xR+xX 
(I - Q)u,(x~ 0, w) = (I - Q)cp(:r;, w). (x,w)ELxX 

. I  

(3.30) 
By using successively relations (3.30), integration by parts, the first 
inequality in (1.2), the boundedness of (s(t, .))t,a along with inequality 
(3.28), we obtain P-almost surely 

+ WE> w). I ; WI - Q)~u(~> t,w)(l- Q).Q(u&; I. w), V?L,(Z, E, ~1) 

5 -%IIV(I - Q)~,Lb~)ll; + cll(~ - Q)~,LE,4ll~ (3.31) 
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for some c E (0, co). For y, t E (0, m) we now integrate inequality (3.31) 
over the interval [t: i; + y] ; we then get P-almost surely the estimate 

which in turn leads to the inequality 

Jt 

+ (24)-h 1”’ Gll(r - a&E412 (3.33) 
t 

Owing now to the fact that the random process (2.4) is z-independent 
and that the operator I - Q is an orthogonal projector in L2( ft), we have 
P-almost surely 

I[(1 - Q)u,(.,t,w)~~2 = ll(1 - Q)(&tw) - ‘CL(t,~))ll2 
5 IIuJ.,t,LlJ) - ii(t.w)lj2 + 0 (3.34) 

as t + 30, by virtue of Theorem 2.1 for p = 2. Schwarz inequality and 
relations (3.33), (3.34) then imply that the estimates 

hold P-almost surely for every y E (0, oc). This and the CI priori 
estimate (3.27) now imply relation (2.5) or (3.29). 0 

The passage from relation (2.5) to the first statement of Theorem 2.2 relies 
on hypothesis (LEO) in an essential way. We first show that the existence 
of the family of random linear evolution operators (U(t, r, w))tlr allows 
us to get the following integral representation for the projected random 
field (I - Q)u,(.,~,w). 
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LEMMA 3.6. - For every T E (0, co) and every t E [T, w) we have 
$-almost surely 

(I- Q)w+J., t, w> = U(t, 7, w)(l- Q)+(-, TT, w) 

+ /td~u(t,E,~)s(~.w)(r- Q)(s(u,(.,I,w),Vuy(..~,w)) 

- giQ~&~>~~,l,)) (3.36) 

Proof. - Relation (3.36) is an immediate consequence of the variation 
of constants formula, together with the observation that the relations 
(I- Q)u(t, T, ~1 = UC4 7, w)(l- Q) and (I- QMQu,(., &WI, 0) = o 
both hold P-almost surely. 0 

We can now give the following 

Proof of Theorem 2.2. - We begin by proving that IIVU~(.,~,W)II~ -+ 0 
P-almost surely as t --f cc for every y E [l, co). Since the a priori estimate 
(3.27) holds, it is sufficient to prove the result for p = 1. Our first objective 
is to prove that 

tl-~Il(-div(k:,~(.,t,~)V))~‘~(~- Q)~L~(.,~,w)//z = 0 (3.37) 

P-almost surely. By using successively Lemma 3.6, hypothesis (LEO), 
the boundedness of the random process (s(t, .))tEa and a limited Taylor 
expansion for g we obtain P-almost surely the estimates 

II(-~~v(~~,~(.:~!w)V))~‘~(~ - Q)+(.,t,~)ll~ 

L c(T) 
i 

(t - ~)-l’~ll(I - Q)u,(.,~,w)l~2 

+ 
J’ 

+W - C)-““W- &)4,E>412 + Il~~pC.I+4112) 
I 

(3.38) 

for e&y 7, T E (0, o;)), every t E (7,~ + T] and some c(T) E (0, w). 
Now let ,0 E (1,2) and let /3* E (2, co) be the dual exponent. Clearly, 
the function < -+ (t - [)-g is integrable on (r, t) so that we can invoke 
Holder’s inequality to handle the second term in the last term of relation 
(3.38). We obtain P-almost surely the inequality 

I ‘+rEE(t - I)-““(IU - Q)‘1~p(.>WIl2 + IlV4A412) 
. T 

5 @,T) 

w 

’ 4lP - QhLWIIt- 
1/a+ 

T 

+ tw%c&a:~ (3.39) 
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for some c(al 2’) E (0. w). The substitution of relation (3.39) into relation 
(3.38) then leads P-almost surely to the estimate 

II(-div(kl(,y(.:t!W)V))1’2(1- Q)u~(.,~.w)[[~ 

5 @.T) 
{ 

(t - T)p*ll(I - &)1L&T,W)~j* 

+ 

(1 
.+ d<ll(l - Q,u,(.,rw,II;~ 

-7 ) 

l/ii 

(1 

.t d~IIVu,(.,~:w)JI~’ 

1/;1’ 

+ 

1 1 

(3.40) 

for some c(p,T) E ((i,7~) and for every r.T E (0, co), t E (T.T + T]. 
Since we eventually want to investigate relation (3.40) for t sufficiently 
large and since T > 0 is a priori arbitrary, we now consider estimate 
(3.40) for r E [ii - 2, t - I]. Then estimate (3.40) implies P-almost surely 
the inequality 

II(-~liv(k~Lp(.~t,W)V))1’2(I. - Q>~p(..k~)l12 

+ (J 
l/r-l‘ 

) 1 (3.41) 
t-2 

for t large enough. Considering now inequality (3.41) as a function of Y- 
and integrating both sides with respect to r over the interval [1; - 2, t - 11, 
we obtain P-almost surely the estimate 

Il(-div(k,,+(..t,~)V))~‘~(I - Q)u,(..t.w)112 

(J t-1 

< c@.T) @llU - QM..E,w)II~ 
t-2 

(i 

.t 

+ @ll(r - Q,~~,t~.WIl~* 
t-2 ) 

l/N" 

(3.42) 
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for t sufficiently large. Now by virtue of estimate (3.34), the first two terms 
of relation (3.42) go to zero P-almost surely as t -+ 00, while the same 
conclusion holds for the third term as a consequence of Lemma 3.5 so that 
relation (3.37) holds. We now combine relation (3.37) with the ellipticity 
estimate of relation (1.2) and integration by parts to get P-almost surely 

IlV(l - Q)~&WII~ 5 14 IIW - Q)~yC,WII; 
2 II(-div(k,v(.Tt,W)V))1/2(1 - Q)~,(.,t,w)II~ -+ 0 (3.43) 

;VU:(.:;U,;;” 
. Equivalently, IIVu,(.,t,w)lII -+ 0 and hence 

P -+ 0 P-almost surely for every p E [I, co) as t i 00 
because of the a priori estimate (3.27). This and Theorem 2.1 now imply 
that relation (2.8) holds. As in the proof of Theorem 2.1, relation (2.10) 
then follows from dominated convergence while (2.9) and (2.11) follow 
from the existence of the continuous embedding H’aJ’(R) 4 C(2) for p 
sufficiently large ([ 11). 0 

The proofs of the remaining theorems of Section 2 rely on yet another 
version of the parabolic maximum principle. We begin with the proof of 
Theorem 2.3, for which we need two preparatory results. In the first one 
we prove structural inequalities for the nonlinearity g. 

LEMMA 3.7. - Assume that g’(uo,O) # 0. Then for every constant 
c E (0, ‘ZLI- ug), there exist real constants cl,2 E R’ such that the inequalities 

~1 + G(Y) L (g’( UO, O))-‘ln(y - UO) < c2 + G(y) (3.44) 

hold for every y E (~0, ~1 - c). Similarly, assume that g’(ul! 0) # 0. Then 
for every constant c E (0: u1 - ug), there exist real constants c3,4 E R! such 
that the inequalities 

~3 + G(Y) 5 (s’(ul,O))-‘1 n ( ~1 - y) 6 c4 + G(y) (3.45) 

hold for every y E (~0 + c, ~1). 

Proof. - Define the function ho : (~0, ul) -+ R’ by 

fLo(F) = ME> w - (g’(uo, O)(l - uo))Y (3.46) 

It follows from the first part of hypothesis (G) and from the appropriate 
Taylor expansion around uo that ho can be continued to [uo, 2~~) and is 
bounded on [uo, u 1 - c] for every c E (0, u1 - ~0). Furthermore, from the 
definition of G and relation (3.46) we get 

G(Y) = 
I 

’ WO(<) + (d(uO,O))-lln(y - ~0) + (I( 1) (3.47) 
. fi 
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for every fixed b E (uo,u~) and every y E (ZQ,U~ - c). Now we infer 
from the boundedness of ha that soy d{lhu(J)] = O(1) for such y’s. This 
remark together with relation (3.477 imply relation (3.44). We can prove 
inequalities (3.45) in a similar way by introducing the function 

h(5) = (g(u))-’ - (g’(w,w~ - w))-l 

In the following lemma, we establish a comparison between the random 
field up and certain random processes of the form (2.4). 

LEMMA 3.8. - Given the random$eld u,+,, there exist two random processes 
(c-(6 .))ER and (G+(t, .)) tee of the form (2.4) such that the inequalities 

c-(t;w) 5 uJ..t,w) 2 ii+(&w) (3.48) 

hold $-almost surely for every t E R+. 

Proof. - Since fl is compact and since cp(.,w) is continuous P-as., there 
exists a random variable c such that the inequalities ~0 + C(W) 5 cp(cc, w) < 
‘ul - C(W) hold for every II: E 2. Now let (&-(t, .))t,n be the random 
process of the form (2.4) generated by the initial condition ua + c(u) ; in 
a similar way, let (‘iL+ (1;, .)) tER be the random process of the form (2.4) 
generated by the initial condition ~1 -c(w). Since the two random processes 
(&(t, .))t,n and the random field 7~~ satisfy the same parabolic boundary- 
value problem, inequalities (3.48) follow from the parabolic maximum 
principle (1151). 0 

Our proof of Theorem 2.3 now follows from Lemmata 3.7, 3.8 and the 
Birkhoff-Khintchin pointwise ergodic theorem. 

Proof of Theorem 2.3. - We begin by proving statement (1). Since 
<s> < 0 implies that 1: d<s(l, w + --ix P-almost surely when t + CG, ) 
we may assume that Q*(t, w) < u1 - c for some fixed c E (0, ~1 - ~0) and 
t sufficiently large. By using successively the second inequality in (3.44), 
the second inequality in (3.48) and relation (2.4) we then get 

(~~‘(‘uo,O))-llrl(~~lLy(..~,W) - U&) 
5 (g’(u,,O))-‘hl(,ri,+(t, w) - uo) 

/ 

t 
I c2 + G(ii+(t, w)) = cz + dJs(J, w) + G(u1 - c(w)) 

. 0 

or 

t-lln(llu,(.,t,w)--OII,)Ig’(uO,O)t-l &B(E: w)+G(ul -c(w)) 
) 

(3.49) 
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P-almost surely. Inequality (3.49) together with the Birkhoff-Khintchin 
pointwise ergodic theorem now imply that the estimate 

lirrisupt-lln(llu~(.,t,w) - uaJloo) 5 <s> g’(ua,O) (3.50) 
t+cc 

holds P-almost surely. Now, by using successively the first inequality 
in (3.44), the first inequality in (3.48) and relation (2.4), we obtain the 
sequence of estimates 

(.9’(~0~ O))-1141u,(., 6~) - ~011~) 2 (d(uO,O))-lln(~-(t,w) - ~0) 

> cl + G(‘iL-(t,~)) = cl + 
I 

t dEs(l, w) + G(uo + C(W)) 
0 

or 

t-11n(ll~,(.,t,~)-~01103)>g'(~0,0)t-1 cl+ 
(J 

t 4s(l, w)+quo+c(w)) 
0 ) 

(3.51) 
P-almost surely. Inequality (3.51) along with the Birkhoff-Khintchin 
pointwise ergodic theorem once again imply that the estimate 

<s> g’(uo,O) 5 litm_~ft-‘ln(llu,(.,t,w) -dally) (3.52) 

holds P-almost surely. Relation (2.14) then follows from relations (3.50) 
and (3.52). If <s> > 0, a similar reasoning based on inequalities (3.45) 
and Lemma 3.8 leads P-almost surely to the estimates 

<s> g’(Ut,O) 5 li~~~ft-‘lm(/ju,(.,~,w) --ells) 

5 limsupt-lln(llu,(.,t,w) - ullIoo) < <s> g’(ui,O) (3.53) 

which give re4$?n (2.15). 0 
The proof of the corollary concerning the average times is now 

elementary. 

Proof @ Corollary 2.4. - Assume that < s > < 0, g’(uo, 0) > 0 
and let E E (0, l<s>lg’( UO, 0)). Let T* E (0, cm), let FE,UO([) be as in 
relation (2.18), let xE,UO ([) be the indicator function of FE,.UO([) and let 
6 > 0. Since the P-almost sure convergence of Theorem 2.3 implies the 
convergence in probability, there exists t(~, 6) > 0 such that the sequence 
of estimates 

T* 2 E 
(J 

t+T’nEX,.u,(E: .) 
t ) 

= /“;ic J\w~)xE.u” (I, u> 
t 

I 

t+T- 
= dlP{wEX: ~~-'1r1(~~U~(.,~,W)-Uo~~03)-<s>g'(110,0)~<E} 

2 (; - S)T* 
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holds for every t E (t(~, h), CM). In order words we have 

.t+T’ 

(T*)-‘IE 
U 

4xe.m,(<~ .) - T* 
. t ) 

E (-4 01 (3.54) 

for every t E (t(E, 6)) cc), which proves the first statement of the lemma. 
The proof of the second statement is similar. 0 

Lemma 3.8 plays a fundamental role in the remaining part of this section 
as well. The basic strategy amounts to getting estimates for the probability 
of various events associated with the random processes (&(t, .))tEn ; such 
estimates can be readily derived from the hypotheses concerning the random 
process (s(t, .)) tER through the explicit form (2.4). We can then transfer 
the corresponding information over to the random field up through the 
comparison Lemma 3.8. We begin with the following 

Proof of Theorem 2.5. - Owing to Lemma 3.8, we first notice that 

P{w E x : ii+(t,W) 5 n(t)} < P{w E x : UJ., t,w) < u(t)} 

5 P{w E x : li-(t,w) < n(t)} (3.55) 

where a : Iw+ + (ue, ul) is the function that appears in the first statement 
of Theorem 2.5. It is therefore sufficient to estimate the long-time behavior 
of the probabilities P{w E X : G*(t, w) < u(t)}. Write momentarily 
(‘li(C .))tm = (‘iL*(4 .))tth? for the two random processes of Lemma 3.8 
and write (i, = ~0 + c, $ = ~1 - c for their initial non-random conditions. 
Refering back to the explicit form (2.4) and recalling that the function G 
is strictly monotone increasing, we obtain 

P{w E X : ii(t.w) 2 u(t)} = P{w E X : G(ii(t:w)) < G@(t))} 

=~{w~x:t-‘:~/-~~(s(i;w:-<s>) 

5 t-““(G(a(t))- <s> t) - t-1’2G(@) 
) 

(3.56) 

for every t E W+. Now let (I,* be as defined by relation (2.24) ; if la,*I < CC 
then for every E > 0 there exists tE > 0 such that the inequalities 

pjwix:t-l~2~d(;s(~,w)-<i>)<~~-;) 

5 P w E x : t-1’2 
{ I at d((s((, w)- <s>) .o 
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< t-““(G(u(t))- <s> t) - t-1’2G(@) 

~~{iFx:t-~~~JUfd[;s(~;li-<s>l\u*+i) (3.57) 

hold for every t E (tE, w). Invoking now hypothesis (CLS) and relations 
(3.56), (3.57) we obtain 

pra*)-1/2 /a--’ dz exp -g 5 1itm2f P{w E X : G(t, w) < a(t)} [ x2 ] 

5 lim sup ${i%E X : G(t, w) < a(t)} 
t-a 

CL +e 
5 (27ra*)-1’2 

I, 
dzexp -& 

[ I 
(3.58) 

for every E > 0. By observing that a* does not depend on the initial 
condition $ and by letting E J, 0 we get 

plJ{w E x : ii* < a(t)} = (2W*)- 1/2 JI: dIpxp[-&] 

(3.59) 
Relations (3.55) and (3.59) then prove the first statement of the theorem 
when lu*I < cc. A slight variation of the above argument also shows that 
relation (3.59) holds when a* = foe. Finally, we can prove the second 
statement in a similar way if we notice that 

P{w E x : b(t) < iL(t,w)} < P{w E x : b(t) < u&tp)} 
5 P{w E x : b(t) < ii+(t,W)} (3.60) 

where b : R+ --+ (~a, ul) is the function that appears in the second 
statement of Theorem 2.5. cl 

It is now easy to prove Theorem 2.6 by making suitable choices for the 
functions CL and b of Theorem 2.5. For this we need the following 

LEMMA 3.9. - Zfg’(uo,O) # 0 we have 

G(uo + &) = (g’( u0, O))-lln(E) + 0( 1) (3.61) 

for every E > 0 su..ciently small. Similarly, if g’(ul, 0) # 0 we have 

G(UI - &) = (d( ul, O))-lln(e) + 0( 1) (3.62) 

for every E > 0 sufficiently small. 
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Proof. - Choose y = %L~ + t in relation (3.44) and y = ~~~ - E in 
relation (3.45). 0 

Then we have the following 

Proof of Theorem 2.6. - For any constant c E (0, X) we choose 
a(t) = u. + cexp[-Q(t)]. Since a(t) * co when t -+ IX we have 
a(t) E (~0, ul) for t sufficiently large and 

P{w E x : lLy(., t,W) 5 a(t)} 
= P{w E x : )I1I&t.w) - uolloo 5 cexp[-a(t)]} (3.63) 

Now for the above choice of c~ and because of relation (3.61) of Lemma 
3.9 we have 

(I* = lim t- 
t-m 

1’2(G(u~ + cexp[-@t(t)])- CO t) 

lini tf112 
( 

G(t) =- + <s> t t-m d(lLO> 0) ) 
I (3.64) 

Relations (3.63), (3.64) and the second statement of Theorem 2.5 then 
prove relation (2.29). We can prove the second statement of the theorem 
in a similar way by choosing b(t) = %I,~ - cexp[-G(t)] and by invoking 
relation (3.62) of Lemma 3.9. 0 

Having disposed of Theorem 2.6, we can now prove Corollary 2.7 by 
making very specific choices for the function a’, which allow an explicit 
evaluation of the numbers n* and b* given by relations (2.2s) and (2.30). 
For this we have to distinguish the case <s>= 0 from the case <s># 0. 

Proof of Corollary 2.7. - If < s > < 0 and g’(uO, 0) > 0, let 
E 6 (0; I-+s’( uO,O)) and choose a(t) = -(< s > g’(?ho,O) + ~)t in 
Theorem 2.6. Then (I,* = +ce from relation (2.28) so that 

P{w E x : IIUv(.&d) - T1o))m < cexp[(<s> g’(uo,O) ++I} + 1 
(3.65) 

as t + cc because of relation (2.29). But if Q(t) = -(<s> g’(uo, 0) - &)t 
then a* = --03 so that 

P{w E X : cexp[(<s> g’(u”,O) - E)t] < IIup(.,t,u) - u,~ll,} + 1 
(3.66) 

as 1; -+ 30 by switching to the complementary event. Relations (3.65) 
and (3.66) then immediately imply relation (2.32). In a similar way we 
can prove relation (2.33) when <s > > 0 and g’(~r, 0) < 0. Finally, if 
<s>= 0, g’(zlo,O) > 0, g’(ur>O) < 0 and if !P’, Q* : Iw+ + W+ are any 
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two continuous functions such that q(t) + o;), q*(t) + cc and & -+ cc 

as t + co, we choose a)(t) = & in relations (2.28) and (2.30). Then 
(I * = b* = 0 so that the relations 

P w E X : IIuq(.,t,w) --ujllm 5 cexp -+ l/2 (3.67) 

and - 

P w E X : Il~~(.,t,w) - ulllm < cexp 

hold simultaneously as t + 03. But if (a(t) = 

(3.68) 

then a* = --00 
and b* = 00 so that 

P{w E X : cexp[-&9*(t)] < Il~~(.,t,w) - UO[[~} -+ 1 (3.69) 
and 

P{w E X : cexp[-A**(t)] 5 ((uv(.,t,w) - u~(\~} -b 1 (3.70) 

as t -+ 03, again by switching to complementary events. Relations (3.67) 
and (3.69) then imply relation (2.34), while relations (3.68) and (3.70) 
imply relation (2.35). 0 

We next observe that there is no need to prove Corollary 2.8 directly, 
for the preceding considerations and the above choices of @ for the case 
<s>= 0 show that Corollary 2.8 is a simple consequence of Theorem 2.9. 
Therefore, we now turn to the proof of that theorem. 

Proof of Theorem 2.9. - We begin by observing that 

.t+T’ 

1 J d<${w E X : IIu~(.,E,w) - u~ll~ 5 cexp[-a([)]} (3.71) 
t 

From relation (3.71) and the first statement of Theorem 2.6 we then infer 
that 

I (J t+T* 

E dtxa+,, (F, 4 - T*%J*)-“’ t /yid:l:exp[-&-I / 

t+T* 

< 

-1 I 
dl P{w E X : II+(.,I,w) - wllm L cexp[-@(1)1} t 

as t + 00 for every T* E (0, co). The proof of the second statement of 
Theorem 2.9 is similar. 0 
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Finally, we devote the remaining part of this section to proving the 
results of Section 2 that are relative to the case where the random process 
(s(t, .))t,n satisfies hypothesis (NS). Lemma 3.8 plays an essential role 
here as well. We begin with the following. 

Proof of Theorem 2.10. - As in the proof of Theorem 2.5, it is sufficient to 
estimate the long-time behavior of the probabilities P{w E X : &(t, w) 2 
a(t)} where {‘iL*(t. .)} tEn are the two random processes of Lemma 3.8, 
and where cz : R+ -+ (u,,. ‘ul) is the function that appears in the first 
statement of Theorem 2.10. By using the same notation as in the proof of 
Theorem 2.5 and by noticing that the integrated process t --f Ji dcs(<, .) is 
Gaussian as well, with average <s> t and variance a(t) given by relation 
(2.47). we obtain 

P{w E X : G(t,u) 5 u(t)} = P{w E X : G(fi(t,~)) < G(a(t))} 

d[(s(<:w)- <s>) 5 G(a(t))- <s> t - G(e) 

= (27r-1’2 1 
(cr(t))-“‘(G(a(t))--mt)-(c(t))-“~G(@) 

--oo 
for every t E R+. Invoking then relation (2.49) and the fact that a(t) -+ CC 
as t -+ x we obtain 

lim P{w E X : ii(t,u) 5 n(t)} = (27r-1/2 
t+m 

[i dxexp[-z] (9.73) 

independently of the initial condition c+?. This and relation (3.55) then imply 
relation (2.50). We can carry out the proof of relation (2.52) in a similar 
way. Cl 

It is now clear that Theorem 2.11 follows from Theorem 2.10 in 
exactly the same way as Theorem 2.6 follows from Theorem 2.5, and 
that Theorem 2.12 follows from Theorem 2.1 I exactly as Theorem 2.9 
follows from Theorem 2.6. 

4. SOME CONCLUDING REMARKS 

In this paper we have investigated the long-time behavior of random fields 
that are P-almost surely classical solutions to quasilinear parabolic problems 
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with random coefficients of the form (1 .l) when hypotheses (K), (S) and (G) 
hold. We have obtained the most complete and precise results for the case 
where the lower-order coefficients (s(t, .)&R are either stationary random 
processes whose statistics obey the central limit theorem, or stationary 
Gaussian processes such as the Ornstein-Uhlenbeck process. In both cases, 
we have shown that a P-almost sure solution to (1.1) first homogeneizes 
over the region 52 to identify eventually with an x-independent random 
process (li(t, .)) tf~ of the form (2.4)) and then either converges to a spatially 
and temporally homogeneous asymptotic state or undergoes oscillations 
between two such asymptotic states. In both cases we have also determined 
the corresponding rates of stabilization along with the average times that 
the random fields spend in small neighborhoods of the asymptotic states. 
Related results hold in case (s(t, .))tE~ is homogeneous multiplicative white 
noise, provided that Problem (1.1) be semilinear and that the nonlinearity y 
does not depend on Vu. We develop and present these results in [8] and [9]. 
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