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On the correction to Einstein’s formula
for the effective viscosity

David Gérard-Varet and Amina Mecherbet

Abstract. This paper is a follow-up to Gérard-Varet and Hillairet (2020) on the derivation of accur-
ate effective models for viscous dilute suspensions. The goal is to identify an effective Stokes
equation providing an o.�2/ approximation of the exact fluid–particle system, with � the solid
volume fraction of the particles. This means that we look for an improvement of Einstein’s formula
for the effective viscosity in the form �eff.x/ D � C 5

2��.x/� C �2.x/�
2. Under a separation

assumption on the particles, we proved in the article above that if an o.�2/ Stokes effective approx-
imation exists, the correction�2 is necessarily given by a mean field limit, which can then be studied
and computed under further assumptions on the particle configurations. Roughly, we go here from
the conditional result of the article above to an unconditional result: we show that such an o.�2/
Stokes approximation indeed exists, as soon as the mean field limit exists. This includes the case of
periodic and random stationary particle configurations.

1. Introduction

We consider a suspension of spherical particles, modelled by a collection of balls Bi D
B.xi ; rn/, 1 � i � n, all included in a fixed compact of R3. The centres xi of the balls
may (and will) depend on n, but we omit it in the notation. We consider a regime where
n is large, and rn � n�1=3. More precisely, we assume for simplicity that � WD n4

3
�r3n is

independent of n. We also assume that the balls occupy a volume of size 1, in the sense that

�n WD
1

n

nX
iD1

ıxi ! �.x/ dx; n!C1; (A0)

where � is a bounded density with support xO for a smooth bounded domain O such that
jOj D 1. In particular, � can be interpreted as the solid volume fraction. The suspension is
immersed in a viscous fluid. We consider particles light enough so that neglecting inertia
of the fluid and the particles is reasonable. Setting �n WD R3 n

S
i Bi ,8̂̂<̂

:̂
� div.2�D.un/ � Ipn/ D gn on �n;

div.un/ D 0 on �n;

un D ui C !i � .x � xi / on Bi ;

(1)
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where gn 2 L2.R3/ \ L6=5.R3/ models some forcing. The constant vectors ui and !i
are the translation velocity and rotation vector of ball Bi . They are unknowns, associated
to the Newtonian dynamics of the particles: in the absence of inertia, relations are of the
form Z

@Bi

�.un; pn/� D �

Z
Bi

gn dx;Z
@Bi

Œ�.un; pn/�� � .x � xi / D �

Z
Bi

gn � .x � xi / dx;

(2)

where �.u; p/ D 2D.u/ � pI is the Newtonian stress tensor, and � is the unit normal
vector pointing outward. These relations correspond to prescribing the force and the torque
on each particle. One further assumes decay of un at infinity, which will be encoded in the
functional setting.

As n!C1, one may expect that some averaging takes place. The hope is to replace
the fluid–particle system above by a Stokes equation, with a viscosity coefficient �eff D

�eff.x/, different from � in the domain O, reflecting there the rigidity of the particles.
Convergence to such a Stokes equation can indeed be shown through homogenization
techniques, if one further assumes periodicity or stationarity assumptions on the distribu-
tions of balls: see [4], or [13] for the scalar case. Note that such homogenization results
are valid for any �, but somehow abstract, as the expression of the effective viscosity
involves a corrector equation which is not much simpler than the original system. They
are, moreover, restricted to homogeneous distributions. In the present paper, we aim at
more explicit formulas for the effective viscosity in the dilute regime, namely when �
is small (but not vanishing as n goes to infinity). We want to show that for n large, the
solution un of (1) has for o.�2/ approximation the solution Nu of´

� div.2Œ�C �1�C �2�2�D. Nu/ � I Np/ D g on R3;

div. Nu/ D 0 on R3;
(3)

for appropriate first- and second-order corrections �1 D �1.x/, �2 D �2.x/. Clearly, �1
and �2 should be nonzero only in the region O where the suspension is located. Note also
that, if the distribution of the particles is anisotropic, �1 and �2 are not expected to be
scalar functions. In full generality, we look for �1, �2 in the set

Sym.Sym3;� .R// WD ¹M W Sym3;� .R/! Sym3;� .R/; M
t
DM º

of symmetric isomorphisms of the space of trace-free symmetric 3 � 3 matrices (denoted
by Sym3;� .R/). This space can be identified with the space of four-tensors satisfying

M D .Mijkl /1�i;j;k;l�3; Mijkl DMj ikl DMj ilk DMlkj i ;

and the trace conditionsX
i

Mi ikl D 0 for k ¤ l;
X
i

Mi i11 D

X
i

Mi i22 D

X
i

Mi i33:
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The search for the effective viscosity has a long history, starting from the work of
Einstein ([5]): he showed that if the suspension is homogeneous, and if the interaction
between the particles can be neglected, an o.�/ approximation is given by �eff D � C
5
2
��. A rigorous derivation of this formula and of inhomogeneous extensions was later

provided under more or less stringent separation assumptions on the particles. We refer
to [10, 14, 16] for periodic distributions of balls, and to [12, 15] where the periodicity
assumption is relaxed into a lower bound on the minimal distance:

dn WD min
i¤j
jxi � xj j � cn

�1=3: (A1)

See also the most recent paper [9], where the formula �1.x/ D 5
2
�.x/� is established

under mild requirements. Our concern in the present paper is related to an o.�2/ effective
approximation that is beyond Einstein’s formula. Such second-order effective viscosity
has been discussed in several papers; see [1,2,19]. However, one can observe discrepancies
between the results, and very different approaches depending on the types of suspensions
considered. A more global analysis was initiated by the first author and M. Hillairet in the
recent paper [8]. Roughly, this paper shows that under (A1), if lim supnkun � Nuk D o.�

2/,
where k k is a weak norm and where Nu is a solution of (3) with �1 D 5

2
�.x/�, then

necessarily,

�2 WD

Z
O

�2 D
75

16�
lim
n!1

�
1

n2

X
j¤i

M.xi � xj / �

“
M.x � y/�.x/�.y/ dx dy

�
(4)

where M DM.x/ 2 Sym.Sym3;� .R// is given by

M.x/S W S 0 D �D
�x ˝ x W S
jxj5

x
�
W S 0

D �2
Sx � S 0x

jxj5
C 5

.S W x ˝ x/.S 0 W x ˝ x/

jxj7
8S; S 0 2 Sym3;� .R/: (5)

Hence, if a second-order effective model exists, the average �2 of the second-order correc-
tion over the domain (which coincides with �2 if �2 does not depend on x) is given by
the mean field limit (4)–(5). The second part of article [8] consists of an analysis of such
a mean field limit, using ideas introduced by S. Serfaty and her coauthors in the context
of Coulomb gases (see [17] and references therein). More explicit formulas are provided,
notably in the periodic case.

The limitation of the results in [8] is that they hold conditionally to the existence of
a second-order effective model of type (3). Ideally, one would like to prove the existence
of an effective model as soon as the mean field limit in (4)–(5) does exist. This necessary
condition is however not enough: indeed, �2 corresponds to an average over the whole
domain O, so that it is unlikely to guarantee the existence of an effective local coefficient
�2 D �2.x/. Nevertheless, as we will show, we can exhibit more local in nature mean
field limits, whose existence ensures the existence of an effective model. Moreover, such
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limits allow us to determine �2, and not only its average �2. We introduce

�2;n WD
75�

16�

�
M.x � y/1x¤y�n.dx/�n.dy/ �M.x � y/�.x/ dx �.y/ dy

�
: (6)

It can be seen as a compactly supported distribution on R3x �R3y , with values in the space
Sym.Sym3;� .R//: for F D F.x; y/ 2 C1.R3 �R3/ (even for F 2 C 1.R3 �R3/),

h�2;n; F i D
75�

16�

�
1

n2

X
i¤j

M.xi � xj /F.xi ; xj /

�

Z
R3

Z
R3

M.x � y/F.x; y/�.x/�.y/ dy dx

�
: (7)

We stress that M.x/ is a Calderon–Zygmund kernel, hence not integrable. In particular,
the last integral must be understood in a weak sense: it can be defined rigorously through
the decompositionZ

R3

Z
R3

M.x � y/F.x; y/�.x/�.y/ dx dy

WD

Z
R3

Z
R3

M.x � y/ŒF.x; y/ � F.y; y/��.x/�.y/ dx dy

C

Z
R3

.M ? �/.y/F.y; y/�.y/ dy;

where the first integral in the decomposition exists in the usual sense, while the second
one is defined because h ! M ? h is continuous from Lp.R3/ to Lp.R3/ for any
1 < p < 1 by the Calderon–Zygmund theorem. Of course, when F is of the form
F.x; y/ D f .x/g.y/, one can write directlyZ

R3

Z
R3

M.x � y/F.x; y/�.x/�.y/ dx dy D

Z
R3

.M ? .�f //�g;

which allows us to give a meaning to h�2;n; f ˝ gi for much less regular f and g. Our
theorem reads as follows.

Theorem 1.1. Let � > 0, g 2 L3C", " > 0, �2 2 L1.R3; Sym.Sym3;� .R///. For all
n, let rn be such that � D 4�

3
nr3n , gn 2 L

6
5 .R3/. Let un;� be the solution of (1)–(2) in

PH 1.R3/ \ L6.R3/. Assume (A0)–(A1), that gn ! g in L
6
5 .R3/, and that

�2;n ! �2.x/ıxDy in D 0.R3 �R3;Sym.Sym3;� .R///; (A2)

with �2;n defined in (6). Then any accumulation point u� of un;� solves´
� div.2Œ�C 5

2
���C �2�

2�D.u�/ � Ip�/ D g CR� in R3;

div.u�/ D 0 in R3;
(8)

where R� satisfies, for all q � 3,

jhR�; �ij � C�
7
3 kD�kq 8� 2 PH 1.R3/ \ PW 1;q.R3/: (9)
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A few remarks are in order.

Remark 1.1. One has directly from estimate (9) that for any p � 3
2

,

ku � u�k PW 1;p.R3/ � C�
7
3 ;

where u is the solution of the effective model´
� div.2Œ�C 5

2
���C �2�

2�D.u/ � Ip/ D g on R3;

div.u/ D 0 on R3:
(10)

It follows by Sobolev embedding that ku � u�kLrloc
D O.�

7
3 /, for any r D 3p

3�p
� 3.

Moreover, as will be seen below, .un;�/n2N is bounded in PH 1 \ L6. Combining the last
estimate with Rellich’s theorem, it follows easily that

lim sup
n
kun;� � ukLrloc

D O.�
7
3 / 8r � 3:

Remark 1.2. The main assumption of the theorem is the convergence of �2;n to
�2.x/ıxDy . With regard to the form of h�2;n; F i, cf. (7), this convergence corresponds
to the local mean field limits alluded to above. In particular, the necessary condition (4)
derived in [8] corresponds to the convergence of h�2;n;F i for the special caseF.x;y/D1.

The outline of the paper is the following. After preliminary results on the Stokes sys-
tem, gathered in Section 2, we address the proof of Theorem 1.1 in Section 3. Finally,
we turn in Section 4 to the discussion of assumption (A2). Roughly, we show that it is
fulfilled by both periodic and random stationary particle distributions that satisfy the sep-
aration assumption (A1), and we discuss the corresponding limit �2. There we closely
follow the analysis in [8]. Notably, we show that when the distribution of particles is
given by an isotropic process (plus technical conditions), then �2S W S D 5

2
�jS j2, a result

that was not given in [8].

2. Reminder on the Stokes problem

In this section we recall some properties regarding the Stokes equation on an exterior
domain. We denote by .U;P / the Green function of the Stokes equation:

U.x/ WD
1

8�

� I3
jxj
C
x ˝ x

jxj3

�
; P .x/ D

1

4�

x

jxj3
: (11)

Let A 2 Sym3;� .R/. We denote by .V ŒA�;QŒA�/ the solution to the Dirichlet problem8̂̂<̂
:̂
��uCrp D 0 on R3 n B.0; 1/;

div.u/ D 0 on R3 n B.0; 1/;

u D �Ax on B.0; 1/;

(12)
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given by the explicit formulas

V ŒA�.x/ D �
5

2

A W x ˝ x

jxj5
x �

1

jxj5
Ax C

5

2

.A W x ˝ x/

jxj7
x; (13)

QŒA�.x/ D �5
A W x ˝ x

jxj5
: (14)

An important feature of this solution is that, as easily seen from symmetry considerations,
it fulfills the extra conditionsZ

@B.0;1/

�.V ŒA�;QŒA�/� D 0;

Z
@B.0;1/

x � �.V ŒA�;QŒA�/� D 0: (15)

Moreover, we can link V ŒA� to the Green function through the identity

V ŒA�.x/ D
20�

3
rU.x/ACRŒA�.x/; (16)

where RŒA� is homogeneous of degree �4. Here, rU is a third-rank tensor defined using
the Einstein summation convention by

rUA D .@xkUijAjk/1�i�3 D �
3

8�

A W x ˝ x

jxj5
x: (17)

Moreover, a simple calculation yields the identity

D.rUA/ W B D
3

8�
M.x/A W B D D.rUB/ W A; (18)

where M was defined in (5), so that

D.V ŒA�/.x/ D
5

2
M.x/ACD.RŒA�/.x/: (19)

We also introduce the extensions

V ŒA�.x/ D

´
V ŒA� on B.0; 1/c ;

�Ax on B.0; 1/;
QŒA�.x/ D

´
QŒA� on B.0; 1/c ;

0 on B.0; 1/:
(20)

Direct computation shows that

� div.�.V ŒA�;QŒA�// D 5Axs1 in R3; (21)

where s� is the surface measure on the sphere of radius �.
We finish this part by recalling a classical estimate for the Stokes equation. Let w 2

W 1;2.
S
Bi / be divergence-free. We consider the unique solution .v; q/ satisfying8̂̂<̂

:̂
� div.2D.v/ � Iq/ D 0 on �n;

div.v/ D 0 on �n;

D.v/ D D.w/ on
S
Bi ;

(22)
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with the following conditions:Z
@Bi

�.v; q/n D 0;

Z
@Bi

Œ�.v; q/n� � .x � xi / D 0; 81 � i � n: (23)

Using integration by parts, one can show that v is a minimizer of®R
R3 jD.u/j

2; u 2 PH 1
� .R

3/; such that D.u/ D D.w/ on
S
Bi
¯
:

Combining this minimizing property with [15, Lem. 4.4] we have the following result:

Proposition 2.1. The unique solution v of (22), (23) satisfies

krvk2
L2.R3/

D 2kD.v/k2
L2.R3/

� CkD.w/k2
L2.

S
Bi /
:

Proof. The first equality is well known: it follows from the identity �v D 2 div.D.v//
and integration by parts. For the inequality, by the minimizing property of v, it is enough
to construct a divergence-free velocity field u that matches the condition D.u/ D D.w/
on
S
Bi and satisfies the same inequality. Classical considerations about the Bogovskii

operator ensure the existence of fields ui 2 H 1
0 ..B.xi ; 2rn/// such that

div.ui / D 0 on B.xi ; 2rn/; ui D w �

«
Bi

w on Bi ;

where, using the Poincaré–Wirtinger inequality, we get for all i ,

kruikH1
0 .B.xi ;2rn//

� C





w � « w






H1.Bi /

� C 0krwkL2.Bi /;

with C , C 0 independent of n by scaling considerations. See [11, Lem. 18] for details. We
then take u D

P
i ui . Since the balls B.xi ; 2rn/ are disjoint by (A1) for � small enough,

u satisfies D.u/ D D.w/ on
S
Bi and we have

kuk2
PH1.R3/

D

X
i

kruik
2
L2.B.xi ;2rn//

� C
X
i

krwk2
L2.Bi /

:

Moreover, adding a proper rigid vector field tow on eachBi , which does not changeD.w/
on each Bi , we can always assume that

R
@Bi
w D

R
@Bi
w � .x � xi / D 0. We conclude by

applying [15, Lem. 4.4].

3. Proof of Theorem 1.1

By linearity of the Stokes equation, we can restrict to the case � D 1. Let q � 3. The
goal is to show that any accumulation point u� of un;� satisfies a system of type (8) with
remainder R� satisfying

hR�; �i � C�
7
3 k�kW 1;q
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for all divergence-free � 2 PH 1 \W 1;q . By density, it is enough to show such an inequality
for all divergence-free � 2 C1c .R

3/. For any such �, we consider �n satisfying8̂̂<̂
:̂
� div.2D.�n/ � Iqn/ D 2 div..5

2
��C �2�2/D.�// on �n;

div.�n/ D 0 on �n;

�n D � C translationC rotation on Bi ;

(24)

with the following conditions:Z
@Bi

�.�n; qn/� D �2

Z
@Bi

�5
2
��C �2�

2
�
D.�/� dx;Z

@Bi

Œ�.un; pn/�� � .x � xi / D �2

Z
@Bi

h�5
2
��C �2�

2
�
D.�/�

i
� .x � xi / dx:

(25)

Note that �n depends implicitly on �. Similarly, we shall use un instead of un;� for short.
Testing � � �n in equation (1) we getZ
�n

.� � �n/ � gn D �

Z
�n

div.2D.un/ � Ipn/ � .� � �n/

D 2

Z
�n

D.un/ W D.� � �n/C
X
i

Z
@Bi

�.un; pn/� � .� � �n/

D 2

Z
�n

D.un/ W D.�/ � 2

Z
�n

D.un/ W D.�n/ �
X
i

Z
Bi

gn � .� � �n/:

We recall that in the second line of the above computations, the unit normal vector � is
pointing outward the balls. Using equations (24) and (25) we have

� 2

Z
�n

D.un/ W D.�n/

D

Z
�n

div.2D.�n/ � qnI/ � un C
X
i

Z
@Bi

Œ�.�n; qn/�� � un

D �

Z
�n

2 div
��5
2
�� C �2�

2
�
D.�/

�
� un C

X
i

Z
@Bi

Œ�.�n; qn/�� � un

D 2

Z
�n

�5
2
��C �2�

2
�
D.�/ W D.un/:

We get the following relation for all � using the fact that D.un/ D 0 on Bi :

2

Z
R3

D.un/ W
�
1C

5

2
��C �2�

2
�
D.�/ D

Z
R3

� � gn �

Z
R3

�n � gn: (26)

By a simple energy estimate, un also satisfiesZ
R3

jrunj
2
D 2

Z
R3

jD.un/j
2
D

Z
R3

un � gn � kunkL6kgnk
L
6
5
� CkrunkL2 ;
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where the last inequality comes from the Sobolev embedding and the boundedness of
.gn/n2N in L

6
5 . Hence, .un/n2N is bounded in PH 1 \ L6. Denoting by u� D limk unk an

accumulation point, we deduce from (26) with n D nk that

2

Z
R3

D.u�/ W
�
1C

5

2
��C �2�

2
�
D.�/ D

Z
R3

� � g C hR�; �i;

where hR�; �i D � limk

R
R3 �nk � gnk . Note that this limit exists because all other terms

in (26) converge when nD nk , k!C1. Moreover, it is clearly linear in � as �n is linear
in �. Furthermore, testing �n � � in (24), similar integrations by parts lead to

2

Z
R3

jD.�n/j
2
D 2

Z
R3

D.�n/ W D.�/ � 2

Z
R3

�5
2
��C �2�

2
�
D.�/ W .D.�n/ �D.�//:

The Cauchy–Schwarz inequality implies that �n is bounded uniformly in n in PH 1, hence
in L6. Eventually, as gn ! g strongly in L

6
5 , we have hR�; �i D � limk

R
R3 �nk � g.

Finally, to prove the theorem, it is enough to show that

8q � 3; lim sup
n

ˇ̌̌̌Z
R3

�n � g

ˇ̌̌̌
� C�

7
3 k�kW 1;q : (27)

In order to obtain (27), we shall write .�n; qn/ D .�1n C �
2
n; q

1
n C q

2
n/, where �1n is a

(somehow natural) approximation of �n and where �2n is a remainder. Namely, we look
for an approximation �1n of the form

�1n D rU ?
�
2
�
�
5

2
jOj�C �2�2

�
D.�/

�
� rn

X
i

V ŒAi �
�x � xi

rn

�
;

where U, V are defined in (11), (20). The rough idea behind this approximation is that
the first term on the right-hand side should take care of the source term in (24), while the
second term should take care of the boundary conditions at the balls Bi . In particular, the
field �R3 WD rU � .2.�5

2
jOj�C �2�2/D.�// solves the Stokes equation

���R3 CrqR3 D div
�
2
�
�
5

2
jOj�C �2�2

�
D.�/

�
; div�R3 D 0 in R3;

while each term in the sum, that is, �i;n WD �rnV ŒAi �.
x�xi
rn
/, solves

���i;n Crqi;n D 0; div�i;n D 0 in R3 n Bi ; �i;njBi D Ai .x � xi /:

By looking at (24), it is tempting to take Ai D D�i , where

D�i WD D.�/.xi /;

as � should be close to this value on the small ball Bi . However, this approximation is not
accurate enough, and would only allow us to recover Einstein’s formula. To go beyond,
one must account for two extra contributions. The first one is the trace left at the balls
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by �R3 . More precisely, it will be enough to correct the trace of the O.�/ term in �R3 .
The second contribution is the trace left by all �j;n, j ¤ i , on ball Bi , which corresponds
to binary interactions between particles. Again, it will be enough to account for the least
decaying term in �j;n; cf. decomposition (16). This leads to the following definition:

�1n D rU �
�
2
�
�
5

2
�C �2�2

�
D.�/

�
� rn

X
i

V ŒD�i C S
1
i C S

2
i �
�x � xi

rn

�
; (28)

where, using relation (18),

S1i WD �

«
Bi

D
�
rU � .�5jOj�D.�//

�
.x/ dx D �

15

8�
�

«
Bi

�
M � .�D.�//

�
.x/ dx

D �
15

8�
�

«
Bi

�Z
R3

M.x � y/D.�/.y/�.y/ dy

�
dx; (29)

while, still using (18),

S2i WD
X
j¤i

«
Bi

20�

3
D.rUD�j /

�x � xj
rn

�
dx D

5

2
r3n

«
Bi

X
j¤i

M.x � xj /D�j dx

D
15

8�

�

n

X
j¤i

«
Bi

M.x � xj /D�j dx: (30)

Direct computations using formula (21) yield

� div.�.�1n; q
1
n//

D div
�
2
�5
2
��C �2�

2
�
D.�/

�
� 5

X
i

.D�i C S
1
i C S

2
i /r1Bi

D div
��
5��C 2�2�

2
�
D.�/ �

5�

n

X
i

1

jBi j
1Bi .D�i C S

1
i C S

2
i /

�
in R3:

Using the definitions of S1i and S2i , (29) and (30), we find

� div.�.�1n; q
1
n//

D div
�
.5��C 2�2�2/D.�/ �

5�

n

X
i

1

jBi j
1BiD�i

�
5�

n

X
i

1

jBi j
1Bi

�
�
15�

8
�

«
Bi

Z
R3

M.x � y/D.�/.y/�.y/ dy dx

�
�
5�

n

X
i

1

jBi j
1Bi

�
�
15�

8

�

n

«
Bi

X
j¤i

M.x � xj /D�j dx

��
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D 5� div
�
�D.�/ �

1

n

X
i

1

jBi j
1BiD�i

�
(31)

C 2�2 div
�
�2D.�/ �

75

16�

1

n2

X
i

1

jBi j
1Bi

X
j¤i

«
Bi

M.x � xj /D�j dx

C
75

16�

1

n

X
i

1

jBi j
1Bi

«
Bi

Z
R3

M.x � y/D.�/.y/�.y/ dy dx

�
in R3:

Moreover, thanks to property (15), it is easily seen thatZ
@Bi

�.�1n; q
1
n/� D �2

Z
@Bi

�5
2
��C �2�

2
�
D.�/� dx;Z

@Bi

x � .�.�1n; q
1
n/�/ D �2

Z
@Bi

��5
2
��C �2�

2
�
D.�/�

�
� .x � xi / dx:

It follows that .�2n; q
2
n/ satisfies

div.�.�2n; q
2
n// D 0 on �n;

Z
@Bi

�.�2n; p
2
n/� D 0;Z

@Bi

�.�2n; p
2
n/� � .x � xi / D 0

(32)

with boundary condition

D.�2n/ D D. 
2
n C
z 2n/ on

[
Bi , (33)

where  2n and z 2n are defined by

 2n.x/jBi WD �.x/ �D�i � .x � xi /; x 2 Bi (34)

and

z 2n.x/ D �.S
1
i C S

2
i / � .x � xi / �

�
rU �

�
2
�5
2
��C �2�

2
�
D.�/

�
(35)

� rn
X
j¤i

V ŒD�j C S
1
j C S

2
j �
�x � xj

rn

��
; x 2 Bi :

We aim now to estimate both terms
R
g�1n and

R
g�2n .

3.1. Estimate of �2
n

Most of this subsection is dedicated to the derivation of the following proposition:

Proposition 3.1. For all q � 2,

lim sup
n
kD.�2n/kL2.R3/ � Cq

�
�
5
2�

2
q C �

11
6
�
kD.�/kLq :
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Before we prove this proposition, we show that it implies the following result:

Proposition 3.2. For all q � 2,

lim sup
n

ˇ̌̌̌Z
R3

g�2n

ˇ̌̌̌
� Cg;q�

1
2
�
�
5
2�

2
q C �

11
6
�
kD.�/kLq :

Note the extra factor �1=2 compared to Proposition 3.1, which is crucial to obtain an
o.�2/ error. Note also that for q � 3, this term is bounded by �

7
3 kD.�/kLq .

Proof of Proposition 3.2. We introduce the solution ug of the Stokes equation

��ug Crpg D g; divg D 0; in R3: (36)

As g 2 L3C", ug 2 W
2;3C"

loc , so that D.ug/ is continuous. Integrations by parts yieldZ
R3

g�2n D

Z
R3

.��ug Crpg/�
2
n D 2

Z
R3

D.ug/ W D.�
2
n/

D 2

Z
S
Bi

D.ug/ W D.�
2
n/ �

X
i

Z
@Bi

ug � �.�
2
n; q

2
n/�

D 2

Z
S
Bi

D.ug/ W D.�
2
n/ �

X
i

Z
@Bi

.ug C u
i
g C !

i
g � .x � xi // � �.�

2
n; q

2
n/�

for any constant vectors uig , !ig , 1 � i � n, by the last two relations in (32). As
ug C u

i
g C !

i
g � .x � xi / is divergence-free, one hasZ

@Bi

.ug C u
i
g C !

i
g � .x � xi // � � D 0:

We can apply classical considerations on the Bogovskii operator ([6]): for any 1 � i � n,
there exists U ig 2 H

1
0 .B.xi ; 2rn// such that

divU ig D 0 in B.xi ; 2rn/; U ig D ug C u
i
g C !

i
g � .x � xi / in Bi ;

and with
krU igkL2 � Ci;nkug C u

i
g C !

i
g � .x � xi /kW 1;2.Bi /:

Furthermore, by a proper choice of uig and !ig , we can ensure the Korn inequality:

kug C u
i
g C !

i
g � .x � xi /kW 1;2.Bi / � c

0
i;nkD.ug/kL2.Bi /;

resulting in
krU igkL2 � CkD.ug/kL2.Bi /;

where the constant C in the last inequality can be taken independent of i and n by trans-
lation and scaling arguments. Extending U ig by zero, and denoting Ug D

P
U ig , we have

for dn > 4rn (which is implied by (A1) for � small enough):

krUgkL2 � CkD.ug/kL2.
S
Bi /: (37)
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Back to our calculation, we findZ
R3

g�2n D 2

Z
S
Bi

D.Ug/ W D.�
2
n/ �

X
i

Z
@Bi

Ug � �.�
2
n; q

2
n/�

D 2

Z
R3

D.Ug/ W D.�
2
n/:

By using (37) and the Cauchy–Schwarz inequality, we obtainˇ̌̌̌Z
R3

g�2n

ˇ̌̌̌
� CkD.ug/kL2.

S
Bi /kD.�

2
n/kL2.R3/ � CkD.ug/kL1�

1
2 kD.�2n/kL2.R3/;

so that combining with Proposition 3.1 yields the result.

We now turn to the proof of Proposition 3.1. According to the definition of �2n in (32),
(33), Proposition 2.1 implies

kr�2nk
2
L2.�n/

� C.kD. 2n/k
2
L2.

S
Bi /
C kD. z 2n/k

2
L2.

S
Bi /
/: (38)

As regards  2n , defined in (34), we compute

kD. 2n/k
2
L2.

S
Bi /
D

X
i

Z
Bi

jD.�/ �D�i j
2 dx

� kr
2�k21

X
i

Z
Bi

r2n dx � kr
2�k21�r

2
n ����!n!1

0: (39)

As regards z 2n , defined in (35), we use identities (18) and (19) to write for all x 2 Bi ,

D. z 2n/.x/ D �
15

8�
�M � .�D.�//.x/ � S1i

C
15�

8�n

X
j¤i

M.x � xj /D�j � S
2
i

C r2n
3�

4�n

X
j¤i

D.RŒD�j �/.x � xj /

�
3�

4
�2M � .�2D.�//.x/

C

X
j¤i

D.V ŒS1j C S
2
j �/
�x � xj

rn

�
D

5X
iD1

Ei .x/:

For E4 we have for all q 2 Œ2;1/,

kE4k
2
L2.

S
Bi /
D
9�2

16
�4kM � .�2D.�//k

2
L2.

S
Bi /

�
9�2

16
�4kM � .�2D.�//k

2
Lq

ˇ̌̌[
Bi

ˇ̌̌1� 2q
� C�4k�2k

2
1�

1� 2q kD.�/k2Lq ; (40)
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because M is a Calderon–Zygmund operator. The estimate of E5 is more difficult. We
shall rely on (A1), and notably make crucial use of the following lemma, taken from [8]:

Lemma 3.3 ([8, Lem. 2.4]1). Under assumption (A1), for all q 2 .1;1/, there exists
C > 0, such that for all A1; : : : ; An in Sym3;� .R/,X

i

ˇ̌̌̌X
j¤i

r3nM.xi � xj /Aj

ˇ̌̌̌q
� C�q�1

X
i

jAi j
q;

as well as X
i

ˇ̌̌̌X
j¤i

r3n

«
M.x � xj / dx Aj

ˇ̌̌̌q
� C�q�1

X
i

jAi j
q :

In particular, this lemma can be applied to matrices Aj D S2j ; cf. (30). We findX
i

jS2i j
q
� C

X
i

ˇ̌̌̌X
j¤i

r3n

«
Bi

M.x � xj / dx D�j

ˇ̌̌̌q
� C�q�1

X
i

jD�j j
q;

where in this computation and all computations below, the constant C may change from
line to line. Moreover, by (A0),

1

n

X
i

jD�j j
q
�����!
n!C1

Z
R3

jD.�/jq.x/�.x/ dx (41)

so that
lim sup

n

1

n

X
i

jS2i j
q
� C�q�1kD.�/k

q
Lq : (42)

Besides Lemma 3.3, we shall also make use of the following easy generalization of
Young’s inequality:

8q � 1;
X
i

�X
j

jaij bj j

�q
� max

�
sup
i

X
j

jaij j; sup
j

X
i

jaij j

�qX
i

jbi j
q : (43)

We now introduce yi WD xin
�1=3 so that jyi � yj j � 1

2
.c C jyi � yj j/ with c the

constant appearing in (A1). Using decomposition (19) and the homogeneity of each term
in this decomposition, we obtain, for all q � 2,

kE5k
2
L2.

S
Bi /
� �

1� 2q kE5k
2
Lq.

S
Bi /

� C�
1� 2q

�X
i

Z
Bi

ˇ̌̌̌X
j¤i

D.V ŒS1j C S
2
j �/
�x � xj

rn

�ˇ̌̌̌q
dx

� 2
q

1Only the first inequality is stated in [8, Lem. 2.4], but a look at the proof shows that it follows from
the second one.
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� C�
1� 2q

�X
i

jB1j

ˇ̌̌̌X
j¤i

r3nM.S1j C S
2
j /.xi � xj /

ˇ̌̌̌q
dx

� 2
q

C C�
1� 2q r8n

�X
i

jB1j

ˇ̌̌̌X
j¤i

jS1j C S
2
j j

jxi � xj j4

ˇ̌̌̌q� 2
q

� C�
1� 2q

�X
i

jB1j

ˇ̌̌̌X
j¤i

r3nM.S1j C S
2
j /.xi � xj /

ˇ̌̌̌q
dx

� 2
q

C C�
1� 2q �

8
3

�X
i

jB1j

ˇ̌̌̌X
j

jS1j C S
2
j j

c C jyi � yj j4

ˇ̌̌̌q� 2
q

:

We can then apply Lemma 3.3 to the first term, and apply (43) to the second term (together
with the fact that

P
i

1
cCjyi�yj j4

is uniformly bounded in j ). We obtain

kE5k
2
L2.

S
Bi /
� C�

1� 2q

�
jB1j�

q�1
X
i

jS1i C S
2
i j
q

� 2
q

C C�
8
3�
1� 2q

�X
i

jB1j jS
1
i C S

2
i j
q

� 2
q

� C�
3� 2q

�
1

n

X
i

jS1i C S
2
i j
q

�2=q
for any q � 2, where the last bound comes from Hölder’s inequality. It remains to bound
1
n

P
i jS

1
i C S

2
i j
q . By (29), we have

jS1i j
q
� C

�q

jB1jq

�Z
Bi

jM ? .�D.�//j

�q
� C

�q

jB1j

Z
Bi

jM ? .�D.�//jq;

so that
1

n

X
i

jS1i j
q
� C�q�1kM ? .�D.�//k

q
Lq � C�

q�1
kD.�/k

q
Lq ;

where we used the Lq continuity of the convolution with M again. Combining this
inequality with (42), and injecting in the bound for E5, we get that for all q � 2,

lim sup
n
kE5k

2
L2.

S
Bi /
� C�

5� 4q kD.�/k2Lq : (44)

We now turn to E3. We use the fact that D.RŒA�/.x/ D O.jAj jxj�5/. We find

kE3k
2
L2.

S
Bi /
� C jB1j

X
i

ˇ̌̌̌
�
5
3

X
j¤i

jD�j j

.c C jyi � yj j/5

ˇ̌̌̌2
� C jB1j�

10
3

X
i

jD�j j
2;
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where the last line follows from (43). Using again (41), we get eventually

lim sup
n
kE3k

2
L2.

S
Bi /
� C�

13
3 kD.�/�

1
2 k
2
L2
� C�

13
3 kD.�/k2Lq 8q � 2: (45)

We recall now the expressions for E1 and E2 on Bi :

E1.x/ D �
15

8�
�

�Z
R3

M.x � y/D.�/.y/�.y/ dy

�

«
Bi

Z
R3

M.z � y/D.�/.y/�.y/ dy dz

�
;

E2.x/ D
15

8�
�

�
1

n

X
j¤i

M.x � xj /D�j �

«
Bi

1

n

X
j¤i

M.z � xj /D�j dz

�
:

We claim first that
lim sup

n
kE1kL2.

S
Bi / D 0: (46)

To prove (46), the idea is to regularize D.�/� using a convolution with a mollifier �� .
Denoting by k k0;� the Hölder seminorm of exponent �, we get

k.D.�/�/ ? ��k0;� � Ck.D.�/�/ ? ��k
1��
L1 k.D.�/�/ ? r��k

�
L1

�
C

�
�C 3

q

kD.�/�kLq

for all q � 1. Hence we get, using the fact that M is a Zygmund–Calderon kernel, for all
q � 2 and any � 2 .0; 1/,X

i

Z
Bi

jE1.x/j
2 dx � C�2

X
i

Z
Bi

jM ? .D.�/� �D.�/� ? ��/j
2

C C�2njB1jr
2�
n k.D.�/�/ � ��k

2
0;�

� �
3� 2q kD.�/� � .D.�/�/ � ��k

2
q C �

3 r
2�
n

�2�C6=q
kD.�/�k2Lq ;

which vanishes when taking the lim sup in n for fixed � and then taking the limit �! 0.
Finally, we bound E2 by

kE2k
2
L2.

S
Bi /
� C

�2

n2

X
i

Z
Bi

ˇ̌̌̌X
j¤i

�
sup
z2Bi

jrM.z � xj /j
�
rnjD�j j

ˇ̌̌̌2
� C

�3

n3

X
i

ˇ̌̌̌X
j¤i

rn

jxi � xj j4
jD�j j

ˇ̌̌̌2
� C�

11
3
1

n

X
i

ˇ̌̌̌X
j

1

.c C jyi � yj j/4
jD�j j

ˇ̌̌̌2
� C�

11
3
1

n

X
i

jD�i j
2;
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where the last line comes from (43). We obtain

lim sup
n
kE2k

2
L2.

S
Bi /
� C�

11
3

Z
R3

jD.�/j2� � C�
11
3 kD.�/k2Lq 8q � 2: (47)

By the combination of (46), (47), (45), (40), (44), we find

lim sup
n
kr z 2nkL2.

S
Bi / � Cq

�
�
5
2�

2
q C �

11
6
�
kD.�/kLq 8q � 2:

This inequality, together with (39) and (38), concludes the proof of Proposition 3.1.

3.2. Estimate of �1
n

The goal of this subsection is to show the following proposition:

Proposition 3.4. For all q � 1,

lim sup
n

ˇ̌̌̌Z
R3

g�1n

ˇ̌̌̌
� C�

7
3 kD.�/kLq :

The main estimate (27) is then an easy consequence of Propositions 3.2 and 3.4, which,
as explained before (27), concludes the proof of Theorem 1.1.

The derivation of Proposition 3.4 will rely strongly on our assumption (A2). First,
let us recall that �n is bounded uniformly in n in PH 1, and so is �2n by Proposition 3.1.
It follows that �1n is bounded uniformly in n in PH 1. Hence, by a density argument, it
is enough to establish the inequality in Proposition 3.4 for a C1c field g, as long as the
constant C on the right-hand side only involves kgkL3C" . From now on, we assume g to
be smooth and compactly supported.

We introduce again the solution .ug ; pg/ of (36). As g is smooth, so is ug . Moreover,
by elliptic regularity and Sobolev embedding, we have for a compactK containing all the
balls,

kD.ug/kL1.K/ . kD.ug/kW 1;3C".K/ . kgkL3C" : (48)

With (31), we computeZ
R3

�1n � g D

Z
R3

�1n � .��ug Crpg/ D

Z
R3

D.�1n/ W D.ug/

D �

Z
R3

div.�.�1n; q
1
n// � ug

D �5�

Z
R3

�
�D.�/ �

1

n

X
i

1

jBi j
1BiD�i

�
W D.ug/

� 2�2
Z

R3

�
�2D.�/ �

75

16�

1

n2

X
i

1

jBi j
1Bi

X
j¤i

«
Bi

M.x � xj /D�j dx

C
75

16�

1

n

X
i

1

jBi j
1Bi

«
Bi

Z
R3

M.x � y/D.�/.y/�.y/ dy dx

�
W D.ug/:
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We set

N�2;n WD
75

16�

 
1

n2

X
i¤j

�«
Bi

M.� � xj /

�
1

jBi j
1Bi .x/ dx ıyj .dy/

�

X
i

1

n

�«
Bi

M.� � y/

�
1

jBi j
1Bi .x/ dx �.y/ dy

!
:

See (6) for comparison. We haveZ
R3

�1n � g D �5�

Z
R3

�
�D.�/ �

1

n

X
i

1

jB1j
1BiD�i

�
W D.ug/

� 2�2
˝�
�2ıxDy � N�2;n

�
;D.�/.y/˝D.ug/.x/

˛
DW �5�R1 C 2�

2R2;

with the notation that forM a distribution over R3 �R3 with values in Sym.Sym3;� .R//,

hM;S ˝ S 0i WD hMijkl ; Sij ˝ S
0
kli:

From assumption (A0), it easily follows that

lim
n
R1 D 0:

Then we write

R2 D
˝
.�2ıxDy � �2;n/;D.�/.y/˝D.ug/.x/

˛
C zR2;

with
zR2 D

˝
.�2;n � N�2;n/;D.�/.y/˝D.ug/.x/

˛
:

The first term on the right-hand side goes to zero as n! C1, by assumption (A2). For
the remainder, we decompose it as

zR2 D
75

16�n2

X
i¤j

��«
Bi

M.� � xj /

�
�M.xi � xj /

�
D�j W

�«
Bi

D.ug/

�
C

75

16�n2

X
i¤j

M.xi � xj /D�j W

��«
Bi

D.ug/

�
�D.ug/.xi /

�
�

75

16�

Z
R3

.M ? .D.�/�//.x/

�
1

n

X
i

1

jBi j

�«
Bi

D.ug/

�
1Bi �D.ug/�

�
.x/ dx

DW zR2;1 C zR2;2 C zR2;3:

The first term is bounded by

j zR2;1j �
75

16�n2

X
i¤j

sup
z2Bi

jrM.z � xj /jrnjD�j j kD.ug/kL1.K/
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�
C

n2

X
i¤j

rn

jxi � xj j4
jD�j j �

C�
1
3

n

X
i¤j

1

.c C jyi � yj j/4
jD�j j

�
C�

1
3

n

X
i

jD�i j;

where the last line follows from (43). By (A0),

lim sup
n
j zR2;1j � C�

1
3

Z
R3

jD.�/j� � C�
1
3 kD.�/kLq 8q � 1:

Note that the constant C may be chosen so that it depends on g only through kgkL3C" ,
using (48). The second term is bounded by

j zR2;2j �
75

16�n2

X
i

ˇ̌̌̌X
j¤i

M.xi � xj /D�j

ˇ̌̌̌
rnkr

2ugkL1

�
C

n2r2n

X
i

ˇ̌̌̌X
j¤i

r3nM.xi � xj /D�j

ˇ̌̌̌
�

C

n
3
2 r2n

�X
i

ˇ̌̌̌X
j¤i

r3nM.xi � xj /D�j

ˇ̌̌̌2�1=2
�

C

nr2n

�
1

n

X
i

jD�i j
2

�1=2
�
C�

n
1
3

�Z
R3

jD.�/j2�

�1=2
;

where the fourth (resp. fifth) inequality is a consequence of Lemma 3.3 (resp. (A0)).
Hence,

lim sup
n
j zR2;2j D 0:

As regards the last term zR2;3, we use the fact that, under (A0),

1

n

X
i

1

jBi j

�«
Bi

D.ug/

�
1Bi

D
�����!
n!C1

.ug/� weakly* in L1:

See [9, Lem. 5] for a proof. Hence,

lim sup
n
j zR2;3j D 0:

Proposition 3.4 follows.

4. Discussion of the mean-field limit

In this final section we come back to the main assumption (A2): we discuss examples of
particle distributions .xi / for which �2;n converges as in (A2), and discuss how to com-
pute the limit �2, that is, the O.�2/ correction to the effective viscosity. This discussion
is closely related to the analysis performed in [8], and relies on results established there.

First, one notices that the sequence of compactly supported distributions �2;n defined
in (6) is bounded with respect to n. More precisely, we have the following lemma:
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Lemma 4.1. There exists C > 0, such that for any smooth F D F.x; y/, for any n,

jh�2;n; F ij � CkF kC 1.K�K/;

where K is any fixed convex compact set containing x1; : : : ; xn for all n.

Proof. We need to bound

1

n2

X
i¤j

M.xi � xj /F.xi ; xj / D
1

n2

X
i¤j

M.xi � xj /F.xj ; xj /

C
1

n2

X
i¤j

M.xi � xj /.F.xi ; xj / � F.xj ; xj //

DW I1;n C I2;n:

As M is homogeneous of degree �3 and jF.xi ; xj / � F.xj ; xj /j � krF kL1.K�K/ �
jxi � xj j,

jI2;nj �
C

n2
krF kL1

X
i¤j

1

jxi � xj j2
:

We introduce yi WD xin�1=3 again, so that jyi � yj j � 1
2
.cC jyi � yj j/with c the constant

appearing in (A1). We obtain

jI2;nj �
C

n2
n
2
3 krF kL1

X
i;j

1

.c C jyi � yj j/2
� CkrF kL1 ;

using that for each i , under assumption (A1),X
j

1

.c C jyi � yj j/2
� C

Z
n1=3K

1

.c C jyi � zj/2
dz � Cn

1
3 :

To bound I1;n, we introduce sn WD c=.4n
1
3 /, where c is again the constant appearing in

(A1). We use the splitting

I1;n D
1

n2

X
i¤j

�
M.xi � xj / �

«
B.xj ;sn/

M.xi � y/ dy

�
F.xj ; xj /

C
1

n2

X
i¤j

�«
B.xj ;sn/

M.xi � y/ dy �

«
B.xi ;sn/

«
B.xj ;sn/

M.x � y/ dx dy

�
F.xj ; xj /

C
1

n2

X
i¤j

«
B.xi ;sn/

«
B.xj ;sn/

M.x � y/ dx dy F.xj ; xj / DW J1;n C J2;n C J3;n:

We find

jJ1;nj �
C

n2

X
i¤j

sup
z2B.xj ;sn/

jrM.xi � �/jsnkF kL1
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�
Csn

n2

X
i¤j

1

jxi � xj j4
kF kL1

�
C

n

X
i¤j

1

.c C jyi � yj j/4
kF kL1 � CkF kL1 :

Similarly, we find jJ2;nj � C . Then, let � be a truncation that is 0 on B.0; 1/ and 1 outside
B.0; 2/. The last term can be written

J3;n D
1

n2

Z
R3

��
�
�
�

sn

�
M
�
?
X
i

1B.xi ;sn/

�X
j

F.xj ; xj /1B.xj ;sn/

so that

jJ3;nj �
C

n2





X
i

1B.xi ;sn/






L2





X
j

F.xj ; xj /1B.xj ;sn/






L2
� CkF kL1

using the Calderon–Zygmund theorem. This concludes the proof.

Combining the previous lemma with the density of span.¹' ˝ Q'; '; Q' 2 C1.K/º/ in
C1.K � K/, we deduce that for �2 2 L1.R3; Sym.Sym3;� .R///, assumption (A2) is
satisfied if and only if for all smooth ', Q',

h�2;n; ' ˝ Q'i !

Z
R3

�2.x/'.x/ Q'.x/ dx (49)

or, equivalently, if and only if for all S 2 Sym3;� .R/, for all smooth ', Q',

75�

16�

�
1

n2

X
i¤j

gS .xi � xj /'.xi / Q'.xj / �

Z
R3

gS .x � y/'.x/ Q'.y/ dx dy

�
!

Z
R3

�
�2.x/S W S

�
'.x/ Q'.x/ dx;

where
gS .x/ DM.x/S W S I (50)

cf. (5). Since gS is even, this amounts to the following: for all S 2 Sym3;� .R/, for all
smooth ',

75�

16�

 X
i¤j

gS .xi � xj /'.xi /'.xj / �

Z
R3

gS .x � y/'.x/'.y/ dx dy

!
!

Z
R3

.�2.x/S W S/j'.x/j
2 dx: (51)

Of course, the existence of a nontrivial limit on the right-hand side of (51) is directly
related to the singularity of gs at zero. If gs were smooth or not too singular, one could
show that the limit on the right-hand side is zero.
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Our first goal is to understand configurations of points .xi / for which the limit as
n! C1 of 1

n2

P
i¤j gS .xi � xj /'.xi /'.xj / exists. This is closely related to the study

in [8], in which the special case ' D 1 is investigated. This study relies on ideas from
homogenization theory, together with the notion of renormalized energy, described in [17]
in the context of Coulomb gases. We shall explain how the approach in [8] adapts to a
general '. One proceeds in several steps.

Step 1. Expression of the mean field as a (renormalized) energy

Proceeding as in [8, Lem. 3.1], one can restrict to the case where

xi 2 O 81 � i � n:

Under this assumption, proceeding as in [8, Prop. 3.3], one shows that (51), and thus (A2),
amounts to the following: for all smooth ', for all S 2 Sym3;� .R/,

lim
n
:�WnŒ'� D

Z
R3

.�2.x/S W S/j'.x/j
2 dx; (52)

where

WnŒ'� WD
75

16�

Z
R6nDiag

gS .x � y/'.x/
�
�n.dx/� �.x/dx

�
'.y/

�
�n.dy/� �.y/dy

�
: (53)

To investigate the convergence of WnŒ'�, the main idea is then to associate to this quadratic
quantity an energy. This idea is based on the following lemma:

Lemma 4.2 ([8, Lem. 2.2]). For any f 2 L2.R3/,Z
R6

gS .x � y/f .x/f .y/ dx dy D �
16�

3

Z
R3

jD.uS /j
2;

where uS is the solution of the Stokes equation

��uS CrqS D div.Sf / D Srf; divuS D 0 in R3:

Considering definition (53), it is tempting to replace f by '.�n � �/ in the lemma,
which would yield the formal identity

“
Z

R6

gS .x � y/'.x/
�
�n.dx/ � �.x/ dx

�
'.y/

�
�n.dy/ � �.y/ dy

�
D �

16�

3n2

Z
R3

jD.hn/j
2”
; (54)

where hn solves the equation

��hn Crpn D n div.S'.�n � �//; div hn D 0 in R3: (55)

The solution of this equation decaying to zero is explicit, and given by

hn WD
X

'.xi /GS .x � xi / � nU ? Sr.'�/; (56)
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where GS .x/ D .Sr/ �U.x/ D � 3
8�
.Sx � x/ x

jxj5
, while the corresponding pressure field

is
pn D

X
'.xi /pS .x � xi / � nP ? Sr.'�/;

where pS .x/ D .Sr/ �P .x/ D � 3
4�

.Sx�x/

jxj5
.

However, this formal identity is not justified, as both sides are infinite: the left-hand
side is infinite due to the singularity of the kernel at the diagonal (which is excluded in
definition (53)), and the right-hand side is infinite because the solution hn of (55) is not in
PH 1.R3/, as �n is an atomic measure. Still, one can interpret WnŒ'� in terms of a so-called

renormalized energy, intensively studied in the context of Coulomb gases and Ginzburg–
Landau systems. See [17] and the references therein for more. One must first regularize
the singular measure. More precisely, following [8], we consider for all � > 0, the field
G
�
S satisfying

G
�
S D GS ; jxj � �; ��G

�
S Crp

�
S D 0; divG�S D 0; jxj < �;

Note that the conditionG�S D GS at jxj D � contained in the first condition can be seen as
a Dirichlet condition for the Stokes problem satisfied byG�S inside ¹jxj < �º. Let us stress
that G�S belongs to H 1

loc.R
3/, and can be seen as a regularization of GS . Accordingly, we

set
h�n WD

X
i

'.xi /G
�
S .x � xi / � nU ? Sr.'�/: (57)

As shown in [8, Lem. 3.5], it solves the modified Stokes equation

��h�n Crp
�
n D

X
i

'.xi / div.‰�.� � xi // � n div.S'�/; div h�n D 0 in R3; (58)

where

‰� WD

8̂̂<̂
:̂

3
��5

�
Sx ˝ x C x ˝ Sx � 5 jxj

2

2
S C 5

4
�2S

�
�2D.G

�
S /.x/C p

�
S .x/Id; jxj < �;

0; jxj > �:

(59)

A main advantage of this regularization is that hn � h
�
n is supported in

S
i B.xi ; �/. The

main result, which is a straightforward adaptation of [8, Props. 3.7 and 3.8] (dedicated to
the special case ' D 1) is given by the following proposition:

Proposition 4.3 (Renormalized energy formula). We have

WnŒ'�D�
25

2
lim
�!0

�
1

n2

Z
R3

jrh�nj
2
�

1

n2�3

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

�X
i

j'.xi /j
2

�
:

More precisely, for � < c
2
n�

1
3 , where c is the constant appearing in (A1), one hasˇ̌̌̌

WnŒ'�C
25

2

�
1

n2

Z
R3

jrh�nj
2
�

1

n2�3

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

�X
i

j'.xi /j
2

�ˇ̌̌̌
�C�:



D. Gérard-Varet and A. Mecherbet 110

The first formula in this proposition is the rigorous translation of the false identity (54):
it connects the mean field WnŒ'� to an energy. However, two differences are apparent.
First, the energy of hn being infinite, it is replaced by the energy of the regularization h�n.
Second, and more importantly, one must subtract the term

1

�3

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

�X
i

j'.xi /j
2;

which corresponds to the energy of self-interaction, and blows up as �! 0. It is only the
difference of the two quantities that does not blow up as �! 0 and gives WnŒ'�. Note that
the removal of the self-interaction is coherent with the fact that the expression for WnŒ'�

excludes the diagonal; see (53).

Step 2. Existence of the mean-field limit for periodic and random particle
configurations

Thanks to the second formula in Proposition 4.3, we deduce that

lim
n!C1

WnŒ'� D �
25

2
lim

n!C1

1

n2

Z
R3

jrh�nn j
2

�
1

n2�3n

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

�X
i

j'.xi /j
2;

when �n D Q�n�
1
3 , for any fixed Q� < c

2
. Note that for such a scaling � � n�

1
3 , contrary

to the case where � goes to zero at fixed n, the second term has a finite limit: namely, by
(A0),

lim
n

1

n2�3

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

�X
i

j'.xi /j
2

D
1

. Q�/3

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

�Z
R3

j'j2�:

Hence, the main point is to understand the limit of 1
n2

R
R3 jrh

�n
n j

2. In the case ' D 1, this
is analyzed in detail in [8], for two classes of point configurations: periodic and random
stationary. Namely, in [8] one considers particles x1; : : : ; xn given by

¹x1; : : : ; xnº WD "! \O; "� 1

for ! an infinite locally finite subset of R3, of two possible kinds:

(i) Periodic patterns: ! D ¹z1; : : : ; zmº C Z3 for z1; : : : ; zm distinct points of
.0; 1/3, such that jz � z0j > cm�

1
3 for all z ¤ z0 2 !, where c is the constant in

(A1).

(ii) Stationary point process: ! is the realization of an ergodic stationary point pro-
cess, of mean intensity m, satisfying the hardcore condition jz � z0j > cm�

1
3

for all z ¤ z0 2 !.
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Note that in the periodic case, the number n of particles in O is equivalent to m"�3 as
"! 0. In the random case, this number n is random, but is almost surely still equivalent
to m"�3 by the ergodic theorem (under an additional convexity assumption on O). In
particular, as "! 0, one has n!C1 and one can consider the asymptotic behaviour of
WnŒ'� or, as said before, of 1

n2

R
R3 jrh

�n
n j

2. Note that in both cases, assumption (A0) is
satisfied with � D 1O , and for " small enough (or n large enough), (A1) is also satisfied.

The limit of the renormalized energy can then be tackled through homogenization
techniques. Indeed, we claim that equation (58) is close to systems of the form

��h" Crp" D "�3 div
�
f .x/.F.x="/ � xF /

�
; div h" D 0; (60)

where xF is the mean of F (in the periodic or random sense). Roughly, one has the corres-
pondence

" � n�
1
3 ; F �

X
z2!

‰ Q�.� � z/; xF � 1; f � 1O': (61)

The point is that for a model of type (60), the behaviour of the solution h" is well under-
stood. For instance, in the periodic case one has

h" � "�2g.x/H.x="/;

where H D H.y/ is a corrector, solving

��H CrP D divF; divH D 0; (62)

with periodic boundary conditions. In particular, one can show that

"6
Z

R3

jrh"j2 !

Z
.0;1/3

jrH.y/j2 dy

Z
R3

jg.x/j2 dx:

As shown in [8] in the special case ' D 1, a similar situation holds in the context of system
(58). There is a corrector problem similar to (62), that takes the form

��H N� CrP N� D div
X
z2!

‰ N�.� � z/; divH N� D 0 in R3; (63)

where 0 < N� < c
2
m�

1
3 . This can be solved in both periodic and random stationary frame-

works, as shown in [8]. Roughly,

(i) in the periodic case, there is a unique (up to an additive constant) weak solution
H N� in H 1

loc.R
3/, which is Zd periodic and mean-free over a period;

(ii) in the random stationary case, there is almost surely in ! a weak solution
H N�.�;!/ inH 1

loc.R
3/with a uniquely defined stationary and mean-free gradient.

More precisely, rH N�.y;!/DDH .! � y/, whereDH is an R3-valued L2 ran-
dom variable with zero mean, the unique solution of a probabilistic variational
formulation; see [8] for details.

One can then express our mean field limit in terms of the energy of this corrector. This
is the following proposition:



D. Gérard-Varet and A. Mecherbet 112

Proposition 4.4. Let N� < c
2
m�

1
3 . Then, as "! 0, one has n!C1, and

WnŒ'�!
25

2

�
�
1

m2

Z
.0;1/3

jrH N�j2 C
1

. N�/3m

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

��Z
O

j'j2

in the periodic case, whereas

WnŒ'�!
25

2

�
�
1

m2
EjrH N�.0; �/j2 C

1

. N�/3m

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

��Z
O

j'j2

in the random stationary case. In particular, assumption (A2) is satisfied with

�2S W S D
25�

2

�
�
1

m2

Z
.0;1/3

jrH N�j2 C
1

. N�/3m

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

��
(64)

in the periodic case, whereas

�2S W S D
25�

2

�
�
1

m2
EjrH N�.0; �/j2 C

1

. N�/3m

�Z
B.0;1/

jrG1S j
2
C

3

10�
jS j2

��
(65)

in the random stationary case.

This proposition was established in [8] in the case 'D 1, and the proof extends without
too much difficulty to the general case. Note that the right-hand sides that appear above
do not actually depend on N� (as long as N� < c

2
m�

1
3 ), as the left-hand side WnŒ'� does not

involve N�. See [8, Prop. 4.4] for a direct proof.
Let us briefly evoke the main steps of the proof of Proposition 4.4, restricting to the

periodic case for brevity. Keeping in mind that n � m"�3 as "! 0, the point is to show
that

"6
Z

R3

jrh N�"j2 !

Z
.0;1/3

jrH N�j2
Z

O

j'j2:

The idea is to introduce an approximation of h N�" using the corrector solution of (62).
Namely, we introduce an approximate velocity field h"app 2 H

1
loc.R

3/ and pressure field
p"app 2 L

2
loc.R

3/ defined by

h"app.x/ WD
1

"2
'.x/H N�

�x
"

�
�

Z
O

1

"2
'.x/H N�

�x
"

�
dx; x 2 O;

p"app.x/ WD
1

"3
'.x/P N�

�x
"

�
�

Z
O

1

"3
'.x/P N�

�x
"

�
dx; x 2 O;

and
��h"app Crp

"
app D 0; div h"app D 0; in R3 n xO:

One has straightforwardly

"6
Z

O

jrh"appj
2
!

Z
.0;1/3

jrH N�j2
Z

O

j'j2; "! 0:



On the correction to Einstein’s formula for the effective viscosity 113

Moreover, reasoning exactly as in [8], one shows that the H
1
2 .@O/ norm of h"app goes to

zero as "! 0, which implies

krh"appkL2.R3n xO/ ! 0; "! 0

so that
"6
Z

R3

jrh"appj
2
!

Z
.0;1/3

jrH N�j2
Z

O

j'j2; "! 0:

The final step of the proof consists in showing that

"6
Z

R3

jr.h N�" � h"app/j
2
! 0; "! 0:

This is a consequence of an energy estimate, performed on the Stokes equation satisfied by
the difference h N�" � h"app. In the case ' D 1, all details are provided in [8]. For general ',
there are a few extra source terms in this Stokes equation, but they can be handled through
similar ideas, so that we do not give further detail.

Step 3. Explicit computation of �2

Finally, as further explained in [8], one can make formulas (64) and (65) more explicit. In
the periodic case, with ! D ¹z1; : : : ; zmº C Z3, the following holds.

Proposition 4.5 (Periodic case; see [8, Props. 5.4 and 5.5]).

(1) One has

�2S W S D
25�

2m2

 X
i¤j2¹1;:::;mº

Sr �GS;1.zi � zj /

Cm lim
y!0

Sr � .GS;1.y/ �GS .y//

!
;

where GS .x/ D .Sr/ �U.x/ D � 3
8�
.Sx � x/ x

jxj5
solves

��GS CrpS D .Sr/ı; divGS D 0; in R3

and for all L > 0, GS;L is the periodic field with zero mean solution of

��GS;L CrpS;L D .Sr/
X
z2LZ3

ız ; divGS;L D 0; in R3: (66)

(2) In the special case of a simple cubic lattice (m D 1), the formula simplifies to

�2S W S D �˛
X
i

S2i i C �ˇ
X
i¤j

S2ij ;

with ˛ D 5
2
.1 � 60a/, ˇ D 5

2
.1C 40a/, and a � �0:04655.
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In the ergodic stationary case, under the almost sure assumption (A1), a more expli-
cit expression can be obtained in terms of the two-point correlation function �2.x; y/ D
r.x � y/. We recall that a point process in R3 has a two-point correlation function �2 2
L1loc.R

3 �R3/ if for all bounded K and smooth functions F ,

E
X

z¤z02K

F.z; z0/ D

Z
K�K

F.x; y/�2.x; y/ dx dy:

Proposition 4.6 (Ergodic stationary case; see [8, Prop. 5.6]). Assume that �2.x; y/ D
r.x � y/ with r 2 L1loc.R

3/, zero near the origin. Then, for any M > 0, almost surely,

�2S W S D
25�

2m2
lim

L!C1

1

L3

Z
.M;L�M/3�.M;L�M/3

.Sr/ �GS;L.z � z
0/r.z � z0/ dz dz0;

where GS;L was introduced in (66).

One can actually push this calculation further in the case of an isotropic process. The
next proposition is the first justification of a formula that was derived formally in [18].

Proposition 4.7 (Isotropic point process). Assume that �2.x; y/ D r.x � y/ with r zero
near the origin, radial and such that jr.x/�m2j � !.jxj/ for some bounded and decreas-
ing function !WRC ! RC with

R
RC

!.t/
t
dt < C1. Then, almost surely,

�2S W S D
5

2
�jS j2:

Remark 4.1. Let us note that the formula above (�2 D 5
2

) differs from the one derived
formally by Batchelor and Green ([2]) for isotropic random processes of Poisson type
with a no-penetration condition (�2 � 7:6). The reason is that in the case considered in
[2], assumption (A1) is not satisfied. Roughly, it follows that the kernel GS;L.z � z0/
appearing in Proposition 4.6 must be modified: the appropriate kernel G.z � z0/ is only
close to GS;L asymptotically as jz � z0j ! C1. This point was raised in [2, p. 418].
Since our paper was submitted for publication, rigorous results have been obtained on the
Batchelor–Green formula; see [3, 7].

Remark 4.2. The fact that r is radial in the proposition corresponds to the isotropy of the
point process. The weak decay condition on r � m2 corresponds to a natural decorrela-
tion at large distances. See [3] for similar assumptions. Note that all assumptions of the
proposition are satisfied by the usual hardcore Poisson processes.

Proof of Proposition 4.7. For any L > 2M � 0, we denote KM;L WD .M; L �M/3. By
Proposition 4.6, it is enough to prove that

lim
M!C1

lim
L!C1

1

L3

Z
KM;L�KM;L

.Sr/ �GS;L.z � z
0/r.z � z0/ dz dz0 D

m2

5
jS j2:
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By a simple scaling argument, GS;L.x/ D L�2GS;1. xL /. It follows easily that

1

L3

Z
KM;L�KM;L

.Sr/ �GS;L.z � z
0/r.z � z0/ dz dz0

D

Z
KM=L;1�KM=L;1

.Sr/ �GS;1.z � z
0/r.L.z � z0// dz dz0:

For z; z0 2 KM=L;1, we have z � z0 2 .�1 C 2M=L; 1 � 2M=L/3. Over this set, the
periodic function GS;1 can be decomposed as

GS;1 D
X

k2Z3;jki j�1

GS .� � k/C zGS;1; (67)

where zGS;1 is smooth. From this decomposition, and the fact that r.x/D 0 for all jxj � ı,
ı > 0 small enough, it follows thatZ

.�1C2M=L;1�2M=L/3
j.Sr/ �GS;1.u/r.Lu/j du

� C

Z
.�1C2M=L;1�2M=L/3\¹juj�ı=Lº

 X
k2Z3;jki j�1

1

ju � kj3
C 1

!
du

� CM ln.L/: (68)

It follows in particular thatZ
.KM=L;1nK2M=L;1/�KM=L;1

.Sr/ �GS;1.z � z
0/r.L.z � z0// dz dz0

� jKM=L;1 nK2M=L;1jCM lnL � C 0M
lnL
L
! 0; L!C1:

It remains to show that

lim
M!C1

lim
L!C1

Z
K2M=L;1�KM=L;1

.Sr/ �GS;1.z � z
0/r.L.z � z0// dz dz0 D

m2

5
jS j2:

We decomposeZ
K2M=L;1�KM=L;1

.Sr/ �GS;1.z � z
0/r.L.z � z0// dz dz0

D

Z
K2M=L;1

Z
KM=L;1\B.z

0;M=L/c
.Sr/ �GS;1.z � z

0/m2 dz dz0

C

Z
K2M=L;1

Z
KM=L;1\B.z

0;M=L/c
.Sr/ �GS;1.z � z

0/.r.L.z � z0// �m2/ dz dz0

C

Z
K2M=L;1

Z
B.z0;M=L/

.Sr/ �GS;1.z � z
0/r.L.z � z0// dz dz0

DW I 1M;L C I
2
M;L C I

3
M;L:
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We have used that for any z0 2 K2M=L;1, KM=L;1 \ B.z0; M=L/ D B.z0; M=L/. As
regards the first term, we use (68) again, which yieldsZ

K2M=L;1

Z
K0;1nKM=L;1

j.Sr/ �GS;1.z � z
0/m2j dz dz0 � CM

lnL
L
;

so that

I 1M;L D

Z
K2M=L;1

Z
K0;1\B.z0;M=L/c

.Sr/ �GS;1.z � z
0/m2 dz dz0 C o.1/;

where the term o.1/ goes to zero as L ! C1 for any fixed M . We then perform an
integration by parts in the variable z. Note that for all z0 2 K2M=L;1, the boundary of
the ball B.z0; M=L/ is disjoint from the boundary of K0;1. Taking into account that
.Sr/ �GS;1.z � z

0/ is Zd -periodic, the boundary term at @K0;1 vanishes, and eventually

I 1M;L D �

Z
K2M=L;1

Z
@B.z0;M=L/

.S�/ �GS;1.z � z
0/ d�.z/ dz0m2 C o.1/

D �

Z
K2M=L;1

Z
@B.z0;M=L/

.S�/ �GS .z � z
0/ d�.z/ dz0m2 C o.1/

D �

�
1 �

4M

L

�3�Z
@B.0;1/

.S�/ �GS

�
m2 C o.1/:

Using the explicit expression for GS , we find that for any M > 0,

I 1M;L !
3

8�

Z
@B1

.Sn � n/2m2 D
m2

5
jS j2 as L!C1;

thanks to the identity
R
@B1

ninjnknl D
4�
15
.@ij @kl C @ik@jl C @il@jk/. As regards the

second term, using decomposition (67), we find the upper bound

jI 2M;Lj

� C

Z
.�1C2M=L;1�2M=L/3

\¹juj�M=Lº

 X
k2Z3;jki j�1

1

ju � kj3
C 1

!
jr.Lu/ �m2j du

� C
X

k2Z3;jki j�1

Z
.�LC2M;L�2M/3

\¹ju0j�M º

jr.u0/ �m2j

ju0 � Lkj3
du0 C C sup

ju0j�M

jr.u0/ �m2j:

Clearly, the last term on the right-hand side is independent of L and goes to zero when
M ! C1. Moreover, we claim that all integrals on the right-hand side go to zero when
M !C1, uniformly in L. Indeed, for k D 0, we simply writeZ

.�LC2M;L�2M/3

\¹ju0j�M º

jr.u0/ �m2j

ju0j3
du0 �

Z
jt j�M

!.t/

t
dt ! 0; M !C1:
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For k ¤ 0 in the sum, we writeZ
.�LC2M;L�2M/3

\¹ju0j�M º

jr.u0/ �m2j

ju0 � Lkj3
du0 �

Z
¹
p
3L�ju0j�M º
\¹ju0�Lkj�2M º

!.ju0j/

ju0 � Lkj3
du0

�

Z
¹
p
3L�ju0j�M º

\¹ 12L�ju
0�Lkj�2M º

!.ju0j/

ju0 � Lkj3
du0

C

Z
¹
p
3L�ju0j�M º

\¹ju0�Lkj� 12Lº

!.ju0j/

ju0 � Lkj3
du0:

For the second integral, we use the lower bound ju0 � Lkj � 1
2
L for the denominator, so

that Z
¹
p
3L�ju0j�M º

\¹ju0�Lkj� 12Lº

!.ju0j/

ju0 � Lkj3
du0 � C!.M/:

For the first integral, we notice that

ju0j � jLkj � ju0 �Lkj � L� 1
2
LD 1

2
L � ju0 �Lkj; so that !.ju0j/ � !.ju0 �Lkj/:

We inferZ
¹
p
3L�ju0j�M º

\¹ 12L�ju
0�Lkj�2M º

!.ju0j/

ju0 � Lkj3
du0 �

Z
¹ 12L�ju

0�Lkj�2M º

!.ju0 � Lkj/

ju0 � Lkj3

�

Z
jt j�2M

!.t/

t
dt ! 0; M !C1:

Hence, limM!C1 lim supL!C1 jI
2
M;Lj D 0. Finally, for the last term, we find

I 3M;L D

Z
K2M=L;1

Z
B.z0;M=L/

.Sr/ �GS .z � z
0/r.L.z � z0// dz dz0 C o.1/;

where again the o.1/ refers to a quantity going to zero as L ! C1 for any fixed M .
As r is radial and as the mean of .Sr/ � GS over spheres is zero, the integral in z on the
right-hand side vanishes identically. This concludes the proof.
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