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Global existence of weak solutions to the
Navier–Stokes–Korteweg equations

Paolo Antonelli and Stefano Spirito

Abstract. In this paper we consider the Navier–Stokes–Korteweg equations for a viscous com-
pressible fluid with capillarity effects in three space dimensions. We prove global existence of finite
energy weak solutions for large initial data. Contrary to previous results regarding this system,
vacuum regions are considered in the definition of weak solutions and no additional damping terms
are considered. The convergence of the approximating solutions is obtained by introducing suitable
truncations of the velocity field and the mass density at different scales in the momentum equa-
tions and use only the a priori bounds obtained by the energy and the Bresch–Desjardins entropy.
Moreover, the approximating solutions enjoy only a limited amount of regularity, and the derivation
of the truncations of the velocity and the density is performed by a suitable regularization procedure.

1. Introduction

The aim of this paper is to prove global existence of finite energy weak solutions of the
following Navier–Stokes–Korteweg system in .0; T / � T3:

@t�C div.�u/ D 0; � � 0; (1.1)

@t .�u/C div.�u˝ u/Cr� � div.�Du/ � �r�� D 0; (1.2)

with initial data
�.0; x/ D �0.x/;

.�u/.0; x/ D �0.x/u0.x/:
(1.3)

Here, T3 denotes the three-dimensional flat torus, the function � represents the density of
the fluid and the three-dimensional vector u is the velocity field.

More generally, the class of Navier–Stokes–Korteweg systems denotes a family of
compressible viscous capillary fluids whose general form is determined by

@t�C div.�u/ D 0;

@t .�u/C div.�u˝ u/Crp D div SC div K;
(1.4)
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where
S D h.�/DuC g.�/ divuI (1.5)

is the viscosity stress tensor and

K D
�
� div.k.�/r�/ �

1

2
.�k0.�/ � k.�//jr�j2

�
I � k.�/r�˝r� (1.6)

denotes the capillarity term. Here h and g are the viscosity coefficients satisfying

h � 0; hC 3g � 0;

and k is the capillarity coefficient.
System (1.1)–(1.2) can be recast from (1.4)–(1.6) by choosing k.�/ D 1, h.�/ D �

and g.�/ D 0. The tensor K is called the Korteweg tensor ([31]) and describes capillary
effects in a fluid. It was rigorously derived in [21]; see also [29] for an alternative approach
that is not based on the concept of interstitial work. Moreover, Korteweg tensors not only
describe capillarity effects, but also may determine admissibility criteria in liquid–vapour
phase transitions ([8, 26]).

Similar systems also appear in other contexts: for example, when  D 2 then the two-
dimensional version of (1.1)–(1.2) is the shallow water model studied in [11]; see also
[41] for a derivation of an augmented model with drag forces.

In [11] the authors prove existence of arbitrarily large, global-in-time finite energy
weak solutions to (1.1)–(1.2) by considering test functions of the form ��, with � smooth
and compactly supported. Roughly speaking, this is somehow equivalent to considering
test functions that are supported where the mass density is positive. In the present paper
we improve the result in [11] by removing the requirement on the test functions and by
considering a more natural definition of weak solutions; see Definition 2.1.

Our result is achieved by considering a suitable approximate system for (1.1)–(1.2),
namely (1.10), and by using a truncation argument in order to infer sufficient convergence
towards global-in-time finite energy weak solutions to (1.1)–(1.2).

Let us discuss some of the mathematical difficulties in studying (1.1)–(1.2) and present
some existing results. Local existence of smooth solutions and global existence with small
initial perturbations of the constant solution .�; u/ D .1; 0/ were obtained in [27, 28] by
using a fixed point argument. Regarding weak solutions, the analysis presents various
mathematical difficulties due to the presence of vacuum regions, namely the set where the
mass density vanishes. Indeed, the natural bounds, for example given by the total energy
of the system, yield a control on the velocity field only where the mass density is positive.
For this reason in [11] the authors provide a global existence result for weak solutions
to (1.1)–(1.2) by considering test functions of the form ��. On the other hand, in [11]
the authors introduce a new entropy, nowadays known as BD entropy, that gives suitable
Sobolev control on the mass density and hence on the Korteweg tensor. The analysis of the
BD entropy was then generalized in the literature (see for instance [12]) to other systems
and it can be seen to hold true for more general viscous stress tensors whose coefficients
satisfy the relation

g.�/ D �h0.�/ � h.�/: (1.7)
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The BD entropy estimate was also exploited in [30] to study the quantum Navier–Stokes
equations, namely system (1.4) with h.�/ D �, g.�/ D 0, k.�/ D 1=�. In this paper the
authors show the existence of global-in-time finite energy weak solutions in the same
framework as in [11]. Roughly speaking, BD entropy can be regarded as an energy estim-
ate for the auxiliary system satisfied by the unknowns .�; w/, where w is an auxiliary
velocity field defined by

w D uC cr log �; (1.8)

for some suitable constant c > 0; see also [32].
Some of the mathematical problems arising in the study of (1.1)–(1.2) are also shared

with the Navier–Stokes equations with degenerate viscosity, i.e., system (1.4) with k.�/D
0. Also in this case, the analysis of weak solutions with vacuum region is of great import-
ance. Indeed, it was shown in [38] that, while the Navier–Stokes equations with constant
viscosity are ill posed for initial data with vacuum, the equations with density-dependent
viscosity coefficients are better behaved. The interest for such models can also be motiv-
ated by the fact that, in their derivation from the Boltzmann equations, the viscosity
depends on the temperature. Thus, for isentropic flow it is natural to translate this into a
dependence on �. In the context of finite energy weak solutions, the degeneracy of the vis-
cosity coefficient also prevents satisfactory bounds on the gradient of the velocity inferred
from the energy dissipation functional. Indeed, for arbitrary solutions only a weaker bound
is available; see for example the discussion related to identity (2.3) in Definition 2.1. This
was noticed in [34] for the one-dimensional problem and in [25] for spherically symmetric
solutions; see also [35, Rem. 1.5] and the discussion in [40]. Regarding the existence of
weak solutions, important progress was made at around the same time in [35] and [43].
In those papers the authors, by using different strategies, showed the global existence
of finite energy weak solutions to the compressible barotropic Navier–Stokes equations
with degenerate viscosity. One of the main ideas used there consists in obtaining suitable
compactness properties for the sequence of approximating solutions by using the Mellet–
Vasseur estimate ([42]). Indeed, this further bound improves integrability for the quantity
p
�u, yielding compactness for the sequence of approximating solutions. In the case of

Navier–Stokes–Korteweg system (1.4), in general it is not possible to infer a Mellet–
Vasseur-type estimate. However, in the special case when the viscosity and capillarity
coefficients satisfy both the relations (1.7) and

�k.�/ D h0.�/2; (1.9)

then by choosing a specific value for the constant c in (1.8) we see that .�; w/ satisfies a
Navier–Stokes system – hence, the Korteweg tensor vanishes and it is possible to infer a
Mellet–Vasseur-type estimate on .�; w/. This, together with the bounds provided by the
BD entropy, yields sufficient compactness for the unknowns. In [4, 5] this strategy was
adopted in order to prove global existence of finite energy weak solutions to the quantum
Navier–Stokes system with the standard notion of weak solutions;, see also [14, 33, 40].

Let us stress that for system (1.1)–(1.2) the relation (1.9) does not hold true and con-
sequently it is not possible to derive a Mellet–Vasseur-type estimate. For this reason in this
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paper we adopt a different strategy. We only exploit the bounds from the energy and BD
entropy estimates; the global existence is then proved by considering a suitable truncation
and regularization argument for both the velocity field and the mass density, in the spirit
of DiPerna–Lions ([17]) for linear continuity equations, which is also exploited in [33].
More precisely, we are going to use two different truncations, for the velocity field and the
mass density, performed at different scales, which at the end will be optimized in order to
prove the convergence of both the third-order term and the convective term. For a formal
explanation of the main idea we refer to [6].

In order to construct approximate solutions to (1.1)–(1.2) we consider the following
approximation system:

@t�" C div.�"u"/ D 0;

@t .�"u"/C div.�"u" ˝ u"/ � div.�"Du"/Cr�" C "�"ju"j
2u" C "u"

D �"r��" C "�"r
��p�"
p
�"

�
:

(1.10)

Notice that following the argument in [44] and [10] it is possible to prove global
existence of weak solutions. Unfortunately, due to the limited amount of regularity, see
Definition 3.1, it is not possible to justify the truncations of the velocity field u" and the
density �". In this regard, we perform suitable regularization of the weak solutions of
(1.10) which allows us to justify the formal argument in [6]; see the proof of Theorem
3.2 for more details. Roughly speaking, to gain regularity in the velocity we truncate it
close to vacuum and we derive an equation for the regularized velocity. This produces
several errors in the equation. In order to control the one involving the third order we need
a further truncation of the density at infinity. We conclude by pointing out that it would be
interesting to provide an approximating system as in [4, 35], as it would provide smooth
approximating solutions for system (1.1)–(1.2).

Finally, we give a brief account of the state of art of the general system (1.4)–(1.6).
In the case � D 0, (1.4) reduces to the system of compressible Navier–Stokes equations.
When the viscosity coefficient h.�/ is chosen degenerating in the vacuum region ¹� D 0º
the Lions–Feireisl theory ([23, 37]) and the recent approach in [13] cannot be used since
they rely on the Sobolev bound of the velocity field. As already mentioned, finite energy
weak solutions are studied in [14, 33, 35, 43]. Well-posedness of regular solutions with
vacuum are also studied; see [45, 46] and also [36] where the shallow water equations are
considered.

When the viscosity � D 0, system (1.4) is called Euler–Korteweg. In [9], local well-
posedness for smooth, small perturbations of the reference solution �D 1, uD 0 has been
proved, while in [7] the result was extended to global irrotational solutions in the same
framework. Moreover, when k.�/D 1=� system (1.4) is called the quantum hydrodynamic
system (QHD) and arises for example in the description of quantum fluids. The global
existence of finite energy weak solutions for the QHD system has been proved in [2, 3]
without restrictions on the regularity or the size of the initial data. Non-uniqueness results
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by using convex integration methods have been proved in [18]. Relative entropy methods
to study singular limits for equations (1.4)–(1.6) have been exploited in [12, 15, 18, 20,
24]; in particular we mention the incompressible limit in [1] in the quantum case, the
quasineutral limit in [19] for the constant capillarity case and the vanishing viscosity limit
in [12]. The analysis of the long time behaviour for the isothermal quantum Navier–Stokes
equations has been performed in [16]. In [39] the authors, by using a strategy similar to
[35], study the existence of global-in-time finite energy weak solutions to the compressible
primitive equations with degenerate viscosity.

Organization of the paper

The paper is organized as follows. In Section 2 we fix the notation, give the precise defin-
ition of weak solutions of (1.1)–(1.2) and we recall some of the main tools used in the
proofs. In Section 3 we give the definition of weak solutions of the approximating system
and we prove the truncated formulation of the momentum equation. In Section 4 we prove
Theorem 2.3.

2. Preliminaries

2.1. Notation

Let T3 be the three-dimensional flat torus Œ0; 1�3 and the space of periodic smooth func-
tions with values in Rd compactly supported in Œ0;T /�T3 will beC1c ..0;T /�T3IRd /.
We will denote by Lp.T3/ the standard Lebesgue spaces and by k � kLp their norm. The
Sobolev space of functions with k distributional derivatives in Lp.T3/ is W k;p.T3/

and in the case p D 2 we will write H k.T3/. The spaces W �k;p.T3/ and H�k.T3/

denote the dual spaces of W k;p0.T3/ and H k.T3/ where p0 is the Hölder conjugate of
p. Given a Banach space X we use the classical Bochner space for time-dependent func-
tions with values in X , namely Lp.0; T IX/, W k;p.0; T IX/ and W �k;p.0; T IX/ and
when X D Lp.�/, the norm of the space Lq.0; T ILp.�// is denoted by k � kLqt Lpx . Then
the space C.0; T IXw/ is the space of continuous functions with values in the space X
endowed with the weak topology. Next, we denote by Du D .ruC .ru/T /=2 the sym-
metric part of the gradient and by AuD .ru� .ru/T /=2 the antisymmetric part. Given a
matrix C 2R3�3 we denote by C s , the symmetric part of C and by C a the antisymmetric
part.

2.2. Definition of weak solutions and statement of the main result

The definition of a weak solution for system (1.1)–(1.2) is the following:

Definition 2.1. A triple .�; u; T / with � � 0 is said to be a weak solution of (1.1)–(1.2)–
(1.3) if the following conditions are satisfied:
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(1) Integrability conditions:

� 2 L1.0; T IH 1.T3// \ L2.0; T IH 2.T3//;
p
�u 2 L1.0; T IL2.T3//;

�

2 2 L1.0; T IL2.T3// \ L2.0; T IH 1.T3//; r

p
� 2 L1.0; T IL2.T3//;

T 2 L2.0; T IL2.T3//; �u 2 C.Œ0; T /IL
3
2
w.T

3//:

(2) Continuity equation:
For any � 2 C1c .Œ0; T / � T3IR/,Z

�0�.0/ dx C

“
��t C

p
�
p
�ur� dx dt D 0: (2.1)

(3) Momentum equation:
For any fixed l D 1; 2; 3 and  2 C1c .Œ0; T / � T3IR3/,Z

�0u0;l .0/ dx C

“
p
�.
p
�ul / t dx dt C

“
p
�ul
p
�u � r dx dt

�

“
p
�T s
�;lr � 2

“
r�


2 �


2 �  dx dt �

“
rl��� dx dt

�

“
���rl dx dt D 0: (2.2)

(4) Energy dissipation:
For any ' 2 C1c .Œ0; T / � T3IR/,“

p
�Ti;j' dx dt D �

“
�uirj' dx dt �

“
2
p
�ui ˝rj

p
�' dx dt: (2.3)

(5) Energy inequality:
The following energy inequality holds:

sup
t2.0;T /

Z
T3

�juj2

2
C
�.t; x/

 � 1
C
jr�.t; x/j2

2
dx C

“
jT s.t; x/j2 dx dt

�

Z
T3

�0.x/ju0.x/j2 C
�0.x/



 � 1
C
jr�0.x/j2

2
dx: (2.4)

Remark 2.2. Let us remark that for smooth solutions for system (1.1)–(1.2), the energy
inequality1 reads

E.t/C

Z t

0

Z
T3

�jDuj2 dx dt 0 � E.0/; (2.5)

where
E.t/ D

Z
T3

1

2
�juj2 C

1

 � 1
� C

1

2
jr�j2 dx:

1Actually, for smooth solutions this becomes an equality.
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At present it is not clear whether arbitrary finite energy weak solutions satisfy inequality
(2.5). In particular, the current analysis does not allow us to conclude that the weak limit
in L2t;x of

p
�nDun is

p
�Du. Thus in general we are only able to infer

p
�Du * T s in L2t;x ;

where T s is the symmetric part of the tensor T defined by

p
�T jk

D @j .�uk/ � 2@j
p
�.
p
�uk/:

For this reason the energy inequality (2.4) for arbitrary weak solutions holds with the L2

norm of the symmetric part of T3, which is defined in (2.3).

In order to state our main result, we first specify the assumptions on the initial data.
We assume that

�0 � 0; �0 2 L1 \ L .T3/; r
p
�0 2 L2.T3/; log �0 2 L1.T3/: (2.6)

We point out that the assumption on the summability of log �0 is made only to avoid the
technicalities in approximating the initial data. Regarding the initial velocity, we assume
that u0 is a measurable vector field, finite almost everywhere such thatp

�0u0 2 L2.T3/; �0u0 2 Lp.T3/ with p < 2: (2.7)

The main theorem of our paper is the following.

Theorem 2.3. Assume �0 and �0u0 satisfy (2.6) and (2.7). Then there exists at least a
weak solution .�; u; T / of (1.1)–(1.3) in the sense of Definition 2.1.

Remark 2.4. We stress that the velocity field is not uniquely defined in the vacuum region
¹� D 0º.

2.3. The truncations

Let ŇWR! R be an even, positive, compactly supported smooth function such that

Ň.z/ D 1 for z 2 Œ�1; 1�;

supp Ň � .�2; 2/ and 0 � Ň � 1. We also define Q̌WR! R as the antiderivative of Ň,
namely

Q̌.z/ D

Z z

0

Ň.s/ ds:

For any ı > 0 we define Ňı.z/ D Ň.ız/, Q̌ı.z/ D Q̌.ız/. If y 2 R3 then

Ǒ
ı.y/ WD

3Y
`D1

Ň
ı.y`/
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and finally for any fixed ` D 1; 2; 3 let us define

ˇlı.y/ D
1

ı
Q̌
ı.yl /

Y
i 6D`

Ň
ı.yi /:

We notice that for fixed l D 1; 2; 3 the function ˇl
ı
WR3! R is a truncation of the function

f .y/ D yl . In the next lemma we collect some elementary properties of ˇl
ı
, Ǒı and Ň�,

which can be deduced directly from the definitions.

Lemma 2.5. Let �; ı > 0 andK WD k ŇkW 2;1 . Then there exists C D C.K/ such that the
following bounds hold:

(1) For any ı > 0 and l D 1; 2; 3,

kˇlıkL1 �
C

ı
; krˇlıkL1 � C; kr

2ˇlıkL1 � Cı: (2.8)

(2) For any � > 0,

k Ň�kL1 � 1; k Ň
0
�kL1 � C�;

p
jsj Ň�.s/ �

C
p
�
: (2.9)

(3) For any ı > 0,

k ǑıkL1 � 1; kr ǑıkL1 � Cı; jyj j Ǒı.y/j �
C

ı
: (2.10)

(4) The following convergences hold for l D 1; 2; 3, pointwise on R3, as ı ! 0:

ˇlı.y/! yl ; .ryˇ
l
ı/.y/! ryly;

Ǒ
ı.y/! 1: (2.11)

(5) The following convergence holds pointwise on R as �! 0:

Ň
�.s/! 1: (2.12)

2.4. DiPerna–Lions commutator estimate

In this subsection we recall the commutator estimate for convolutions of DiPerna–Lions
([17]). First, for any function f we denote by Nfr the time-space convolution of f with a
smooth sequence of even mollifiers ¹‰rºr , namely

Nfr D ‰r � f .t; x/; t > r;

where
‰r .t; x/ D

1

r4
‰
� t
r
;
x

r

�
and ‰ is a smooth nonnegative even function such that supp‰ � B1.0/ and“

‰ dx dt D 1:

Then the following lemma holds true.
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Lemma 2.6. Let p1; p2 2 Œ1;1� and p3 <1.

(1) Let B 2 Lp1..0; T / � T3IR3/ such that rB 2 Lp1..0; T / � T3IR/ and let f 2
Lp2..0; T / � T3IR/; then

k div .Bf /r � div.B Nfr /kLp3t;x ! 0 as r ! 0

provided 1
p3
D

1
p1
C

1
p2

.

(2) Let g 2 Lp1..0; T / � T3I R/ such that @tg 2 Lp1..0; T / � T3I R/ and let f 2
Lp2..0; T / � T3IR/; then

k@t .gf /r � @t .g Nfr /kLp3t;x
! 0 as r ! 0;

provided 1
p3
D

1
p1
C

1
p2

.

We omit the proof of the lemma. Notice that part (1) can be easily deduced from
[17, Lem. II.1] and part (2) is a simple corollary.

3. Weak solutions of approximating system and their properties

The proof of the main Theorem 2.3 goes through the analysis of weak solutions to the
approximating system

@t�" C div.�"u"/ D 0;

@t .�"u"/C div.�"u" ˝ u"/ � div.�"Du"/Cr�" C "�"ju"j
2u" C "u"

D �"r��" C "�"r
��p�"
p
�"

�
;

(3.1)

with initial data
�".0; x/ D �

0.x/;

.�"u"/.0; x/ D �
0.x/u0.x/;

(3.2)

satisfying the hypothesis (2.6) and (2.7).
More specifically, the aim of this section is to show a truncated formulation for solu-

tions to (3.1); see Theorem 3.2 below for a more precise statement.
Before introducing the main result of this section, we provide the definition of weak

solutions to system (3.1).

Definition 3.1. A triple .�"; u"; T"/ is a weak solution of (3.1)–(3.2) provided the follow-
ing properties hold.

(1) Integrability hypothesis:

�" 2 L
1.0; T IH 1.T3// \ L2.0; T IH 2.T3//;

p
�"u" 2 L

1.0; T IL2.T3//;

�

2
" 2 L

1.0; T IL2.T3// \ L2.0; T IH 1.T3//; T" 2 L
1.0; T IL2.T3//;
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p
�" 2 L

1.0; T IH 1.T3// \ L2.0; T IH 2.T3//; �
1
4
" u" 2 L

4..0; T / � .T3//;

u" 2 L
2..0; T / � .T3//; �"u" 2 C.Œ0; T /IL

3
2
w.T

3//:

(2) Continuity equation:
For any � 2 C1c .Œ0; T / � T3IR/,“

�"@t� C �"u"r� dx dt C

Z
�0�.0/ dx D 0: (3.3)

(3) Momentum equation:
For any  2 C1c .Œ0; T / � T3IR3/,“

�"u"@t C �"u" ˝ u"r �
p
�"T

s
" r � "�"ju"j

2u" � "u" dx dt

�

“
2�


2
" r�


2
"  � "

p
�"r

2p�"r C "r
p
�" ˝r

p
�"r dx dt

�

“
r�"��" C �"��" div dx dt C

Z
�0u0 .0/ dx D 0: (3.4)

(4) Dissipation:
For any ' 2 C1c .Œ0; T / � T3IR/,“

p
�"T";i;j' dxdt D�

“
�"u";irj' dxdt � 2

“
p
�"u";i ˝rj

p
�"' dxdt: (3.5)

(5) Energy estimate:

sup
t2.0;T /

�Z
�"
ju"j

2

2
C

�

"

 � 1
C
jr�"j

2

2
C "jr

p
�"j

2 dx

�
C

“
jT s
" j
2 dx dt C "

“
�"ju"j

4 dx dt C "

“
ju"j

2 dx dt

�

Z
�0
ju0j2

2
C
.�0/



 � 1
C
jr�0j2

2
C "jr

p
�0j2 dx: (3.6)

(6) BD entropy:
By defining w" D u" Cr log �" we have

sup
t2.0;T /

�Z
�"
jw"j

2

2
C

�

"

 � 1
C
jr�"j

2

2
C .�" � " log �"/C "jr

p
�"j

2 dx

�
C
4



“
jr�


2
" j
2 dx dt C

1

2

“
jT a
" j
2 dx dt C

“
j��"j

2 dx dt

C "

“
jr
2p�"j

2
C jr�

1
4
" j
4 dx dt C "

“
�"ju"j

4
C ju"j

2 dx dt

�

Z
�0
ju0j2

2
C
2�0



 � 1
C
2jr�0j2

2
C "jr

p
�0j2 dx C

Z
�0
jw0j2

2
dx

C

Z
.�0 � " log �0/ dx: (3.7)
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By using the energy and BD entropy estimates we can list some bounds satisfied by
solutions considered in Definition 3.1, namely

k�"kL1t .L1x\L

x/
� C; kr�"kL1t L2x

� C; kr
p
�"kL1t L2x

� C;

kr�

2
" kL2t;x

� C; k"
1
2r

2p�"kL2t;x
� C; k"

1
4r�

1
4
" kL4t;x

� C;

k"
1
4 �

1
4
" u"kL4t;x

� C; k
p
�"u"kL1t L2x

� C;

kT"kL2t;x � C; k
p
"u"kL2t;x

� C; kr2�"kL2t;x
� C;

(3.8)

where C depends only on the initial data (1.3). Notice that, by using a combination of
bounds in (3.8) and standard interpolation inequalities, we can also infer the following
estimates for fixed " > 0:

k@t�"k
L
4
3
t;x

� C"; kr.�"u"/k
L
4
3
t;x

� C";

kr�"��"k
L
5
4
t;x

� C"; k�"��"k
L
4
3
t;x

� C":
(3.9)

Following the arguments in [44] and [10] it is easy to prove that there exists at least a
weak solution in the sense of Definition 3.1, so we omit the proof. On the other hand, in
what follows we are going to show that weak solutions to (3.1) also satisfy a truncated for-
mulation; see (3.11) below. Formally, (3.11) can be obtained by taking ryˇ`ı.u"/

Ň
�.�"/ 

as a test function in (3.4). However, weak solutions to (3.1) do not have the necessary reg-
ularity needed in order to rigorously justify all the passages. For this reason we are going
to use several layers of approximations and truncations in order to infer the desired formu-
las (3.11) and (3.14) below. One of the main difficulties encountered in proving Theorem
3.2 below is the lack of good Sobolev bounds for the velocity field; let us recall that the
only available estimate is

p
�"ru" 2 L

2
t;x . To overcome this difficulty, we first consider a

truncated velocity field, as in [33]. Let �m.y/ be the function defined as

�m.y/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0 for 0 < y � 1
2m

;

2my � 1 for 1
2m
� y � 1

m
;

1 for 1
m
� y � m ;

2 � y
m

for m � y � 2m ;

0 for 2m � y:

We define v";m WD �m.�"/u". By using (3.8) and the definition of �m we have

kv";mkL4t;x
� Cm;"; krv";mkL2t;x

� Cm;": (3.10)

However, this will not be sufficient, due to the capillarity coefficient. Consequently, we
will need to exploit a further truncation for the approximated mass density.

The main result of this section is the following.
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Theorem 3.2. Let .�"; u"; T"/ be a weak solution of the system (3.1)–(3.2) in the sense of
Definition 3.1. Let ˇl

ı
and Ň� the truncation defined in the Section 2.3. Then the following

equalities hold:

(1) For any  2 C1c .Œ0; T / � T3IR/,Z
�0ˇlı.u

0/ Ň�.�
0/ .0; x/ dx C

“
�"ˇ

l
ı.u"/

Ň
�.�"/@t 

�

“
�"u"ˇ

l
ı.u"/

Ň
�.�"/ � r dx dt �

“
p
�"T

s
" W ryˇ

l
ı.u"/

Ň
�.�"/˝r dx dt

� 2

“
�

2
" r�


2
" � ryˇ

l
ı.u"/

Ň
�.�"/ dx dt �

“
r�"��"ryˇ

l
ı.u"/

Ň
�.�"/ dx dt

�

“
�"��"ryˇ

l
ı.u"/

Ň
�.�"/r dx dt C

“
Rı;�"  dx dt

C

“
zRı;�"  dx dt D 0; (3.11)

where the remainders are given by

Rı;�" D

6X
iD1

R
ı;�
";i D �"ˇ

l
ı.u"/

Ň0
�.�"/@t�" C �"uˇ

l
ı.u"/

Ň0
�.�"/r�"

�
p
�"T

s
" W ryˇ

l
ı.u"/˝r�"

Ň0
�.�"/

C
p
�"��"r

2
yˇ

l
ı.u"/T"

Ň
�.�"/

C �"��"ryˇ
l
ı.u"/

Ň0
�.�"/r�" � T s

" T"r
2
yˇ

l
ı.u"/

Ň
�.�"/; (3.12)

zRı;�" D

6X
iD1

zR
ı;�
";i D �"r

2p�"T"r
2
yˇ

l
ı.u"/

Ň
�.�"/

C 4"r�
1
4
" ˝r�

1
4
" T"r

2
yˇ

l
ı.u"/

Ň
�.�"/

� "
p
�"r

2p�"ryˇ
l
ı.u"/

Ň0
�.�"/r�"

C 4"
p
�"r�

1
4
" ˝r�

1
4
" ˇ

l
ı.u"/

Ň0
�.�"/r�"

� "�juj2uryˇ
l
ı.u/
Ň
�.�/ � "uryˇ

l
ı.u/
Ň
�.�/: (3.13)

(2) For any ' 2 C1c ..0; T / � T3IR/ the following (tensor) equality holds:“
p
�"T" Ǒı.u"/' dx dt D �

“
Ǒ
ı.u"/�"u" ˝r' dx dt

�

“
p
�"u"'ry Ǒı.u"/T" dx dt

� 2

“
p
�"u" ˝r

p
�"' Ǒı.u"/ dx dt: (3.14)
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Proof. In order to simplify the notation, in what follows we drop the subscripts ". Let us
define the quantities

M WD
p
�T s
C "
p
�r2
p
� � "r

p
�˝r

p
�;

N WD "�juj2uC "uC 2�

2r�


2 :

Consider the weak formulation of the momentum equation (3.4) in Definition 3.1, namely“
�u@t C �u˝ ur �Mr �N � r��� dx dt

�

“
���r dx dt D 0; (3.15)

with  2 C1c ..0; T / � T3IR/. Note that the initial datum disappears because of the
choice of the test function. We claim that for the truncated velocity field vm the following
equation holds:“

�vm@t C �u˝ vmr �  
p
� tr.T /�0m.�/�u dx dt

�

“
�m.�/Mr dx dt �

“
M�0m.�/r� dx dt

�

“
N�m.�/ dx dt �

“
r����m.�/ dx dt

�

“
����0m.�/r� dx dt �

“
����m.�/r dx dt D 0: (3.16)

A similar analysis is also performed in [33, Sect. 3.2]. In order to show (3.16), first con-
sider (3.3) with �0m.�r / r as test function. After integrating by parts and passing to the
limit as r goes to 0, one obtains“

�m.�/@t � �
0
m.�/

�
tr.
p
�T /C 2

p
�u � r

p
�
�
 dx dt D 0:

By using the bounds (3.8) it follows that a.e. on .0; T / � T3,

@t�m.�/C .tr.
p
�T /C 2

p
�u � r

p
�/�0m.�/ D 0: (3.17)

Then (3.16) follows by considering �m.�/ r as test function in (3.4), by sending r to 0
and by using (3.17). Let us just outline how to deal with the capillarity term. We have“

r����m.�/ r C ���rŒ�m.�/ r � dx dt

D

“
r���r�m.�/ C ���r�

0
m.�/r� C ���r�m.�/ dx dt: (3.18)
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Then, by using the bounds in (3.9) and the definition of �m, it follows that“
r���r�m.�/ dx dt !

“
r����m.�/ dx dt;“

���r�
0
m.�/r� dx dt !

“
����0m.�/r� dx dt;“

���r�m.�/ dx dt !

“
����m.�/ dx dt:

The other terms in (3.16) are dealt with analogously. Once we obtain (3.16), we derive the
truncated formulation for vm. We claim“

�ˇlı.vm/@t C �uˇ
l
ı.vm/r �

p
� tr.T /�0m.�/�uryˇ

l
ı.vm/ dx dt

�

“
�m.�/Mr

2
yˇ

l
ı.vm/rvm dx dt �

“
�m.�/Mryˇ

l
ı.vm/r dx dt

�

“
M�0m.�/r�ryˇ

l
ı.vm/ dx dt �

“
N�m.�/ryˇ

l
ı.vm/ dx dt

C

“
r����m.�/ryˇ

l
ı.vm/ dx dt C

“
����0m.�/r�ryˇ

l
ı.vm/ dx dt

C

“
����m.�/r

2
yˇ

l
ı.vm/rvm dx dt C

“
����m.�/ryˇ

l
ı.vm/r dx dt

D 0: (3.19)

This is proved by considering ryˇlı.vmr / r as test function in (3.16), with  2

C1c ..0; T / � T3I R/. Let us first focus on the transport terms. By using standard
properties of the convolutions we have

�

“
�vm@t

�
ryˇ

l
ı
.vmr / r

�
C �u˝ vmr

�
ryˇ

l
ı
.vmr / r

�
dx dt

D

“
Œ@t .�vmr /C div.�u˝ vmr /�ryˇ

l
ı.vmr / dx dt

D

“
Œ@t .�vmr / � @t .�vmr /C div.�u˝ vmr / � div.�u˝ vmr /�ryˇlı.vmr / dx dt

C

“
Œ@t .�vmr /C div.�u˝ vmr /�ryˇlı.vmr / dx dt D Ir C IIr :

The term Ir is treated by using the commutator estimate of DiPerna–Lions ([17]). Indeed,
by Lemma 2.6 (2) with g D � and f D vi;m and Lemma 2.6 with B D �u and f D vi;m,
by using the bounds in (3.9) and (3.10) we have

Ir ! 0 as r ! 0:
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Regarding the second term, we first note that by (3.9) the continuity equation holds a.e. in
.0; T / � T3; then, since vmr is smooth, we have

IIr D
“ �

@t .�ˇ
l
ı.vmr //C div.�uˇlıvmr //

�
 dx dt

�

“ �
�ˇlı.vmr /@t C �uˇ

l
ı.vmr /r 

�
dx dt;

which by using standard properties of convolutions and (3.9) converges to

�

“ �
�ˇlı.vm/@t C �uˇ

l
ı.vm/r 

�
dx dt:

Again, we deal with the capillarity terms: by standard properties of convolutions we have“
r����m.�/ryˇ

l
ı
.vmr / r dx dt C

“
����0m.�/r�ryˇ

l
ı
.vmr / r dx dt

C

“
����m.�/rŒryˇ

l
ı
.vmr / r � dx dt D

“
r����m.�/rryˇ

l
ı.vmr / dx dt

C

“
����0m.�/r�rryˇ

l
ı.vmr / dx dt C

“
����m.�/rr

2
yˇ

l
ı.vmr /rvmr dx dt

C

“
����m.�/rryˇ

l
ı.vmr /r dx dt:

Then, by using (3.9)–(3.10), the definition of �m and the fact that ˇl
ı
2 W 2;1.R/, the

following convergences as r ! 0 follow easily:“
r����m.�/rryˇ

l
ı.vmr / dx dt !

“
r����m.�/ryˇ

l
ı.vm/ dx dt;“

����0m.�/r�rryˇ
l
ı.vmr / dx dt !

“
����0m.�/r�ryˇ

l
ı.vm/ dx dt;“

����m.�/rr
2
yˇ

l
ı.vmr /rvmr dx dt !

“
����m.�/r

2
yˇ

l
ı.vm/rvm dx dt;“

����m.�/rryˇ
l
ı.vmr /r dx dt !

“
����m.�/ryˇ

l
ı.vm/r dx dt;

where in third limit the dominated convergence theorem and a possible passage to sub-
sequence is needed. At this point we would like to pass in the limit as m!1, but we
cannot deal with the term“

����m.�/r
2
yˇ

l
ı.vm/rvm dx dt;

because we lack uniform bounds for weak solutions to (3.1). For example, a bound like
p
� 2 L1t;x would be sufficient to perform the limit. To overcome this problem, we intro-

duce a further truncation for the mass density with an additional parameter � > 0.
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We consider Ň�. N�r / as test function in (3.19):“
�ˇlı.vm/

Ň0
�. N�r /@t N�r dx dt C

“
�ˇlı.vm/

Ň
�. N�r /@t dx dt

C

“
�uˇlı.vm/

Ň0
�. N�r /r N�r dx dt C

“
�uˇlı.vm/

Ň
�. N�r /r dx dt

�

“
p
� tr.T /�0m.�/�uryˇ

l
ı.vm/

Ň
�. N�r / dx dt

�

“
�m.�/Mr

2
yˇ

l
ı.vm/rvm

Ň
�. N�r / dx dt

�

“
�m.�/Mryˇ

l
ı.vm/

Ň0
�. N�r /r N�r dx dt �

“
�m.�/Mryˇ

l
ı.vm/

Ň
�. N�r /r dx dt

�

“
M�0m.�/r�ryˇ

l
ı.vm/

Ň
�. N�r / dx dt �

“
N�m.�/ryˇ

l
ı.vm/

Ň
�. N�r / dx dt

C

“
r����m.�/ryˇ

l
ı.vm/

Ň
�. N�r / dx dt

C

“
����0m.�/r�ryˇ

l
ı.vm/

Ň
�. N�r / dx dt

C

“
����m.�/r

2
yˇ

l
ı.vm/rvm

Ň
�. N�r / dx dt

C

“
����m.�/ryˇ

l
ı.vm/

Ň0
�. N�r /r N�r dx dt

C

“
����m.�/ryˇ

l
ı.vm/

Ň
�. N�r /r dx dt D 0:

By using (3.8), the definition of �m, the bounds (3.9)–(3.10) and the fact that for fixed
ı and fixed � we have that ˇl and Ňı are smooth and satisfy the bounds (2.8) and (2.9),
we have that as r ! 0, after a possible passage to subsequence, by using the dominated
convergence theorem the following identity holds true:“

�ˇlı.vm/
Ň0
�.�/@t� dx dt C

“
�ˇlı.vm/

Ň
�.�/@t dx dt

C

“
�uˇlı.vm/

Ň0
�.�/r� dx dt C

“
�uˇlı.vm/

Ň
�.�/r dx dt

�

“
p
� tr.T /�0m.�/�uryˇ

l
ı.vm/

Ň
�.�/ dx dt

�

“
�m.�/Mr

2
yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt

�

“
�m.�/Mryˇ

l
ı.vm/

Ň0
�.�/r� dx dt �

“
�m.�/Mryˇ

l
ı.vm/

Ň
�.�/r dx dt

�

“
M�0m.�/r�ryˇ

l
ı.vm/

Ň
�.�/ dx dt �

“
N�m.�/ryˇ

l
ı.vm/

Ň
�.�/ dx dt
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C

“
r����m.�/ryˇ

l
ı.vm/

Ň
�.�/ dx dt

C

“
����0m.�/r�ryˇ

l
ı.vm/

Ň
�.�/ dx dt

C

“
����m.�/r

2
yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt

C

“
����m.�/ryˇ

l
ı.vm/

Ň0
�.�/r� dx dt

C

“
����m.�/ryˇ

l
ı.vm/

Ň
�.�/r dx dt D 0: (3.20)

Now we are able to perform the limit m!1. From the BD entropy estimate (3.7) we
can infer that log � 2 L1t;x and consequently the set ¹� D 0º has zero measure. Thus the
following convergences hold:

�m.�/! 1 a.e. in .0; T / � T3 and j�m.�/j � 1;

vm ! u a.e. in .0; T / � T3;

��0m.�/! 0 a.e. in .0; T / � T3 and j��0m.�/j � 2;
p
�rvm ! T strongly in L2t;x :

(3.21)

We only prove that last convergence, since the others are obtained directly from the defin-
ition of �m. By the definitions of vm and �m we have

p
�rvm D r

��m.�/
p
�
�u
�
� �m.�/r�˝ u:

By using that
r.�u/ D

p
�T C 2r

p
�˝
p
�u;

we have
p
�rvm D �m.�/T C 4�

0
m.�/�r�

1
4 ˝ �

1
4u:

Then

k
p
�rvm � T kL2t;x � k.�m.�/ � 1/T kL2t;x C 4k�

0
m.�/�r�

1
4 ˝ �

1
4ukL2t;x

; (3.22)

and the right-hand side goes to zero by the dominated convergence theorem and (3.21).
Next we start to analyze the terms in (3.20). By using the definition of M we have“

�m.�/Mr
2
yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt

D

“
�m.�/

p
�T s
r
2
yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt

C "

“
�m.�/

p
�r2
p
�r2yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt

� 4"

“
r�

1
4 ˝r�

1
4r

2
yˇ

l
ı.vm/

p
�rvm Ň�.�/ dx dt;
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which thanks to (3.8), the dominated convergence theorem and (3.21) converges to“
T sT r2yˇ

l
ı.u/
Ň
�.�/ dx dt C "

“
r
2p�r2yˇ

l
ı.u/T

Ň
�.�/ dx dt

� 4"

“
r�

1
4 ˝r�

1
4 T r2yˇ

l
ı.u/
Ň
�.�/ dx dt:

Then, by using the definition of M , we have“
�m.�/Mryˇ

l
ı.vm/

Ň0
�.�/r� dx dt

D

“
�m.�/

p
�T s
ryˇ

l
ı.vm/

Ň0
�.�/r� dx dt

C "

“
�m.�/

p
�r2
p
�ryˇ

l
ı.vm/

Ň0
�.�/r� dx dt

� "

“
�m.�/r

p
�˝r

p
�ryˇ

l
ı.vm/

Ň0
�.�/r� dx dt;

which by (3.8) and the dominated convergence theorem converges to“
p
�T s
ryˇ

l
ı.u/
Ň0
�.�/r� dx dt C "

“
p
�r2
p
�ryˇ

l
ı.u/
Ň0
�.�/r� dx dt

� "

“
r
p
�˝r

p
�ryˇ

l
ı.u/
Ň0
�.�/r� dx dt:

Next, again by the definition of M , we have“
M�0m.�/r�ryˇ

l
ı.vm/

Ň
�.�/ dx dt D

“
p
�T s�0m.�/r�ryˇ

l
ı.vm/

Ň
�.�/ dx dt

C "

“
p
�r2
p
��0m.�/r�ryˇ

l
ı.vm/

Ň
�.�/ dx dt

� "

“
r
p
�˝r

p
��0m.�/r�ryˇ

l
ı.vm/

Ň
�.�/ dx dt

D 2

“
T s��0m.�/r

p
�ryˇ

l
ı.vm/

Ň
�.�/ dx dt

C 2"

“
r
2p���0m.�/r

p
�ryˇ

l
ı.vm/

Ň
�.�/ dx dt

� 4"

“
r�

1
4 ˝r�

1
4 ��0m.�/r

p
�ryˇ

l
ı.vm/

Ň
�.�/ dx dt;

which thanks to (3.8), (3.21) and the dominated convergence theorem converges to 0.
Finally, we consider the term“

����m.�/r
2
yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt:
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In order to show the convergence of this term we need to use the additional truncation of
� at height �. We have“

����m.�/r
2
yˇ

l
ı.vm/rvm

Ň
�.�/ dx dt

D

“
p
����m.�/r

2
yˇ

l
ı.vm/T

Ň
�.�/ dx dt

C

“
.
p
���r2yˇ

l
ı.vm/.

p
�rvm � T / Ň�.�/ dx dt:

Regarding the first term, by noticing that

j
p
����m.�/r

2
yˇ

l
ı.vm/T

Ň
�.�/ j �

C
p
�
.j��j2 C jT j2/;

we have that the dominated convergence theorem implies that“
p
����m.�/r

2
yˇ

l
ı.vm/T

Ň
�.�/ dx dt !

“
p
���r2yˇ

l
ı.u/T

Ň
�.�/ dx dt:

Concerning the second one we haveˇ̌̌̌“
p
���r2yˇ

l
ı.vm/.

p
�rvm � T / Ň�.�/ dx dt

ˇ̌̌̌
� C�;ı;"k��kL2t;x

k
p
�rvm � T kL2t;x ! 0;

where the limit yields from (3.22). For all the other terms in (3.20), the analysis of the limit
as m!1 for fixed " is a consequence of the convergences of �m and vm, a combination
of the estimates in (3.8) and the dominated convergence theorem. Equality (3.11) is then
proved for any  2 C1c ..0; T / � T3IR/. The initial data can be recovered by using the
weak continuity of �u in Definition 3.1, and by considering �n.t/ .t;x/ as a test function,
with 2C1.Œ0;T /IC1c .T

3// and �n being an approximation of the Dirac delta in t D 0.

Now we are going to prove identity (3.14). Let us multiply (3.5) by �m.�/ Ǒı.vmr /r'
with ' 2 C1c ..0; T / � T3IR/ to obtain“

p
�T �m.�/ Ǒı.vmr /r' dx dt D �

“
�m.�/ Ǒı.vmr /�u˝r'r dx dt

�

“
�u'r�

0
m.�/r�

Ǒ
ı.vmr / dx dt

�

“
�u'r�m.�/ry

Ǒ
ı.vmr /rvmr dx dt

� 2

“
p
�u˝r

p
�'r�m.�/

Ǒ
ı.vmr / dx dt:
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By sending r ! 0 and using (3.8) we easily get“
p
�T �m.�/ Ǒı.vm/' dx dt D �

“
�m.�/ Ǒı.vm/�u˝r' dx dt

�

“
�u'�0m.�/r�

Ǒ
ı.vm/ dx dt

�

“
�u'�m.�/ry Ǒı.vm/rvm dx dt

� 2

“
p
�u˝r

p
�'�m.�/ Ǒı.vm/ dx dt:

Then, by sending m!1 and using (3.8) and (3.21), we easily get (3.14).

4. Global existence of weak solutions

In this section we are going to prove the main result of our paper.

4.1. Bounds independent of "

We collect the "-independent bounds from (3.6) and (3.7), which we will use in the
sequence. First, we have that, for a generic constant C > 0 independent of ", the following
bounds hold true:

k
p
�"u"kL1t L2x

� C; kr�"kL1t L2x
� C; k�"kL1t .L1x\L


x/
� C;

kT"kL2t;x � C; kr�
=2
n kL2t;x

� C; k��"kL2t;x
� C;

kr
p
�"kL1t L2x

� C:

(4.1)

Moreover,
k�"kL2tL1x

� C; kr�"k
L
10
3
t;x

� C; k�

2
" k

L
10
3
t;x

� C: (4.2)

By using (2.3), (4.1), (4.2) we have

k�"u"kL2t;x
� C; kr.�"u"/kL2tL1x

� C: (4.3)

By using the continuity equation (2.1) and (4.3) we have

k@t�"kL2tL1x
� C: (4.4)

Finally, from (3.6) we also have

k"
1
2r

2p�"kL2t;x
� C; k"

1
4r�

1
4
" kL4t;x

� C;

k"
1
4 �

1
4
" u"kL4t;x

; k
p
"u"kL2t;x

� C:

(4.5)
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4.2. Convergence lemma

By using the above uniform bounds we prove the following convergences.

Lemma 4.1. Let ¹.�"; u"; T"/º" be a sequence of weak solutions of (3.1)–(3.2).

(1) Up to subsequences there exist, �, m, T and ƒ such that

�" ! � strongly in L2.0; T IH 1.T3//; (4.6)

�"u" ! m strongly in Lp.0; T ILp.T3// with p 2 Œ1; 2/; (4.7)

T" * T weakly in L2..0; T / � T3/; (4.8)
p
�"u"

�
* ƒ weakly* in L1.0; T IL2.T3//: (4.9)

Moreover, ƒ is such that
p
�ƒ D m.

(2) The following additional convergences hold true for the density:

r
p
�" * r

p
� weakly in L2..0; T / � T3/; (4.10)

��" * �� weakly in L2..0; T / � T3/; (4.11)

�" ! � strongly in L1..0; T / � T3/; (4.12)

r�

2
" * r�


2 weakly in L2..0; T / � T3/: (4.13)

Proof. By using (1.1) and (4.2), we have

¹@t�"º" is uniformly bounded in L2.0; T IH�1.T3//:

Then, since ¹�"º" is uniformly bounded in L2.0; T IH 2.T3//, by using the Aubin–Lions
lemma we get (4.6). Next, by using the momentum equations and the bounds (4.1)–(4.2),
it is easy to prove that

¹@t .�"u"/º" is uniformly bounded in L2.0; T IW �2;
3
2 .T3//:

Then, by using (4.2), (4.3) and the Aubin–Lions lemma, (4.7) follows. The convergences
(4.8) and (4.9) follow by standard weak compactness theorems and the equality

p
�ƒDm

follows easily from (4.6) and (4.9). Next, the convergences (4.10), (4.11) follow from the
uniform bounds (4.1) and standard weak compactness arguments. Finally, the convergence
(4.12) is obtained by using (4.6) and the bound (4.1), and the convergence (4.13) follows
by (4.1) and (4.6).

Lemma 4.2. Let f 2 C \L1.R3IR/ and .�"; u"/ be a solution of (1.1)–(1.2) and let u
be defined as

u D

8̂<̂
:
m.t; x/

�.t; x/
D

ƒ.t; x/p
�.t; x/

; .t; x/ 2 ¹� > 0º;

0; .t; x/ 2 ¹� D 0º:

(4.14)
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Then the following convergences hold:

�"f .u"/! �f .u/ strongly in Lp..0; T / � T3/ for any p < 6; (4.15)

r�"f .u"/! r�f .u/ strongly in Lp..0; T / � T3/ for any p <
10

3
; (4.16)

�"u"f .u"/! �uf .u/ strongly in Lp..0; T / � T3/ for any p < 2; (4.17)

�

2
" f .u"/! �


2 f .u/ strongly in Lp..0; T / � T3/ for any p <

10

3
: (4.18)

Proof. We first note that, up to a subsequence not relabelled, (4.6) and (4.7) imply

�" ! � a.e. in .0; T / � T3;

�"u" ! m a.e. in .0; T / � T3;

r�" ! r� a.e. in .0; T / � T3:

(4.19)

Moreover, by the Fatou lemma we have“
lim inf
"!0

m2"
�"
dx dt � lim inf

"!0

“
m2"
�"

<1; (4.20)

which implies that m D 0 on ¹� D 0º and
p
�u 2 L1.0; T IL2.T3//:

Moreover, m D �u D
p
�ƒ. Let us prove (4.15). On ¹� > 0º, by using (4.19) we have

�"f .u"/! �f .u/ a.e. in ¹� > 0º:

On the other hand, since f 2 L1.R3IR/ we have

j�"f .u"/j � j�"jkf k1 ! 0 a.e. in ¹� D 0º:

Then �"f .u"/! �f .u/ a.e. in .0; T / � T3 and the convergence in (4.15) follows by the
uniform bound

k�"kL6t;x
� C

and Vitali’s theorem. Regarding (4.16), from Lemma 4.1 we have that � is a Sobolev
function; then (see [22])

r� D 0 a.e. in ¹� D 0º:

From (4.19) we have

r�"f .u"/! r�f .u/ a.e. in ¹� > 0º;

jr�"f .u"/j � jr�"jkf k1 ! 0 a.e. in ¹� D 0º:

Thenr�"f .u"/!r�f .u/ a.e. in .0;T /�T3 and (4.16) follows from the uniform bound
(4.2) and Vitali’s theorem. Concerning (4.17), again (4.19) implies the convergences

�"u"f .u"/! mf .u/ a.e. in ¹� > 0º;

j�"u"f .u"/j � j�"u"jkf k1 ! 0 a.e. in ¹� D 0º;
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which, together with (4.2) and Vitali’s theorem, imply (4.17). Finally, (4.18) follows
by the same arguments used to prove (4.15) and the uniform bounds on the pressure
in (4.1).

4.3. Proof of the main theorem

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let ¹.�"; u"; T"/º" be a sequence of weak solutions of (3.1)–(3.2).
By Lemma 4.1 there exist �, m, ƒ and T such that the convergences (4.6), (4.7) and (4.9)
hold. Moreover, by defining the velocity u as in Lemma 4.2 we have

p
�u 2 L1.0; T IL2.T3/; T 2 L2..0; T / � T3/; m D

p
�ƒ D �u:

By using (4.6), (4.7) and (2.6) it is straightforward to prove thatZ
�0"�.0; x/ dx C

“
�"�t dx dt C

“
�"u"r� dx dt

converges to Z
�0�.0; x/ dx C

“
��t dx dt C

“
�ur� dx dt;

for any � 2 C1c .Œ0; T / � T3/. Let us consider the momentum equations. Let l 2 ¹1; 2; 3º
be fixed; by using Theorem 3.2 we have that for any  2 C1c .Œ0; T /�T3IR/ the follow-
ing equality holds:Z
�0ˇlı.u

0/ Ň�.�
0/ .0; x/ dx C

“
�"ˇ

l
ı.u"/

Ň
�.�"/@t 

�

“
�"u"ˇ

l
ı.u"/

Ň
�.�"/ � r dx dt �

“
p
�"T

s
" W ryˇ

l
ı.u"/

Ň
�.�"/˝r dx dt

� 2

“
�

2
" r�


2
" � ryˇ

l
ı.u"/

Ň
�.�"/ dx dt �

“
r�"��"ryˇ

l
ı.u"/

Ň
�.�"/ dx dt

�

“
�"��"ryˇ

l
ı.u"/

Ň
�.�"/r dx dt C

“
Rı;�"  dx dt C

“
zRı;�"  dx dt

D 0; (4.21)

where the remainders are

Rı;�" D

6X
iD1

R
ı;�
";i D �"ˇ

l
ı.u"/

Ň0
�.�"/@t�" C �"u"ˇ

l
ı.u"/

Ň0
�.�"/r�"

�
p
�"T

s
e W ryˇ

l
ı.u"/˝r�"

Ň0
�.�"/C

p
�"��"r

2
yˇ

l
ı.u"/T"

Ň
�.�"/

C �"��"ryˇ
l
ı.u"/

Ň0
�.�"/r�" � T s

" T"r
2
yˇ

l
ı.u"/

Ň
�.�"/;
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zRı;�" D

4X
iD1

zR
ı;�
";i D �"r

2p�"T"r
2
yˇ

l
ı.u"/

Ň
�.�"/C 4"r�

1
4
" ˝r�

1
4
" T r2yˇ

l
ı.u"/

Ň
�.�"/

� "
p
�"r

2p�"ryˇ
l
ı.u"/

Ň0
�.�"/r�"

C 4"
p
�"r�

1
4
" ˝r�

1
4
" ˇ

l
ı.u"/

Ň0
�.�"/r�"

� "�"ju"j
2u"ryˇ

l
ı.u"/

Ň
�.�"/ � "u"ryˇ

l
ı.u"/

Ň
�.�"/:

We first perform the limit as " goes to 0 for ı and � fixed. Notice that, since Ň� 2 L1.R/,
and ¹�"º" converges almost everywhere, by dominated convergence we have

Ň
�.�"/! Ň

�.�/ strongly in Lq..0; T / � T3/ for any q <1: (4.22)

By using (4.15) with p D 2 and choosing q D 2 in (4.22) we have“
�"ˇ

l
ı.u"/

Ň
�.�"/@t dx dt !

“
�ˇlı.u/

Ň
�.�/@t dx dt:

Next, by (4.17) with p D 3=2 and choosing q D 3 in (4.22) we get“
�"u"ˇ

l
ı.u"/

Ň
�.�"/ � r dx dt !

“
�uˇlı.u/

Ň
�.�/ � r dx dt:

By using (4.8), (4.15) with p D 4 and (4.22) with q D 4 it follows that“
T s
" W
p
�"ryˇ

l
ı.u"/

Ň
�.�"/˝r dx dt !

“
p
�T W ryˇ

l
ı.u/
Ň
�.�/˝r dx dt:

By using (4.13), (4.18) with p D 3 and (4.22) with q D 6 it follows that“
�

2
" r�


2
" � ryˇ

l
ı.u"/

Ň
�.�"/ dx dt !

“
�

2r�


2 � ryˇ

l
ı.u/
Ň
�.�/ dx dt:

By using (4.11), (4.16) with p D 3 and (4.22) with q D 6 it follows that“
r�"��"ryˇ

l
ı.u"/

Ň
�.�"/ dx dt !

“
r���ryˇ

l
ı.u/
Ň
�.�/ dx dt:

Next, by using (4.11), (4.15) with p D 3 and (4.22) with q D 6, it follows that“
�"��"ryˇ

l
ı.u"/

Ň
�.�"/r dx dt !

“
���ryˇ

l
ı.u/
Ň
�.�/r dx dt:

It remains to study the remainders zRı;�" and Rı;�" . Regarding zRı;�" we prove the following
convergence:

zRı;�" ! 0 in L1t;x :
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Indeed, by considering term by term and using the uniform bounds (4.1) and (4.5) we have

k zR
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p
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Now we consider Rı;�" . We claim that there exists a C > 0 independent of ", ı and � such
that

kRı;�" kL1t;x
� C

� ı
p
�
C
�

ı
C �C ı

�
: (4.23)

In order to prove (4.23) we estimate all the terms in (3.12) separately. By using the uniform
bounds (4.1), (4.2), (4.4) and the bounds on the truncations (2.8) and (2.9) we have

kR
ı;�
";1 kL1t;x

� k�"kL2.L1/k@t�"kL2.L1/kˇ
l
ı.u"/kL1t;xk

Ň0
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Ň0
�.�"/kL1t;x � C�;

kR
ı;�
";6 kL1t;x

� kT"k
2
L2t;x
kr

2
yˇ

l
ı.u"/kL1t;xk

Ň
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Then (4.23) is proved and, when " goes to 0, we have that .�; u;T / satisfies the following
integral equality:“
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where �ı;� is a measure such that as "! 0,“
Rı;�"  dx dt ! h N�ı;�;  i;

and its total variation satisfies

j�ı;�j.T3/ � C
� ı
p
�
C
�

ı
C �C ı

�
: (4.25)

Let ı D �˛ with ˛ 2 .1=2; 1/; then when �! 0 we have

j��
˛ ;�
j.T3/! 0

and by (2.11), (2.12) and the dominated convergence theorem we have that (4.24) con-
verges toZ

�0ul;0 .0; x/ dx C
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p
�T s
ljrj dx dt

�
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“
rl��� dx dt �

“
���rl dx dt D 0: (4.26)

It remains to prove (2.3). By using Theorem 3.2 (2) we have that for any ' 2 C1c ..0;T /�
T3IR/ it holds that“

p
�"T" Ǒı.u"/' dx dt D �
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Ǒ
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For fixed ı, by using the convergence (4.8) and (4.15) with p D 4, we have“
p
�" Ǒı.u"/T"' dx dt !
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p
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Next, we have “
Ǒ
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owing to (4.17) with p D 1. By using (2.10), (4.15) with p D 2 and the weak convergence
of r
p
�" in L2t;x we get“
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�" Ǒı.u"/' dx dt !

“
p
�u˝r

p
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Let
xRı" D

p
�"u"'ry Ǒı.u"/T"I (4.28)

by using (4.1) and (2.10) we have

k xRınkL1t;x
� Ck

p
�"u"kL1.L2t;x/

kT"kL2t;xkry
Ǒ
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and then there exists a measure N�ı such that“
xRı"r' dx dt ! h N�

ı ;r'i; (4.29)

and its total variation satisfies
j N�ı j.T3/ � Cı:

Collecting the previous convergences, we have“
p
�" Ǒı.u"/T"' dx dt D �

“
Ǒ
ı.u/�u˝r' dx dt

� 2

“
p
�u˝r

p
� Ǒı.u/' dx dt

� h N�ı ;r i:

By using (2.11), the dominated convergence theorem and (4.29) we get (2.3). Finally, the
energy inequality follows from the lower semicontinuity of the norms.
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