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Long-time behavior of scalar conservation laws
with critical dissipation

Dallas Albritton and Rajendra Beekie

Abstract. The critical Burgers equation @tu C u@xu C ƒu D 0 is a toy model for the compe-
tition between transport and diffusion with regard to shock formation in fluids. It is well known
that smooth initial data does not generate shocks in finite time. Less is known about the long-time
behavior for ‘shock-like’ initial data: u0!˙a as x!�1. We describe this long-time behavior in
the general setting of multidimensional critical scalar conservation laws @tuC divf .u/Cƒu D 0
when the initial data has limits at infinity. The asymptotics are given by certain self-similar solutions,
whose stability we demonstrate with the optimal diffusive rates.

1. Introduction

Our motivating example is the Burgers equation with critical non-local dissipation

@tuC u@xuCƒu D 0 (1.1)

and ‘shock-like’ initial data:

u0.x/!˙a as x !�1; (1.2)

where ƒ D .��/1=2 and a > 0. This equation arises as a toy model in fluid mechanics. It
models the competition between the transport non-linearity u@xu, which drives the solu-
tion towards a shock, and the dissipation term ƒu, whose smoothing effects counteract
the tendency of the non-linearity to form shocks. The equation is critical in the sense that
these two terms are in balance. In PDE terms, the strongest known monotone quantities,
the L1 norm and total variation, are invariant under the scaling symmetry

u! u.�x; �t/; (1.3)

which preserves the equation (1.1).
By now, it is well known that solutions of (1.1) evolving from smooth initial data do

not form shocks in finite time. What happens in infinite time? We answer this question for
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the critical Burgers equation (1.1) and in the more general context of scalar conservation
laws with critical non-local dissipation in Rn:

@tuC divf .u/Cƒu D 0; (1.4)

where the initial data has ‘limits at infinity’. The long-time behavior is described to lead-
ing order by certain self-similar solutions, that is, solutions invariant under the scaling
symmetry (1.3).

Let h 2 C1.Sn�1/ and uss
0 .x/ D h.x=jxj/. Let f WR! Rn belong to C1loc .RIR

n/.
Let v0 2 L1.Rn/ with jv0j ! 0 as jxj ! C1, specifically,

kvkL1.RnnBR/ ! 0 as R!C1: (1.5)

Let u0 D uss
0 C v0 and kuss

0 kL1.Rn/; ku0kL1.Rn/ � m. Let uss, u be the unique entropy
solutions to (1.4) with initial data uss

0 , u0, respectively. In the context of (1.4), the notion
of entropy solution was introduced by Alibaud in [3], and we review it below. Notice that,
by virtue of its uniqueness, uss must be self similar.

Here is our main theorem:

Theorem 1.1 (Long-time behavior). The above entropy solution u converges to the self-
similar solution uss with the following (diffusive) rates:

ku.�; t / � uss.�; t /kLq.Rn/ .m;n ot!C1.1/t
n
q�

n
p ku0 � u

ss
0 kLp.Rn/ (1.6)

for all 1 < p � q � C1. If p D 1, then (1.6) holds with O.1/ instead of o.1/ on the
right-hand side.

When f � 0, (1.4) reduces to the fractional heat equation, and the above diffusive
rates are easily seen to be sharp.

In dimension n D 1, we also have stability in BV:

Theorem 1.2 (BV convergence). If also u0 2 BV.R/, then

ku.�; t / � uss.�; t /kTV.Rn/ ! 0 as t !C1: (1.7)

Additionally, uss is monotone and satisfies the following spatial asymptotics:

C�1hxi�1 � juss.x; 1/ � uss
0 j � C hxi

�1; jxj � C; (1.8)

provided that uss
0 is not identically constant.1 Notice that, when n � 2, uss

0 does not gener-
ally belong to BV.Rn/, and the total variation is no longer scaling invariant.

1It may be possible to obtain more precise spatial asymptotics for uss and its derivatives by analyzing
the similarity profile uss.�; 1/, which satisfies a quasilinear non-local elliptic equation.

Added in print: In the rarefaction case, qualitative properties of the self-similar profile (symmetry, mono-
tonicity, and convexity of uss.�; 1/, as well as asymptotics for @xuss.x; 1/ as jxj ! C1/ were studied in
Theorem 1.7 of [5] from this perspective.
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1.1. Comparison with existing literature

The critical Burgers equation (1.1) belongs to the following family of Burgers equations
with fractional diffusion:

@tuC u@xuCƒ
su D 0; (1.9)

where s 2 .0; 2�. These models were considered by Biler, Funaki, and Woyczynski in [7],
where they are known as fractal Burgers equations. One may consider also the analogous
conservation laws with fractional diffusion ƒs . The relevant literature is fairly extensive:

Regularity theory. A detailed picture of the regularity theory of (1.9) was shown by
Kiselev, Nazarov, and Shterenberg in [32] in the periodic setting. When s � 1, smooth
initial data gives global smooth solutions, whereas when s < 1, solutions may develop
shocks in finite time. In that case, solutions may be continued uniquely within the class
of entropy solutions. See [4, 20] for further discussions on regularity vs. blow-up. The
proof of global regularity in [32] in the critical case follows the method of ‘moduli of
continuity’. This method was introduced in [33] by Kiselev, Nazarov, and Volberg in the
context of the critical SQG equation:2

@t� C ER
?� � r� Cƒ� D 0: (SQG)

Other proofs of the regularity of (SQG) are contained in [11] (De Giorgi’s method), [31],
[34] (Nash’s method), [17] (‘nonlinear maximum principle’), and [16]. The above proofs
can be categorized as proofs of smoothing [11, 34] or propagation of regularity [16, 17,
31, 33]. The smoothing proofs notably ‘forget’ that the equation is nonlinear. Alternative
proofs of regularity for (1.1), based on smoothing, were given in [12] (De Giorgi’s method)
and [38, 39] (non-divergence form techniques). We rely on these smoothing estimates,
particularly those of Silvestre, in an essential way below.3

Long-time behavior. The long-time behavior of (1.9) is perhaps less well studied than its
regularity. When s 2 .0;2/ and the initial data is well localized, the non-linearity of (1.9) is
‘irrelevant’, in the sense of [9], for the long-time dynamics. When sD 1, Iwabuchi [24,25]
demonstrated that all solutions with u0 2 L1 \ PB01;1 converge to the Poisson kernel.
When s D 2, the spaces L1 and M (finite measures) are critical, and it is classical that
the long-time behavior is given by a self-similar solution, sometimes called a diffusion
wave. This case and its precise asymptotic behavior can be illuminated by the Cole–Hopf
transformation [6, 14, 29, 35].

What about non-decaying solutions? The current best results in this direction concern
‘rarefaction-like’ initial data, that is, a < 0 in (1.2). In [28], it was shown that such solu-
tions converge to an inviscid rarefaction wave when s > 1. In [5], it was shown that when

2This method has since been generalized to other models, including the one-dimensional critical
Keller–Segel equations [10] and the one-dimensional fractional Euler alignment system [19].

3For supercritical SQG, global regularity remains open, though it is possible to show eventual regular-
ity [13, 18, 30, 37]. We mention also the recent extension of [11] to bounded domains in [41].



D. Albritton and R. Beekie 228

s D 1, the solutions converge to a certain self-similar solution, and when s < 1, the non-
linearity is ‘irrelevant’ in the long-time asymptotic expansion. Notably, in the rarefaction
case, the potential term in the energy estimates for the linearized equation appears with a
good sign.

In this paper, we analyze the case of ‘shock-like’ initial data, which is less clear.
Initially, one might wonder whether (i) solutions converge to a smooth traveling or stand-
ing wave, known as a ‘viscous shock’, or perhaps (ii) solutions form a shock in infinite
time. Regarding (i), it was already shown in [7] that traveling wave solutions satisfying
reasonable regularity conditions do not exist when s 2 .0; 1�. Regarding (ii), one might
additionally wonder whether the standing waves constructed in the subcritical case s > 1
in [15] converge to a shock as s! 1C. This is apparently also not the case, as we show in
Theorem 1.1.

It is tempting to conjecture that, in the subcritical case s > 1, shock-like solutions
of (1.9) behave as in the classical case s D 2, where there is a unique viscous shock,
whose global asymptotic stability was shown by Ilín and Oleı̆nik in [23]. See [27, 36, 44]
and many others for further developments and precise asymptotics. For s 2 .1; 2/, the
uniqueness, spatial asymptotics, and global asymptotic stability of the monotone viscous
shocks constructed in [15] do not seem to have appeared in the literature, although local
asymptotic stability was recently demonstrated in [1].

Self-similarity and (non-)uniqueness. The two-dimensional Navier–Stokes equations

@t! C u � r! ��! D 0; u D r?��1! (NS)

exhibit a family of self-similar solutions known as the Oseen vortices: !.x; t/ D
˛�.x; t=�/, where � is the heat kernel and ˛ D

R
!0 dx is the circulation. In [21], Gallay

and Wayne famously showed that all localized solutions converge to Oseen vortices as
t ! C1, and, moreover, the vortex solutions are unique within a natural solution class.
Our situation is analogous, with the circulation ˛ corresponding to the jump parameter a
in (1.2). By contrast, self-similar solutions of the three-dimensional Navier–Stokes equa-
tions are expected to be non-unique [22,26]. For (SQG), this is investigated in forthcoming
work of Bradshaw and the first author. While the entropy solutions of (1.1) are unique,
there may be a different class of self-similar solutions with potential non-uniqueness, for
example, with u0 � log x, so that ru0 is �1-homogeneous.

1.2. Main idea

Our starting point is the existence and uniqueness of L1 entropy solutions to (1.4), due
to Alibaud [3], which immediately gives the existence and uniqueness of a self-similar
solution uss. Let v D u� uss be the difference between an entropy solution u and the self-
similar solution. Consider a sequence .v.k//k2N obtained by ‘zooming out’ on v using
the scaling symmetry (1.3). Then establishing v.�; t / ! 0 as t ! C1 is the same as
establishing v.k/ ! 0 on Rn � .1=2; 1/ as k ! C1. To analyze the new problem, we
exploit a key (standard) observation about viscous scalar conservation laws, namely, that
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v satisfies the viscous continuity equation

@tv C div.gv/Cƒv D 0; (1.10)

where

g D
f .u/ � f .uss/

u � uss 2 L1.Rn � .0;C1//: (1.11)

In our setting, the main difficulty is that at the initial time, g is no better than bounded,
since uss

0 is not continuous. This is an essential feature of the problem, and we handle it
using two tools:

(1) smoothing for drift-diffusion equations. By the known regularity theory, the solu-
tion, which is initially merely bounded, instantaneously becomes C ˛-in-x. This
may be bootstrapped to higher regularity. The key point is then to move the prob-
lem past t D 0, which is done by the

(2) controlled speed of propagation. Solutions of (1.10) have finite propagation speed
up to the effect of the diffusion. This allows us to keep the initial spatial decay of
the solution for small positive times and exploit (1.10) with smooth coefficients
and smooth, decaying initial data.

The above tools, due to [38, 39] and [3], respectively, are key to our arguments. We
encounter a further, technical difficulty in that the controlled speed of propagation only
allows us to propagate L1-based quantities. This requires the use of special norms
k�k`

q
k
L
p
x .Rn/, for example,

kvk`1
k
L1x.Rn/ D sup

k2Zn

Z
kC.�1=2;1=2/n

jv.x/j dx: (1.12)

After the initial time, we use the smoothing effect to estimate more standard quantities,
such as kvkLq.Rn/, in terms of these special norms.4 For this, we use pointwise estimates
for fundamental solutions of non-local parabolic equations with subcritical lower order
terms, due to Xie and Zhang [43]. When f is merely Lipschitz, we offer less precise
asymptotics, see Remark 3.3.5

2. Preliminaries

In the sequel, constants in the C , . notation may implicitly depend on n � 1, f 2
W
1;1

loc .RIRn/.

4Similar norms appear in the Navier–Stokes literature. See [8] and the references therein. Apparently,
these spaces are known as Wiener amalgam spaces.

5Added in print: See Remark 3.2 for an alternative proof, due to Hongjie Dong, based on a maximal
function estimate.
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Recall that the Poisson kernel P is given by

P.x; t/ D cn
t

.jxj2 C t2/
nC1
2

; (2.1)

where cn > 0 is chosen to satisfy
R
P.x; t/ dx D 1 for all t > 0.

In [3, Definition 2.3], Alibaud introduced the notion of entropy solution to the critical
scalar conservation law (1.4). We summarize only the facts we need about entropy solu-
tions; see [3, Section 3]. For each u0 2 L1.Rn/, there exists a unique entropy solution u
of (1.4). This solution exists globally and satisfies the maximum principle

kukL1t;x.Rn�.0;C1// � ku0kL1.Rn/: (2.2)

The PDE (1.4) is satisfied in the distributional sense. Finally, u belongs to the space
C.Œ0; T �IL1.K// for each T > 0 and compact K � Rn.

The following proposition is contained in [3, Theorem 3.2]:

Proposition 2.1 (Controlled speed of propagation). Let u0; zu0 2 L1.Rn/. Consider u; zu
entropy solutions to (1.4) with initial conditions u0 and zu0, respectively. Then for all
x0 2 Rn, all t > 0 and all R > 0,Z

B.x0;R/

ju.x; t/ � zu.x; t/j dx �

Z
B.x0;RCLt/

P.�; t / � ju0 � zu0j dx; (2.3)

where L is the Lipschitz constant of f on Œ�m; m� and m is defined by m D

max.ku0kL1.Rn/; kzu0kL1.Rn//.

We use Proposition 2.1 to establish the following corollary.

Proposition 2.2 (Controlled BV). If u0 2 BV.Rn/, then u.�; t / 2 BV.Rn/ with
ku.�; t /kTV.Rn/ � ku0kTV.Rn/ for all t > 0. Let  2 C10 .R

n/ be non-negative and radial
with � 1 in a neighborhood of the origin. Let .x; t/D .x � xLt=jxj/ when jxj �Lt
and  � 1 otherwise. Then, for all x0 2 Rn, all t > 0, and k D 1; : : : ; n,Z

Rn

 .x � x0/j!k.x; t/j dx �

Z
Rn

 .x � x0; t /P.�; t / � j!k;0j dx; (2.4)

where !k D @ku and !k;0 D @k!0 are finite measures.6

By approximation, if also ru.�; t / 2 L1.Rn/ for a given t > 0, then  D 1BR with
R > 0 is an admissible weight function.

Proof. The global BV bound is directly from [3, Proposition 3.4]. Let us justify (2.4)
with x0 D 0 when ru0 2 L1.Rn/ is compactly supported. First, Alibaud’s formula (2.3)
holds with integration against weight  as in (2.4). This is shown by integrating (2.3)

6This is why we require integration against continuous  on the left-hand side.
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according to the principle
R

Rn  F dx D
R1
0

R
¹ >�º

F dx d�. Let D"
k

be the different
quotient operator D"

k
u D .u.x/ � u.x � "Eek//=". Letting zu D u.� � "Eek ; t / in (2.3) with

weight  , and dividing by ", we haveZ
Rn

 .x/jD"
ku.x; t/j dx �

Z
Rn

 .x; t/P.�; t / � jD"
ku0j dx: (2.5)

We have D"
k
u0 ! !k;0 strongly in L1.Rn/. Then P.�; t / � jD"

k
u0j ! P.�; t / � j!k;0j

in L1.Rn/ also. This implies that the left-hand side remains bounded as " ! 0C.
Hence, ru.�; t / actually belongs to L1.Rn/, and the left-hand side converges toR

Rn  .x/j!k.x; t/j dx as "! 0C. To complete the proof for general u0 2 BV.Rn/, we
approximate u0 in L1.Rn/ by u.i/0 , i 2N, and we approximate ru0 weakly-� in M.Rn/
by ru.i/0 compactly supported, belonging to L1.Rn/, and satisfying j!.i/

k;0
j
�
* j!k;0j in

the sense of measures. Then one may verify, using the Lebesgue dominated convergence
theorem and kernel estimates, that P.�; t / � j!.i/

k;0
j ! P.�; t / � j!k;0j strongly in L1.Rn/.

The left-hand side is handled by lower semicontinuity. This completes the proof.

Proposition 2.1 only allows us to propagate L1-based quantities, which then smooth
to Lq-based quantities, q � 1, after the initial time:

Let ` > 0 and `�.k/ be the open cube with center at k and side length `. That is,
`�.k/ D k C .�`=2; `=2/n. We write�.k/ D 1�.k/. Define

kf k`p
k
L
q
x.Rn/ D



kf kLqx.�.k//

`pk .Zn/: (2.6)

When p D C1, the space `1
k
L
q
x.Rn/ is known in the literature as Lquloc.R

n/. We have
Lp.Rn/ D `p

k
L
p
x .Rn/ with equality of norms. We also have the obvious embeddings

kf k
`
p
k
L
q1
x .Rn/

� kf k
`
p
k
L
q2
x .Rn/

(2.7)

when q1 � q2, and
kf k

`
p2
k
L
q
x.Rn/

� kf k
`
p1
k
L
q
x.Rn/

(2.8)

when p1 � p2. The short-time and small-distance behavior of these spaces is akin to that
of Lq.Rn/, whereas the large-distance behavior is more closely akin to that of Lp.Rn/.

We will require the following smoothing estimates when q D 1 or p D q. However, it
is no more effort to prove the general estimates:

Lemma 2.3 (Smoothing for the heat equation). Let p; q1; q2 2 Œ1;C1� with q1 � q2. Let
w0 2 `

p

k
L
q1
x .Rn/. Define

w.�; t / D P.�; t / � w0: (2.9)

Then for t � 1,
kw.�; t /k

`
p
k
L
q2
x .Rn/

. t
n
q2
� n
q1 kw0k`p

k
L
q1
x .Rn/

: (2.10)
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Proof. Let k 2 Zn. We decompose Rn into near-to-k and far-from-k regions:

kw.x; t/k
L
q2
x .�.k//

�





Z
y23�.k/

P.x � y; t/jw0j.y/ dy






L
q2
x .�.k//„ ƒ‚ …

DI1.k/

C





Z
y2Rnn3�.k/

P.x � y; t/jw0j.y/ dy






L
q2
x .�.k//„ ƒ‚ …

DI2.k/

: (2.11)

Eventually, we will sum in `p
k
.Zn/. First, we estimate I1.k/:

I1.k/ �





 X
jj j1�1

P.�; t / � .1�.kCj /jw0j/






L
q2
x .Rn/

. t
n
q2
� n
q1

X
jj j1�1

kw0kLq1x .�.kCj //;

(2.12)
by Young’s convolution inequality. We now sum in `p

k
.Zn/. By the triangle inequality, and

since there are only a finite number of boxes (specifically, 3n) in the j sum, we have

kI1.k/k`p
k
.Zn/ . t

n
q2
� n
q1 kw0k`p

k
L
q1
x .Rn/

: (2.13)

Now we estimate I2.k/:

I2.k/ �
X
jj j1>1

Z
�.k�j /

jw0.y/j kP.x � y; t/kLq2x .�.k// dy

�

X
jj j1>1

�
sup

x2�.k/

sup
y2�.k�j /

P.x � y; t/
� Z

�.k�j /

jw0.y/j dy; (2.14)

where we used Hölder’s inequality in x and j�.k/j D 1. When x 2 �.k/ and y 2

�.k � j /, we have jx � yj � jj j � 1. Recall that P.z; t/ . t=jzjnC1 . 1=jzjnC1 for
t � 1. Hence,

sup
x2�.k/

sup
y2�.k�j /

P.x � y; t/ .
1

.jj j � 1/nC1
; (2.15)

and
I2.k/ .

X
jj j1>1

1

.jj j � 1/nC1

Z
�.k�j /

jw0.y/j dy: (2.16)

One may recognize (2.16) as a discrete convolution with a summable-in-j kernel. Apply-
ing k�k`p

k
.Zn/, we have

kI2.k/k`p
k
.Zn/ .

X
jj j1>1

1

.jj j � 1/nC1
kw0k`p

k
L1x.Rn/ . kw0k`p

k
L
q1
x .Rn/

; (2.17)

where we used the trivial embedding (2.7). This completes the proof.

We now justify that the entropy solutions immediately become Hölder continuous and
better:
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Proposition 2.4 (Regularity). Let u be the unique entropy solution of (1.4) with initial
data satisfying ku0kL1.Rn/ � m. Suppose also that f 2 C1loc .RIR

n/. There exists ˛ D
˛.m; n/ 2 .0; 1/ such that u 2 L1t;locC

2;˛
x .Rn � .0;C1// and

ess sup
t>0

tkru.�; t /kL1.Rn/ C t
2
kr

2u.�; t /kL1.Rn/ C t
2C˛Œr2u.�; t /�C˛.Rn/ .m 1:

(2.18)

Proof. The estimate
t˛Œu.�; t /�C˛.Rn/ .m 1 (2.19)

follows from a direct application of the L1x ! C ˛x smoothing estimates developed by
Silvestre in [39, Theorem 1.1] and [38] for bounded ‘solutions’ of non-local drift-diffusion
equations

@tuC b � ruCƒu D g; (2.20)

where b; g are bounded. Notably, b may be large and not necessarily divergence free. In
our situation, b.x; t/ D f 0.u.x; t// and g D 0. The notion of ‘solution’ is in quotation
marks because, here, b is allowed to be discontinuous, so the notion of viscosity solu-
tion may not be directly applicable.7 To employ Silvestre’s estimates rigorously, one may
mollify the initial data, argue at the level of classical solutions, and pass to the limit.

To bootstrap C ˛x ! C
1;˛
x , we apply linear estimates due to Silvestre in [40, Theorem

1.1] for the drift-diffusion equation (2.20). It is also possible to proceed more directly, as in
[11, Appendix B] or in [16,17]. Since b D f 0.u/ is ˛-Hölder continuous in Rn � .1=2; 1/
with bounds depending only on m, Theorem 1.1 in [40] gives

kuk
L1t C

1;˛
x .Rn�.1=2;1//

.m 1: (2.22)

Hence, b D f 0.u/ satisfies the same bounds. Next, we apply @k , 1 � k � n, to the PDE.
This gives

@t@kuCƒ@kuC b � r@ku D �@kb � ru: (2.23)

We regard g D �@kb � ru as a forcing term belonging to L1t C
˛
x .R

n � .1=2; 1//. Finally,
Theorem 1.1 in [40] gives

k@kukL1t C
1;˛
x .Rn�.3=4;1//

.m 1: (2.24)

Scaling invariance gives the sharp dependence on t . One could also proceed to higher
derivatives.

7This is discussed in Section 5 of Silvestre’s paper [39], see also [40, Section 3]. Silvestre mentions
that, if viscosity solutions are unavailable, then one may justify the estimates at the level of the vanishing
viscosity approximation

@tu
"
C b" � ru" Cƒu" D "�u" (2.21)

with " ! 0C. In principle, this is possible. However, in our setting, the construction in [3] was by an
operator splitting method, rather than regularization by "�u", so we argue differently.
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Consider the linear PDE

@tuCƒuC b � ruC cu D 0 (2.25)

where b 2 L1t C
1;˛
x .Q1/ and c 2 L1t C

˛
x .Q1/ with kbk

L1t C
1;˛
x .Q1/

CkckL1t C˛x .Q1/ �M .
Here, QT D Rn � .0; T /.

Proposition 2.5 (Fundamental solution estimates). There exists a continuous function
� D �.x; t Iy; s/, x; y 2 Rn and 0 � s < t � 1, satisfying the following properties:

• (Pointwise upper and lower bounds) For all 0 � S � s < t � T � 1,

C�10 P.x; t Iy; s/ � �.x; t Iy; s/ � C0P.x; t Iy; s/; (2.26)

where C0 D C0.T � S;M/ > 0 and P is the Poisson kernel.

• (Maximum principle) If c � 0, thenZ
Rn

P.x; t Iy; s/ dy D 1: (2.27)

• (Representation formula) If w 2 L1t;x.Q1/, with w 2 L1t;locC
1;ˇ
x .Q1/ for some ˇ 2

.0; 1/, is a solution of (2.25) on Q1 and w.�; t /
�
* w0 in L1.Rn/ as t ! 0C, then

w.x; t/ D

Z
Rn

�.x; t Iy; 0/w0.y/ dy: (2.28)

Solutions given by the representation formula belong to the above class.

Proposition 2.5 was obtained in the paper [43] of Xie and Zhang by E. E. Levi’s
parametrix method, except for uniqueness, which we sketch below. In [43], the authors
work with more general assumptions: b in the subcritical space L1t C

˛
x .Q1/ and c in a

critical Kato space.

Proof of uniqueness. Let u0 2 L2.Rn/. Define

v.x; t/ D

Z
Rn

�.x; t Iy; 0/u0.y/ dy: (2.29)

LetLDƒC b � r C c andL� Dƒ� b � r C .c � divb/. Under our additional regularity
assumptions, it is possible to show that v is a weak solution8 of the PDE in the sense that“

v.x; t/.�@t C L
�/' dx dt D 0 (2.30)

for all ' 2 C10 .R
n � .0; 1//. Additionally, we have that v 2 L1t L

2
x.Q1/ and

v 2 L2t;locH
1=2
x .Rn � .0; 1�/, among many other spaces, and v.�; t /! u0 in L2.Rn/ as

8Due to the quite general conditions in [43], the authors avoided classical solutions and space-time
distributional solutions. Instead, they connect the fundamental solution to the PDE via the ‘generator’
notion.
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t ! 0C. This follows from the pointwise upper bounds of the fundamental solution and
its first derivatives (see [43, Theorem 1.1 (v)]) and the convergence result in [43, Theo-
rem 1.1 (ii)]. One may show, via energy estimates, that the above solution is unique in its
class and, additionally, belongs to C.Œ0; 1�IL2.Rn// \ L2tH

1=2
x .Q1/.9

Assume now that u0 2 L1 \ L1.Rn/. Then the above solution v also belongs to
L1t L

1
x \L

1
t;x.Q1/. By uniqueness within the energy class, the solution vmay be obtained

by vanishing viscosity:

@tu
"
Cƒu" C b � ru" C cu" D "�u": (2.31)

According to Silvestre’s estimates, we have that v 2 L1t;locC
1;˛
x .Rn � .0; 1�/ for some

˛ 2 .0; 1/ with estimates depending only on ku0kL1.Rn/ and the coefficients. By approx-
imation, we have that when u0 2 L1.Rn/, v satisfies the same a priori estimates.

We now demonstrate the following uniqueness theorem by duality:

If u 2 L1t;locC
1;˛
x .Rn � .0; 1�/ is a solution of the linear PDE (2.25) with u.�; t /

�
* 0

in L1.Rn/ as t ! 0C, then u � 0.10

Let T 2 .0; 1/ and  0 2 L1 \ L1.Rn/. The above analysis demonstrated that there
exists 2L1t L

1
x \L

1
t;x.QT /with 2L1t;locC

1;˛
x .Rn � Œ0;T // and satisfying the adjoint

problem
� @t C L

� D 0 (2.32)

with  .T / D  0. Let 0 < t0 < t1 < T and R; " > 0. Let � 2 C10 .B2/ with � � 1 on
B1 and �R D �.x=R/. Let 't0;t1" be a mollification of the indicator function 1.t0;t1/ at
scale "� 1. We test (2.25) against  �R'

t0;t1
" and omit t0; t1; R; " from the notation as

convenient: “
@tuC Lu„ ƒ‚ …
D0

 �' dx dt D

“
�@t C L

� „ ƒ‚ …
D0

u' dx dt

C

“
.�@t'/�u C '.�b � r�/u C 'uŒƒ; �� dx dt: (2.33)

Upon sending "! 0C, we haveZ
�Ru.x; t1/ .x; t1/ dx �

Z
�Ru.x; t0/ .x; t0/ dx

D

Z t1

t0

Z
Rn

b � r�Ru C uŒƒ; �R� dx dt (2.34)

for a.e. t0; t1 2 .0; 1/. Moreover, (2.34) is valid for all t0; t1 2 Œ0; T �, since uW Œ0; 1�!
L1.Rn/ is weak-� continuous and  2 C.Œ0; T �I L2.Rn//. We focus on t0 D 0 and

9It is important for the energy estimates that b 2 L1t C
1=2
x .Q1/.

10This argument is modeled off a similar argument in [2] by the first author and Zachary Bradshaw.
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t1 D T . First, we recall the following estimate for the Calderón commutator:

kŒƒ; �R� kLp0 .Rn/ .p R
�1
k kLp0 .Rn/ for all p 2 .1;C1/: (2.35)

Additionally, for jxj � 2R, we have

jŒƒ; �R� .x; t/j D cn

ˇ̌̌̌Z
Rn

�R.y/

jx � yjnC1
 .y; t/ dy

ˇ̌̌̌
.p jxj�.nC1/Cn=pk .�; t /kLp0 .Rn/: (2.36)

Hence, Z
Bc2R

jŒƒ; �R� .x; t/j dx . R�1Cn=pk .�; t /kLp0 .Rn/: (2.37)

By Hölder’s inequality and the above two estimates on Œƒ; �R� , we haveˇ̌̌̌Z T

0

Z
B2R[B

c
2R

uŒƒ; �R� dx dt

ˇ̌̌̌
.p R�1Cn=pkukL1t;x.Q1/k kL1t Lp

0

x .Q1/
! 0 (2.38)

asR!C1when p > n. The term containing b � r�R isO.R�1/, since b;u 2L1t;x.Q1/
and  2 L1t L

1
x.QT /. Hence, (2.34) becomesZ

u.x; T / 0 dx D 0; (2.39)

for all T 2 .0; 1/ and  0 2 L1 \ L1.Rn/. Therefore, u � 0 on Q1.

3. Proof of main results

3.1. Proof of Theorem 1.1

Let u0 2 L1 and u be the corresponding entropy solution. For each v0, we consider the
solution zu D uC v with initial data eu0 D u0 C v0 2 L1.

Let m > 0 and ku0kL1 ; keu0kL1 � m.
We prove continuity with respect to v0.

Proposition 3.1 (Continuity estimate). Let 1 � p � q � C1. If v0 2 Lp.Rn/, we have

kv.�; t /kLq.Rn/ .m;p;q t
n
q�

n
p kv0kLp.Rn/: (3.1)

Proof. By scaling invariance, it is enough to demonstrate (3.1) with t D 1.
Step 1. Propagation of localization. First, we demonstrate that, for all t 2 .0; 1=2�, we

have
kv.�; t /k`p

k
L1x.Rn/ .m;p kv0k`p

k
L1x.Rn/: (3.2)
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Using Proposition 2.1 (controlled speed of propagation), we haveZ
�.k/

jv.t; x/j dx �

Z
B.k;
p
2n=2/

jv.x; t/j dx

�

Z
B.k;
p
2n=2CLt/

P � jv0j.x/ dx

D

X
jj j�R

Z
�.kCj /

P � jv0j.x/ dx; (3.3)

where j 2 Zn and R D R.n; L/ > 0. We apply k�k`p
k
.Zn/ to each side of (3.3). By the

triangle inequality, and since the sum in j has only finitely many boxes, we have

kv.�; t /k`p
k
L1x.Rn/ .R kP � jv0jk`p

k
L1x.Rn/: (3.4)

Now Lemma 2.3 (smoothing for the heat equation) with q1 D q2 D 1 gives (3.2).
Step 2. Smoothing. Second, we demonstrate that, for all t 2 .3=4; 1�, we have

kv.�; t /kLq.Rn/ .m;p;q kv.�; 1=2/k`p
k
L1x.Rn/: (3.5)

By Proposition 2.4 (regularity), u and zu belong to L1t C
2;˛
x .Rn � .1=2; 1// with bounds

depending only on m. Hence, v D zu � u belongs to the same space. Let w.�; t / D
v.�; t C 1=2/ when t 2 .0; 1=2�. Let w0 D v.�; 1=2/. Then

@tw C div.g.x; t/w/Cƒw D 0; (3.6)

where

g.x; t/ D
f .zu/ � f .u/

zu � u
(3.7)

and
kgk

L1t C
1;˛
x .Rn�.0;1=2//

.m 1: (3.8)

Therefore, we may use the representation formula from Proposition 2.5 (fundamental solu-
tion estimates):

w.x; t/ D

Z
Rn

�.x; t Iy; 0/w0.y/ dy: (3.9)

In particular, the pointwise upper bound in Proposition 2.5 gives

jw.x; t/j .m
Z

Rn

P.x � y; t/jw0j.y/ dy: (3.10)

Then Lemma 2.3 (smoothing for the heat equation) with q1 D 1 and q2 D q, along with
the embedding `p

k
L
q
x.Rn/ ,! Lq.Rn/, gives (3.5).

Finally, we combine (3.2) and (3.5) to complete the proof of Proposition 3.1.

When v0 2 L1.Rn/, the propagation of localization comes ‘for free’ from the L1-
contraction property, which was shown in [3].
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Proof of Theorem 1.1. Our goal is to demonstrate the ot!C1.1/ improvement over the
conclusion of Proposition 3.1 (continuity estimate) when p > 1. We approximate v0
strongly in Lp.Rn/ by v.k/0 belonging to L1 \ L1.Rn/ and satisfying the decay con-
dition (1.5), jv.k/0 j � jv0j, and kv.k/0 kL1.Rn/ � 2m. Let v.k/ be the solution corresponding
to the initial data v.k/0 . The ot!C1.1/ improvement is obvious for v.k/, which satisfies a
faster decay rate because its initial data belongs to L1.Rn/. Next, the triangle inequality
and Proposition 3.1 yield

kv.�; t /kLq.Rn/ � kv
.k/.�; t /kLq.Rn/ C kv.�; t / � v

.k/.�; t /kLq.Rn/

.m t
n
q�

n
p ot!C1.1/ kv

.k/
0 kLp.Rn/„ ƒ‚ …
�kv0kLp.Rn/

Ct
n
q�

n
p kv0 � v

.k/
0 kLp.Rn/„ ƒ‚ …

!0 as k!C1

: (3.11)

This completes the proof.

Remark 3.2. We record the following alternative proof, due to Hongjie Dong, of Step 1
in Proposition 3.1, without the `p

k
L1x spaces. Consider the adjoint problem to (1.10),

� @tw � b � rw Cƒw D 0; (3.12)

where

b.x; t/ D

Z 1

0

f 0.�zuC .1 � �/u/ d� (3.13)

is Hölder continuous on Rn � Œ1=2; 1�. Let h D P.�; 1=2/ � v0 and x0 2 Rn. Testing the
PDE (1.10) against the fundamental solution � of the adjoint problem with pole at .x0; 1/,
we have

jv.x0; 1/j
(2.26)
.
C1X
jD0

2�j
«
B
2j
.x0/

jv.x; 1=2/j dx

(2.3)
.
C1X
jD0

2�j
«
B
2j
.x0/

jhj dx . .Mh/.x0/; (3.14)

where Mh is the maximal function of h. One can obtain the Lp ! Lp bound and, more
generally, weighted estimates, straightforwardly from (3.14).

3.2. BV convergence and spatial asymptotics

Proof of Theorem 1.2. Let tk ! C1 with tk � 1. It will be convenient to work with the
rescaled solutions

u.k/.y; s/ D u.tky; tks/; (3.15)

with !.k/ D @yu.k/. Then

k!.k/.�; 1/ � !ss.�; 1/kL1.R/ D k!.�; tk/ � !
ss.�; tk/kL1.R/: (3.16)
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By Proposition 2.4 (regularity) we can bootstrap the decay of ku.k/.�; 1/� uss.�; 1/kL1.R/
given by Theorem 1.1 to get

k!.k/.�; 1/ � !ss.�; 1/kL1.B.R// ! 0 as k !C1 (3.17)

for all R � 1. Therefore, it suffices to show that there is no mass of !.k/ escaping to
infinity. Let R � LC 10. By Alibaud’s BV formula (2.4), and covering R n B.R/ by an
appropriate sequence of balls B.x0; 1/, we haveZ

RnB.R/
j!.k/.x; 1/j dx .m

Z
RnB.R�L/

P.�; 1/ � j!
.k/
0 j dx: (3.18)

It is not difficult to show that the quantity on the right-hand side is oR!C1.1/ uniformly
in k.

Proof of (1.8). First, we remark that uss is monotone because the evolution of ! preserves
its sign. This is true at the level of entropy solutions, as can be seen from their construction
by the splitting argument in Alibaud’s paper.

In the following, we allow the constant C to depend on u0 D uss
0 and zu0. Let a; b 2 R

represent the limits of u0 as x !�1.
Step 1. Asymptotics for smooth approximation zu. Let zu0 2 C1.R/ with zu0 � u0

outside ofB1. Let zu be the corresponding entropy solution, which may be shown to belong
to L1t C

2;˛
x .Rn � .0; 1// by combining local-in-time well-posedness11 with the estimates

in Proposition 2.4 (regularity).
By Proposition 2.5 (fundamental solution estimates), we have

zu.x; t/ � u0.x/ D

Z
Rn

P.x; t Iy; 0/Œzu0.y/ � u0.x/� dy; (3.19)

since
R
P.x; t Iy; 0/ dy D 1 when c � 0. Let x � �1. Hence,

zu.x; t/ � u0.x/ D

Z
B1

P.x; t Iy; 0/Œzu0.y/ � u0.x/� dy„ ƒ‚ …
DI1.x/

C .a � b/

Z
y�1

P.x; t Iy; 0/ dy„ ƒ‚ …
DI2.x/

:

(3.20)
Since Œzu0 � u0.x/�1B1 is compactly supported, we have that jI1.x/j. hxi�2. On the other
hand, when a ¤ b, we have

C�1hxi�1 �
I2.x/

a � b
� C hxi�1: (3.21)

A similar argument holds for x � 1. The I2 term will dominate when jxj � C .

11See the expository blog post [42] of Tao on quasilinear well-posedness.



D. Albritton and R. Beekie 240

Step 2. Faster decay for the difference v. Let v D uss � zu. We will exploit that v0 D
v.�; 1/ is supported in B1 to demonstrate

jv.x; 1/j � C hxi�2: (3.22)

This will complete the proof, since the I2 term will dominate jvjwhen jxj �C . We follow
the scheme of propagation of localization and smoothing as in the proof of Proposition 3.1.
Let k 2 Z with jkj � 10. By Alibaud’s formula and the decay of the Poisson kernel, we
have Z

�.k/

jv.�; 1=2/j dx � C

Z
B.k;
p
2=2CL/

P.�; 1=2/ � jv0j dx � C hki
�2: (3.23)

The difference v also satisfies this estimate when jkj < 10. Next, we consider w.�; t / D
v.�; t C 1=2/ and analyze its representation formula when t 2 .1=4; 1=2�:

jw.x; t/j �

Z
R
�.x; t Iy; 0/jw0j dy � C

X
k2Z

hki�2k�.x; t I �; 0/kL1y .�.k//

� C
X
k2Z

hki�2hx � ki�2

� C hxi�2: (3.24)

The proof is complete.

Remark 3.3 (Rough f ). Suppose that f is locally Lipschitz and n � 1. It is possible to
show that, for each R > 0, we have

ku � uss
kL1.B.Rt// ! 0 as t !C1: (3.25)

That is, u converges to uss locally uniformly in self-similar coordinates y D x=t , s D
log.t=t0/ where t0 > 0 is a reference time. Indeed, consider any sequence of rescaled
solutions u.k/ as above. Since u.k/0 ! uss

0 in L1uloc.R
n/, Alibaud’s formula (2.3) gives

that u.k/.�; 1/ converges in L1uloc.R
n/ to uss.�; 1/. By the a priori Hölder estimates (2.19)

and the Ascoli–Arzelá theorem,12 u.k/.�; 1/ converges in L1loc.R
n/, and its limit must be

uss.�; 1/.
If n D 1 and u0 2 BV.R/, then we may choose R D C1 in (3.25), since the BV.R/

norm manages the behavior in L1.R n BR/ for R � 1 according to Alibaud’s BV for-
mula (2.4). If f 2 C 1;˛loc .R/, then it is possible to upgrade to BV.R/ convergence, since
Silvestre’s estimates in [40] allow the solution to be bootstrapped fromC ˛x .R/ toC 1;˛x .R/.

12To justify (2.19) with Lipschitz f , one could mollify f or apply a parabolic regularization "�u",
justify the estimates at the regularized level, and pass to the limit.
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