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ABSTRACT. — In this article we prove new results concerning the long-
time behavior of random fields that are almost surely solutions to a class of
stochastic parabolic Neumann problems defined on open bounded connected
subsets of RY. Under appropriate ellipticity and regularity hypotheses, we
first prove that every such random field stabilizes almost surely in a suitable
topology around a spatially homogeneous random process whose statistical
properties are entirely determined by those of the given coefficients in the
equations. In addition, when the coefficients of the lower-order terms in
the equations are stationary random processes, the nature of the equations
that we investigate leads us to consider two complementary situations
according to whether the average of those processes is zero or not. If their
average is different from zero and if the processes are ergodic, we prove
that every random field stabilizes almost surely and exponentially rapidly
in the uniform topology around a spatially and temporally homogeneous
asymptotic state, which depends only on the sign of the average. In this
case we can also determine the corresponding Liapunov exponents exactly.
In contrast, if the average of the processes is equal to zero we need more
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192 I. D. CHUESHOV AND P.-A. VUILLERMOT

structure to identify the asymptotic states properly. The cases where the
coefficients of the lower-order terms in the equations are either stationary
random processes whose statistics are governed by the central limit theorem,
or Gaussian processes that share some of the features of the Ornstein-
Uhlenbeck process, are of special interest and we investigate them in
detail. In all cases we can also provide estimates for the average time that
the random fields spend in small neighborhoods of the asymptotic states.
Our methods of proof rest chiefly upon the use of parabolic comparison
principles.
© 1998 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
RESUME. ~ Dans cet article nous démontrons de nouveaux résuitats
concernant le comportement asymptotique en temps de certains champs
aléatoires possédant la particularité d’étre presque stirement solutions d’une
classe de problémes de Neumann paraboliques stochastiques définis sur
des ouverts bornés connexes de R™. A I’aide d’hypothéses d’ellipticité
et de régularité convenables nous prouvons tout d’abord que ces champs
aléatoires se stabilisent presque stirement, relativement & une topologie
appropriée, vers un processus stochastique dont les propriétés statistiques
sont entierement déterminées par celles des coefficients des équations.
Nous analysons ensuite le cas ol les coefficients des termes d’ordre
inférieur des équations sont des processus stationnaires. Ceci nous conduit
a considérer deux situations complémentaires suivant que la moyenne de
ces processus stationnaires est différente de zéro ou non. Dans le premier
cas, si nous supposons en plus que les processus sont ergodiques, nous
démontrons que tout champ aléatoire se stabilise presque slirement et
exponentiellement rapidement, relativement a la topologie uniforme, vers un
état asymptotique ne dépendant que du signe de la moyenne de ces processus
ergodiques ; dans ce cas nous parvenons également & déterminer exactement
les exposants de Liapounov correspondants. Dans le second cas, nous avons
besoin d’hypothéses légerement différentes pour pouvoir identifier les états
asymptotiques. Les cas ol les coefficients des termes d’ordre inférieur des
équations sont soit des processus stationnaires satisfaisant aux hypotheses
du théoréme limite central, soit des processus gaussiens possédant certaines
particularités du processus d’Ornstein-Uhlenbeck, présentent un intérét
particulier et nous les analysons en détail. Dans tous les cas nous sommes
également en mesure d’estimer les temps moyens de séjour des champs
aléatoires dans des voisinages arbitrairement petits des états asymptotiques.
Nos méthodes de démonstration reposent essentiellement sur I’existence de
principes de comparaison paraboliques.
© 1998 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. INTRODUCTION AND OUTLINE

Let (X,F,P) be a complete probability space with o-algebra F and
probability measure P. In this article we investigate the long-time behavior
of real-valued random fields on (X, F,P) that are P-almost surely classical
solutions to quasilinear parabolic Neumann problems of the form

(Ou(z,t,w) = div (k,(z,t,w)Vu(z,t,w)) )
+ s(t, w)g(u(z, t,w), Vu(z, t,w))

(7, t,w) € A xR x X [

w(z,0,w) = p(z,w) € (up,u1), (z,w)€ W xX

| Ou(z,t,w)

L On(u)

=0, (z,t,w) €00 x Rt x X

J

In relations (1.1) denotes an open bounded connected subset of RV
with a sufficiently regular boundary 0%, uo: € R with wy < wuy,
@ is a smooth random field such that * — ¢(z,w) € C*Q) and
¢(z,w) € (ug,u;) hold P-almost surely, and the third equation in (1.1)
stands for the conormal derivative associated with the matrix-valued random
field k,(z,t,w) = k(z,t,u(z,t,w),w). We also assume that ¢ satisfies
the conormal boundary condition. Moreover, the random field k&, the
random process s and the nonlinearity g satisfy the following hypotheses,
respectively :

Ky (k(z,t,u, '))(:E,t,u)eﬁxR+x[uo,ul] is a matrix-valued random field on
(X, F,P) with real-valued entries such that

kiyj('vw) = kj«i('vw) € CZ(—Q x R* x [Ufﬂvul])

holds P-almost surely for every ¢,j € {1,---, N}. In addition, all partial
derivatives of the functions &; ; with respect to (z,t,u) are P-almost surely
bounded as functions of (z,¢,u,w). Finally, there exist positive constants
k. k € (0,0c) such that the uniform ellipticity condition

E|QI2 < (k‘(:L‘,t, uvw)(IvQ)RN < E|q|2 (1'2)

holds P-almost surely for every (z,%,u,q) € @ x RY x [ug,u;] x RY. In
relation (1.2), (.,.)g~ stands for the usual Euclidean scalar product in RY .
(S) (s(t,.))tenr is a real-valued random process on (X, F,P) such that the
Holder continuity of the trajectories ¢ — s(¢,w) € C*(R) holds P-almost
surely for some p € (0,1].
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(G) We have g € C?([ug, ui] x RY) with g(up,0) = g(uy,0) = 0 and
g(u,0) > 0 for every u € (ug,wu;). Moreover, there exists a constant
¢ € (0,00) such that the inequality

dg

(14 [ul)|g(u. ) + l%(um‘ + (1 + gD Vg, @) < e(1+]ql*) (1.3)

holds for every (u.q) € [ug,u;] x RY.

There have been several recent works devoted to the investigation of
the long-time behavior of solutions to semilinear and non-random versions
of problems of the form (1.1) when s is periodic, almost-periodic or
possesses more general recurrence properties (3], {4], [6], [11]-[13], [16],
[17], [24]-[28]). One of the reasons for this is that such problems have
played an increasingly important role in the mathematical treatment of
many phenomena in various areas of science, ranging from theoretical
physics to population dynamics, including the theory of heat diffusion, of
nerve pulse propagation and of population genetics ([2]). In this paper,
our primary purpose is to investigate the stabilization properties of random
fields on (X, F,P) that are PP-almost surely classical solutions to Problem
(1.1) when hypotheses (K), (S) and (G) hold. Hypotheses (K) and (S)
generalize the models considered thus far in at least two important ways.
On the one hand, the structure of the second-order differential operator that
appears in the principal part to (1.1) allows one to encode space -and time-
dependent random diffusions into the theory. On the other hand, the fact that
(s(t,.))ten is a random process makes it possible to consider processes with
strong mixing and Markov properties such as Ornstein-Uhlenbeck processes,
rather than just nearly deterministic processes such as the almost-periodic
ones. With some additional conditions on (s(¢,.)):cr and g when g depends
explicitly on Vu, we then prove that the solution to (1.1) stabilizes P-almost
surely in a suitable topology around a spatially homogeneous random
process whose statistical properties are entirely determined by those of the
given data. In addition, when the random process (s(%,.))ter is stationary
the nature of Problem (1.1) leads us to consider two complementary
situations according to whether the average of (s(¢,.)):cr is zero or not. If
the average is different from zero and if the process is ergodic, we prove that
the solution to (1.1) stabilizes P-almost surely and exponentially rapidly
in the uniform topology around a spatially and temporally homogeneous
asymptotic state, which depends only on the sign of the average. In this
case we can also determine the corresponding Liapunov exponents exactly.
In contrast, if the average of (s(t,.)):cr is equal to zero we need a slightly
different structure to identify the asymptotic states properly. The cases
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where (s(t,.))ser is either a random process whose statistics are governed
by the central limit theorem or a Gaussian process are of special interest
and we analyze them in detail. In all cases we can also provide estimates for
the average time that the solution of (1.1) spends in small neighborhoods
of the asymptotic states. Our main results are stated precisely and further
discussed in Section 2. The corresponding proofs are carried out in Section
3. Our methods of proof there rest upon the use of parabolic maximum
principles and upon the existence of exponential dichotomies for a family
of random evolution operators associated with the principal part of (1.1).
Finally, we devote Section 4 to some concluding remarks and we refer the
reader to [7] for a short announcement of the results.

Our work was primarily motivated by the desire to understand the long-
time behavior of generalized random fields that are solutions in some sense
to semilinear stochastic problems of the form

(du(x,t,w) = div (k(z,t)Vu(z, t,w))dt )
+ g(u(z,t,w)) o dB(t,w)
(v, t,w) EAXRT x X

_ L (1.4)
u(z,0,w) = p(z,w) € (ug,u1), (r,w)€ QxX
Ou(x, t,w) . +
\W—O, (z,t,w) €N XR XX)

In the first equation (1.4), (B(t,.));er+ stands for the standard one-
dimensional Brownian motion starting at the origin and odB(t,.) denotes
Stratonovitch’s differential. Problems of the form (1.4) define a class
of semilinear parabolic problems subjected to homogeneous white noise.
Though the theorems of this article do not apply to the solutions of (1.4)
directly, it turns out that the analysis of the solutions to (1.4) can be
reduced to that developed in the present paper through the combination
of a suitable regularization of the Brownian motion with an appropriate
limiting procedure. We defer the presentation of the corresponding results
to separate publications ([8], [9]).

2. STATEMENTS AND DISCUSSION OF THE MAIN THEOREMS

When hypotheses (K), (S§) and (G) hold, the standard existence -and
regularity theory for parabolic equations implies that there exists a unique
random field u,, which satisfies Problem (1.1) P-almost surely in a classical
sense ([20]). It also follows from the classical parabolic maximum principle
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that u,(z,t,w) € (ug,u;) P-almost surely for every (z,t) € @ x Rt
([15]). Our primary objective here is to investigate the behavior of .,
when ¢t — oo. In this respect, hypotheses (K), (S) and (G) are quite general
and the trade-off for this degree of generality is that our first convergence
result holds with respect to relatively weak topologies. We illustrate this
point first, by showing that u, homogeneizes P-almost surely over the
region £} in the L?(Q2)-topology for any p € [1,00). For this we need the
following additional hypothesis for the nonlinearity g.
(QG) There exists a bounded function ¢ : [up,u1] — R™ such that the
inequality

l9(u. q) — g(u.0)| < c(u)|q]® (2.1)
holds for every u € [ug,u;] and every ¢ € RV,

We also write E for the mathematical expectation functional on (X, F,P)
and ||.||, for the usual LP(£2)-norm. We then have the following.

THEOREM 2.1. — Assume that hypotheses (K), (S), (G) and (QG) hold.
Assume also that there exists ¢ € (0, 50) such that the inequality |s(t,w)| < ¢
holds P-almost surely for every t € RY. Then there exists a unique
a-independent random process (i(t,.))ien on (X, F,P) such that the
relation

113101g Nug( tw) —a(t,w)l], =0 (2.2)

holds P-almost surely for every p € [1,00). Moreover, we have
tlinl E(l[ua(..t..) = alt, )][,) =0 (2.3)

for every p,r € [1,00).

Remarks.

1. We note that both conditions (1.3) and (2.1) hold trivially when g
does not depend on g. In this case, the proof of Theorem 2.1 in
Section 3 reveals that the boundedness of (s(¢,.)).cr is not necessary
for relations (2.2) and (2.3) to hold. Thus, in case g does not depend
on ¢, the three conditions (K), (G), (S) alone are sufficient to imply
both conclusions of Theorem 2.1.

2. The random process (4(t,.)):cr of Theorem 2.1 turns out to be an
z-independent and P-almost sure solution to Problem (1.1) (compare
with the proof of Theorem 2.1 in Section 3). From this, it follows
that (@(t,.)):er is necessarily of the form

w(t,w) = G_l{/(; dés(€,w) + G((fa(w))} (2.4)
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where G : (ug,u;) — R stands for any primitive of the function
u — 1/g(u,0), G™! denotes the monotone inverse of G and ¢ is
the corresponding initial condition. Theorem 2.1 can thus be viewed
as an existence statement for the random variable ¢ that generates
(a(t,.))ser through relation (2.4). The fact that the random process
(@u(t, .))ter admits the explicit representation (2.4) will be important
below, particularly when (s(t, .)).cgr has statistical properties governed
by the central limit theorem or when it is a Gaussian process.

Now let H3?(2) be the usual Sobolev space of functions on € whose
norm we denote by ||.||1,,. It is natural to ask whether we can replace
[||l, by ||-]l1,, in Theorem 2.1. Equivalently, we want to know whether
we can have ||Vu,(.,t,w)||, — 0 P-almost surely as ¢ — oo. A necessary
condition for this is that the relation

t+y

lim dé||Vu,(., & w)|b =0 (2.5)

t—oo +

holds P-almost surely for every v € (0, o0), which we prove in Lemma 3.5
of Section 3. Condition (2.5) is, however, not sufficient in general to
ensure the homogeneization of «, with respect to the strong topology of
H'?(£), unless more is known about the matrix-valued random field k.
There is a natural requirement that allows one to dispose of this question
readily. Write momentarily A, (¢, w) = —div(k,,(.,#,w)V) for the family
of random linear differential operators that are P-almost surely self-adjoint
and positive as operators in L?({2), when realized on the time - dependent
domain D(A,, (t,w)) = Hi}i )(Q) ; here we write Hf\}%%)(fl) for the
vector subspace of L?(Q2) that consists of all functions of H 22(€)) which
satisfy the conormal boundary condition in (1.1). For every 7 € (0, 00) we
consider the linear evolution problem

{8tv(.,t,w) = div(ky (., t,w)Vo(., t,w)), (t,w) € (1,00) % X}

v(.,1,w) =P, w), welX
(2.6)
in L?(£2). We then introduce the following hypothesis of unique and global
solvability of Problem (2.6), in which ||.|| stands for the uniform norm of

the linear bounded operators on L%(Q).

(LEO) There exists a family of random linear evolution operators
(U(t, 7,w))>- in L?(Q) associated with Problem (2.6) such that, for every
T € (0,00), there exists a constant ¢(T') € (0, 00) such that the estimate

(= div (ku, (- t,w) V)YV2U(t, 7, w)|] < (T)|t — 7|72 (2.7)
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holds P-almost surely for every ¢t € (7,7 + T.

By a family of random linear evolution operators in L?({2) we mean a
family (U(t,7,w))s>- of linear bounded operators in L?({2) which satisfy
all the conditions of definition (5.3) in Chapter 5 of [22]. Then there
are well-known sufficient conditions that one can impose on the operators
Ay, (t,w) for estimate (2.7) to hold ([18], [19], [22]). Estimate (2.7) holds,
for instance, whenever k, does not depend on ¢ and w, in which case
the family (U(t,7,w)):>, reduces to a linear random semigroup. Writing
||.||o for the uniform norm of continuous functions on €2, we then obtain
the following result.

THEOREM 2.2. — Assume that all hypotheses of Theorem 2.1 hold. In
addition, assume that hypothesis (LEO) holds. Then there exists a unique
x-independent random process (U(t,.))ier of the form (2.4) on (X, F,P)
such that the relation

flim Nuo (o tow) —a(t.w)lj, =0 (2.8)

holds P-almost surely for every p € [1,0¢). In particular, we have P-almost
surely

l g £.0) = it ) = 0 (29)
Moreover, we have
tlinolo E(|Juy(., 2, ) —alt, )|7,) =0 (2.10)
and hence
flgl(}o E()|ug(..t,.) —a(t,.)]||5) =0 (2.11)

for every p,r € [1,00).

Remark. - Tt is worth mentioning that with such a degree of generality,
the preceding theorems are, to the best of our knowledge, new even in
the deterministic case.

We shall now investigate the stabilization properties of v, more closely,
by keeping the random field %k, quite general while imposing conditions
of statistical nature on the random process (s(t,.));cr. We describe a first
important case in the following hypothesis.

(ES) The process (s(t,.))ter is a stationary, ergodic random process on
(X,F,P) such that

w — s(0,w) € L'(X,P). (2.12)
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Recall that such a process can be associated to any periodic or almost-
periodic continuous function s in a very natural way ([14]). But the
notion of ergodicity also encompasses random processes with exponentially
mixing and Markov properties such as Ornstein-Uhlenbeck processes. For
this reason, hypothesis (ES) is natural in that it bridges the gap between
problems of the form (1.1) where s is periodic or almost-periodic and those
where s has strong stochastic properties. Let <s> denote the average of the
process (s(t, .)):cr- Because of hypothesis (ES) and the Birkhoff-Khintchin
pointwise ergodic theorem we have

<s>=E(s(t,.)) = E(s(0,.)) = ,hJIolo t! /Ot dés(é,w) (2.13)

for every t € R, where the last equality holds P-almost surely. We
begin by investigating the case where < s > # 0, for which we have the
following result.

THEOREM 2.3. — Assume that hypotheses (K), (S), (G) and (ES) hold. Then
the following statements are valid :
(1) If <s>< 0 and if ¢'(ug,0) > 0, the relation
flim‘t_lln(Hu,p(.,t,w) — ug]]oc) =<8> ¢’ (19, 0) (2.14)
holds P-almost surely.
(2) If <s>> 0 and if ¢g'(u1,0) < 0, the relation
tlim ™ n(||up (st w) = u]leo) =<5> ¢'(u1,0) (2.15)
holds P-almost surely.

Remarks.

1. The information provided by relations (2.14) and (2.15) is ut-
most precise in that it provides both upper and lower exponen-
tial decay estimates for [|u,(.,t,w) — ug1|lo. For instance, for
every € € (0,|<s>|g'(ug,0)) there exists t.(w) > 0 such that the
inequalities

exp[(<s> ¢'(u0,0) — €)t] <|luy(.,t,w) — ugl|o
< expl(<s> ¢'(uo,0) + €)t] (2.16)
hold P-almost surely for every ¢ € (¢.(w), 00). In a completely similar
way we have P-almost surely the inequalities

exp[(<s> g'(u1,0) — &)t] < ||uu(.tw) — uyl|oo
< exp[(<s> ¢'(u1,0) + €)¢] (2.17)
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for every € € (0, <s> |¢’(u1.0)]) and for every ¢ € (t.(w), o). Of
course, the Liapunov exponents given by relations (2.14) and (2.15)
are non-random as a consequence of hypothesis (ES).

2. In the form of relations (2.14) and (2.15), the results of Theorem 2.3
are new also in the deterministic case. In particular, they complete
and improve the results of [27] obtained by geometric methods when
s is almost-periodic.

3. Obviously, the conclusions of Theorem 2.3 must be consistent with
those of Theorems 2.1 and 2.2 when the appropriate hypotheses hold.
What this means is that the homogeneous random process (u(t, .))ser
also converges to uy when <s>< 0 and ¢'(ug.0) > 0, or to u
when <s>> 0 and ¢'(u;.0) < 0. Of course, the statements can be
directly verified from the explicit form (2.4) by using the Birkhoft-
Khintchin ergodic theorem. The very existence of homogeneous
random processes of the form (2.4) that satisfy the above properties
is one of the key ingredients in the proof of Theorem 2.3 below.

As a very simple application of Theorem 2.3, we can determine the

average time that v spends in a small neighborhood of w4y and u; when
t — oo. Let T € (0, 0¢) be given. If <s> < 0 and if ¢'(ug,0) > 0, define

Freaol®) = {w € X s expl(<5> ¢'(10,0) ~ )] < g €.0) — wollc

< exp[(<s> ¢ (uo,0) + 5)5]} (2.18)

for every £ € [t,¢t + T™*] and for every ¢ € (0, |<s>|g'(uo,0)). Similarily,
if <s>> 0 and if ¢'(u;,0) < 0 we define

F.., (&)= {w € X :expl(<s> ¢'(u1,0) — €)&] < ||up(., & w) — U1l

< expl(<s> g'(u1,0) +2)€] | (2.19)

for every & € [t,t + T™*] and for every € € (0, <s> |¢'(u1,0)|). Evidently,
the sets F. ., (£) and F., (§) are F-measurable ; let x.., (& .) and
Xe.u (€,-) be the corresponding indicator functions. It is clear that the
random variables w — f:"LT‘ d€xe o, (&, w) measure the fraction of the
available time lapse 7™ that the random field u,, spends in the corresponding
neighborhood determined by (2.18) or (2.19). We then have the following
result.

COROLLARY 2.4. — The hypotheses are exactly the same as in Theorem 2.3.
Then the following statements hold :
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(1) If <s>< 0 and if 9'(uo,0) > 0, we have

t+T"
lim E (/ AEX e (€, )) =T (2.20)

t—oo

for every T* € (0,00) and for every € € (0, |<s>|g'(uo,0)).
(2) If <s>> 0 and if g'(u1,0) < 0, we have

t+T*
tli‘&E(/ ’ dﬁxe,u,(&-)> =T (2.21)

for every T* € (0,00) and for every € € (0, <s> |g'(u1.0)]).

Remark. — In either case the interpretation of Corollary 2.4 is clear :
on the average the random field u, spends the entire available time lapse
T* in an arbitrarily small neighborhood of the appropriate asymptotic state
when t — co. We shall see below that the situation is quite different when
<s5>= 0.

As already noticed, when <s>= 0 we need a slightly different structure
to identify the asymptotic states properly. The cases where the statistics
of (s(t,.))ier are governed by the central limit theorem or by Gaussian
distributions are of special interest. We begin with the case of the central
limit theorem. We say that the statistics of the random process (s(t,.)):cr
obey the central limit theorem if the following hypothesis holds :

(CLS) We have w — s(0,w) € L*(X,P), (s(t,.))ter is stationary and
the limit

lim IE((?&‘I/2 /t dé(s(€,.)— <s>)> > =0">0 (2.22)
t—o0 0

exists ; in addition we have

lim P{w € X: t_1/2/ dé(s(é,w)— <s>) < a*}
t—o00 0

.2

— (2n0") V2 /_“* dwexp[—l ] (2.23)

20*

for every a* € RU {o0}.

Recall now that G : (ug,u;) — R stands for any primitive of the
function u — 1/g(u, 0) (compare with Remark 2 following the statement
of Theorem 2.1). Our main result concerning the long-time behavior of
u, is then the following
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THEOREM 2.5. — Assume that hypotheses (K), (S), (G) and (CLS) hold.
Assume also that the initial datum @ is not random, thar is the function
w — o(r,w) is P-almost surely constant for every 1 € Q. Then the
Jollowing statements are valid :

(1) For any function a : RT™ — (ug.uy) such that the limit

a* = lim f71/2(G(U/(t))_ <s> 1) (2.24)

t—o

exists (with a* = +oc allowed), we have

ot 2
flim»P{w €X:u (. tw)< a(t)} = (2wo*)"1/? / d.’I?QXp|: ul }

J_ 20*

(2.25)
(2) For any function b : RT™ — (ug,u1) such that the limit
b= lim tY2(G(t))— <s> 1) (2.26)
exists (with b* = *+oc allowed), we have
G _ 1,2
1lim Plwe X :b(t) < uy(tw)} = (2m0™)71/2 / dix exp ‘)”*
— 00 Ju- 0

(2.27)

We note that both statements of Theorem 2.5 concern the convergence
of probabilities, in contrast to all preceding theorems whose convergence
statements hold almost surely. While this is in the nature of things because
of relation (2.23), the trade-off is that Theorem 2.5 allows for alot of
flexibility in the discussion of the asymptotic behavior since the functions
a and b are essentially arbitrary. A typical example is the following result,
which turns out to be related to Theorem 2.5.

THEOREM 2.6. — The hypotheses are exactly the same as in Theorem 2.5.
Let ® : RT™ — R be any continuous function such that liny, .. ®(t) = oc.
Then the following statements hold :

(D) If ¢'(u0,0) # 0 and if the limit

. D(t)
* A AN 2.28
a thm t (g’(’uo, 0) <85> t) ( )
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exists (with a® = Lo0 allowed), we have
tlim P{w e X :|Juy(. t,w) — tolloc < cexp[—(H)]}

ra” 72
= (270" "1/2/ i exp | = 2.29
(270™) drexp| 5 (2.29)

— oG

for every ¢ € (0,00).
(2) If ¢'(w1,0) # 0 and if the limit

b = — lim ¢71/2 (&-{- <s> t) (2.30)

t—oo gl(ul’ 0)
exi;vts (with b* = +o00 allowed), we have

tlim P{w e X :|Juy(. t,w) — ui]]e < cexp[—®(t)]}

e OO

= (27m*)"1/2/

J b

*

2
d:r,exp[ ! } (2.31)
20

for every ¢ € (0,c).

Remark. — A glance at relations (2.29) and (2.31) shows that the
asymptotic probabilities depend exclusively on the rate function @, on some
features of the nonlinearity g and on the average of the random process
(s(t,.))rer- We also stress the fact that explicit expressions such as (2.28)
and (2.30) are possible because of the existence of xz-independent random
processes of the form (2.4), and because of the validity of certain parabolic
comparison principles (compare with the methods of proof of Section 3).

In contrast to Theorem 2.3, Theorem 2.6 allows for a detailed analysis
of the case <s>= 0. In fact, we shall see in Section 3 that suitable choices
of @ lead to the following.

CoROLLARY 2.7. — The hypotheses are exactly the same as in Theorem 2.5.
Then the following conclusions hold :

(1) If <s>< 0 and if ¢'(up,0) > 0, we have

tlim P{we X :cexp[(<s> ¢ (uo,0) — )t] < [Juu(.. t,w) — ugl|oo
o0
< cexpl(<s> g'(ug,0)+e)t]} =1 (2.32)

for every ¢ € (0,00) and every € € (0,|<s>|g'(uo,0)).
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(2) If <s>> 0 and if ¢'(u1,0) < 0, we have
tlim P{w e X : cexp[(<s> g'(u1,0) — e)t] < Juu(.,t,w) — u1]|oo
< cexpl(<s> ¢ (u,0) +e)t]} =1 (2.33)
for every ¢ € (0,00) and every € € (0, <s> |g'(u1,0)]).
3) If <s>= 10, ¢'(up,0) > 0, ¢'(u1,0) < 0, and if ¥, ¥* : RT —

R* are any two continuous functions such that lim,_ . V() =
litn; oo W*(t) = limy_ o % = oo, we have simultaneously

tlim P{w € X : cexp[—VIU* ()] < |Jup (s t,w) — to||oe

< cexp{—%] }: 1/2 (2.34)

and
tlim P{w € X : cexp[— VU ()] < [Juo(o, t,w) — U]

< cexp [—%} }: 1/2 (2.35)
for every ¢ € (0,00). )

Of course, with statements (1) and (2) of the preceding corollary, we retrieve
a weaker variant of Theorem 2.3, or equivalently of relations (2.16) and
(2.17). But the most interesting conclusion is evidently statement (3),
whereby the random field u, stabilizes about ug and w, equiprobably.
We observe here that the value one-half of the asymptotic probabilities
(2.34) and (2.35) cannot be exceeded by virtue of relations (2.28) and
(2.30) : while relation (2.28) implies that a* € [—o00,0] when <s>= 0
and g'(ug,0) > 0, relation (2.30) implies that b* € [0, 00] when <s>= 0
and ¢'(u;,0) < 0.

The fact that u,, stabilizes equiprobably around uo and u; when <s>= 0
can be interpreted as an oscillation phenomenon of u, between u, and
uy. In order to see this we proceed as in the considerations preceding
Corollary 2.4. Let T* € (0,00) be given and let ¥, ¥U* : RT — R* be the
same functions as in Corollary 2.7. For every £ € [t,¢ + T*] and every
¢ € (0,00), consider the events

Fo(6) = {w € X : coxpl— v/ (€)] < [lug (6 w) — ol

< conp|- 2755} (2.36)
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and
Fu(6) = {w € X : coxpl— VEV (6)] < llug (- 6,0) = tr]]on

< cexp [_%] } (2.37)

Let xu, (&, .) and x., (&, .) be the corresponding indicator functions. Again,
it is clear that the random variables w — _f:“w d€Xu,., (€, w) measure the
fraction of the available time lapse 7™ that u,, spends in the corresponding
neighborhood of uy and u; determined by (2.36) and (2.37). The precise
result concerning the average times is then the following.

CoROLLARY 2.8. — The hypotheses are exactly the same as in Theorem 2.5.
Assume that <s>=0, ¢'(ug,0) > 0, ¢’(u1,0) < O and let ¥, ¥* : Rt — R*
be any two continuous functions such that lim,_, . U(t) = lim,_,., U*(¢) =
Hmy oo % = oo. Then we have simultaneously

t+T T
([ dene) ) = (2.38)
and
t+1" T*
lim E( / A, (&, .)> - (2.39)

for every T* € (0,0).

The conclusion is that on the average and for every T € (0,0),
the random field u, spends half of the available time lapse 7™ in an
arbitrarily small neighborhood of wg and the other half in an arbitrarily
small neighborhood of u;, so that an oscillation pattern sets in. Of course,
the preceding results do not describe the possible large deviations from the
above average behavior. "

We conclude our analysis of the central limit theorem case by observing
that both Corollaries 2.4 and 2.8 are special cases of a more general
result. Our point of departure here is the statement of Theorem 2.6. Let
T* € (0,00) be given and let ® : Rt — R™ be the same function as in
that theorem. For every £ € [t,t + T™] and every ¢ € (0,00), define

F<I>,u0 (E) = {w € X Huv)("f?w) - UOHOO S cexp[—‘b(f)]} (240)
and

Fpu (&) = {w € X : Jup(., §,w) — u1]|eo < cexp[—P(§)]} (2.41)
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Again, these two sets are F-measurable and let x4 4, (¢,.) and xa,., (€, .)
be their indicator functions. Clearly, the meaning of the random variables
W — ]':JFT déx,.,, (€, w) is the same as before and we get the following

result.

THEOREM 2.9. — The hypotheses are exactly the same as in Theorem 2.5.
Let  : Rt — R™ be any continuous function such that lim,_, ., ®(t) = oc.
Then the following statements hold:

(1) If ¢'(uo,0) # O and if the limit

" = — lim t‘lﬂ{&ﬁ— <s> 1‘} (2.42)

t—oo 9'(uo,0)

exists (with a* = £oc allowed), we have

t+T* ra” x2
lim E / déx,  (€&,.) )= T*(27[‘(]‘*)_1/2/ dx exp {— ‘ }
t—oc Ji Mo S 20*

(2.43)
for every T € (0,00).
(2) If ¢'(u1,0) # 0 and if the limit
i O(1)
b* - /—1/2 o\ p t .
thlfif g/(wo)ﬂt <s> (2.44)

exists (with b* = +oc allowed), we have

ot T 00 2
lim E (/ déx, . (&, )> = T*(2ra*) /2 / dx exp [— ’
t—oc t b1 Jb* 20*
(2.45)

Jor every T* € (0,00).

Remark. — The conclusions of Theorems 2.5, 2.6, 2.9 and their corollaries
hold for an important class of Gaussian processes. Thus, assume that
(s(t,.))¢er is a stationary Gaussian random process on (X, F, ) of average
<s> and continuous two-point correlation function p such that hypothesis
(S) holds. Let ¢ : R — R* be the function defined by

ot = [ tdﬁ/ﬂ e ole — €) (2.46)

and assume that lim;_, . t~*o(¢t) = 0* > 0. Then it is clear that hypothesis
(CLS) holds, for we have

tto(t) = E((flﬂ /:df(s(f, )= <s>)>2> (2.47)
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and

P{w e X 712 /ht d€(s(§,w)— <8>) < a*}

40

ca*tl/?

= (2mo(1))"/? /m ‘“eXp[_Q:;f)]

~1/2 o (5t z?
= (2m) dz exp -5
22

— (2%0*)_1/2/ dmexp{—QZ*] (2.48)

for every a* € RU {£o0} as t — oco. It is interesting to note here that the
class of Gaussian processes just described includes the Ornstein-Uhlenbeck
process for which <s>= 0 and p(t) = E(s(¢,.)s(0,.)) = exp[—]t|], in
which case we get o(t) = 0(¢) as t — oo. This process is, of course, not
only ergodic but also exponentially mixing and Markovian ([10] , [14],
[23]). Thus, if (s(t,.))ter is an Ornstein-Uhlenbeck process the oscillation
pattern of'uw between the two stationary states wug and wq sets in.

The preceding remark makes it natural to ask whether similar results
obtain when the statistics of the random process (s(¢,.));cr are governed
by normal distributions in such a way that the condition lim;_,o. t o (t) =
o™ > 0 does not hold. We shall now see that this is indeed the case, which is
hardly a surprise since normal distributions already lurk in relation (2.23).
The precise conditions are stated in the following hypothesis.

(NS) The random process (s(t,.)):cr is a stationary Gaussian process on
(X, F,P) of average <s> and continuous two-point correlation function
p such that lim; . o(t) = oo.

The following results also play an important role in our analysis of the
homogeneous multiplicative white noise in [9]. We begin with

THEOREM 2.10. — Assume that hypotheses (K), (S), (G) and (NS) hold.
Assume also that the initial datum @ is non-random. Then the following
statements are valid :

(1) For any function a : R* — (ug, uy) such that the limit

a* = tlim (a(t))_1/2(G(a(t))— <s>t) (2.49)
exists (with a* = £o0o allowed), we have
e’ 2
tlim P{w € X : uy(., t,w) < a(t)} = (2n) /2 / dx exp [—%]
o (2.50)
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(2) For any function b : RT — (ug, u,) such that the limit

b* = lim (o (1)) YHG(b(t))— <s> t) (2.51)
exists (with b* = Loo allowed), we have
o z?
lim P{w € X:b(t) < uA.,t,w)} = (2m)" /2 / drexp|——
t—o0 Jb 2
(2.52)

Our next result allows us to get the asymptotic probabilities of
stabilization for u_ around the stationary states uy and u;.

THEOREM 2.11. — The hypotheses are exactly the same as in Theorem 2.10
Let ® : RT — R™ be any continuous function such that lim;_ . ®(t) = .
Then the following statements hold :

(D) If ¢'(ug,0) # 0 and if the limit

. D(t)
=] )T <ot 2.5:
a tig}o(a(f)) {g'(uo,())+ <s> } (2.53)

exists (with a* = xoc allowed), we have

tlim P{w € X i uy(, t,w) — upllee < ccxp[—@(t)]}
x?
dx exp {— —5} (2.54)

2

= (27r)—1/2/

J—o0

for every ¢ € (0,00).
(2) If ¢'(u1.0) # O and if the limit

b= thl&(a(t))””{?%qt <s> t} (2.55)

exists (with b* = Loo allowed), we have

tlim Plwe X : ||up(..t,w) — ur]]oo < cexp[—@(1)]}

ge's) ol
= (271')“1/2/ dzexp[—%—] (2.56)
J b~

for every ¢ € (0,00).
Finally, our general result concerning the average times is the following.

Annales de I'lnstitut Henri Poincaré - Analyse non linéaire



RANDOM PARABOLIC EQUATIONS 209

THEOREM 2.12. — The hypotheses are exactly the same as in Theorem 2.10.
Let ® : Rt — R be any continuous function such that lim,_, ., ®(t) = oo,
and let x, . (§,.) and X, (€, .) be the indicator functions of the sets
Fp.u,(€) and Fg , (€) as defined by relations (2.40) and (2.41). Then the
following statements hold :

(1) If ¢'(ug,0) # 0 and if the limit

d(t) \
e <> t} (2.57)

t—oo

gl(’ll‘Oa

a* = — lim (a(t))”lﬂ{

exists (with a® = £oo allowed), we have

t+T" vt —[L'Z
flim E </ déxs ., (&) ] = T*(2m)~4/? / dx exp [—2—]
[ — OO Jt — 00

for every T* € (0, 00).
(2) If 9'(u1,0) # O and if the limit

b* = — lim (a(t))’lﬂ{—q)(f)—-+ <§> t} (2.59)

t—00 g'(u1,0)

exists (with b* = £oo allowed), we have

4T ey
tlirgclE</+ dEXq,,ul(ﬁ’ ')> :T*(27r)—1/2 / dzexp{%ﬁ]

(2.60)
for every T* € (0,00).

The implication of the preceding three theorems is that results similar to
Corollaries 2.4, 2.7 and 2.8 hold in the Gaussian case as well. In particular,
the oscillation patterns of the random field u., also take place in the Gaussian
case when <s>= 0, ¢'(ug,0) > 0, ¢’(u1,0) < 0. Evidently, the condition
a(t) — oo implies that the integrated process ( fot d€s(E,.))ser cannot be P-
almost surely bounded in time. Oscillation patterns such as those described
above are therefore related to the unboundedness of ¢t — jot dés(€,.) in
an essential way.

Vol. 15, n°® 2-1998.



210 I. D. CHUESHOV AND P.-A. VUILLERMOT

Remarks.

1. A glance at the proofs given in Section 3 shows that the statements
of the last eight theorems and corollaries still hold for random initial
conditions ¢, provided that there exists a constant ¢ such that the
inequalities ug + ¢ < o(x,w) < uy — ¢ hold P-as. This last condition
is, however, somewhat artificial.

2. The random process (s(t..))icr and all the indicator functions
introduced above are continuous in probability. In the first case this
property follows from hypothesis (S). In the second case it follows
from the continuity of the fonction ®. As is usual, we may therefore
assume that those random processes are jointly measurable in (f.w)
and make no further mention of the matter ([14]). This will justify all
our subsequent applications of Fubini’s theorem.

The complete proofs of all results will be given in the next section.

3. PROOF OF THE MAIN RESULTS

We begin by outlining briefly our strategy regarding the proof of
Theorem 2.1. Our analysis rests upon the introduction of a one-parameter
family of auxiliary random fields v, : @ x R¥ x X — R™ indexed by
a real parameter v, which satisfy P-almost surely a parabolic differential
inequality when |« is sufficiently large. To show what kind of random
fields we are looking for we first recall that every x-independent random
process (4i(t,.)):cr that solves Problem (1.1) P-almost surely is necessarily
of the form (2.4). Since G is strictly monotone, we next observe that for
any a € R/{0}, we can rewrite relation (2.4) as

a(t,w) = G™* { / dés(€,w) + o (v (w)) + G(ﬂ)} (3.1)

Jo
for some random variable v* : X — R™ and for some [i € (ug. u;). Then,
given u,, that solves Problem (1.1) P-almost surely, we define the v s

as the random fields whose relationship to u, is formally identical to the
relationship between v’ and (u(t,.))er in (3.1). This gives

u,(z,t,w) = G7! { /‘f dés(€,w) + a tn(ve (2, t,w)) + G(ﬂ)} (3.2)
Jo
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or equivalently

w, (2,t,w) d 3
Vo la. t,w) = exp [a{/ q—(f% - /0 d&fs({f,w)}jl (3.3)

We then proceed by showing that v, stabilizes P-almost surely around
some random variable v7 : X — R" in L'(Q) as t — oc. Of course, this
will determine v uniquely, which in turn will determine the unique random
process (#(t,.))er of Theorem 2.1 by means of relation (3.1). From this
we shall easily infer both statements of Theorem 2.1.

The derivation of a parabolic differential inequality for v, requires the
control of the dependence of g on Vw. This is accomplished by using
the quadratic growth estimate of hypothesis (QG). The precise result is
the following.

LemmA 3.1. — Given the random field u,, let v, be the random field
given by relation (3.3) where « € R/{0} and ji € (ug,uy). Then for |«
sufficiently large we have P-almost surelv

Opvg (2,1, w) <div(k,, (2, t,w) Vo (2. t.w)), (r,t.w)eEQxX Rt x X
Ovg (.t w)

=0, it w) €OQXRT X X
Infu,) (2, t.w) € IR x
(3.4)
Proof. — We first note that

Vol t,w)

V’ o :;ﬂt* ‘ = alu (. t.w).0)
Vo (@, 1. w) ag(uv(.’mfﬁw)ao)

V(e t,w) (3.5)
so that v, satisfies P-almost surely the homogeneous conormal boundary
condition in (3.4) since u, does. In order to prove that the differential
inequality in (3.4) holds P-almost surely, we calculate each term separately
from relation (3.3) by making use of the first equation in (1.1). After
regrouping the various contributions we obtain P-almost surely

div (k,_(x.t,w)Vua (2, t,w)) — O, (2, t,w)

vy (r,tw) dg,
B 92(11¢(21;7t7w)70) {a a'lt(u«p(l’.'t./w)70)}

X (Vug(z,t,w), by, (2, t,w)Vuy(x,t,w))gy
_ S(tvw)g(ukp(w»t7w)?vu:p(w7t7w)) , p S
(,x{ o (. 4,9),0) —s(t,w) pva(z,t,w) (3.6)
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Since v, is positive, we see that the right-hand side of (3.6) is P-almost
surely non-negative if, and only if, the inequality

Jd
a{(y - 8—i(u¢(:1:., t,w),0) } (Vug(o, t,w), by, (2, t,w)Vug (2, t,w))gy

> as(t,w)g(uy(z. t,w),0)
X {g(uy(z, t,w), Vuy(z, t,w)) — gluy(x, t,w),0)} (3.7)

holds P-almost surely. In order to prove inequality (3.7) for || sufficiently
large, we now have to distinguish the case «« > 0 from the case « < 0. If
« > 0, then relation (3.7) holds if, and only if, the inequality

0
{a - 52 (up(r,t,w),0) } (Vug(z,t,w), by, (0. t,w)Vug(x, t,w))gy
u

> s(t.w)gluy(x. t,w),0)
X {g(u, (., t,w). Vug(a, t,w)) — gluy(z, t,w),0)} (3.8)

holds P-almost surely. In order to prove this last inequality for « > 0
sufficiently large, we construct a lower bound for the left-hand side and an
upper bound for the right-hand side of (3.8) which still satisfy the above
inequality for & > 0 large enough. Let M = max,cfug,u,] %(u,()) and
choose & € R™ N (7, 00); on the one hand, by invoking the first inequality

in (1.2) we obtain

{a — g—;q(u@({l), fw), 0)}(Vu¢(a7, tow), ky, (@, t,w)Vug (2. t,w))gy
/
> (o — M)k|Vu,(z,t,w)|? (3.9)

P-almost surely. On the other hand, owing to the boundedness of
u — g(u,0), that of the random process (s(t, .)):er and by using hypothesis
(QG) we get

—c|Vug(x, t,w)|?
< s(t,w)g(uw(x,t,w).())
X {g(up(@,t,w), Vuy (2,1, w)) — g(ue(z,t,w),0)}
< e|Vauy,(z,t,w)? (3.10)
P-almost surely for some ¢ € (0,00). Inequality (3.9) together with
the right-hand side inequality (3.10) then prove relation (3.8) for
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o € RYN[@+ck™,00). Now if @ < 0, then relation (3.7) holds if,
and only if, the inequality

{a - g—i(uv(m, t,w),O)}(Vu@(:L',t,w), ko, (2,8, 0)Vu,(z,t,w))gy

< s(t, )92, ), 0)
X {g(uy(z,t,w), Vuy(z, t,w)) — glus(z,t,w),0)} (3.11)

holds P-almost surely. In order to prove this inequality for @ < 0 small
enough, we construct an upper bound for the left-hand side and a lower
bound for the right-hand side of (3.11) which still satisfy the above
inequality for o < 0 sufficiently small. Let m = minyeju,uy] gﬁ—(u,(}) and
choose &« € R~ N (—oo,m); on the one hand, by invoking the ellipticity
condition of the random field £ once again we obtain

{a - gy—(uv(:n, t,w), ())}(Vudm,t,w), ko, (2, t,w)Vuy(z,t,w))g~

U

‘5 (@ — mk|Vu,(z.t,w)]? (3.12)

P-almost surely. Inequality (3.12) and the left-hand side inequality (3.10)
then prove relation (3.11) for & € R~ N (—o00, m — ck™']. The preceding
considerations show that there exists ag > 0 such that inequality (3.7)
holds P-almost surely for every o € R/{0} with || > ap. O

Remark. — A glance at relation (3.7) shows that if the nonlinearity g
does not depend on Vu, then the first relation in (3.4) holds if, and only
if, the inequality

a{(x— g—g(u¢(m, t,w),0) } (Vug(z, t,w), ky, (2,1, w0)Vu,(z. t,w))gy >0
u

(3.13)
holds P-almost surely. The important point here is that the left-hand side of
(3.13) does not depend explicitly on the random process (s(t, .))¢cr, SO that
inequality (3.13) is true for |a| sufficiently large without any boundedness
condition on (s(t,.)):er. Thus, in this case the parabolic inequality (3.4)
holds for all random processes with P-almost surely Holder continuous
trajectories.

In order to prove that v, stabilizes around some positive random variable
vh: X — R in L1(Q), we need a few more preparatory results. The first
one is an easy consequence of Lemma 3.1.
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Lemma 3.2. — There exist two random variables v : X — R such
that the inequalities

0 <o (w) <vg(ytw) <vhlw) <oc (3.14)

hold P-almost surely for « > 0 sufficiently large and for every t € RT,

Proof. — Let oy > 0 be the positive constant in the proof of Lemma 3.1.
For |a| > «, define the random variable v} (w) = SUP, o vo{r,0,w); then
for every (r,t) € Q x Rt we have v, (7, t,w) < v} (w) < oc P-almost
surely by the parabolic maximum principle applied to Problem (3.4). If
a > ap, this implies that v_,(z,t,w) = (va(x.t,w))"! < vl (w) P-
almost surely because of relation (3.3), which means that there exists a
random variable v : X — R™ such that the inequalities 0 < v} (w) <
vy (7, t,w) hold P-almost surely for every (z.t) € Q0 x R* ; in fact, it is

sufficient to choose v7 = (v1,)7t. O

The next result is also critical to our proof of convergence. It involves
yet another auxiliary random field for which we can prove a property
of exponential dichotomy in L?(§}) by means of a simple version of
the Poincaré-Wirtinger inequality. We write / for the identity operator in
L*(Q), |||z for the usual L%-norm and Q for the orthogonal projection
operator onto the constant functions, that is Qf = |Q|~" [, dxf(x) for
every f € L*(Q).

LEMMA 3.3. — Given the random field u.,, let v, be the random field
given by relation (3.3). Let T > 0 and let v be the random field that solves
P-almost surely the linear initial-boundary value problem

dv(z, t,w)=div (ky, (2, t,w)Vo(z, t,w)), (x,t,w)€Qx(T,00)x X

vz, T, w)=v,(2, T, W), (£,w)eQxX
dula,t,w) (.t w) €O (1, 00) x X
onlu,)

(3.15)
Then the following statements hold :
(1) We have v,(.,t,w) < v(.,t,w) P-almost surely for |&| sufficiently
large and for every t € [T,00).
(2) The equality Qu(..t,w) = Quu(..T,w) holds P-almost surely for
every a € R/{0} and for every t € [1,00).
(3) Let k be the ellipticity constant in relation (1.2) and let Ay be the
largest negative eigenvalue of the L*()-realization of Laplace’s
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operator on Hf\}z. Then the inequality

1T = @)v(., 1, w)||2 <exp[—k|A:|(¢ = TII(T = @)val., 7, w()||2 )
3.16
holds P-almost surely for every o € R/{0} and for every t € [T, 00).

Proof. — Statement (1) is an immediate consequence of relations (3.4),
(3.15) and of the parabolic maximum principle applied to the difference
va(. tiw) — (., t,w). As for statement (2), the second relation in (3.15)
implies that Qu(.,7,w) = Qu,(., 7,w) so that it is sufficient to prove the
relation Qu(.,#,w) = Qu(.,7,w) P-almost surely for every ¢ € [, oc). But
this relation is clearly satisfied since from the first and third equations in
(3.15) and owing to the definition of ) we get

%Q’U(.,t,w) =1QI7" [ dzdiv (ke (z,t,w0)Vo(z, t,w)) =0 (3.17)
28 S)

P-almost surely by invoking Gauss’ divergence theorem. We now prove
statement (3). We first notice that the projected random field (1 —Q)v(., ¢, w)
satisfies the same linear initial-boundary value problem as v does since ()
commutes with the differential operator in (3.15). This means that we have
P-aimost surely

(0:(1 — Q)v(z,t,w) = div (ku, (z,t,w)V(I - Q)v(z,t,w)), )
(z,t,w) € A x (1,00) x X
(I - Q)’U(:Evtaw) = (I - Q)Ua(l',?',u)),

(z,w) € A x X e (3.18)
ol - Q(z, t,w) 0
on(uy) ’
. (x,t,w) € O X (1,00) x X J

By using successively relations (3.18), integration by parts and the first
inequality in (1.2) we then get P-almost surely

((l_i”([_Q)v(-,t-,w)”g

= 2/ dz(l — Q)v(x,t,w)div (ky, (z,t,w)V(I - Q)v(z,t,w))

= ~2/ de(V(I - Q)v(x,t,w), ky, (2, t,w)V(I - Q)v(z,t,w))gy
Q
< =26V = Qv(., t,w))|f3 (3.19)
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for every ¢ € (7, 00). Now since the operator I — ¢ amounts to subtracting
off the spatial average of the function, an L?(Q)-version of the Poincaré-
Wirtinger inequality gives

I = Q. t.w)ll2 < ™2V = Qu(. b w)ll (3.20)

P-almost surely for every ¢ € (7,00) (see for instance [5] and [21] for a
discussion of the general Poincaré-Wirtinger inequality). The substitution
of relation (3.20) into relation (3.19) then leads to

d

for every ¢t € (7,00), which immediately implies relation (3.16) because
of the initial condition in (3.15). O

The preceding results now allow us to give the following.

Proof of Theorem 2.1. — According to the general strategy outlined above
we first prove that for «« > 0 sufficiently large, there exists a random
variable v} : X — RT such that ||v,(.,t,w) — v (w)|]y — 0 P-almost
surely as t — oo. We first note that the operator () is positivity preserving.
Then the application of @@ on both sides of the differential inequality (3.4)
along with the boundary condition in (3.4) imply that %Q’ua(.,t,w) <0
P-almost surely. Consequently, the function t — Qu,(.,¢,w) is mono-
tone decreasing on (0,00) and we define the random variable v
by vi(w) = inftewg Qua(,tow) = limy oo Qual(.,t,w). We then have
P-almost surely the estimates

HUG('ﬂtvw) - v:(w)Hl

< / dz|va(z,t, w) — Qua (., t,w)| + Q| Qual., b, w) — v} (w)]

Ja
= /dz(va(w,t,w) — Qual. t,w))T
Q
- /Qd:c(va(x,t,w) — Qua(st,w))” +9]|Qual(. t,w) — v3(w)]
= 2/ dz(va (T, t,w) = Qua (- 1, w)) T +]Q|Qua (., tw) — v (w)] (3.22)
Q

where (va(.,t,w) = Qua(.,t,w))* denotes the positive and the negative
part of v,(.,t,w) — Qua(.,t,w), respectively. The last equality in (3.22)
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follows from the fact that
/Qd:L'(va(x,t,w) - Qua(., t,w)) = [QQual(., t,w) — |QQual., t,w)
—0= / A (v (2, £,0) — Qua (st )+
Q .
+/ dz(ve(z, t,w) = Qua (., t,w))~
Ja

Now by definition of the random variable v, the second term of (3.22)
converges to zero P-almost surely as t — oo. It remains to show that the first
term of (3.22) converges to zero as well. For every ¢ € [, 00), define the set
Q/ (w) of those = € Q such that the inequality v, (z, ¢, w) —Qua(.,t,w) > 0
holds. Using successively the first two statements of Lemma 3.3, Schwarz
inequality and the third statement of Lemma 3.3, we obtain P-almost surely

/dx(va(:r,,t,w) — Qua(, t,w)t = / dr(ve (. t,w) — Qua(., t,w))
Q JO (W)

< /Q dr|(I — Q)v(z, t,w)| + | (W)||Qual., t,w) — Qua (., T,w)]

<IQPY I = Qo t,w)ll2 + [Q1|Qual-s t,w) = Qual.y7.w))|
<|Q|*2 exp[~ kl/\ll(t DT = Q)val., 7, w)ll2
+ 12 Qua (s 8, w) = Qual., 7. w)]

<|QJ"/? exp[— kl/\ (& = )[va (., 7 W)l

+ 19 [Qual- 1, w) —

for every t € [r,00). Since 7 > 0 is arbitrary in the first place, we can
choose 7 = ¢/2 and invoke the upper bound of Lemma 3.2 along with
the fact that t — Qu,(.,t,w) is monotone decreasing. From relation (3.23)
we get P-almost surely

Qua(., 7, w)| (3.23)

/dz:(v(,(w,t,w) — Qual., t,w)) T
0

<19 (exp l—gwg] ot (w) + (Qva ( %w) —rug;>> (3.24)

which implies the desired result as ¢ — oc. Now from relations (3.14) of
Lemma 3.2 we infer that the inequalities

v w) < inf we(w,tw) (3.25)
(x,£)€QxR+
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and L
vo(w) < inf Qua(tow) = vl (w) (3.26)
(. t)EQxRT

hold P-almost surely. From relations (3.1), (3.2), (3.25), (3.26), the fact
that G~ ! has a uniformly bounded derivative on R, we then conclude that

[, (. tw) —a(t,w)|| = / dr|u,y (v, tow) — a(t,w)]
Jo

<0(1) / dz|ln(v, (x, t,w)) — In(v} (w))]

JQ

IA

0(1) max((inf v, (r, t, w)) ™" (vi(w))™h) / drlva(z,t,w) — v (w)]

0(1) max((v (w)) ™" (03 (@)™ Dllva (. t,w) — w3 (W)lly
0(1)(vg (@)™ lva (ot w) = o3 (@)1 — 0
P-almost surely as ¢ — oc, so that u,(..t,w) — u(f,w) — 0 P-almost

surely strongly in L'(€). Since u,(.,t.w) € (ug,uy), 4(t,w) € (uo, uy)
P-almost surely for any + € R*, we have

IA

f

[|lup (. t,w) — a(t,w)|oc = sup |ug(x, t.w) — a(t,w)] < ¢
1‘66

P-almost surely for some ¢ € (0,00), so that relation (2.2) holds for
every p € [1,0c). Relation (2.3) then follows immediately from dominated
convergence. [J

Remark. — A glance at all the preceding proofs shows that the
boundedness of the random process (s(%,.)):cr is required only in Lemma
3.1. This observation and the remark following the proof of Lemma 3.1
then lead to the conclusion of Remark (1) following the statement of
Theorem 2.1.

We now turn to the proof of Theorem 2.2, for which we need additional
preparatory results. We begin by stating the existence of some uniform
bounds that pertain to the random field w.,.

LemMA 3.4. — There exists a constant ¢ € (0,00) such that the two
estimates

sup  |Vu,(z, t,w)| <e¢ (3.27)
(1) EQXRF

sup  |g(uy(z,t,w), Vuy(z, t,w))] < e (3.28)
(.’L',t)GﬁXR'F

hold P-almost surely.
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Proof. — Since we have u,(z,t,w) € (ug,u;) P-almost surely
for every (x,t) € Q x R*, there exists ¢ € (0,00) such that
SUD(, xR+ luy(z,t,w)] < ¢ holds P-almost surely. The fact that
inequality (3.27) holds then follows from the standard a priori estimates
for quasilinear parabolic equations [20]. The second inequality (3.28) is an
immediate consequence of (1.3) and (3.27). O

Our next preparatory result provides a proof of condition (2.5).

Lemma 3.5. — For every v € (0,00) and every p € [1,00) we have
P-almost surely

t+~
tlim / d€||Vu, (.. & w)lfp =0 (3.29)

Proof. — We first notice that the projected random field (I — Q)u,(.,t w)
satisfies P-almost surely the initial-boundary value problem

Kl — Q)uy(z,t,w) = div (ky, (2,1, w0) V(I — Q)uy(z,t,w))
+s(t,w)(I-Q)g(uy(z,t,w), Vu,(z,t,w)), (z,t,w)EQXRTxX

(I - Q)UL,;(.’IJ,O,(U) = (I - Q)QP(T,OJ) (:I"*w)EﬁXX
ol — Qu,(z, t,w) N )
Inlu.) =0, (2, t,w) €IMNXRT x X
(3.30)

By using successively relations (3.30), integration by parts, the first
inequality in (1.2), the boundedness of (s(¢,.)):cr along with inequality
(3.28), we obtain P-almost surely

d 2

EHU— Qu, (.. & w)|[3

=2 /Q dz(I — Q)uy(x, €, w) div (k. (2, &w)V{I — Q)u,(z, €, w))

+25(6,w) /Q dx(T = QYu (. €,0)(I — Q)gluy (. €. ). Vuuy (,€,0))

= —2/ dz(V(I — Quy(z, & w), ky, (2,t,w) V(I = Qu,(x, & w))gy
@ o

+25(6,w) /Q dr(I — Q)ug(z, &, w)(I - Q)g(uy(z, €, w), Vu,(z, £, w))

< =2k[|V(I = Qug (-, & w)llz + cll( = Q)uy (-, & w)|l2 (3.31)
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for some ¢ € (0,00). For 7,t € (0,00) we now integrate inequality (3.31)
over the interval [¢, ¢+ 7] ; we then get P-almost surely the estimate

H(I - Q)uqﬁ("t+ 'Y,w)Hg - II(I - Q)“tﬂ(': taw)”%
oty
% / AV (T = QYug(or&,w)|I2

4
< c/ GE(T = QYu(os€,00)] 2 (3.32)

which in turn leads to the inequality

t4y
[ GV (T = QY (e €. < (28) T — QYup(..t. )] 2

oty
(k) e / dE(I(T — QYu(.£,w)] ]2 (3.33)

Owing now to the fact that the random process (2.4) is z-independent
and that the operator T — () is an orthogonal projector in L?(€)), we have
P-almost surely

(I = Qup( t w2 = (I = Q)(uyp (-, b w) — @t w))l2
< H|wp (ot w) = 4t w)l|]2 — 0 (3.34)

as t — oo, by virtue of Theorem 2.1 for p = 2. Schwarz inequality and
relations (3.33), (3.34) then imply that the estimates

t47
0 < limsup / d€||[Vu,(., & w2
St

t—oc

t—o0

. 1/2
< \/f_ylimSllp{/ dfllvuw(wf»w)ﬂg}
Jt

9

s 1/2
=ﬁ}iggo{ / d£||vu—ce>u¢<.,s,w>||§} — 0 (335)

hold P-almost surely for every v € (0,00). This and the a priori
estimate (3.27) now imply relation (2.5) or (3.29). O

The passage from relation (2.5) to the first statement of Theorem 2.2 relies
on hypothesis (LEO) in an essential way. We first show that the existence
of the family of random linear evolution operators (U(t,7,w)):>, allows

us to get the following integral representation for the projected random
field (I — Q)u,(.,t,w).
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LeEmMMA 3.6. — For every 7 € (0,00) and every t € [T,00) we have
P-almost surely

(I = Quy(., t,w) =U(t, 7,w)(I — Quy(., T, w)
+ [ deU (e w)s(E )T - Q) (gl 6.0), Tty €)
- g(Q’LL(p(., 67 w)v 0)) (336)

Proof. — Relation (3.36) is an immediate consequence of the variation
of constants formula, together with the observation that the relations

(I-QU(t,r,w)=U(t,7,w)(I—-Q) and (I — Q)g(Quy(.,t,w),0) =0
both hold P-almost surely. [l

We can now give the following

Proof of Theorem 2.2. — We begin by proving that {|Vu,(.,t,w)||, — 0
P-almost surely as ¢ — oo for every p € [1,00). Since the a priori estimate
(3.27) holds, it is sufficient to prove the result for p = 1. Our first objective
is to prove that

Jim [[(= div (ku, (- £0) V)T = Qup( w0l =0 (337)

P-almost surely. By using successively Lemma 3.6, hypothesis (LEO),
the boundedness of the random process (s(t,.)):cr and a limited Taylor
expansion for g we obtain P-almost surely the estimates

[|(—div (k. t,w)V))l/z(I— Quy (., t,w)||2
< C(T){(t — )72 = Qug(.. T, w2

+ / E(E— &) 2N = Quale £ )lle + Vgl £ w)ll2) b (3.38)

for every 7,7 € (0,00), every t € (7,7 + T] and some c(T) € (0, 00).
Now let 5 € (1,2) and let §* € (2,00) be the dual exponent. Clearly,
the function £ — (t — 6)_5 is integrable on (7,t) so that we can invoke
Hoélder’s inequality to handle the second term in the last term of relation
(3.38). We obtain P-almost surely the inequality

/d€ 67N = Qual, & w)ll2 + [[Vauo( &, w)]]2)

. . 1/83*
< c(M){ (/ de||(I - Q)u¢<-,£,w)||;”'>
‘ ) 1/8”
+ ( / dE||Vu, (., & w)||5 ) } (3.39)
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for some ¢(3,T) € (0, 00). The substitution of relation (3.39) into relation
(3.38) then leads P-almost surely to the estimate

(= div (ko (.6 ) V)Y = Qug(tw)l2

< C(/f-,T){(t =)~ Qw2

+ .‘ /83"
+ (/ d&ll(I—Q)uv(-,E,w)IIE’T)

v
+ ( / dsllw,o(.,f.,w)ll@‘) } (3.40)

for some ¢(3,1") € (0,00) and for every 7.7 € (0,00), t € (1,7 + T).
Since we eventually want to investigate relation (3.40) for ¢ sufficiently
large and since 7 > 0 is a priori arbitrary, we now consider estimate
(3.40) for T € [t — 2,t — 1]. Then estimate (3.40) implies P-almost surely
the inequality

H(_‘div (ku ('ataw)v))lﬂ(j - Q)uv('*t>w)||2

3

< c(ﬁ,:m{nu — Q7.2

+ <,/t_2d§””“ Q)u@a,s,wnﬁ*)
. 1/
+ ( / dazvm.,f,w)nﬁ*) } (3.41)
Jt—2

for ¢ large enough. Considering now inequality (3.41) as a function of 7
and integrating both sides with respect to 7 over the interval [t — 2,¢ — 1],
we obtain P-almost surely the estimate

(= div (ko (£, 0) VY2 = Q)ug (- t.w)l2

S C(/HT){ /t—; d6H(1 - Q)uv('sgaw)”?

it , 178
+ (/ dé||(I = Quy(- € w)|l3 )
Jt—-2

ot . ve
+< /t“2d£1|m<.,s,w>||§> } .42)
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for ¢ sufficiently large. Now by virtue of estimate (3.34), the first two terms
of relation (3.42) go to zero P-almost surely as ¢ — oo, while the same
conclusion holds for the third term as a consequence of Lemma 3.5 so that
relation (3.37) holds. We now combine relation (3.37) with the ellipticity
estimate of relation (1.2) and integration by parts to get P-almost surely

IV = Qup (-t )l < QIVT = Q)uy(,t.w)l3
< (= div (ku, (1, 0) V)T = Q)ug (- tw)|[5 — 0 (3.43)

as t — oo. Equivalently, [|Vu,(.,t,w)|i — 0 and hence
|Vue(.,t,w)|l, — 0 P-almost surely for every p € [1,00) as t — oo
because of the a priori estimate (3.27). This and Theorem 2.1 now imply
that relation (2.8) holds. As in the proof of Theorem 2.1, relation (2.10)
then follows from dominated convergence while (2.9) and (2.11) follow
from the existence of the continuous embedding H»?(Q) — C(Q) for p
sufficiently large ([1}). O

The proofs of the remaining theorems of Section 2 rely on yet another
version of the parabolic maximum principle. We begin with the proof of
Theorem 2.3, for which we need two preparatory results. In the first one
we prove structural inequalities for the nonlinearity g.

Lemma 3.7. — Assume that g'(ug,0) # 0. Then for every constant
¢ € (0,u; —ug), there exist real constants ¢, » € R such that the inequalities

1+ G(y) < (9'(u0,0)) " ny — ug) < 2+ G(y) (3.44)

hold for every y € (ug,u1 — ¢). Similarly, assume that g'(uy,0) # 0. Then
for every constant ¢ € (0,u1 — w), there exist real constants ¢34 € R such
that the inequalities

es + Gy) < (¢'(u1,0)) (s —y) < ¢y + G(y) (3.45)
hold for every y € (ug + c,uy).
Proof. — Define the function hg : (ug,u;) — R by
ho(€) = (9(£,0)) ™" = (¢ (w0, 0) (€ — ug)) ™" (3.46)

It follows from the first part of hypothesis (G) and from the appropriate
Taylor expansion around wug that hy can be continued to [ug,u;) and is
bounded on [ug, u; — ¢] for every ¢ € (0,u; — ug). Furthermore, from the
definition of G and relation (3.46) we get

Gly) = /y dha(€) + (9" (10,0)) 'In(y — uo) + 0(1) (3.47)

Vol. 15, n® 2-1998.



224 1. D. CHUESHOV AND P.-A. VUILLERMOT

for every fixed [ € (uo,u1) and every y € (ug,u; — ¢). Now we infer
from the boundedness of hg that [ d€|ho(€)| = O(1) for such y's. This
remark together with relation (3.475 imply relation (3.44). We can prove
inequalities (3.45) in a similar way by introducing the function

hi(€) = (9(£,0) ™" = (¢'(u1,0)(€ —wr)) ™"
for £ € (ug,uy). O
In the following lemma, we establish a comparison between the random

field u,, and certain random processes of the form (2.4).

LEMMA 3.8. — Given the random field u,, there exist two random processes
(_(t,.))ser and (G4 (t,.))ier Of the form (2.4) such that the inequalities

- (t,w) < uy(.tw) < iy (t,w) (3.48)
hold P-almost surely for every t € R*.

Proof. — Since € is compact and since ¢(.,w) is continuous P-as., there
exists a random variable ¢ such that the inequalities v + ¢(w) < p(z,w) <
u; — c¢{w) hold for every x € Q. Now let (4_(t,.))icp be the random
process of the form (2.4) generated by the initial condition ug + ¢(w) ; in
a similar way, let (7, (t,.)):cr be the random process of the form (2.4)
generated by the initial condition u; —c¢(w). Since the two random processes
(4 (t,.))ter and the random field w,, satisfy the same parabolic boundary-
value problem, inequalities (3.48) follow from the parabolic maximum
principle ({15}). O

Our proof of Theorem 2.3 now follows from Lemmata 3.7, 3.8 and the
Birkhoff-Khintchin pointwise ergodic theorem.

Proof of Theorem 2.3. — We begin by proving statement (1). Since
<s> < 0 implies that ]Ot dés(€,w) — —oo P-almost surely when ¢ — oo,
we may assume that G4 (t, w) < uy — ¢ for some fixed ¢ € (0,u; — up) and
t sufficiently large. By using successively the second inequality in (3.44),
the second inequality in (3.48) and relation (2.4) we then get

(9 (0. 0)) ™ (ot (£, w) — o] o)
< (g (w0, 0) (i (1, w) — uo)

<o+ Glig (tw)) =co + / dés(€,w) + G(ur — ¢(w))
Jo
or
M0 (1) ~ o) <410, 0)2 1 (+/ dss(s,w>+c<u1—c(w>>>
(3.49)
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P-almost surely. Inequality (3.49) together with the Birkhoff-Khintchin
pointwise ergodic theorem now imply that the estimate

limsup ¢ Hn({Jus(., ¢, w) = uollo) < <> g'(up,0) (3.50)
¢

—00
holds P-almost surely. Now, by using successively the first inequality
in (3.44), the first inequality in (3.48) and relation (2.4), we obtain the
sequence of estimates

(9" (u0,0)) " In(llup (-, t,w) — uolloe) 2 (¢'(uo, 0)™ (@ (t,w) — uo)

> e+ Gli—(t,w)) =c1 + /0 dés(€,w) + G(ug + c(w))
or
M n(|[uy (-t w) —tol|oo) > g’ (10, 0) <01+/0 dfs(f,w)—f-G(uo-{-c(w)))

(3.51)
P-almost surely. Inequality (3.51) along with the Birkhoff-Khintchin
pointwise ergodic theorem once again imply that the estimate

<> ¢'(u0,0) < liminf ¢~ In(|uy(.,t,w) = uollc) (3.52)

holds P-almost surely. Relation (2.14) then follows from relations (3.50)
and (3.52). If <s>> 0, a similar reasoning based on inequalities (3.45)
and Lemma 3.8 leads P-almost surely to the estimates

<s> ¢'(uy,0) < litm inf ¢~ n(||up (.t w) = 41]]oo)
< limsup ¢ n({lug (., t,w) — w1 l|os) < <8> ¢'(u1,0)  (3.53)
t—
which give relation (2.15). O

The proof of the corollary concerning the average times is now
clementary.

Proof of Corollary 2.4. — Assume that < s >< 0, ¢'(up,0) > 0
and let € € (0, |<s>|g'(u0,0)). Let T* € (0,00), let F.,,(£) be as in
relation (2.18), let x. ., (&) be the indicator function of F. (&) and let
6 > 0. Since the P-almost sure convergence of Theorem 2.3 implies the
convergence in probability, there exists ¢(e,8) > 0 such that the sequence
of estimates

T >E ( / "t .>> -/ e [ P@)uew)

t+T*
=/ P {w € X : 1€ 0 (|t (o, £, ) 1] Joo - <85> ¢ (0, 0)| <)
>(1-6)1
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holds for every t € (t(e,46),0). In order words we have

t- T
(T*)'”E(/ AEXeuo (€. ) —T*) € (=4,0] (3.54)

for every t € (t(e,6),00), which proves the first statement of the lemma.
The proof of the second statement is similar. [

Lemma 3.8 plays a fundamental role in the remaining part of this section
as well. The basic strategy amounts to getting estimates for the probability
of various events associated with the random processes (w4 (¢, .)):er ; such
estimates can be readily derived from the hypotheses concerning the random
process (s(t,.)):er through the explicit form (2.4). We can then transfer
the corresponding information over to the random field u, through the
comparison Lemma 3.8. We begin with the following

Proof of Theorem 2.5. — Owing to Lemma 3.8, we first notice that
P{we X a4 (t,w) <a(t)} <P{w e X tu, (., tw) <a(t)}
<Plwe X :i_(t,w) <a(t)} (3.55)

where a : RT — (ug,u1) is the function that appears in the first statement
of Theorem 2.5. It is therefore sufficient to estimate the long-time behavior
of the probabilities P{w € X : 44(t,w) < a(t)}. Write momentarily
(a(t,.))ter = (G+(t,.))ter for the two random processes of Lemma 3.8
and write ¢ = ug + ¢, ¢ = u; — ¢ for their initial non-random conditions.
Refering back to the explicit form (2.4) and recalling that the function G
is strictly monotone increasing, we obtain

P{we X : a(t.w) < a(t)} = P{w € X : G(alt,w)) < Gla(t))}
-—-P{w e Xt /2 / de€(s(&,w)— <s>)
<t7V2(Gla(t)— <s> t) — t72G(9) (3.56)

for every t € R™. Now let a* be as defined by relation (2.24) ; if |a*| < oc
then for every ¢ > 0 there exists ¢, > 0 such that the inequalities

P{w € X :t71/2 /.t dé(s(€,w)— <s>) < a” — 5}
0

SP{w e X ¢t/ / dg(s(€,w)— <s>)
Jo
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<t V2(G(a(t) - <s> 1) - t‘1/2G(¢>}

S[F"{w €X /2 /t dé(s(§,w)— <s>) <a™ + E} (3.57)
0

hold for every t € (f.,00). Invoking now hypothesis (CLS) and relations
(3.56), (3.57) we obtain

(2mo™)~1/? /

J =00

#
a®—

€ .2
dx exp {— g——*} <liminfP{w € X : 4(t,w) < a(t)}
o

t—o0

<limsupP{w € X @ a(t, w) < a(t)}

t—oo

< (2m*)‘1/2/

iale o

a®+e

72
dx - 3.58
coo]- 2] 55
for every € > (. By observing that ¢* does not depend on the initial
condition ¢ and by letting € | 0 we get

a 2

th_glo Plw € X : dy(t,w) < a(t)} = (2ro™)71/2 / dx exp {— 23;*

- (3.59)

Relations (3.55) and (3.59) then prove the first statement of the theorem

when |a*| < co. A slight variation of the above argument also shows that

relation (3.59) holds when a* = +oo. Finally, we can prove the second
statement in a similar way if we notice that

P{we X :b(t) <t_(t,w)} <P{w e X :b(t) < uy(., t,w)}
<P{we X :b(t) < us(t,w)} (3.60)

where b : RT — (ug,u;) is the function that appears in the second
statement of Theorem 2.5. [J

It is now easy to prove Theorem 2.6 by making suitable choices for the
functions a and b of Theorem 2.5. For this we need the following

LEmMMA 3.9. — If ¢'(ug,0) # 0 we have
G(uo + €) = (g’ (uo,0)) " In(e) + 0(1) (3.61)
for every € > 0 sufficiently small. Similarly, if ¢'(u1,0) # 0 we have
G(uy — ) = (¢'(u1,0))'n(e) + 0(1) (3.62)
Jor every € > 0 sufficiently small.
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Proof. —~ Choose y = wy + ¢ in relation (3.44) and y = u; — ¢ in
relation (3.45). [
Then we have the following

Proof of Theorem 2.6. — For any constant ¢ € (0,00) we choose
a(t) = wo + cexp[—@(t)]. Since $(t) — oc when t — oo we have
a(t) € (uo,uy) for t sufficiently large and

P{we X :u, (.. t,w) <alt)}
=P{w e X : |Juy,(., t,w) — wl|leo < cexp[—O(t)]}  (3.63)

Now for the above choice of ¢ and because of relation (3.61) of Lemma
3.9 we have

a® = tlim t7Y2(Gug + cexp[—B(t)])— <s> 1)

_— o(t)
=— lim 7Y —2 4 <>t 3.64
P g'(up,0) TS ( )

Relations (3.63), (3.64) and the second statement of Theorem 2.5 then
prove relation (2.29). We can prove the second statement of the theorem
in a similar way by choosing b(t) = u; — cexp[—®(¢)] and by invoking
relation (3.62) of Lemma 3.9. O

Having disposed of Theorem 2.6, we can now prove Corollary 2.7 by
making very specific choices for the function ®, which allow an explicit
evaluation of the numbers a* and b* given by relations (2.28) and (2.30).
For this we have to distinguish the case <s>= 0 from the case <s># 0.

Proof of Corollary 2.77. — If < s>< 0 and g¢'(ug,0) > 0, let
e € (0, ]<s>|g'(ug,0)) and choose ®(t) = —(< s> ¢'(up,0) + €)t in
Theorem 2.6. Then ¢* = +oo from relation (2.28) so that

P{w € X : |Juy(., t,w) — tglloo < cexpl(<s> ¢'(ug,0) + )]} — 1
(3.65)
as t — oo because of relation (2.29). But if ®(t) = —(<s> ¢'(uo,0) —e)t
then ¢* = —oo so that

P{w € X : cexpl(<s> g'(uo,0) — e)t] < ||u,(,t,w) — uplloc} — 1
(3.66)
as t — oo by switching to the complementary event. Relations (3.65)
and (3.66) then immediately imply relation (2.32). In a similar way we
can prove relation (2.33) when <s>> 0 and g'(u;,0) < 0. Finally, if
<s>=0, ¢'(u9,0) > 0, ¢'(1;,0) < 0 and if ¥, ¥* : RY — R* are any
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two continuous functions such that ¥(t) — oo, ¥*(t) — oo and % — 00
as t — oo, we choose ®(t) = —‘1% in relations (2.28) and (2.30). Then
a* = b* = 0 so that the relations

P{w € X ¢ [[up(t,w) — tplloo < cexp [-%] }_+ /2 (3.67)

and
P{w € X i Jup(.,t,w) — urlloo < cexp [——] }—> /2 (3.68)

hold simultaneously as ¢ — oco. But if ®(t) = t¥*(t) then a* = —o0
and b* = oo so that

P{w € X : cexp[—VtU*(t)] < [Juy(., t,w) — up|loo} — 1 (3.69)
and
P{w € X : cexp[—Vt¥* ()] < [|up(tw) —wlleo} — 1 (3.70)

as t — 0o, again by switching to complementary events. Relations (3.67)
and (3.69) then imply relation (2.34), while relations (3.68) and (3.70)
imply relation (2.35). 0O

We next observe that there is no need to prove Corollary 2.8 directly,
for the preceding considerations and the above choices of @ for the case
<s>= 0 show that Corollary 2.8 is a simple consequence of Theorem 2.9.
Therefore, we now turn to the proof of that theorem.

Proof of Theorem 2.9. — We begin by observing that

E(' / R— .>> - Q/tw it [ Pldopra (e

t+T"
= / dEP{w € X : [Jug (-, & w) = uolloo < cexp[-D(E)]} (3.71)

From relation (3.71) and the first statement of Theorem 2.6 we then infer

that
t+T* v’ LL,2
E / d€xq., (&) | — T*(2re*) "2 / dx exp [— 20*}
t J—o0

< /
t

dE|P{w € X : ||up(-, & w) ~ uo||oo < cexp[—B(£)]}

a 2
- (2%0*)_1/2/_0'0 dwexp{—%} —

as t — oo for every T* € (0,00). The proof of the second statement of
Theorem 2.9 is similar. [
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Finally, we devote the remaining part of this section to proving the
results of Section 2 that are relative to the case where the random process
(s(t,.))sen satisfies hypothesis (NS). Lemma 3.8 plays an essential role
here as well. We begin with the following.

Proof of Theorem 2.10. — As in the proof of Theorem 2.5, it is sufficient to
estimate the long-time behavior of the probabilities P{w € X : i4.(¢t,w) <
a(t)} where {@4(f,.)}er are the two random processes of Lemma 3.8,
and where a : RY — (ug,u;) is the function that appears in the first
statement of Theorem 2.10. By using the same notation as in the proof of
Theorem 2.5 and by noticing that the integrated process ¢ — ]Ot dés(€, ) is
Gaussian as well, with average <s> ¢ and variance o(t) given by relation
(2.47), we obtain

Plw e X :a(t,w) < a(t)} =P{w e X : Gla(t,w)) < Gla(t))}

= F’{w € X: td{(s(ﬁ,w)~ <s>) < Glalt))— <s> t - G((ﬁ)}

0
-G la(t))— <@t—G(p)

= (2ma(t)) /2 ‘/_OO dzxexp [— —2—0—(6]

o (e() "G (a(t) =)= (a(1) " /2G($) 2
= (2n)” /

dx exp [—%} (3.72)

for every ¢ € R™. Invoking then relation (2.49) and the fact that o (t) — oc
as t — oo we obtain

9

s

dz exp [~ i)—] (3.73)

Fa

a”

tglgo Plwe X ra(t,w) <at)} = (271')_1/2/
independently of the initial condition ¢. This and relation (3.55) then imply
relation (2.50). We can carry out the proof of relation (2.52) in a similar
way. O

It is now clear that Theorem 2.11 follows from Theorem 2.10 in
exactly the same way as Theorem 2.6 follows from Theorem 2.5, and
that Theorem 2.12 follows from Theorem 2.11 exactly as Theorem 2.9
follows from Theorem 2.6.

4. SOME CONCLUDING REMARKS

In this paper we have investigated the long-time behavior of random fields
that are P-almost surely classical solutions to quasilinear parabolic problems

Annales de Institur Henri Poincaré - Analyse non linéaire



RANDOM PARABOLIC EQUATIONS 231

with random coefficients of the form (1.1) when hypotheses (K), (S) and (G)
hold. We have obtained the most complete and precise results for the case
where the lower-order coefficients (s(Z,.)):er are either stationary random
processes whose statistics obey the central limit theorem, or stationary
Gaussian processes such as the Ornstein-Uhlenbeck process. In both cases,
we have shown that a P-almost sure solution to (1.1) first homogeneizes
over the region () to identify eventually with an z-independent random
process ((t, .)):er of the form (2.4), and then either converges to a spatially
and temporally homogeneous asymptotic state or undergoes oscillations
between two such asymptotic states. In both cases we have also determined
the corresponding rates of stabilization along with the average times that
the random fields spend in small neighborhoods of the asymptotic states.
Related results hold in case (s(Z,.)).er is homogeneous multiplicative white
noise, provided that Problem (1.1) be semilinear and that the nonlinearity g
does not depend on Vu. We develop and present these results in [8] and [9].
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