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High degeneracy of effective Hamiltonian
in two dimensions

Yifeng Yu

Abstract. Consider the effective Hamiltonian xH.p/ associated with the mechanical Hamiltonian
H.p; x/D 1

2 jpj
2 C V.x/. We prove that for generic V , xH is piecewise one-dimensional in a dense

open set in two dimensions using Aubry–Mather theory.

1. Introduction

Assume that H D H.p; x/ 2 C.Rn �Rn/ is Zn-periodic in x and uniformly coercive in
p, i.e.,

lim
jpj!C1

min
x2Rn

H.p; x/ D C1:

For each " > 0, let u" 2 C.Rn � Œ0;1// be the viscosity solution to the Hamilton–Jacobi
equation ´

u"t CH.Du
"; x
"
/ D 0 in Rn � .0;1/;

u".x; 0/ D g.x/ on Rn:
(1.1)

It was proved by Lions, Papanicolaou and Varadhan ([13]) that u", as "! 0, converges
locally uniformly to u, the solution of the effective equation´

ut C xH.Du/ D 0 in Rn � .0;1/;

u.x; 0/ D g.x/ on Rn:
(1.2)

Here xH WRn ! R is the so-called effective Hamiltonian, which is determined by the fol-
lowing cell problem: for any p 2 Rn, there exists a unique number xH.p/ 2 R such that
the equation

H.p CDv; x/ D xH.p/ (1.3)

has a periodic viscosity solution. When H is convex in p, the effective Hamiltonian is
convex and has a variational formulation

xH.p/ D inf
�2C 1.Tn/

max
x2Tn

H.p CD�.x/; x/: (1.4)
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Although there is a lot of literature regarding homogenization of Hamilton–Jacobi
equations in various settings, not much is known about the finer properties of the effective
Hamiltonian xH due to a lack of tools. In this paper, we focus on the mechanical Hamilto-
nian

H.p; x/ D
1

2
jpj2 C V.x/:

Here V is assumed to be C k.Rn/ for k � 2 and Zn-periodic. The following properties
hold in any dimension.

• Property 1: Quadratic growth.

1

2
jpj2 Cmin

Rn
V � xH.p/ �

1

2
jpj2 Cmax

Rn
V:

• Property 2: Minimum value.

min
Rn

xH D max
Rn

V:

More interestingly, for quite general V , the minimum level set

F0 D
®
p 2 Rn j xH D maxRn V

¯
is an n-dimensional convex set ([6]).

• Property 3: Strict convexity along any non-tangential direction. Using techniques
from weak KAM theory, it was proved in [8] that xH is not linear along any direc-
tion that is not tangent to its level set. In particular, this implies that if

xH
�p1 C p2

2

�
D
1

2
xH.p1/C

1

2
xH.p2/;

then
H.�p1 C .1 � �/p2/ D xH.p1/ for all � 2 Œ0; 1�:

Although xH inherits some global features of 1
2
jpj2, its local properties could be dras-

tically different from those of 1
2
jpj2. In this paper, we will prove that for generic V , xH

is piecewise one-dimensional on a dense open set using Aubry–Mather theory. Precisely
speaking, we have the following theorem:

Theorem 1.1. For any k � 2, there is a residual subset G of C k.T2/ such that for every
V 2 G , there exists a sequence of bounded open sets ¹Oiºi�1 in R2 such that

(1) the set

OV D

1[
iD1

Oi

is a dense open set in R2;
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(2) for each i 2N, there exist a unit vector qi 2 R2 and a convex function fi WR! R
such that

xHV .p/ D fi .qi � p/ in Oi ;

where xHV is the effective Hamiltonian associated with 1
2
jpj2 C V .

In general, the above conclusion might not be true. For example, consider the separa-
ble case when V.x/ D h.x1/C g.x2/. In dynamical systems, some generic perturbation
mechanisms based on the Baire property in general topology have often been employed
to filter out those exceptional situations. However, it is usually impossible to tell whether
a concrete example is generic or not.

In the above theorem, G is the intersection of a sequence of dense open sets ofC k.T2/.
There are two choices of G . One choice is to directly use the residual set in [3, Cor. 1.2],
whose existence is established under certain abstract frameworks of convex analysis. The
other choice is the G constructed in the appendix, (A.1), which is weaker in the sense of
dynamical systems but is more explicit and enough for our purpose. Moreover, the result
is expected to hold for more general Hamiltonians. In this paper, for clarity of presentation
we will focus only on the mechanical Hamiltonian, which is interesting enough.

Notation and terminology

• Tn D Rn=Zn represents the n-dimensional flat torus; C k.Tn/ is the set of all Zn-
periodic C k.Rn/ functions.

• A vector q 2Rn is called a rational vector if there exists � 2Rn¹0º such that �q 2Zn.

• .m; n/ 2 Z2 is called irreducible if jmj and jnj are relatively prime.

• A curve �WR! Tn is called periodic if there exists T > 0 such that

�.t C T / D �.t/ for all t 2 R;

where T is called a period. If T0 > 0 is the minimal period of � and � is lifted to Rn,
then

�.T0/ � �.0/ D .m; n/ 2 Z2

is the first homology class of �.

• Denote by L.q; x/WRn �Rn ! R the Lagrangian

L.q; x/ D sup
p2Rn

¹q � p �H.p; x/º:

• For p1, p2 2 Rn, let

Œp1; p2� D ¹tp1 C .1 � t /p2 j t 2 Œ0; 1�º

be the line segment connecting p1 and p2.
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2. Preliminaries

For the readers’ convenience, in this section we give a brief review about some basic
knowledge and relevant results of Aubry–Mather theory and weak KAM theory. See
[1, 7–9] for more details. Our presentation will be mainly from the PDE point of view.
Many parts are very close to the standard theory of Hamilton–Jacobi equations. The major
difference lies in classical Aubry–Mather theory, which is based on two-dimensional
topology and cannot be captured by PDE approaches.

Let Tn D Rn=Zn be the n-dimensional flat torus and H.p; x/ 2 C 2.Rn � Rn/ be a
Hamiltonian satisfying

(H1) (periodicity) x 7! H.p; x/ is Zn-periodic;

(H2) (uniform convexity) there exists � > 0 such that for all � D .�1; : : : ; �n/ 2 Rn,
and .p; x/ 2 Rn �Rn,

nX
i;jD1

�i
@2H

@pi@pj
�j � � j�j

2:

A major goal in dynamical systems is to understand the long time behaviors of trajectories
of the Hamiltonian system ´

Px.t/ D DpH.p; x/;

Pp.t/ D �DxH.p; x/:

When the Hamiltonian H is a small perturbation of the integrable case, the famous KAM
theory based on analytic approaches says that most trajectories lie on invariant tori and
hence are integrable. For generalH , when nD 2 classical Aubry–Mather theory provides
a nice description of structures of action minimizing trajectories based on topological
approaches. See Section 2.3 for more details. In [14], Mather extended Aubry–Mather
theory to higher dimensions through variational methods. The weak KAM theory reveals
interesting connections between Mather’s theory and solutions to the cell problem (1.3).
In fact, in the language of PDEs, the classical KAM theory can be formulated as follows:
in the perturbative case, for “most” Q D D xH.p/, the cell problem has a unique smooth
solution v up to a constant and the corresponding invariant torus is given by

TQ D
®
.q; x/ 2 Rn �Rn W p CDv.x/ D DqL.q; x/

¯
:

2.1. Aubry set and Mané set

Let v be a solution to the cell problem (1.3) . We say that a curve  WR! Rn is a global
characteristic associated with v if for all t1 < t2 and u.x/ D p � x C v,Z t2

t1

L. P; /C xH.p/ ds D u..t2// � u..t1//:
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Write
Jv D

[


®
. P.t/; .t// j t 2 R;  is a global characteristic of v

¯
:

Such a  is also called a .v; L; xH.p//-calibrated curve in [9]. According to classical
theory in Hamilton–Jacobi equations ([12]), saying that  is a global characteristic of v is
equivalent to saying that v is differentiable along  and for all t 2 R,

p CDv..t// D Du..t// D DqL. P.t/; .t//: (2.1)

Moreover, owing to Lemma 2.1, every global characteristic is an absolutely minimizing
curve with respect to L.q; x/C xH.p/. So it satisfies the Euler–Lagrange equation

d.DqL. P.t/; .t///

dt
D DxL. P.t/; .t//: (2.2)

A curve  WR! Rn is called an absolutely minimizing curve with respect to L.q; x/C c
if for any �1 < s2 < s1 <1, �1 < t2 < t1 <1 and � 2 AC.Œs1; s2�;Rn/ subject to
�.s2/ D .t2/ and �.s1/ D .t1/ the following inequality holds:Z s2

s1

.L. P�.s/; �.s//C c/ ds �

Z t2

t1

.L. P.s/; .s//C c/ ds: (2.3)

See Figure 1. Here AC.Œa; b�; S/ stands for the set of absolutely continuous curves
Œa; b�! S .

�.s1/ D .t1/

�.s2/ D .t2/�



Figure 1

The curve  WR! Rn is called a universal global characteristic if it is a characteristic
for every viscosity solution to (1.3).

For p 2 Rn, the collection of all universal characteristics

zAp D
[®

. P.t/; .t// j t 2 R;  is a universal global characteristic
¯
D

\
v is a solution

to (1.3)

Jv

is defined as the Aubry set. Hence the following graph property holds:

zAp �
®
.q; x/ 2 Rn �Rn W Dv.x/ exists and p CDv.x/ D DqL.q; x/

¯
: (2.4)

Write Ap as the projection of zAp on Rn.



Y. Yu 206

Also, we define the collection of all global characteristics associated with viscosity
solutions of (1.3),

zNp D
[®

. P.t/; .t// j t 2 R;  is a global characteristic
¯
D

[
v is a solution

to (1.3)

Jv

as the Mané set.
In standard definitions ([9]), the Aubry set and Mané set are on Rn � Tn. Here for

convenience, we lift them to Rn �Rn. Let us highlight several key properties

• Property 4. Two absolutely minimizing curves cannot intersect twice unless they
are the same after suitable translations in time. This property together with two-
dimensional topology plays a crucial role in classical Aubry–Mather theory in two
dimensions.

• Property 5. Two universal global characteristics cannot intersect unless they are the
same after suitable translation in t .

• Property 6. Any global characteristic, when it is projected to Tn, cannot intersect
itself unless the orbit is periodic.

• Property 7. If � is a global characteristic, then for any sequence Tm ! 1 as
m!C1,

lim
m!C1

�.Tm/ � �.0/

Tm
2 @ xH.p/ (2.5)

if the limit exists. Here @ xH.p/ is the subdifferential of xH at p. The full limit

lim
T!1

�.T / � �.0/

T
;

if it exists, is called the rotation vector of �.

2.2. Mather set

Denote by W the set of all Borel probability measures on Rn � Tn that are Euler–
Lagrangian flow invariant. For fixed p 2 Rn, � 2 W is called a “Mather measure” ifZ

Rn�Tn

.L.q; x/ � p � q/ d� D min
�2W

Z
Rn�Tn

.L.q; x/ � p � q/ d�:

Denote by Wp the set of all such Mather measures. The value of the minimum action on
the right-hand side turns out to be � xH.p/, i.e.,

min
�2W

Z
Rn�Tn

.L.q; x/ � p � q/ d� D � xH.p/: (2.6)

In dynamical systems literature, the effective Hamiltonian xH is called the “˛-function”
and is often denoted ˛.c/, where c is the same as p.
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The Mather set is defined to be the closure of the union of the support of all Mather
measures, i.e.,

zMp D

[
�2Wp

supp.�/:

The projected Mather set Mp is the projection of zMp to the torus. A curve �WR! Tn is
called an orbit on Mp if it satisfies (2.2) and

. P�.0/; �.0// 2 zMp:

If we lift zMp to Rn � Rn (or project zAp and zNp in our definition to Rn � Tn) , the
following relation holds:

zMp �
zAp � zNp:

In particular, the graph property (2.4) also holds for zMp . Also, all trajectories on Mp are
universal global characteristics and, hence, absolutely minimizing curves with respect to
xH.p/. Moreover, all viscosity solutions to the cell problem (1.3) are C 1;1 on Mp . See [8]

for instance.
One hope is that Mather sets might have some sort of “integrable structure” in the

sense that long term behaviors of trajectories there can be better understood. However,
when n � 3, very little has been known in this direction except in certain special cases
like the classical Hedlund example and its generalizations ([10, 11]). We also would like
mention that for generic V , [3, Cor. 1.2] says that there are at most nC 1 ergodic Mather
measures for every p, which is proved under some framework of convex analysis.

The following lemma is a well-known fact in the theory of Hamilton–Jacobi equations
([12]).

Lemma 2.1. Let U be an open subset of Rn. Assume that for some c 2 R, w 2W 1;1.U /

satisfies
H.Dw; x/ � c for a.e x 2 U :

Then for any � 2 AC.Œt1; t2�; U /,Z t2

t1

L. P�.t/; �.t//C c dt � w.�.t2// � w.�.t1//:

The equality holds if and only if � is a characteristic of w, i.e., w is differentiable along
�, H.Dw.�.t//; �.t// D c and Dw.�.t// D DqL. P�.t/; �.t// for t 2 Œt1; t2�.

Using solutions to the cell problem (1.3), we have an immediate corollary:

Corollary 2.1. If  W Œ0; T �! R satisfies

.T / � .0/ D El 2 Zn;

then Z T

0

L. P; /C xH.p/ dt � p � El :

The equality holds if and only if  is a periodic orbit in Mp .
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2.3. Classical Aubry–Mather theory when n D 2

In this section we assume that n D 2 and focus on

H.p; x/ D
1

2
jpj2 C V:

Throughout this section we fix
c > max

Rn
V:

Due to (2.5), the two-dimensional topology and fact that different trajectories on Mp

cannot intersect, it can be proved that the level curve ([4])

Sc D ¹ xH.p/ D cº

is C 1. This is equivalent to saying that for every p 2 Sc , there exists a unit vector qp such
that

@ xH.p/ D ¹�qp j � 2 Œa; b�º: (2.7)

Here a � b are two positive constants depending on p and qp is the outward unit normal
vector of Sc at p. Note that if a D b, then xH is differentiable at p.

• Property 8: Cornerstone of Aubry–Mather theory. If qp is a rational vector, then all
orbits on Mp are periodic orbits with the same first homology class .m; n/ 2 Z2 that
is irreducible.

Remark 2.1. Choose pk! p as k!C1 such that xH.pk/ > xH.p/ and qpk D qp; then
by standard convex analysis,

lim
k!C1

@ xH.pk/ D bqp:

Together with the stability of periodic orbits (see the analysis in the appendix), we can
deduce that there is a periodic orbit on Mp whose rotation vector is bqp . Similarly, there
is a periodic orbit on Mp whose rotation vector is aqp .

• Property 9: Identification with circle homeomorphism. Choose Op 2 Sc such that q Op D
.0; 1/. Let � be a periodic orbit on M Op and lift it to R2. Now for each k 2 Z, denote

�k D � C .k; 0/:

For p 2 R2 with qp 6D .0; 1/ or .0;�1/, let  WR ! R2 be a global characteristic
associated with a solution to the cell problem (1.3). Owing to Property 1, for each
k 2 Z,  intersects with �k exactly once. Let ak 2 R be such that (see Figure 2)

 \ �k D �k.akT /:
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�0 �1 �2



�0.a0T /
�1.a1T /

�2.a2T /

Figure 2

Since  cannot intersect itself when it is projected to T2, either ak D 0 for all k 2 Z
or ¹akºk2Z is a strictly monotonic sequence. If ¹akºk2Z is strictly increasing, there exists
a circle homeomorphism f such that

f .ak/ D akC1 for all k 2 Z:

See [1, Thm. 3.15] for further details on the definition of f . If ¹akºk2Z is strictly decreas-
ing, then consider f .ak/D ak�1. We would like to mention that this identification plays a
crucial role in obtaining the optimal convergence rate ju" � uj D O."/ for homogeneous
H.p; x/ ([15]).

We say that p 2 Sc is a linear point if there exists p0 2 R2 such that p0 6D p and the
line segment (edge)

Œp; p0� � Sc :

Clearly, qp D qp0 and qp � .p � p0/D 0. Combining with the definition of Mather sets, we
can deduce that, for every p00 2 Œp; p0�,

zMp00 D
zMp: (2.8)

The following two results were proved in [2].

• Property 10. A point p 2 Sc is a linear point if and only if Mp 6D T2. Moreover, if p
is a linear point, then qp is a rational vector. The converse might not be true in general.
Nevertheless, for generic V , [3, Cor. 1.2] and the above Property 8 imply that if qp is
an rational vector, then Mp has at most 3 periodic orbits and hence p must be a linear
point. See [5] for hyperbolicity of periodic orbits.

• Property 11. The set Sc is not strictly convex (i.e., the set of linear points on Sc is not
empty) unless V is a constant.

The results in [2] are presented under the framework of a minimizing geodesic asso-
ciated with a periodic Riemannian metric on R2. Note that for mechanical Hamiltonians,
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every absolutely minimizing curve associated with L.q; x/C c is a minimizing geodesic
associated with the Riemannian metric

g D
p
2.c � V.x//.dx1 ˝ dx1 C dx2 ˝ dx2/:

The converse is also true after proper reparametrization.

3. Proof of Theorem 1.1

Fix p0 2 R2 with xH.p0/ > maxT2 V . Denote

c0 D xH.p0/

and
Sc0 D ¹p 2 R2 j xH.p/ D c0º:

Assume that the outward unit normal vector qp0 (see (2.7)) at p0 is a rational vector.
Denote

qp0 D
.m; n/
p
m2 C n2

:

Here
.m; n/ is the first homology class of periodic orbits on Mp0 .

Throughout this section, we lift Mp0 to R2 and still denote it as Mp0 . In addition, for
convenience, the lift of a periodic orbit on Mp0 is also called a periodic orbit.

Suppose that v is a viscosity solution to

1

2
jp0 CDvj

2
C V D c0:

For A;B � R2 and
u D p0 � x C v;

we define the barrier between two sets as

du.A;B/ D inf
x2A;y2B

.h.x; y/ � .u.y/ � u.x///:

Here,

h.x; y/ D inf
t>0; 2AC.Œ0;t�/
.0/Dx; .t/Dy

�Z t

0

1

2
j P j2 � V./C c0 ds

�
and AC.Œ0; t �/ is the set of all absolutely continuous curves Œ0; t �! R2. Owing to Lemma
2.1,

du.A;B/ � 0:

If L1WR! R2 and L2WR! R2 are two curves, du.L1; L2/ is to be understood as
du.A1; A2/ for A1 D L1.R/ and A2 D L2.R/.
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Lemma 3.1. Suppose that 1 and 2 are two periodic orbits on Mp0 . Then

du.1; 2/ D lim
t!C1
s!�1

�
h.1.s/; 2.t// � .u.2.t// � u.1.s///

�
:

Proof. Denote

G.t; s/ D h.1.s/; 2.t// � .u.2.t// � u.1.s///:

We claim that G is decreasing in t and increasing in s. In fact, for t1 < t2, due to the
triangle inequality,

h.1.s/; 2.t2// � h.1.s/; 2.t1//C h.2.t1/; 2.t2//

D h.1.s/; 2.t1//C .u.2.t2// � u.2.t1///:

Hence G.s; t2/ � G.s; t1/. Similarly, we can show that G is increasing in s. Then our
lemma follows immediately.

Let D be an open set bounded by two unbounded simple curves L1 and L2 on R2.
For any ı with 0 � ı � du.L1; L2/, let (see Figure 3)´

g.x/ D u.x/ for x 2 L1,

g.x/ D u.x/C ı for x 2 L2.

D

L2

L1u.x/

u.x/C ı

Figure 3

Define
uı.x/ D inf

y2L1[L2
¹g.y/C h.y; x/º for x 2 xD:

The following lemma is due to the well-known compatibility condition for existence of
solutions to the Hamilton–Jacobi equations ([12]).

Lemma 3.2. The above function uı is a Lipschitz continuous viscosity solution to8̂̂<̂
:̂
1
2
jDuı j

2 C V.x/ D c0;

uı D u on L1;

uı D uC ı on L2:
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We have the following corollary:

Corollary 3.1. Let �1 and �2 be two periodic orbits on Mp0 . If the region D � R2

bounded by �1 and �2 is foliated by periodic orbits on Mp0 , then (see Figure 4)

du.�1; �2/ D 0:

�2

�0

�1

x0
x0 C .m; n/

Figure 4

Proof. Let .m;n/ be the homology class of periodic orbits on Mp . Choose ıD du.�1; �2/.
Apparently, D C .m; n/ D D. Also,

uı.x C .m; n// D inf
y2L1[L2

®
g.y/C h.y; x C .m; n//

¯
D inf
y2L1[L2

®
g.y C .m; n//C h.y C .m; n/; x C .m; n//

¯
D inf
y2L1[L2

®
g.y C .m; n//C h.y; x/

¯
D inf
y2L1[L2

®
g.y/C h.y; x/

¯
C p0 � .m; n/

D uı.x/C p0 � .m; n/:

The second equality in the above is due to .L1 [L2/C .m; n/ D L1 [L2. The third one
is from the periodicity of V . The last equality is because g.y C h/� g.y/ D u.y C h/�
u.y/ D p0 � h for all h 2 R2.

To prove du.�1; �2/ D 0, it suffices to show that

uı � u in xD:

In fact, choose an arbitrary point x0 2D and let �0 be the periodic orbit that passes through
x0 with minimum period T0. Then

uı.x0 C .m; n// � uı.x0/ D .m; n/ � p0 D u.x0 C .m; n// � u.x0/

D

Z T0

0

1

2
j P�0j

2
� V.�0/C c0 ds:
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The second “=” is due to the fact that every trajectory on Mp0 is a universal global
characteristic. Hence �0 is also a characteristic of uı and Duı.x0/ D Du.x0/ D P�0.0/.
Accordingly,

Duı � Du in D:

Therefore uı D u in xD.

Lemma 3.3. Suppose that � is a periodic orbit on Mp0 . Let �2 D �1 C .�n;m/.

(1) There exists � > 0 such that

Ep0;�;C D
®
p0 C t .�n;m/ j t 2 Œ0; ��

¯
� Sc0

if and only if
du.�1; �2/ > 0:

(2) There exists � > 0 such that

Ep0;�;� D
®
p0 C t .n;�m/ j t 2 Œ0; ��

¯
� Sc0

if and only if
du.�2; �1/ > 0:

Proof. It is enough to prove (1). The proof for (2) is similar.

“)” Denote
p� D p0 C �.�n;m/:

Let v� be a viscosity solution to

1

2
jp� CDv� j

2
C V.x/ D c0:

Recall that c0 D xH.p0/. Owing to (2.8), �1 and �2 are also periodic orbits on Mp� . Hence

Du� D Du on �1 [ �2

Without loss of generality, we may assume that u� D u on �1. Then u� D uC �.m2C n2/
on �2 D �1 C .�n;m/. Accordingly,

du.�1; �2/ D du� .�1; �2/C �.m
2
C n2/ � �.m2 C n2/ > 0:

“(” This part is not really needed for our main result. Since it is the essential PDE part
in proving the existence of edges of Sc0 , we present it here. Choose

� D
du.�1; �2/

m2 C n2
:

For p0 2 Ep0;�;C, define

F D

´
u on �1;

uC p0 � .�n;m/ on �2:
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Clearly,
inf

x;y2�1[�2
.h.x; y/ � .F.y/ � F.x/// � 0:

Hence for x 2 D,
up0.x/ D inf

y2�1[�2
¹F.y/C h.x; y/º

is a viscosity solution of ´
1
2
jDup0 j

2 C V.x/ D c0 in D;

up0 D F on @D:

As in Corollary 3.1, we have that for x 2 D,

up0.x C .m; n// D up0.x/C p0 � .m; n/ D up0.x/C p
0
� .m; n/:

Next we may extend up0 to R2 by

up0.x C k.�n;m// D up0.x/C kp
0
� .�n;m/ for all x 2 D and k 2 Z:

See Figure 5. Apparently, vp0 D up0 � p0 � x is an .m2C n2/Z2 periodic viscosity solution
to

1

2
jp0 CDvp0 j

2
C V D c0 in R2=.�1 C .�n;m/Z/:

Since �1 is a periodic characteristic of vp0 , it is easy to see that vp0 is a .m2 C n2/Z2

periodic viscosity solution to

1

2
jp0 CDvp0 j

2
C V D c0 on R2:

By the inf-max formula (1.4), it is not hard to deduce that

xH.p0/ D c0:

Lemma 3.4. Suppose that L1; L2; L3; : : : ; Lm are m different periodic orbits on Mp0 .
For i D 2; : : : ; m � 1, Li lies between Li�1 and LiC1. Then

du.L1; Lm/ D

m�1X
kD1

du.Lk ; LkC1/:

Proof. By induction, it suffices to establish the above equality formD 3. By definition of
du, it is clear that

du.L1; L3/ � du.L1; L2/C du.L2; L3/:

Now let us prove the other direction. According to the definition, for any ı > 0, there exist
two Lipschitz continuous curves 1W Œ0; a�! R2 and 2W Œ0; b�! R2 such that

1.0/ 2 L1; 1.a/; 2.0/ 2 L2; 2.b/ 2 L3;

du.L1; L2/ �

Z a

0

1

2
j P1j

2
� V.1/C c0 ds � u.1.0//C u.1.a// � ı;

du.L2; L3/ �

Z b

0

1

2
j P2j

2
� V.2/C c0 ds � u.2.0//C u.2.b// � ı:
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D

�1 � .�n;m/

�1

�2 D �1 C .�n;m/

�1 C 2.�n;m/

u � p0 � .�n;m/

u

uC p0 � .�n;m/

uC p0 � 2.�n;m/

Figure 5

By periodic translation, we can make 1.a/ at an earlier time than 2.0/, i.e., there exists
t1 < t2 such that

1.a/ D L2.t1/ and 2.0/ D L2.t2/:

By connecting 1, L2 and 2, we define  W Œ0; aC t2 � t1 C b�! R2 as (see Figure 6)

.t/ D

8̂̂<̂
:̂
1.t/ for t 2 Œ0; a�;

L2.t � aC t1/ for t 2 Œa; aC t2 � t1�;

2.t C tt � t2 � a/ for t 2 ŒaC t2 � t1; aC t2 � t1 C b�:

L1

L2

L3

1.0/

1.a/ 2.0/

2.b/

Figure 6

Since Z t2

t1

1

2
j PL2j

2
� V.L2/C c0 ds � u.L2.t2//C u.L2.t1// D 0;
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we have that for Nt D aC b C t2 � t1,Z Nt
0

1

2
j P j2 � V./C c0 ds � u..Nt //C u..0// � du.L1; L2/C du.L2; L3/C 2ı:

Accordingly,
du.L1; L3/ � du.L1; L2/C du.L2; L3/C 2ı:

Sending ı ! 0 leads to

du.L1; L3/ � du.L1; L2/C du.L2; L3/:

Hence our lemma holds.

Next we prove that xH is one-dimensional near any point that is in the interior of an
edge. This conclusion holds for any V 2 C k.T2/ when k � 2.

Lemma 3.5. Suppose there exist p1 6D p2 2 Sc0 such that

p0 2 ¹tp1 C .1 � t /p2 j t 2 .0; 1/º � Sc0 ;

i.e., p0 is in the interior of an edge. Then there exist r > 0 and a convex function f WR!
R2 such that

xH.p/ D f .qp0 � p/ for p 2 Br .p0/:

Proof. It suffices to show that there exists r > 0 such that

qp D qp0 for p 2 Br .p0/: (3.1)

Recall the definition of qp in (2.7). If this holds, xH is constant along the direction that is
perpendicular to qp0 in Br .p0/. Then

f .t/ D xH.p0 C qp0.t � p0 � qp0//:

We argue by contradiction. If not true, then there exist ¹pkºk�1 such that pk ! p0 as
k !C1 and

qpk � .�n;m/ 6D 0:

Without loss of generality, let us assume that

qpk � .�n;m/ > 0: (3.2)

Let vk be a periodic viscosity solution to

1

2
jpk CDvkj

2
C V.x/ D xH.pk/

subject to
R

T2 vk dx D 0. Up to a subsequence if necessary, we assume that

lim
k!C1

vk D Ov uniformly on R2:



High degeneracy of effective Hamiltonian in two dimensions 217

Then Ov is a Z2-periodic viscosity solution of

1

2
jp0 CD Ovj

2
C V.x/ D c0 on R2

subject to
R

T2 Ov dx D 0.
For k � 1, since the level curve ¹ xH D xH.pk/º is C 1, we can choose Qpk such that

xH.pk/ D xH. Qpk/

and the outward unit normal vector at Qpk ,

q Qpk D
.�n;m/
p
m2 C n2

:

Let �k WR! R2 be a periodic orbit on M Qpk (lift to R2). Up to a subsequence, we may
assume that

lim
k!C1

Qpk D Qp;

and
lim

k!C1
�k D � locally uniformly on R:

Then xH. Qp/ D xH.p0/ and � is a periodic orbit on M Qp with first homology class .�n;m/.
Suppose that �1 and �2 are two periodic orbits on Mp0 such that there is no other

periodic orbit in the region bounded by �1 and �2 (a gap).

Claim: For Ou D p0 � x C Ov,
d Ou.�1; �2/ D 0:

The orbit �1 divides the plane into two regions. Without loss of generality, we may assume
that �2 is in the same region as �1 C .�n;m/. For k � 1, let k WR! R2 be an orbit on
Mpk (lift to R2) with k.0/ D xk for some xk 2 Œ0; 1�2 satisfying that the distance from
xk to �2 is half the distance between �1 and �2:

distance.xk ; �2/ D
1

2
distance.�1; �2/:

Up to a subsequence if necessary, we assume that

lim
k!C1

k D  locally uniformly on R

and
lim

k!C1
xk D x1 2 Œ0; 1�

2:

See Figure 7. Due to the stability,  WR! R2 is a global characteristic of Ov with .0/ D
x1. Owing to (3.2), intersections of  with respect to � C .m; n/Z are non-decreasing
(see Property 9 in Section 2.3 for the precise meaning). Since there is no periodic orbit
between �1 and �2, there exist ¹tCi ºi�1 and ¹t�i ºi�1 such that

lim
i!C1

tCi D C1 and lim
i!C1

j.tCi / � �2.t
C

i /j D 0

and
lim

i!C1
t�i D �1 and lim

i!C1
j.t�i / � �1.t

�
i /j D 0:
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k !C1

�k �k C .m; n/ � �C .m; n/

�1

�2

�1

�2

xk

k

x1



Figure 7

Accordingly, we can derive that
d Ou.�1; �2/ D 0:

Combining Corollary 3.1 and Lemma 3.4, we deduce that

d Ou.�1; �1 C .�n;m// D 0:

This contradicts Lemma 3.3 and the assumption that p0 is in the interior of an edge. Hence
(3.1) and the lemma hold.

Proof of Theorem 1.1. Let
G D

\
q2Q2; r2Q

C.q; r/:

Here Q2 is the collection of points on R2 with both coordinates rational numbers. See
the appendix for the definition of C.q; r/. Fix V 2 G . Then for any p 2 R2, if xH.p/ >
maxR2 V and @ xH.p/ \Q2 6D ;, p must be a linear point. Now write

OV D
®
p 2 R2 j xH.p/ > minR2 V and p is an interior linear point

¯
[ F ı0 :

Recall that the minimum level set F0 D ¹p 2 R2 j xH.p/ D maxR2 V º. Owing to Lemma
3.5, OV is an open set. We only need to show that OV is dense. Let us argue by contra-
diction. If not, then there exist Np 2 R2 and Br . Np/ for some r > 0 such that xH is strictly
convex in Br . Np/. Then the set

W D
[

p2Br . Np/

@ xH.p/

is a non-empty open set. In particular, W \Q2 is not empty. This contradicts the choice
of V and OV .
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A. Construction of the residual set

Definition A.1. Assume we are given r > 0 and a non-zero rational vector q. Denote by

C.q; r/

the collection of all V 2 C k.T2/ such that for any p 2 R2, if

xHV .p/ � max
T2

V C r and q 2 @ xH.p/

then
Mp 6D T2 (equivalently, p is a linear point).

Theorem A.1. For r > 0 and any non-zero rational vector q,

C.q; r/

is an open dense set.

Proof. It is equivalent to showing that the complement

S D C k.T2/nC.q; r/

is closed and nowhere dense. Write

q D �.m; n/;

where � > 0 and .m; n/ 2 Z2 is irreducible.

Step 1. We first prove that S is closed. Suppose that ¹Vj ºj�1 is a sequence of functions
in S and

lim
j!C1

Vj D V in C k.T2/:

Then
lim

j!C1

xHVj .p/ D
xHV .p/ locally uniformly in R2:

Since Vj 2 S , for each j 2 N, there exists pj 2 R2 such that

xHVj .pj / � max
T2

V C r; q 2 @ xHVj .pj /

and
Mpj ;Vj D T2:

Due to the convexity, xHVj .0/ � xHVj .pj /C q � .�pj /. Together with the quadratic growth
of xHVj , it is easy to see that ¹pj ºj�1 is uniformly bounded. Upon a subsequence if neces-
sary, we assume that

lim
j!C1

pj D Qp:
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Then
xHV . Qp/ � max

T2
V C r

and by upper semicontinuity of subdifferentials,

q 2 @ xHV . Qp/:

Now we just need to show that
M Qp;V D T2:

This follows easily from the stability of periodic orbits. For the readers’ convenience, we
present details here. Fix x0 2 T2.

For each j � 1, let �j W Œ0; Tj �! T2 be a periodic orbit on Mpj ;Vj with �j .0/ D x0
and Tj is the minimum period. Then

�j .Tj / D x0 C .m; n/;
�.Tj / � x0

Tj
2 @ xHVj .pj /

and

pj � .m; n/ D

Z Tj

0

1

2
j P�j j

2
� Vj .�j /C xHVj .pj / dt:

It is easy to see that Tj and k�j kC 2.Œ0;Tj �/ are uniformly bounded. Up to a subsequence if
necessary, we may assume that

lim
j!C1

Tj D T and lim
j!C1

�j D � uniformly in C 1.R/:

Then
�.0/ D x0 and �.T / D x0 C .m; n/

and

Qp � .m; n/ D

Z T

0

1

2
j P�j2 � V.�/C xHV . Qp/ dt:

So � is a periodic orbit on M Qp;V and x0 2M Qp;V . Hence M Qp;V D T2.

Step 2. Next we prove that C.q; r/ is dense. Assume we are given V0 2 S . Then there
exists p0 2 R2 such that xHV0.p0/ � maxT2 V0 C r , q 2 @ xH.p0/ and Mp0;V0 D T2.
Assume that

@ xHV0.p0/ D Œ˛q; ˇq�

for 0 < ˛ � 1� ˇ. By Remark 2.1, we can choose two periodic orbits �˛ and �ˇ on Mp0;V0

such that their rotation vectors are ˛q and ˇq respectively.
Choose x0 2 T2 such that �˛ and �ˇ do not pass through x0. Pick ı > 0 such that

B2ı.x0/ \ �˛.R/ D ; and B2ı.x0/ \ �ˇ .R/ D ;:

See Figure 8. Choose � 2 C1.T2/ satisfying

� > 0 in Bı.x0/ and � D 0 in T2
nBı.x0/:
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�˛

�ˇ

�0
x0

ı

Figure 8

For ı > 0, denote
Vı D V0 � ı�:

It suffices to show that Vı 2 C.q; r/. Suppose that q 2 @ xHVı .p
0/ for some p0 2 R2. The

goal is to verify that
Mp0;Vı 6D T2:

Claim: xHVı .p0/ D xHV0.p0/:
Since Vı � V , owing to the inf-max formula (1.4),

xHVı .p0/ �
xHV0.p0/:

So it suffices to show that
xHVı .p0/ �

xHV0.p0/:

Due to Corollary 2.1,Z T0

0

1

2
j P�˛j

2
� Vı.�˛.t//C xHVı .p0/ dt � p0 � .m; n/

D

Z T0

0

1

2
j P�˛j

2
� V0.�˛.t//C xHV0.p0/ dt:

Hence xHVı .p/ � xHV0.p/. Therefore our claim holds and �˛ is also a periodic orbit on
Mp0;Vı and all periodic orbits on Mp0;Vı have first homology class .m; n/. Similarly, �ˇ
is also a periodic orbit on Mp0;Vı . Hence

q 2 Œ˛q; ˇq� � @ xHVı .p0/:

Therefore xHVı is linear on Œp0; p0�. Owing to Property 3 and (2.8),

Mp0;Vı DMp0;Vı :

So we just need to prove that
Mp0;Vı 6D T2:
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We argue by contradiction. Assume that

Mp0;Vı D T2:

Let �0W Œ0; zT0�! T2 be the periodic orbit on Mp0;Vı with �0.0/ D x0. Here zT0 > 0 is the
minimum period. Then

p0 � .m; n/ D

Z zT
0

1

2
j P�0j

2
� Vı.�0/C xHVı .p0/ dt

D

Z zT
0

1

2
j P�0j

2
� Vı.�0/C xHV0.p0/ dt

>

Z zT
0

1

2
j P�0j

2
� V0.�0/C xHV0.p0/ dt:

This contradicts Corollary 2.1.

The residual set G in Theorem 1.1 is chosen as

G D
\

q2Q2; r2Q

C.q; r/: (A.1)

Here Q2 is the collection of points on R2 with both coordinates rational numbers.
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