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Classical and weak solutions to local first-order mean field
games through elliptic regularity

Sebastian Muñoz

Abstract. We study the regularity and well-posedness of the local, first-order forward–backward
mean field games system, assuming a polynomially growing cost function and a Hamiltonian of
quadratic growth. We consider systems and terminal data that are strictly monotone in density and
study two different regimes depending on whether there exists a lower bound for the running cost
function. The work relies on a transformation due to P.-L. Lions, which gives rise to an elliptic partial
differential equation with oblique boundary conditions, that is strictly elliptic when the coupling
is unbounded from below. In this case, we prove that the solution is smooth. When the problem
is degenerate elliptic, we obtain existence and uniqueness of weak solutions analogous to those
obtained by P. Cardaliaguet and P. J. Graber for the case of a terminal condition that is independent
of the density. The weak solutions are shown to arise as viscous limits of classical solutions to
strictly elliptic problems.

1. Introduction

The purpose of this paper is to study the well-posedness of the first-order mean field games
system (MFG for short) with a local coupling:8̂̂<̂
:̂
�ut CH.x;Dxu/ D f .x;m.x; t//; .x; t/ 2 QT D Td�.0; T /;

mt � div.mDpH.x;Dxu// D 0; .x; t/ 2 QT ;

m.x; 0/ D m0.x/; u.x; T / D g.x;m.x; T //; x 2 Td ;

(MFG)

whereH WTd �Rd !R is a strictly convex Hamiltonian of quadratic growth, f;gWTd �

Œ0;1/! Œ�1;1/ are strictly increasing in their second variable m, f has polynomial
growth in m, and m0 is a strictly positive probability density. As is standard, we work on
the flat d -dimensional torus Td D Rd=Zd to avoid additional technicalities with spatial
boundary conditions.

MFG were introduced by Lasry and Lions ([14,18]), and at the same time, in a partic-
ular setting, by Huang, Malhamé, and Caines ([13]). They are non-cooperative differential
games with infinitely many players, in which the players find an optimal strategy by
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observing the distribution of the others. When the game is completely deterministic, such
games are typically modeled by system (MFG), which has been successfully studied in
the case where the function g is independent of the density m, and a complete theory of
weak solutions has been obtained through variational methods by Cardaliaguet, Graber,
Porretta, and Tonon ([2–4, 12]).

Our two main contributions are proving well-posedness when the terminal condition
is strictly increasing with respect to m, and the attainment of classical solutions under the
additional assumption that f .�; 0/��1. When the latter blowup condition does not hold,
we obtain weak solutions that are in line with the variational theory, and they are shown
to enjoy higher regularity than in the case gm � 0, by virtue of the strict monotonicity
of g.

The precise statements of our main results are as follows. We refer to Section 2 for
the exact assumptions (M), (H), (F), (G), (SE), and (DE), to Section 5 for the definition
of a weak solution, and to the notation subsection for the meaning of the function spaces
mentioned in the theorems below.

Theorem 1.1. Let 0 < ˛ < 1, and assume that (M), (H), (F), (G), and (SE) hold. Then
there exists a unique classical solution .u;m/ 2 C 3;˛.QT / � C 2;˛.QT / to (MFG).

Theorem 1.2. Assume that (M), (H), (F), (G), and (DE) hold. Then the following is true:

(i) There exists a weak solution .u; m/ 2 .BV.QT / \ L1.QT // � .C.Œ0; T �;
H�1.Td // \ L1.QT // to (MFG).

(ii) The solution .u;m/ is the almost everywhere (a.e. for short) limit, as � ! 0, of
solutions .u�; m�/ 2 C 3;˛.QT / � C 2;˛.QT / to MFG systems satisfying (SE).
Furthermore, .u�.�; T /;m�.�; T //! .u.�; T /;m.�; T // a.e. in Td .

(iii) If .u0; m0/ is another weak solution to (MFG), then m D m0 a.e. in QT , and
u D u0 a.e. in ¹m > 0º. Moreover, m.�; T / D m0.�; T /, u.�; T / D u0.�; T /, and
u.�; 0/ D u0.�; 0/ a.e. in Td .

Despite the connections with the variational theory, we do not use variational methods.
Instead, we follow the ideas of Lions and his work on the so-called planning problem,
where the initial and terminal densities m.�; 0/ and m.�; T / are prescribed ([14, 18]). It
was first observed by Lions that if, for each fixed x 2 Td , f �1.x; �/ is the inverse func-
tion of f .x; �/, it is possible to formally eliminate the variable m from the system. This
transforms the problem into a second-order quasilinear elliptic equation with a non-linear
oblique boundary condition which, in the special case where DxH;Dxf;Dxg � 0, may
be written as follows (see Section 2 for the general setting):8̂̂̂̂
<̂
ˆ̂̂:
�ut t � Tr..DpH˝DpHC�.�utCH/D2

ppH/D
2
xxu/

C2DpH �Dxut D 0 in QT ;

�ut CH � f .m0/ D 0 on Td � ¹t D 0º;

�g.f �1.�ut CH//C u D 0 on Td � ¹t D T º;

(1.1)
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where the function �.w/ is defined by

�.w/ D f �1.w/fm.f
�1.w//:

We emphasize the fact that, while (1.1) is an elliptic second-order problem, the original
system (MFG) is of first order and, in particular, it models a game with no diffusion.

Our approach to obtain classical solutions when (1.1) is strictly elliptic was developed
by Lions, who applied, in his lectures at Collège de France, the following strategy for
finding regular solutions to the planning problem. Viewed as a quasilinear elliptic equation
with a non-linear boundary condition, the problem can be tackled with classical methods
from the field of a priori estimates: specifically, maximum principle techniques and the
Bernstein method to obtain bounds on the solution and its gradient, the application of
classical estimates to bound the Hölder norm of the gradient up to the boundary, and soft
functional analytic tools to attain the classical solutions.

In order to study the general MFG system, even when (1.1) happens to be degenerate
elliptic and the solutions are expected to be discontinuous, our strategy is to first obtain
smooth solutions in the strictly elliptic case, and to subsequently find the weak solution as
a viscous limit of strictly elliptic problems. The success of this approach is based on the
fact that, once smooth solutions are known to exist, every a priori estimate that is inde-
pendent of the ellipticity constant can be used as a source of compactness and regularity
for the limit. Our a priori estimates are supplemented by energy computations based on
the Lasry–Lions monotonicity procedure, which is the canonical method for obtaining
integral bounds and proving uniqueness in MFG systems.

To identify and motivate the condition that determines the strict or degenerate ellip-
ticity of the system, we remark that the determinant corresponding to the elliptic equation
in (1.1) becomes zero precisely as � D mfm ! 0. This is in accordance with the heuris-
tic principle that the regularity of u is lost in regions where there are few to no players
(no information), as well as when the cost fails to be strictly monotone (concentration
blowup). Because, as is standard, f is assumed to grow at least logarithmically asm!1,
this degeneracy can only happen as m! 0. In the absence of diffusion, for the strict pos-
itivity of m to be preserved, we expect to have a very strong incentive for the players to
navigate through regions of low density. With these considerations in place, we will clas-
sify system (MFG) as being strictly elliptic precisely when f has a singularity at m D 0,
and as degenerate elliptic otherwise.

It should be noted that, for the stationary problem, classical solutions were obtained in
[6] for the case where f D logm, and in [10] for the case whereH.x;p/D 1

2
jpj2 � V.x/,

under a small-oscillation assumption. For second-order systems with a (possibly) degen-
erate diffusion and a density-independent terminal condition, the variational theory was
extended in [4], where it was shown (compare with Theorem 1.2) that the weak solutions
to the first-order problem arise as viscous limits of weak solutions to second-order MFG
systems. Finally, the most general result for weak solutions to the second-order problem
is due to Porretta ([21]), and, unlike [4], it does not use variational methods.
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The content and structure of the paper are described as follows. Section 2 explains the
general setting and assumptions that will be used, followed by the statements of the pre-
liminary results from the classical literature on quasilinear elliptic equations and oblique
derivative problems that will be used to prove existence of classical solutions.

In Section 3 we obtain all the necessary a priori estimates for the strictly elliptic prob-
lem. The main results, which deal with the system in full generality, are summarized in
Theorem 3.9. We also establish a minor variant, in the special case when the x depen-
dence has a simple structure, that is, when H.x; p/ � f .x;m/ � H.p/ � f .m/ � V.x/,
in Theorem 3.10. This result states that, with this structural assumption, it is not nec-
essary to require f to grow at most polynomially in m, allowing for examples such as
f .m/ D em C logm. Section 3.1 contains the L1-bounds on the solution u, as well as
two-sided bounds for the terminal density m.�; T /, obtained through maximum princi-
ple methods. These methods exploit the fact that the strict monotonicity property of g is
equivalent to the linearized version of problem (1.1) having an oblique boundary condi-
tion, which is of Robin type in the upper component of @QT . In Section 3.2, the gradient
bound is obtained by means of the Bernstein method. To deal with the asymmetry between
the space and time derivatives in (1.1), it is necessary to first get a precise bound for ut
in terms of the space gradient, utilizing the a priori lower bound on m.�; T / and the maxi-
mum principle. This, in turn, provides a “conditional” a priori lower bound form, namely
a lower bound that holds exclusively at points .x; t/ where the function H.x; Dxu/ is
close to its maximum value. The conditional nature of this bound, as well as the struc-
ture of (1.1) in its fully general form, requires a non-conventional choice of an auxiliary
function of the space-time gradient.

Section 4 deals with the existence of classical solutions for the strictly elliptic problem,
including the proof of Theorem 1.1. The corresponding variant for the case of a fast-
growing f is presented in Theorem 4.3. It is first explained how a classical result from
the theory of oblique derivative problems, due to G. M. Lieberman ([17]), immediately
yields an a priori Hölder estimate for Du up to the boundary in terms of the L1-bounds
on u andDu. Existence is then proved through an application of the non-linear method of
continuity, the classical Schauder estimates for the linear oblique derivative problem, and
a variant of a convergence theorem of R. Fiorenza ([7, 8, 16]).

In Section 5 we develop the weak theory for the degenerate elliptic problem, and
obtain the proof of Theorem 1.2. It is first established that, for strictly elliptic problems,
there exists an upper bound for the density that is independent of any lower bounds on
m.�; T /. After deriving some necessary energy estimates and defining an �-perturbation of
the coupling f that makes the problem strictly elliptic, the solution is obtained as the limit
when �! 0 of the corresponding smooth solutions. It is also proved, in Theorem 5.5, that
when the data is independent of the space variable, the value function u and the terminal
density m.�; T / are globally Lipschitz continuous.

Remark 1.3. We mention here some related work that was released after this paper. In
[20], the author showed existence of classical solutions for the so-called extended MFG, a
generalization of (MFG) introduced by Lions and Souganidis ([19]), having a fully general
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continuity equation, and a non-separated Hamiltonian, namely H D H.x; p; m/, with
arbitrary superlinear growth. In particular, classical solutions were obtained for first-order
MFG with congestion. As for weak solutions to (MFG), the most general result to date was
obtained by Cardaliaguet and Porretta ([5]), where the solution is obtained as a vanishing
viscosity limit to the weak solutions from [21].

Notation

Let n; k 2 N. Given x; y 2 Rn, x and y will always be understood to be row vectors, and
their scalar product xyT will be denoted by x � y. For any bounded set �, with � � QT ,
� � Td , or � � Œ0; T �, and 0 � ˛ < 1, C k;˛.�), refers to the space of k times dif-
ferentiable real-valued functions with ˛-Hölder continuous kth order derivatives, and, for
u2C 0;˛.�/, the Hölder semi-norm of uwill be denoted by Œu�˛;�. Similarly, ifH�1.Td /

denotes the dual space of the Sobolev space H 1.Td /, the space of H�1.Td /-valued
˛-Hölder continuous functions C 0;˛.Œ0; T �IH�1.Td // is equipped with the Hölder semi-
norm Œ��˛;Œ0;T �;H�1 . For functionsˆ.x; t; z;p; s/ 2 C 0.QT �R�RdC1/, where typically
.x; t; z; p; s/ D .x; t; u.x; t/; Dxu; ut /, the conventions Nx � .x; t/ and q � .p; s/ will
always be in place. The notation Du, Dˆ will always refer to the full gradient in all
variables so that, for instance, Du D D Nxu D .Dxu; ut / and Dˆ D .D Nxˆ; ˆz ; Dqˆ).
For .x; t/ 2 @QT , �.x; t/ D ˙.0; 0; : : : ; 1/ denotes the outward-pointing unit normal
vector. We write C D C.K1; K2; : : : ; KM / for a positive constant C depending mono-
tonically on the non-negative quantities K1; : : : ; KM . We also define, for K > 0, and any
set V , VK D ¹.y; z; q/ 2 V �R�RdC1 W jzj C jqj � Kº. We write C k.QT /� for the dual
space of C k.QT /. In particular, C 0.QT /� is the space of finite signed Borel measures
on QT , and C1.QT /� is the space of distributions. Moreover, BV.QT / is the space of
functions of bounded variation, that is, the space of L1.QT / functions such that their
distributional derivatives are elements of C 0.QT /�, and L1C .QT ) consists of the func-
tionsm 2 L1.QT ) such thatm � 0 almost everywhere (a.e. for short) inQT . Finally, for
m 2 L1C .QT /, L

2
m.QT / consists of the functions v such that jvj2m 2 L1.QT /.

2. Assumptions and general setting

2.1. The MFG system as an elliptic problem

We now present the general elliptic formulation of the MFG system. As explained
in the previous section, it is an equivalent problem satisfied by u, whenever the pair
.u; m/ D .u; f �1.�;�ut CH.�; Dxu// 2 C

2.QT / � C
1.QT / is a classical solution to

(MFG). It is obtained after eliminating m from the system, and it consists of a quasilinear
elliptic equation with a non-linear oblique boundary condition,´

Qu D �Tr.A.x;Du/D2u/C b.x;Du/ D 0 in QT ;

Nu D B.x; t; u;Du/ D 0 on @QT ;
(Q0)
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where, for all .x; t; z; p; s/ 2 QT �R �RdC1,

A.x; p; s/ D .DpH;�1/˝ .DpH;�1/

C �.x;�s CH.x; p//

�
D2
ppH.x; p/ 0

0 0

�
;

(Q1)

b.x; p; s/ D �DxH.x; p/ �DpH.x; p/

CDxf .x; f
�1.x;�s CH.x; p/// �DpH.x; p/

� �.x;�s CH.x; p//Tr.D2
xpH.x; p//;

(Q2)

B.x; 0; z; p; s/ D �s CH.x; p/ � f .x;m0.x//;

B.x; T; z; p; s/ D �g.x; f �1.x;�s CH.x; p///C z;
(B1)

with the function �.x;w/ being defined by

�.x;w/ D f �1.x; w/fm.x; f
�1.x; w//:

We remark that the matrix A is clearly non-negative, and since det.A/ D �d detD2
ppH ,

the condition for degeneracy is � D mfm D 0. For future use, we set

h.x;w/ D
p
�.x;w/:

2.2. Assumptions

We now state the main assumptions (M), (H), (F), (G), and (E), that will be in place
throughout the paper, except when explicitly stated. Assumption (E) on the ellipticity
of the system contains the mutually exclusive possibilities (SE) and (DE), and it will
always be made clear which of the two is in place. For the theory of weak solutions,
the differentiability assumptions on the data can naturally be weakened through standard
approximation arguments, but in the interest of clarity such matters will not be considered.
Throughout the assumptions, the quantities C0 > 0 and 0 � � < 1 are fixed constants.

(M) (Assumptions on m0) The initial density m0 satisfies

m0 2 C
4.Td /; m0 > 0; and

Z
Td

m0 D 1: (M1)

(H) (Assumptions on H ) The functions H , DpH , D2
ppH are four times continu-

ously differentiable, and the following quadratic growth and uniform convexity
conditions hold:

1

C0
I � D2

ppH.x; p/ � C0I; (H1)

DpH.x; p/ � p � 2H.x; p/ � C0; (H2)

jD3
pppH.x; p/j � C0.1C jpj/

�1; (H3)
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for all .x; p/ 2 Td � Rd . The space oscillation of H is at most subquadratic in
p, namely

jD3
xxpH j � C.1C jpj/

� ; jD3
xppH j � C0.1C jpj/

��1: (HX)

(F) (Assumptions on f ) The continuous function f W Td � Œ0;1/ ! Œ�1;1/ is
four times continuously differentiable on Td � .0;1/ and strictly increasing in
the second variable, with fm > 0. The function f grows polynomially asm!1,
in the sense that its growth is at least of degree zero, namely

lim inf
x2Td ;m!1

mfm.x;m/ > 0; (F1)

and its derivative fm satisfies a polynomial bound jmfmmj � C0fm, which can be
equivalently expressed in terms of �.x;w/ as

j�w j � C0: (F2)

The space derivative of f satisfies the same polynomial bound,

jm.Dxf /mj � C0jDxf j; (FX1)

as well as the control

jDxf j; jD
2
xxf j � C0.1C jf j

�=2
C jmfmj

.1C�/=2/: (FX2)

(G) (Assumptions on g) The continuous function gWTd � Œ0;1/! Œ�1;1/ is four
times continuously differentiable on Td � .0;1/ and strictly increasing in the
second variable, with gm > 0. The control required for its space oscillation is that,
for each x 2 Td ,

lim
m!1

g.x;m/ D sup
Td�Œ0;1/

g and g.x; 0/ D inf
Td�Œ0;1/

g: (GX)

(E) (Ellipticity of the system) One of the following conditions holds:

system (MFG) is strictly elliptic, in the sense that f .�; 0/ � �1; (SE)

or

system (MFG) is degenerate elliptic, in the sense that f .�; 0/ > �1: (DE)

In the case of (DE), since the density is not expected to be strictly positive, we
assume that g.�; 0/ > �1.

A few comments should be made about the assumptions on the spatial oscillation. First, we
remark that the subquadratic growth assumption (HX) can be interpreted as requiring that
the purely quadratic part of H is independent of x. Condition (FX2), on the other hand,
can be interpreted as being dual to (HX). Indeed, heuristically, since f is assumed to have
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polynomial growth,mfm � f , and f D �ut CH � jpj2, so both conditions impose the
same polynomial growth bound in the variable jpj. We consider now the assumption (GX)
on the x-oscillation of g. When g is bounded, the first (resp. second) condition in (GX)
corresponds to a purely qualitative control on jDxgj that becomes stricter asm!1 (resp.
m! 0C/. From the modeling point of view, it can be interpreted as the requirement that
extremely crowded regions (resp. nearly empty regions) have roughly the same terminal
value for the players.

Remark 2.1. For simplicity of the presentation, we observe that, up to increasing the
value of C0, the following inequalities are trivial consequences of (H1), (HX), and (SE),
and they will be used freely when pertinent:

1

C0
jpj2 � C0 � H.x; p/ � C0jpj

2
C C0; jDpH.x; p/j � C0.1C jpj/; (2.1)

jDxH.x; p/j � C0.1C jpj
1C� /; jD2

xxH.x; p/j � C0.1C jpj
1C� /; (2.2)

jD2
xpH.x; p/j � C0.1C jpj/

� ; (2.3)

k�.�; 0/kC 0.Td / C km0kC 1.Td / C kf kC 2.Td�Œminm0;maxm0�/ � C0: (2.4)

2.3. Preliminary results

This subsection includes the classical results that will be required in Section 4 to obtain the
higher regularity from a priori C 1 bounds. In this subsection only, it will not be assumed
that problem (Q0) is explicitly given by (Q1), (Q2), and (B1), but instead .Q;N / will be
a general pair of an elliptic quasilinear operator and a fully non-linear boundary operator.
In particular, A and b will not necessarily be assumed to be independent of t and u. The
first theorem is the classical interior Hölder gradient estimate for quasilinear equations,
due to O. Ladyzhenskaya and N. Uraltseva ([17, Lem. 2.1]).

Theorem 2.2. Let u 2 C 2.QT / satisfy Qu D 0 in QT , with A.x; t; z; q/ 2 C 1.QT �
R�RdC1/, b.x; t; z; q/ 2 C 0.QT �R�RdC1/. Suppose that kukC 1.QT / �K, and that
the constants �K , �K satisfy, in QT;K ,

A � �KI and �K � jAj C jDAj C jbj: (2.5)

Then, for any V �� QT , there exist constants C D C.K;�K=�K ; dist.V; @QT /�1/ and
 D .K;�K=�K/, such that

ŒDu�;V � C:

Next is the following local boundary Hölder estimate for the gradient in oblique prob-
lems, due to Lieberman ([17, Lem. 2.3]). In Theorem 2.3, the following definitions are in
place:

B D
®
.x; t/ 2 RdC1 W j.x; t/j < 1

¯
; BC D

®
.x; t/ 2 B W t > 0

¯
;

B0 D
®
.x; t/ 2 B W t D 0

¯
; B 0 D

®
.x; t/ 2 BC W j.x; t/j < 1

3

¯
:
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Theorem 2.3. Let u 2 C 2.BC [ B0/ solve Qu D 0 in BC, Nu D 0 on B0, with
A.x; t; z; q/ 2 C 1.BC �R�RdC1/, b.x; t; z; q/ 2 C 0.BC �R�RdC1/, B.x; t; z; q/ 2
C 1.B0 �R �RdC1/, DqB.x; t; z; q/ 2 C 1.B0 �R �RdC1/. Assume furthermore that

(2.5) holds in BCK , as well as, on B0K ,

�K � �Bs;

�K � jDqBj C jDzBj C jD NxBj C jD
2
qqBj C jD

2
qzBj C jD

2
q NxBj: (2.6)

Then there are constants C and  depending only on K and �K=�K such that, if
kukC 1.BC[B0/ � K, then

ŒDu�;B 0 � C:

For the next theorem, which is the basic Schauder estimate for linear oblique problems
([9, Thm. 6.30]), we recall that �.x; t/ D ˙.0; 0; : : : ; 1/ denotes the outward-pointing
normal vector at .x; t/ 2 @QT .

Theorem 2.4. Assume that u 2 C 2.QT / solves the linear problem

�Tr. QA.x; t/D2u/ D �1.x; t/ in QT ; QB.x; t/ �Du D �2.x; t/ on @QT ;

where

QAij ; �1 2 C
0;˛.QT /; QB; �2 2 C

1;˛.@QT /; QA � �I; and QB � � � �0:

Then there exists C D C. 1
�
; 1
�0
; k QAij kC 0;˛.QT /; k

QBkC 1;˛.@QT // such that

kukC 2;˛.QT / � C.kukC 0.QT / C k�1kC 0;˛.QT / C k�2kC 1;˛.@QT //:

The last result of this subsection is a variant of a convergence theorem of Fiorenza,
which is a basic tool for using the method of continuity without the need of a priori second-
derivative estimates ([16, Lem. 2, Cor. 1]).

Theorem 2.5. Let 0 < ˛,  < 1. For each n 2 N, let un 2 C 2;˛.QT / be a sequence
of solutions to the quasilinear problems Qnu D 0, Nnu D 0, where, for C , K,  , �, �0
independent of n,

Qnu D �Tr.An.x; t; u;Du/D2u/C bn.x; t; u;Du/; Nnu D Bn.x; t; u;Du/;

kAnkC 1.QT;K / C kbnkC 1.QT;K / C kBnkC 2.QT;K / C kDqBnkC 2.QT;K / � C;

An � �I in QT;K and DqBn � � � �0 in @QT;K ;

kunkC 1C .QT / � K;

with un! u uniformly, and .An; bn; Bn/! .A; b;B/ uniformly on QT;K . Then un! u

in C 2;˛.QT /, and u solves (Q0).
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3. A priori estimates

In this section we establish a priori estimates for the solution and the gradient, in the case
where (MFG) is strictly elliptic. To account for the fact that the functions f and g depend
on the space variable, we will make extensive use of the continuous, strictly increasing
functions f0, g0, f1, g1W .0;1/! R defined by

f0.m/ D min
Td

f .�; m/; g0.m/ D min
Td

g.�; m/;

f1.m/ D max
Td

f .�; m/; g1.m/ D max
Td

g.�; m/:

3.1. Estimates for the solution and the terminal density

We first obtain a priori bounds for the C 0 norm of the solution u. As a corollary, positive,
two-sided bounds for the terminal density are established.

Lemma 3.1. Assume that (SE) holds. Then, there exists a constant C D C.C0/ such that
for any solution .u;m/ 2 C 2.QT / � C 1.QT / of (MFG), and every .x; t/ 2 QT ,

g0f
�1
1 .�C/ � C.eCT � eCt / � u.x; t/ � g1f

�1
0 .C /C C.eCT � eCt /: (3.1)

Proof. The goal here is to modify u into a function that necessarily achieves its maximum
at ¹t D T º, which is the region of the boundary where, by the strict monotonicity of g, the
boundary condition of (Q0) provides information about u. This requires some estimates
for the terms in (Q2). By (2.3) and (F2),

j�.x; f /Tr.D2
xpH.x;Dxu//j � C.1C jf j/.1C jDxuj

� /: (3.2)

Moreover, by (FX2),

jDxf .x;m.x; t// �DpH.x;Dxu/j � C.1C jf j
.1C�/=2/.1C jDxuj/: (3.3)

Now, given u, define the linear, uniformly elliptic operator Qu by

Quv D �Tr.A.x;Du/D2v/:

Notice that Quu D �b.x;Du/. Let � 2 C 2.Œ0; T �/ be a function to be chosen later, and
define

v D uC �.t/;

so that vt D ut C �0.t/ and Dxv D Dxu. This yields, by (2.1), (2.2), (3.2), and (3.3),

Quv D ��
00.t/CDxH.x;Dxv/ �DpH.x;Dxv/ �Dxf .x;m/ �DpH.x;Dxv/

C �Tr.D2
xpH.x;Dxv//

� ��00.t/C C.1C jDxvj
1C� /.1C jDxvj/

C C.1C j�vt CH.x;Dxv/C �
0.t/j.1C�/=2/.1C jDxvj/

C C.1C j�vt CH.x;Dxv/C �
0.t/j/.1C jDxvj

� /

� ��00.t/C C.1C jDxvj
3
C jvt j

2/C C.1C jDxvj/j�
0.t/j;
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where the constant C increases in each line. Now set C1 D 2C and fix C1, still allowing
C to increase at each step. We choose �.t/ D k

2C1
.e2C1t � e2C1T /, where k > 0 is a

parameter. Then,
�0.t/ D ke2C1t ; �00.t/ D 2C1j�

0.t/j;

and, consequently, at any interior maximum point .x; t/ of v,

0 � Quv � ��
00.t/C C1.1C j�

0.t/j/ � �C1�
0.t/C C1 D �C1ke

2C1t C C1

� �C1k C C1;

which can only hold if k � 1. Thus, if one chooses k > 1, v necessarily achieves its
maximum value when t D 0 or t D T . If this happens at a point .x; t/ where t D 0, then
ut C �

0 D vt � 0, Dxu D Dxv D 0. Therefore,

�kH.�; 0/kC 0.Td / � �vt CH.x; 0/

D �ut CH.x;Dxu/ � �
0.0/ D f .x;m0.x; t// � �

0.0/;

implying that
k D �0.0/ � f .x;m0.x; t//C kH.�; 0/kC 0.Td /:

Hence, taking k > maxx2Td f .x;m0.x//C kH.�; 0/kC 0.Td /, it follows that v attains its
maximum value at t D T . At this point, ut C �0.t/ D vt � 0, Dxu D Dxv D 0, and, as
before,

kH.x; 0/kC 0 � �vt CH.x; 0/ D f .x;m.x; T // � �
0.T /;

which gives

f0.m.x; T // � f .x;m.x; T // � �
0.T /C kH.�; 0/kC 0.Td /

� ke2C1T C kH.�; 0/kC 0.Td / � C:

Thus, since u.x; T / D v.x; T /, taking into account the surjectivity of f .x; �/,

max v D v.x; T / D g.x;m.x; T // � g.x; f �10 .C // � g1.f
�1
0 .C //:

Finally, for arbitrary .x; t/ 2 QT ,

u.x; t/ D v.x; t/ � �.t/ � g1.f
�1
0 .C //C C.eCT � eCt /:

The lower estimate follows from a completely symmetrical argument.

Corollary 3.2. Assume (SE), and let C be the constant from Lemma 3.1. Then, for every
x 2 Td ,

g�11 g0f
�1
1 .�C/ � m.x; T / � g�10 g1f

�1
0 .C /: (3.4)

Proof. From the first inequality in (3.1), for each x 2 Td ,

g0f
�1
1 .�C/ � g.x;m.x; T //;
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and thus, by definition of g1,

g0f
�1
1 .�C/ � g1.m.x; T //: (3.5)

Observe that the application of g�11 on both sides of (3.5) is possible because, by (GX),
the functions g0 and g1 have the same range. This yields the first inequality in (3.4). The
second inequality is obtained through the same reasoning.

Remark 3.3. A minor modification of the proof of Lemma 3.1 shows that, when H , f ,
and g are independent of x, the following sharper estimates hold:

g.minm0/C .f .minm0/�H.0//.T � t / � u.x; t/

� g.maxm0/C .f .maxm0/�H.0//.T � t /;

minm0 � m.x; T / � maxm0:

3.2. Estimates for the space-time gradient

Given the operator Q from (Q0), we recall that its linearization at u 2 C 2.QT / is the
linear, uniformly elliptic operator

Lu.v/D�Tr.A.x;Du/D2v/�Dq Tr.A.x;Du/D2u/ �DvCDqb.x;Du/ �Dv: (3.6)

The gradient estimate will be obtained through Bernstein’s method. Specifically, we will
bound kDukC 0.QT / by evaluating the linearization Lu.v/ at appropriately chosen func-
tions v.x; t/ D ˆ.x; t; u;Du/, where ˆ.x; t; z; q/ is convex in q, exploiting the fact that,
roughly speaking, convex functions of the gradient are expected to be subsolutions. For
this purpose, we first obtain an explicit form for the terms in (3.6), as well as a general
expression for the linearization applied to such functions v.

Lemma 3.4. Letˆ.x; t; p; s/ 2 C 2.QT �RdC1/, assume that u 2 C 3.QT / solves (Q0),
and set v.x; t/ D ˆ.x; t; Du.x; t//. Then, for each q D .p; s/ 2 RdC1, and for each
Nx D .x; t/ 2 QT ,

�Dq Tr.AD2u/ � q D 2.�DpHD
2
xxuCDxut /D

2
ppH � p � �Dp.Tr.D2

ppHD
2
xxu// � p

C �w Tr.D2
ppHD

2
xxu/.s �DpH � p/; (3.7)

Dqb.x;Du/ � q D �.DpHD
2
xpH/ � p � .DxHD

2
ppH/ � p C .DxfD

2
ppH/ � p

C
1

fm
Dxfm �DpH.�s CDpH � p/ � �Dp Tr.D2

xpH/ � p

C �w Tr.D2
xpH/.s �DpH � p/; (3.8)

Luv D �Tr.D2
qqˆD

2uAD2u/ � Tr.AD2
Nx Nxˆ/ � 2Tr.AD2uD2

Nxqˆ/

�Dpˆ �Dxb CD Nxˆ �Dqb

C

dX
iD1

Tr.AxiD
2u/ p̂i �D Nxˆ �Dq Tr.AD2u/: (3.9)
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Proof. Using (Q1),

� .Dq Tr.AD2u// � q

D �Dq.Tr..DpH ˝DpH C �D2
ppH/D

2
xxu/ � 2DpH �Dxut / � q

D �2.DpHD
2
xxuD

2
ppH/ � p � �Dp Tr.D2

ppHD
2
xxu/ � p

� �w Tr.D2
ppHD

2
xxu/.�s CDpH � p/C 2.D

2
ppHDxut / � p

D 2.�DpHD
2
xxuCDxut /D

2
ppH � p � �Dp.Tr.D2

ppHD
2
xxu// � p

C �w Tr.D2
ppHD

2
xxu/.s �DpH � p/;

which shows (3.7). Equation (3.8) is an immediate consequence of (Q2). From the defini-
tion of v, it follows that

Dv D D NxˆCDqˆD
2u

and

D2v D D2
Nx NxˆC .D

2uD2
NxqˆCD

2
q NxˆD

2u/CD2uD2
qqˆD

2uCDqˆD
3u:

Thus, differentiating the equation Qu D 0 and taking the inner product with Dqˆ yields

0 D Dqˆ �D Nx.�Tr.A.x;Du.x; t//D2u.x; t//C b.x;Du.x; t///

D �Tr.ADqˆD3u/ �

dC1X
iD1

Tr.A NxiD
2u/ˆqi �DqˆD

2u �Dq Tr.AD2u/

CDqˆD
2u �Dqb CDqˆ �D Nxb

D �Tr.A.D2v � .D2
Nx NxˆC .D

2uD2
NxqˆCD

2
q Nxˆ/D

2uCD2uD2
qqˆD

2u//

�Dq Tr.AD2u/ � .Dv �D Nxˆ/

CDqb � .Dv �D Nxˆ/ �

dC1X
iD1

Tr.A NxiD
2u/ˆqi CDqˆD Nxb:

Using the fact that A and b are independent of t , as well as (3.6), we obtain

0 D Luv C Tr.A.D2
Nx NxˆC .D

2uD2
NxqˆCD

2
q NxˆD

2u/CD2uD2
qqˆD

2u//

CDq Tr.AD2u/ �D Nxˆ

�Dqb �D Nxˆ �

dX
iD1

Tr.AxiD
2u/ p̂i CDpˆ �Dxb

D Luv C Tr.D2
qqˆD

2uAD2u/C Tr.AD2
Nx Nxˆ/C 2Tr.AD2uD2

Nxqˆ/CDpˆ �Dxb

�Dqb �D Nxˆ �

dX
iD1

Tr.AxiD
2u/ p̂i CD Nxˆ �Dq Tr.AD2u/;

which proves (3.9).
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Corollary 3.5. Let .u;m/ 2 C 3.QT / � C 2.QT / be a solution to (MFG), and set

�0 D min
�

min
Td

m0;min
Td

m.�; T /
�
; �1 D max

�
max
Td

m0;max
Td

m.�; T /
�
:

Then

Lu.ut / D 0 and � C0 � f1.�1/ � ut � kH.�;Dxu/kC 0.QT / � f0.�0/: (3.10)

Proof. Letting ˆ.x; t; p; s/ D s in Lemma 3.4, since D Nxˆ, Dpˆ, D2ˆ � 0, it follows
that

Lu.ut / D Lu.ˆ.x; t;Du// D 0:

Hence, the maximum and minimum values of ut are attained in @QT , and (3.10)
then follows immediately from (2.1) and the Hamilton–Jacobi equation (HJ for short)
in (MFG).

By Corollary 3.2, this result reduces the problem to estimating kDxukC 0 , but it is
also a key ingredient for obtaining that bound, particularly due to the fact that the term
kH.�; Dxu/kC 0.QT / has coefficient 1 in (3.10). We now begin to simplify the quantity
(3.9) for the specific ˆ that will be used in the proof of the gradient estimate, bounding
one of the dominant signed terms by a simpler expression, using matrix algebra.

Lemma 3.6. Assume that (SE) holds. In addition, for each .x; t; p; s/ 2 QT �RdC1, set
zH.x; t;p; s/DH.x;p/, and define the matrix QI D .ıij .1� ıi;dC1//dC1i;jD1. Then, for every
u 2 C 2.QT /,

Tr.D2
qq
zH.x; t;Du/D2uA.x;Du/D2u/ �

3

4C0
j�Dxut CDpH.x;Dxu/D

2
xxuj

2

C
1

4C0
Tr. QID2uAD2u/

C
3�

4C 20
jD2

xxuj
2: (3.11)

Proof. By (H1),

D2
qq
zH �

1

C0
QI I

thus, since the matrixD2uAD2u is non-negative, multiplying both sides of the inequality
by this matrix and taking the trace of both sides gives

Tr.D2
pp
zHD2uAD2u/ �

1

C0
Tr. QID2uAD2u/: (3.12)

Now, by (Q1) and (H1),

Tr. QID2uAD2u/ D

dX
kD1

DuxkA �Duxk

D

dX
kD1

j.DpH;�1/ �Duxk j
2
C �DxuxkD

2
ppH �Dxuxk
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�

dX
kD1

jDpH �Dxuxk � utxk j
2
C

�

C0
jDxuxk j

2

D jDpHD
2
xxu �Dxut j

2
C

�

C0
jD2

xxuj
2: (3.13)

Combining (3.12) and (3.13) yields, as desired,

Tr.D2
pp
zHD2uAD2u/ D

3

4

�
Tr.D2

pp
zHD2uAD2u/

�
C
1

4

�
Tr.D2

pp
zHD2uAD2u/

�
�

3

4C0
j�Dxut CDpHD

2
xxuj

2
C

3�

4C 20
jD2

xxuj
2

C
1

4C0
Tr. QID2uAD2u/:

The next lemma continues to simplify the linearizations. Since one of the dominant
signed terms will later be shown to be of order jDxuj4, the goal will be to bound every-
thing else by .4 � �/th powers of jDxuj, .2 � �/th powers of ut (dealing with these
through Corollary 3.5), and second derivative terms that can be dealt with using the other
dominant term (3.11). The usage ofˆ.x; t;Dxu;ut /DH.x;Dxu/, as opposed to a more
standard choice such as jDxuj2 or jDuj2, is crucial in the next two results, in order to
produce structural cancellation of terms that cannot be otherwise estimated, as well as to
be able to use (3.10) without gaining any constant factors in the process.

Lemma 3.7. Assume that (SE) holds. Let u 2 C 3.QT / be a solution to (Q0), and let
c; c0 2 R. Define

Qu D uC c.T � t /C c0; v1 D
Qu2

2
; v2 D H.�;Dxu/:

Then, for each .x; t/ 2 QT , there exists C.x; t/ > 0, with

C.x; t/ D C
�
C0; k QukC 0.QT /;

1

�.x; f .x;m.x; t///
; jhw.x; f .x;m.x; t///j; c

�
;

such that

Lu.v1/ � �
1

2
j�ut CDpH.x;Dxu/Dxuj

2
�
1

C0
�jDxuj

2

C C.x; t/
�
1C jDxuj

2C�
C �jD2

xxuj
2
jf j� jDxuj

2
C jf j.1C jDxuj

� /

C jf j.1C�/=2jDxuj C �C j�Dxut CD
2
xxuDpH j

2
�

(3.14)

and

Lu.v2/ �
�1

2C0
j�Dxut CDpHD

2
xxuj

2
�

�

2C 20
jD2

xxuj
2

C C.x; t/
�
1C jDxuj

3C�
C �.1C jDxuj

1C� /C �.1C�/=2jDxuj
2

C jf j.1C jDxuj
1C� /C jDxuj

2
jf j.1C�/=2

�
: (3.15)
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Proof. Throughout this proof, the number C D C.x; t/ may increase at each step, with
its size depending on .x; t/ only monotonically through 1

�
and jhw j. For this reason, there

is no loss of generality in assuming

1

�
C jhw j � C: (3.16)

Observe first that, sinceD2 QuDD2u, one has �Tr.A.x;Du/D2 Qu/D�b.x;Du/. There-
fore,

� Tr.A.x;Du/D2v1/ D �Qub.x;Du/ �D QuA �D Qu;

�Dq Tr.A.x;Du/D2u/ �Dv1 CDqb.x;Du/ �Dv1

D �Dq Tr.AD2u/ � QuD QuCDqb � QuD Qu:

Consequently, by (Q1) and (H3),

Lu.v1/ D �Qub �D QuA �D QuC Qu.�Dq Tr.AD2u/ �D QuCDqb �D Qu/ (3.17)

D �Qub �D Qu.DpH;�1/˝ .DpH;�1/ �D Qu � �Dx QuD
2
ppH �Dx Qu

C Qu.�Dq Tr.AD2u/ �D QuCDqb �D Qu/

� �j� Qut CDpH �Dxuj
2
�
1

C0
�jDx Quj

2

C Qu.�b �Dq Tr.ADu/ �D QuCDqb �D Qu/

D �j� Qut CDpH �Dxuj
2
�
1

C0
�jDx Quj

2
C Qu.J1 C J2 C J3/:

The next task will be to estimate the terms Ji . In view of (Q2), (2.1), (2.2), (2.3), (F2),
and (FX2),

jJ1j D jb.x;Du/j D j�DxH �DpH CDxf �DpH � �Tr.D2
xpH/j

� C.1C jDxuj
2C�
C jf j.1C�/=2.1C jDxuj/C jf j.1C jDxuj

� //: (3.18)

As for J2, (2.1), (H3), (3.7), and (3.16) imply that

jJ2j D j�Dq Tr.AD2u/ �D Quj

D j2.�DpHD
2
xxuCDxut /D

2
ppH �Dxu � �Dp.Tr.D2

ppHD
2
xxu// �Dxu

C 2hhw Tr.D2
ppHD

2
xxu/. Qut �DpH �Dxu/j

� C.1C j�Dxut CDpHD
2
xxuj

2
C jDxuj

2
C �C �jD2

xxuj
2/

C
1

8.k Quk C 1/
j� Qut CDpH �Dxuj

2: (3.19)
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By assumptions (HX), (F2), (FX1), and (FX2), together with (2.2), (3.8) and (3.16),

jJ3j D jDqb.x;Du/ �D Quj

D

ˇ̌̌
�.DpHD

2
xpH/ �Dxu � .DxHD

2
ppH/ �DxuC .DxfD

2
ppH/ �Dxu

C

� 1
fm
Dxfm �DpH

�
.�Qut CDpH �Dxu/ � �Dp.Tr.D2

xpH// �Dxu

C �w Tr.D2
xpH/. Qut �DpH �Dxu/

ˇ̌̌
� C

�
1C jDxuj

2C�
C .1C jf j.1C�/=2/jDxuj

C

�
1C

1

�

�
.1C jf j�=2/.1C jDxuj/j� Qut CDpH �Dxuj

C .1C jf j/.1C jDxuj
� /C .1C jDxuj

� /j� Qut CDpH �Dxuj
�

� C.1C jDxuj
2C�
C jf j.1C�/=2jDxuj C jf j

�
jDxuj

2
C jf j jDxuj

� /

C
1

8.k Quk C 1/
j� Qut CDpH �Dxuj

2: (3.20)

Finally, using (3.18), (3.19), and (3.20) in (3.17) yields

Lu.v1/ � �
3

4
j� Qut CDpHDxuj

2
�
1

C0
�jDxuj

2

C C.1C jDxuj
2C�
C �jD2

xxuj
2
C jf j� jDxuj

2
C jf j.1C jDxuj

� /

C jf j.1C�/=2jDxuj C �C j�Dxut CD
2
xxuDpH j

2/;

which proves (3.14).
Next is the proof of (3.15). In view of Lemma 3.4, recalling that zH.x; t; Du/ WD

H.x;Du/,

Luv2 D Lu. zH.x; t;Du//

D �Tr.D2
qq
zHD2uAD2u/ � Tr.AD2

Nx Nx
zH/ � 2Tr.AD2uD2

Nxq
zH/ �Dp zH �Dxb

CD Nx zH �Dqb C

dX
iD1

Tr.AxiD
2u/ zHpi �D Nx

zH �Dq Tr.AD2u/;

and Lemma 3.6 then implies

Luv2 �
�3

4C0
j�Dxut CDpHD

2
xxuj

2
�
3�

4C 20
jD2

xxuj
2
�

1

4C0
Tr. QID2uAD2u/ (3.21)

� Tr.AD2
Nx Nx
zH/ � 2Tr.AD2uD2

Nxq
zH/ �DpH �Dxb CDxH �Dpb

C

dX
iD1

Tr.AxiD
2u/Hpi �DxH �Dp Tr.AD2u/
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D
�3

4C0
j�Dxut CDpHD

2
xxuj

2
�
3�

4C 20
jD2

xxuj
2
�

1

4C0
Tr. QID2uAD2u/

CK1 CK2 CK3 CK4 CK5 CK6:

As before, we proceed to estimate the Ki . Starting with K1, we observe that, by (Q1),
(H1), (2.1), and (2.3),

jK1j D jTr.AD2
Nx Nx
zH/j � C.1C jDxuj

1C� /jAj

� C.1C jDxuj
1C� /.1C jDxuj

2
C �/: (3.22)

Similarly, using the Cauchy–Schwarz inequality,

jK2j D j2Tr.AD2u. QID2
Nxq
zH//j D 2jTr.D2

Nxq
zHA. QID2u/T /j

�
1

4C0
Tr.. QID2u/A. QID2u/T /C C Tr.D2

Nxq
zHA.D2

Nxq
zH/T /

�
1

4C0
Tr. QID2uAD2u/C C jD2

xpH j
2.1C jDxuj

2
C �/

�
1

4C0
Tr. QID2uAD2u/C C.1C jDxuj

2.1C�/
C �.1C jDxuj

2� //: (3.23)

Next we will estimate jK3 C K4j. Differentiating equation (Q2) with respect to x, we
obtain

Dxb.x; p; s/ D �D
2
xxH �DpH �DxHD

2
xpH CDpHD

2
xxf

C
1

fm
DpH.Dxfm ˝ .�Dxf CDxH//

CDxfD
2
xpH C

�
Dxf �mDxfm C

mfmm

fm
Dxf

�
Tr.D2

xpH/

� �wDxH Tr.D2
xpH/ � �Dx Tr.D2

xpH/: (3.24)

Consequently, (2.1), (2.2), (2.3), (F2), (FX1), (FX2), and (3.16) yieldˇ̌̌
�Dxb.x; p; s/C

1

fm
DpHDxfm ˝DxH

ˇ̌̌
� C.1C jpj2C� C .1C jpj/jf j.1C�/=2 C jf j.1C jpj� //;

so that, setting z1 D 1
fm
.DpH �Dxfm/.DxH �DpH/,

jK3Cz1j D j�Dxb.x;Du/ �DpH C z1j

� C.1CjDxuj
2C�
C .1CjDxuj/jf j

.1C�/=2
C jf j.1CjDxuj

� //.1CjDxuj/

� C.1CjDxuj
3C�
C .1CjDxuj

2/jf j.1C�/=2 C jf j.1CjDxuj
1C� //: (3.25)

On the other hand, by (3.8),

jK4 � z1j D jDpb �DxH � z1j

D j�.DpHD
2
xpH/ �DxH � .DxHD

2
ppH/ �DxH C .DxfD

2
ppH/ �DxH

C z1 � �Dp Tr.D2
xpH/ �DxH C �w Tr.D2

xpH/.DpH �DxH/ � z1j:
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The terms z1 and �z1 then cancel out, and therefore (HX), (2.2), (2.3), and (F2) yield

jK4 � z1j � C.1C jDxuj
2C2�

C jf j.1C�/=2.1C jDxuj
1C� /C jf j jDxuj

2� /: (3.26)

The inequalities (3.25) and (3.26) thus imply

jK3 CK4j � C.1C jDxuj
3C�
C .1C jDxuj

2/jf j.1C�/=2 C jf j.1C jDxuj
1C� //:

(3.27)
The terms K5 and K6 will also be treated jointly. Let .x; p; s/ 2 Td � RdC1, and set
w D �s CH.x; p/. It follows from (Q1), (FX1), (HX), and (F2) that

Axi .x; p; s/ D .DpHxi ; 0/˝ .DpH;�1/C .DpH;�1/˝ .DpHxi ; 0/C �wHxiD
2
qq
zH

CO.1C jwj�=2 C �.1C�/=2 C �.1C jpj/�1C� / QI :

Therefore, using (3.7), and writing z2 D �w Tr.D2
ppHD

2
xxu/.DpH �DxH/,

jK5 CK6j D

ˇ̌̌̌
ˇ dX
iD1

Tr.AxiD
2u/Hpi �Dp Tr.AD2u/ �DxH

ˇ̌̌̌
ˇ

� j2.DpHD
2
xxu �Dxut /D

2
pxH �DpH C z2

C 2.�DpHD
2
xxuCDxut /D

2
ppH �DxH

� �Dp.Tr.D2
ppHD

2
xxu// �DxH � z2j

C C.1C jf j�=2 C �.1C�/=2 C �.1C jDxuj/
�1C� /jD2

xxuj.1C jDxuj/:

Once more, cancellation occurs and, consequently, (3.16), (H3), (2.1), (2.2), and (2.3)
imply that

jK5 CK6j �
1

4C0
jDpHD

2
xxu �Dxut j

2
C

�

4C 20
jD2

xxuj
2 (3.28)

C C.1C jDxuj
2C2�

C .1C jDxuj
2/.1C jf j� C �.1C�/=2/C �.1C jDxuj

2� //:

Using (3.22), (3.23), (3.27), and (3.28) in (3.21) yields (3.15), completing the proof.

We can now obtain the a priori gradient bound in terms of bounds for the solution u
and the terminal density m.�; T /, which were obtained in the previous subsection.

Lemma 3.8. Assume that (SE) holds, and let .u;m/ 2 C 3.QT / � C 2.QT / be a solution
to (MFG). For K > 0, set

ˇK D kf kC 1.Td�Œ 1K ;K�/
C kDxgkC 1.Td�Œ 1K ;K�/

C

 1
�


C 0.Td�Œ�K;1//

C khwkC 0.Td�Œ�K;1//: (3.29)

There exist constants C , C1 with

C D C.C1; ˇC1/;

C1 D C1

�
C0; T;

1

T
;

1

1 � �
; kukC 0.QT /;maxm.T /;

1

minm.T /
; f0

�
min
Td

m.T /
�� �

;
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such that
kDukC 0.QT / � C:

Proof. As was mentioned, the proof will proceed through Bernstein’s method. By Corol-
lary 3.5, it is sufficient to bound the space gradient. Since the estimate will be up to the
boundary, as in [18], we linearize the HJ equation that holds at the extremal times:

Tuv D �vt CDpH.x;Du/Dxv:

We now normalize u to have a prescribed sign at the initial and terminal times. That is,
we set

Qu D uC kukC 0.QT / C 1 �
2.kukC 0.QT / C 1/

T
.T � t /;

so that
j Quj � C; Qu.�; 0/ � �1; Qu.�; T / � 1; (3.30)

and define
v.x; t/ D H.x;Dxu/C

c1

2
Qu2;

where 0 < c1 � 1 is a constant to be chosen later. Let .x0; t0/ 2 QT be a point where v
achieves its maximum value. We will distinguish three cases:
Case 1. t0 D T . Then Dxv D 0, vt � 0. Therefore, (3.30), (H1) (H2), (2.2), and the HJ
equation in (MFG), together with the fact that m.�; T / D g�1.�; u.�; T //, yield

0 � Tuv D Tu.H.x0;Dxu//C c1 Qu.�Qut CDpH.x0;Dxu/ �Dx Qu/

D Dx.f .x0; m.x0; T /// �DpH.x0;Dxu/

C c1 Qu.�ut CDpH.x0;Dxu/ �Dxu � C/

�

�
Dxf �

fm

gm
Dxg C

fm

gm
Dxu

�
�DpH C c1 Qu.�ut C 2H � C/

� �C
�
1C

fm

gm

�
.1C jDxuj/C

fm

gm
DpH �DxuC c1 Qu.f CH � C/

� �C
�
1C

fm

gm

�
.1C jDxuj/C 2

�
c1 QuC

fm

gm

�
H:

Thus, by (2.1),
jH.x0;Du.x0; t0//j � C:

Case 2. t0 D 0. Similarly, we obtain Dxv D 0, vt � 0, and, since Qu.�; 0/ � �1,

0 � Tuv D Dx.f .x0; m0.x0/// �DpH C c1 Qu.�ut CDpH �Dxu � C/

� C.1C jDxuj/C c1 Qu.f .x0; m0/CH � C/ � C.1C jDxuj/C C C c1 QuH:

This implies �c1 Qu.H.x0;Dxu// � C.1C jDxuj/, and so we conclude once more that

jH.x0;Du.x0; t0//j � C:
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Case 3. 0 < t0 < T . Then Dv D 0, D2v � 0, which yields

0 � Luv:

In order to make use of Lemma 3.7, it is necessary to eliminate the .x0; t0/ dependence of
the “constant” C.x0; t0/ from the lemma, which amounts to establishing an a priori upper
bound on the quantities 1=� and jhw j at the point .x0; t0/. By (F1) and (F2), 1=� and
jhw j D j�w=2

p
�j are both bounded above asw!1, so it is enough to establish a lower

bound for w D f .x0; m.x0; t0//. By Corollary 3.5, there exists a point .x1; t1/ 2 @QT
where ut achieves its maximum value. Then, since .x0; t0/ is a maximum point for v, and
the initial and terminal densities are both bounded below a priori,

f .x0; m.x0; t0// D �ut .x0; t0/CH.x0;Dxu.x0; t0//

� �ut .x1; t1/CH.x1;Dxu.x1; t1// �
c1

2
k Quk2

C 0.QT /

D f .x1; m.x1; t1// �
c1

2
k Quk2

C 0.QT /
� f0.m.x1; t1// � C � �C:

This estimate, together with (H2) and (2.1), allows us to identify the dominant power of
jDxuj in the linearization,

j�ut CDpH �Dxuj
2
� .f CH/2 � C �

1

2C 20
jDxuj

4
� C: (3.31)

Now, because of the form of the estimate in Lemma 3.7, it is also necessary to be able to
compare powers of jf j with powers of jDxuj. By Corollary 3.5 and (2.1),

f .x0; m.x0; t0// � �ut .x0; t0/CH.x0;Dxu.x0; t0//

� C C 2H.x0;Dxu.x0; t0// � C.1C jDxuj
2/: (3.32)

With these preliminaries done, we now apply Lemma 3.7, obtaining

0 � Lu.v/ D Lu zH C c1Lu

�
Qu2

2

�
�
�1

2C0
j�Dxut CDpHD

2
xxuj

2
�

�

2C 20
jD2

xxuj
2

C C.1C jDxuj
3C�
C �.1C jDxuj

1C� /C �.1C�/=2jDxuj
2

C jf j.1C jDxuj
1C� /C jDxuj

2
jf j.1C�/=2/

�
c1

2
j�ut CDpH �Dxuj

2
�
c1

C0
�jDxuj

2

C Cc1.�jD
2
xxuj

2
C j�Dxut CD

2
xxuDpH j

2/: (3.33)

Applying (3.31) and (3.32) yields

0 � �
c1

4C 20
jDxuj

4
�
c1

C0
�jDxuj

2
�

1

2C0
j�Dxut CDpHD

2
xxuj

2
�

�

2C 20
jD2

xxuj
2

C C.1C jDxuj
3C�
C �.1C jDxuj

1C� /C �.1C�/=2jDxuj
2/

C Cc1.�jD
2
xxuj

2
C j�Dxut CD

2
xxuDpH j

2/



S. Muñoz 22

� �
c1

4C 20
jDxuj

4
�
c1

C0
�jDxuj

2
�

1

2C0
j�Dxut CDpHD

2
xxuj

2
�

�

2C 20
jD2

xxuj
2

C C.1C jDxuj
3C�
C �.1C jDxuj

1C� //C
�C
c1
C

c1

2C0
�
�
jDxuj

2

C Cc1.�jD
2
xxuj

2
C j�Dxut CD

2
xxuDpH j

2/:

Now fix c1 satisfying c1 < 1
4C0C.1CC0/

, where C is as in the previous line. This gives

0 � �
c1

4C 20
jDxuj

4
�

1

2C0
�.c1jDxuj

2
� 2CC0.1C jDxuj

1C� //

C C.1C jDxuj
3C� /C

C

c1
jDxuj

2;

which may be rearranged as

c1

4C 20
jDxuj

4
C

1

2C0
�.c1jDxuj

2
� 2CC0jDxuj

1C�
� 2CC0/

� C.1C jDxuj
3C� /C

C

c1
jDxuj

2:

This finally implies that

c1jDxuj
2
� 2CC0jDxuj

1C�
� 2CC0 � 0

or
c1

4C 20
jDxuj

4
� C.1C jDxuj

3C� /C
C

c1
jDxuj

2;

either of which yields
jH.x0;Dxu.x0; t0//j � C:

We now summarize all of the a priori bounds obtained in this section.

Theorem 3.9. Assume that (SE) holds, let .u;m/ 2 C 3.QT / � C 2.QT / be a solution to
(MFG), and let ˇ be defined by (3.29). Then there exist constants L;L1; K;K1, with

L D
�
L1; jg1f

�1
0 .L1/j; jg0f

�1
1 .�L1/j; g

�1
0 g1f

�1
0 .L1/;

1

g�11 g0f
�1
1 .�L1//

�
;

L1 D L1.C0; T /;

K D .K1; ˇK1/; K1 D K1

�
L;

1

T
;

1

1 � �
; f0

� 1
L

�� �
;

such that

kukC 0.QT / C km.T /kC 0.Td / C

 1

m.T /


C 0.Td /

� L and kDukC 0.QT / � K:
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Proof. This result follows simply by the successive application of Lemma 3.1, Corollary
3.2, and Lemma 3.8.

The following variation of Theorem 3.9 shows that, in the standard case where
H.x;p/DH.p/� V.x/ and f .x;m/D f .m/, condition (F2) which requires f to grow
at most polynomially may be significantly relaxed.

Theorem 3.10. The conclusion of Theorem 3.9 still holds if condition (F2) is replaced by

D2
xpH;D

2
xmf � 0 and lim sup

x2Td ;w!1

jhw.x; w/j <1: (HFX*)

Proof. We simply address all of the instances in which condition (F2) has been used so
far. In the proofs of Lemma 3.1, Corollary 3.2, and Lemma 3.7, (F2) was exclusively used
to estimate either space derivatives Dxf , DxH , or terms that involve mixed derivatives
D2
xmf , D2

xpH . With (HFX*) in place, such terms are, respectively, either bounded in
C 1 norm or trivially zero. Condition (F2) was also used in the proof of Lemma 3.8 in
order to obtain a bound for jhw j as w!1, but this bound exists here by assumption.

We note that the condition that (HFX*) imposes on h may be equivalently rewritten,
in terms of f , as

lim sup
x2Td ;m!1

1

mfm

ˇ̌̌
m
fmm

fm
C 1

ˇ̌̌2
<1:

This condition, in particular, allows for f to be combinations of powersm˛ ,�m�ˇ , expo-
nentials em, �e1=m, and such typical examples, as long as one has the required blowup
near m D 0 and as m!1.

4. Classical solutions

To obtain classical solutions, it is necessary to have Hölder estimates for the gradient of
the solution in terms of the C 1 norm. The following lemma, which is merely a restatement
of Theorems 2.2 and 2.3 in the context of the MFG system, provides such an estimate.

Lemma 4.1. Let .u; m/ 2 C 3.QT / � C 2.QT / be a solution to (Q0), and set K D
kukC 1.QT /. Let �K ; �K > 0 be such that (2.5) holds in Td

K , and conditions (2.6) and

�K � DqB � � (4.1)

hold in @QT;K . There exist constants C > 0, 0 <  < 1, with

C D C
�
K;
�K

�K

�
;  D 

�
K;
�K

�K

�
;

such that
ŒDu�;QT � C:
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Proof. The only thing to remark is that in order to apply Theorem 2.3, it is necessary
to verify that �K can be chosen to satisfy (4.1), or, in other words, that N is indeed an
oblique boundary operator. This follows directly from (B1), since

DqB.x; 0; z; q/ � �.x; 0/ D �Bs.x; 0; z; q/ D 1 > 0;

DqB.x; T; z; q/ � �.x; T / D Bs.x; T; z; q/ D gmf
�1
w D

gm

fm
> 0:

Therefore, the result follows by applying Theorems 2.2 and 2.3 locally, and extracting a
finite subcover of QT . The use of Theorem 2.3 is particularly straightforward since the
boundary of QT is already flat.

The strategy to prove existence will be to use the non-linear method of continuity, by
constructing an explicit homotopy .Q� ; N � /�2Œ0;1� between (Q0) and an elliptic problem
that comes from a much simpler MFG system, and trivially has a smooth solution. For
each � 2 Œ0; 1� and each .x; p;m/ 2 Td �Rd � .0;1/, define

H � .x; p/ D �H.x; p/C .1 � �/
�1
2
jpj2 C f .x; 1/

�
;

g� .x;m/ D �g.x;m/C .1 � �/m;

m�0.x/ D �m0.x/C .1 � �/;

and consider the family of MFG systems8<:�ut CH � .�;Dxu/ D f .�; m/; u.�; T / D g� .�; m.�; T //;

mt � div.mDpH � .�;Dxu// D 0; m.�; 0/ D m�0.�/:
(MFG� )

We observe that, when � D 0, the unique solution is .u; m/ � .1; 1/. Let .Q�u; N �u/

be the operators for the corresponding elliptic problem associated to (MFG� ), and let A� ,
b� , and B� be their coefficients. The following straightforward lemma is a version of
Theorem 3.9, tailored to the family (MFG� ), that also includes the Hölder estimates of
Lemma 4.1, and provides a priori bounds that hold uniformly in � .

Lemma 4.2. Assume that (SE) holds. For each � 2 Œ0; 1�, let .u� ; m� / 2 C 3;˛.QT / �
C 2;˛.QT / be a solution to (MFG� ). Then there exist constants C > 0 and 0 <  < 1,
independent of � , such that

ku�kC 1; .QT / � C:

Proof. The strategy here is to apply Theorem 3.9 and Lemma 4.1 to the corresponding
MFG system (MFG� ) that arises from the new data H � ; g� ; m�0 , and to prove that those
results lead to bounds that are uniform in � . Let ˇ be defined by (3.29), and, for each
� 2 Œ0; 1�, let C0;� and 0 � �� < 1 be any two constants large enough that the inequalities
(H1), (H2), (H3), (HX), (FX1), (FX2), (2.1), (2.2), (2.3), and (2.4) all hold when H , g,
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m0 are replaced by H � , g� , m�0 . Theorem 3.9 then yields constants L� , L1;� , K� , K1;� ,
with

L� D
�
L1;� ; jg

�
1f
�1
0 .L1;� /j; jg

�
0f
�1
1 .�L1;� /j; .g

�
0 /
�1g�1f

�1
0 .L1;� /;

1

.g�1 /
�1g�0f

�1
1 .�L1;� /

�
;

L1;� DM.C0;� ; T /;

K� D K� .K1;� ; ˇK1;� /; K1;� D K1;�

�
L� ;

1

T
;

1

1 � ��
; f0

� 1
L�

���
;

such that

ku�kC 0.QT / C km
� .T /kC 0.Td / C

 1

m� .T /


C 0.Td /

� L� ; kDu
�
kC 0.QT /

� K� :

The goal is now to show that L� , K� may be chosen independently of � . First we prove
that this is true for C0;� and �� . Conditions (FX1) and (FX2) trivially hold for the same
C0 and the new H � , g� , m�0 , because the functions H , g, m0 do not appear in those
inequalities. Since the map H 0.p; x/ D 1

2
jpj2 C f .x; 1/ satisfies DpH 0 � p, it also

satisfies (H1), (H3), (HX), and (2.3), with C0 being replaced by a universal constant.
Thus, since H � is a convex combination of H 0 and H , these inequalities still hold for
H � , when C0 is replaced by a convex combination of C0 and a universal constant. By the
same reasoning, conditions (H2), (2.1), and (2.2) hold for H � after replacing C0 with a
convex combination ofC0 and a constant depending only onC0 and kf .�;1/kC 2.Td /�C0.
Only condition (2.4) is left to consider, namely

k�.�; 0/kC 0.Td / C km
�
0kC 1.Td / C kf kC 2.Td�Œminm�0 ;maxm�0 �/

� C0;� : (4.2)

The first term is already independent of � , whereas, noticing that minm0 � 1 � maxm0
and jDxm�0j D � jDxm0j,

km�0kC 1.Td / C kf kC 2.Td�Œminm�0 ;maxm�0 �/

� km0kC 1.Td / C kf kC 2.Td�Œminm0;maxm0�/ � C0:

Thus, one may select
C0;� D C0;� .C0/; �� D �; (4.3)

and consequently

L1;� D L1;� .C0;� ; T / D L1;� .C0; T / WD L1:

Now, by definition,

g�0 .m/ D �g0 C .1 � �/m; g�1 .m/ D �g1 C .1 � �/m: (4.4)
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Therefore,

jg�0f
�1
1 .�L1/j � max.jg0f �11 .�L1/j; f

�1
1 .�L1//

� max.jg0f �11 .�L1/j; f
�1
0 .L1//; (4.5)

and similarly,

jg�1f
�1
0 .L1/j D j�g1f

�1
0 .L1/C .1 � �/f

�1
0 .L1/j

� max.jg1f �10 .L1/j; f
�1
0 .L1//: (4.6)

On the other hand, the following inequalities hold:

.g�0 /
�1g�1 � g

�1
0 g1; g�11 g0 � .g

�
1 /
�1g�0 : (4.7)

Indeed, by (4.4),

g�0g
�1
0 g1 D �g0g

�1
0 g1 C .1 � �/g

�1
0 g1 � �g1 C .1 � �/g

�1
0 g0 D g

�
1 ;

which shows the first inequality in (4.7), with the second one following in the same fash-
ion. Now (4.7) yields

.g�0 /
�1g�1f

�1
0 .L1/ � g

�1
0 g1f

�1
0 .L1/;

1

.g�1 /
�1g�0f

�1
1 .�L1/

�
1

g�11 g0f
�1
1 .�L1/

: (4.8)

Thus, (4.5), (4.6), and (4.8) yield

L� D L�

�
M; jg1f

�1
0 .L1/j; jg0f

�1
1 .L1/j; g

�1
0 g1f

�1
0 .L1/;

1

g�11 g0f
�1
1 .�L1/

; f �10 .L1/
�
WD L;

and

K1;� D K1;�

�
L;

1

T
;

1

1 � �
; f0

� 1
L

�� �
WD K1; K� D K� .K1; ˇK1/ WD K:

Next we obtain the gradient Hölder estimate with the help of Lemma 4.1. We remark that
the operator .Q� ; N � / is clearly elliptic and oblique, because it comes from (MFG� ).
Moreover, since A� ; b� , and B� and their derivatives are, respectively, continuous func-
tions of .x; t; z; p; s; �/ on the compact sets QT;K � Œ0; 1� and @QT;K � Œ0; 1�, it follows
that there exist constants �LCK > 0, �LCK > 0, independent of � , satisfying (2.5) in
.Td /LCK , and (2.6), (4.1) in @QT;LCK , when the operators .Q; N / are replaced by
.Q� ; N � /. Lemma 4.1 then yields constants C > 0, 0 <  < 1, independent of � , such
that

ŒDu� �;QT � C:
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With the help of this uniform estimate, the main theorem for the strictly elliptic prob-
lem may now be proved.

Proof of Theorem 1.1. The uniqueness part of the statement is an immediate consequence
of the standard Lasry–Lions monotonicity method, and will be omitted. We define the
Banach spaces

E D C 3;˛.QT /; F D C 1;˛.QT / � C
2;˛.@QT /;

and the continuously differentiable operator S WE � Œ0; 1�! F by

S.u; �/ D .Q�u;N �u/; .u; �/ 2 E � Œ0; 1�:

The partial Fréchet derivative of S with respect to the variable u at the point .u; �) is
the corresponding linearization, for fixed � , of the differential operator .Q� ;N � /, namely
.L1
.u;�/

; L2
.u;�/

/, where

L1.u;�/.w/ D �Tr.A� .x;Du/D2w/ �Dq Tr.A� .x;Du/D2u/ �Dw

CDqb
� .x;Du/ �Dw;

L2.u;�/.w/ D

´
�wt CDpH

� .x;Dxu/ �Dxw if t D 0;
g�m
fm
.wt �DpH

� �Dxw/C w if t D T:

For fixed .u; �/ 2 E � Œ0; 1�, the linear operator L1
.u;�/

is uniformly elliptic and the lin-
ear boundary operator L2

.u;�/
is oblique. Moreover, the homogeneous problem .L1

.u;�/
w;

L2
.u;�/

w/ D .0; 0/ has the form

�Tr. QA.x; t/D2w/C Qb.x; t/ �Dw D 0 in QT ; QB.x; t/ �Dw C Qc.x; t/w D 0 on @QT ;

where QB � � > 0, Qc � 0, and Qc 6� 0, which implies that it has only the trivial solution
in C 3;˛.QT /. Hence, by the standard Fredholm alternative for linear oblique problems
(see [9]), the operator .L1

.u;�/
;L2

.u;�/
/ is invertible in C 3;˛.QT /. The infinite-dimensional

implicit function theorem then implies that the set

D D
®
� 2 Œ0; 1� W the equation S.u; �/ D .0; 0/ has a unique solution u 2 C 3;˛.QT /

¯
is open in Œ0; 1�.

The next step is to show that D is also closed. Let ¹�nº � D be a sequence such
that �n ! � 2 Œ0; 1�, and let ¹unº � E be the corresponding sequence of solutions to
S.un; �n/ D .0; 0/. By Lemma 4.2, there exist numbers C > 0, 0 <  < 1, independent
of n, such that

kunkC 1; .QT / � C:

The Arzelà–Ascoli theorem implies that, up to a subsequence, there exists u 2 C 1; .QT /
such that un ! u in C 1.QT /. By Theorem 2.5, it follows that u 2 C 2;˛.QT /, un ! u
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in C 2;˛.QT /, and S.u; �/D 0. In particular, the un are uniformly bounded in C 2;˛.QT /.
Now, given i 2 ¹1; : : : ; dº, differentiating the equation .Q�n.un/; N

�n.un// D .0; 0/

yields, for w D Dxiun,

L1.un;�n/w D Tr.A�nxi .x;Dun/D
2un/ � b

�n
xi
.x;Dun/;

L2.un;�n/w D

´
Dxi .f .x;m

�n
0 .x/// �H

�n
xi if t D 0;

g
�n
m

fm
.H

�n
xi � fxi /C g

�n
xi if t D T:

Therefore, by Theorem 2.4, there exists C > 0, independent of n, such that

kwkC 2;˛.QT / � C;

implying that Dxun is bounded in C 2;˛.QT /. In particular, unj@QT is bounded in
C 3;˛.@QT /, and by the standard Schauder theory for the Dirichlet problem, un is there-
fore bounded in C 3;˛.QT /. Consequently, u 2 C 3;˛.QT / and � 2 D, proving that D is
closed. Since 0 2 D, it follows that D D Œ0; 1�, which completes the proof.

The next theorem is the corresponding variant of Theorem 1.2 for the case of a fast-
growing f , which follows from the estimates in Theorem 3.10.

Theorem 4.3. If condition (F2) is replaced by (HFX*), the conclusion of Theorem 1.1
holds.

Proof. All of the results in this section follow in this case by simply replacing the use of
Theorem 3.9 by Theorem 3.10.

5. Weak solutions

In this section we develop the theory of weak solutions, for the case where the strict ellip-
ticity condition (SE) fails to hold. We begin by stating the definition of weak solution that
will be used, which is in direct analogy with the one used in [2–4] to study the degenerate
case in which gm � 0.

Definition 5.1 (Definition of weak solution). A pair .u; m/ 2 BV.QT / � L1C .QT / is
called a weak solution to (MFG) if the following conditions hold:

(i) Dxu 2L
2.QT /;u 2L

1.QT /,m 2C 0.Œ0;T �IH�1.Td //,m.�;T / 2L1.Td /.

(ii) u satisfies the HJ inequality

�ut CH.�;Dxu/ � f .�; m/ in QT ; u.�; T / D g.�; m.�; T // in Td ;

in the distributional sense, with u.�; T / D g.�; m.�; T // in the sense of traces.

(iii) m satisfies the continuity equation

mt � div.mDpH.�;Dxu// D 0 in QT ; m.�; 0/ D m0 in Td (5.1)

in the distributional sense, with m.�; 0/ D m0 in H�1.Td /.
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(iv) The following identity holds:“
QT

m.x; t/.H.x;Dxu/ �DpH.x;Dxu/ �Dxu � f .x;m// dx dt

D

Z
Td

.m.x; T /g.x;m.x; T // �m0.x/u.x; 0// dx: (5.2)

The solutions to the degenerate elliptic problem will be obtained as a “vanishing vis-
cosity” limit of MFG systems satisfying (SE), in the following sense. Assuming that (DE)
holds, we consider, for � > 0, the system´
�u�t CH.�;Dxu

�/ D f .�; m�/C � log.m�/; u.�; T / D g.�; m�.�; T //;

m�t � div.m�DpH.�;Dxu�// D 0; m�.0/ D m0:
(MFG�)

Since (MFG�) is strictly elliptic, by Theorem 1.1 it has a unique solution .u�; m�/ 2
C 3.QT / � C

2.QT /. The only missing ingredient necessary to obtain a solution as the
limit when � ! 0 is the following minor modification of Lemma 3.8, which provides a
global, a priori upper bound for the density that is independent of the size of 1

min.m.T // .

Lemma 5.2. Assume that (SE) holds. If .u; m/ 2 C 3.QT / � C 2.QT / is a solution to
(MFG), then

max
QT

f .�; m.�; �// � C;

where

C D C
�
C0; T;

1

T
;

1

1 � �
; kukC 0.QT /;max

Td
m.T /; f1

�
max
Td

m.T /
�C
; 1

�


C 0.Td�Œ1;1//

; khwkC 0.Td�Œ1;1//

�
:

Proof. The argument is a simple variant of the proof of Lemma 3.8. Let v and Qu have
the same meaning as in said proof, with 0 < c1 < 1 once more being a free parameter,
set Qv D �ut C v D f C c1

2
Qu2, and let .x0; t0/ be a point where Qv achieves its maximum

value.
Case 1. If t0 2 ¹0; T º, then

Qv.x0; t0/ D f .x0; m.x0; t0//C
c1

2
Qu2 � max.f1.maxm.T //; f1.maxm0//C C � C:

Case 2. Assume next that 0 < t0 < T . Without loss of generality, it may be assumed that
f D f .x0;m.x0; t0// � 1, because otherwise there would be nothing to prove. Therefore,
using (H3), since

j�ut CDpH �Dxuj � �ut CDpH �Dxu � f CH;

it follows, by (2.1), that

j�ut CDpH �Dxuj
2
�
1

2
jf j2 C

1

2C 20
jDxuj

4
� C: (5.3)
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Now, by Corollary 3.5, Lu. Qv/ D Lu.v/, so, as in (3.33), Lemma 3.7 yields

0 � Lu. Qv/ �
�1

2C0
j�Dxut CDpHD

2
xxuj

2
�

�

2C 20
jD2

xxuj
2
�
c1

2
j�ut CDpH �Dxuj

2

�
c1

C0
�jDxuj

2
C C.1C jDxuj

3C�
C �.1C jDxuj

1C� /C �.1C�/=2jDxuj
2

C jf j.1C jDxuj
1C� /C jDxuj

2
jf j.1C�/=2/

C Cc1.�jD
2
xxuj

2
C j�Dxut CD

2
xxuDpH j

2/:

Thus, by (F2), (5.3), and the fact that f � 1,

0 �
�1

2C0
j�Dxut CDpHD

2
xxuj

2
�

�

2C 20
jD2

xxuj
2
�
c1

4

� 1

C 20
jDxuj

4
C f 2

�
�
c1

C0
�jDxuj

2
C C.1C jDxuj

3C�
C .1Cf /.1C jDxuj

1C� /

C .1Cf /.1C�/=2jDxuj
2
Cf .1CjDxuj

1C� /C jDxuj
2f .1C�/=2/

C Cc1.�jD
2
xxuj

2
C j�Dxut CD

2
xxuDpH j

2/:

Once more, as in Lemma 3.8, fix c1 such that c1 < 1
4C0C.1CC0/

, where the constant C is
as in the previous line, obtaining

c1

4

� 1
C0
jDxuj

4
C f 2

�
� C.1C jDxuj

3C�
C .1C f /.1C jDxuj

1C� /

C .1C f /.1C�/=2jDxuj
2
C f .1C jDxuj

1C� /

C jDxuj
2f .1C�/=2/:

The left- and right-hand sides have, respectively, degree 4 and degree 3 C � < 4 in the
non-negative variables .jDxuj;

p
f /, thus jDxuj2 C f � C , and, in particular, it follows

that
Qv.x0; t0/ � C:

We now obtain several a priori bounds for .u�; m�/ that are independent of �.

Lemma 5.3. Assume (DE), and let .u�; m�/ 2 C 3;˛.QT / � C 2;˛.QT / be the solution to
(MFG�). Then there exist constants L;L1; C , and C1, with

L D L.L1; jg1f
�1
0 .L1/j; g

�1
0 g1f

�1
0 .L1//;

L1 D
�
C0; T;

ˇ̌̌
min
Td

f .�; 0/
ˇ̌̌
;
ˇ̌̌
min
Td

g.�; 0/
ˇ̌̌�
;

C D C.C1; f1.C1/
C/;

C1 D C1

�
L;

1

T
;

1

1 � �
;
 1
�


C 0.Td�Œ1Cmax

Td
f C.�;0/;1//

;

khwkC 0.Td�Œ1Cmax
Td

f C.�;0/;1//

�
;
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such that, for every � � 1
C

,

ku�kC 0.QT / � L; km
�
kC 0.QT /

C ku
�;�
t kC 0.QT /

� C; (5.4)

ku�tkL1.QT / C kDxu
�
kL2.QT / C �klogm�kL1.QT / � C: (5.5)

Proof. By replacing f , H with f � C , H � C , for C depending only on C0, there is no
loss of generality in assuming f .�; 0/ � �1. It is readily seen that conditions (F2), (FX1),
(FX2), and (2.4) hold for f � D f C � log.�/, uniformly in �, up to increasing C0 by a
finite value. By Lemma 3.1, there exists L1 such that

g0.f
�
1 /
�1.�L1/ � L1.e

L1T � eL1t / � u� � g1.f
�
0 /
�1.L1/C L1.e

L1T � eL1t /:

Now, (DE) implies that
�L � L1.e

L1T � eL1t / � u�:

On the other hand, if L1 > f0.1/, then f0�1.L1/ > 1, hence

f �0 .f0
�1.L1// D L1 C � log.f �10 .L1// � L1;

which implies
g1f

�1
0 .L1/ � g1.f

�
0 /
�1.L1/: (5.6)

Consequently,
u� � g1f0

�1.L1/C L1.e
L1T � eL1t /;

which proves the first inequality in (5.4). Now, by Corollary 3.2 and (5.6),

m�.�; T / � L:

Thus, Lemma 5.2 implies that

f .�; m�/C � logm�.�; �/ D f �.�; m�/ � C; (5.7)

and (F1) yields, for C depending only on k 1
�
kC 0.Td�Œ1;1// and jminf .�; 0/j,

1

C
log.m�.�; �// � C � f .�; m�.�; �//:

Therefore, by (5.7) we conclude that km�kC 0.QT / � C for large enough C and small
enough �. The lower bound for u�t is simply a consequence of (5.7), the relation
�u�t CH D f

� , and the fact that H is bounded below. This completes the proof of (5.4).
Now, integrating the HJ equation for u� yields“

QT

H.�;Dxu
�/C

“
QT

�.logm�/�

D

“
QT

.f .�; m�/C �.logm�/C/C
Z

Td

.u�.T / � u�.0//: (5.8)
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It then follows from (5.4) and (2.1) that kDxu�kL2.QT / and �klogm�kL1.QT / are bounded.
Finally, ˇ̌̌̌“

QT

u�t

ˇ̌̌̌
D

ˇ̌̌̌Z
Td

u�.T / � u�.0/

ˇ̌̌̌
� C;

and since u�t is bounded below, this proves (5.5).

After extracting a subsequence, Lemma 5.3 implies the existence of .u; m/ 2
BV.QT / � L1C .QT / such that, as � ! 0,

u� ! u in L1.QT / and pointwise a.e., m�
�
* m in L1.QT /;

u�t
�
* ut in C 0.QT /�; Dxu

� *Dxu in L2.QT /: (5.9)

We now show that, up to a further subsequence, this convergence can be strengthened.

Lemma 5.4. Assume that (DE) holds, let .u�;m�/ 2 C 3.QT / � C 2.QT / be the solution
to (MFG�), and let .u; m/ 2 BV.QT / � L1C .QT / be a subsequential limit. Then, up to
extracting a subsequence,

m� ! m in C 0.Œ0; T �;H�1.Td // and a.e. in QT ; (5.10)

m�.�; T /! m.�; T /; u�.�; T /! u.�; T / a.e. in Td ; (5.11)

Dxu
�
! Dxu in L2m.QT / and a.e. in ¹m > 0º;

m�jDxu
�
j
2
! mjDxuj

2 in L1.QT / and a.e. in QT ;
(5.12)

� logm� ! 0 in L1m.QT /: (5.13)

Moreover, u.�; T / D g.�; m.�; T // and m 2 C 0;
1
2 .Œ0; T �;H�1.Td //, with

Œm� 1
2 ;Œ0;T �;H

�1 � kmDpH.�;Dxu/kL2.QT /;

and, for almost every s 2 Œ0; T �, including s D 0,Z T

s

Z
Td

m.x; t/.H.x;Dxu/ �DpH.x;Dxu/ �Dxu � f .x;m// dx dt

D

Z
Td

.m.x; T /g.x;m.x; T // �m.x; s/u.x; s// dx: (5.14)

Proof. Let �; �0 > 0. We employ the standard Lasry–Lions method with the pairs .u�;m�/
and .u�

0

; m�
0

/. Namely, subtracting the HJ and continuity equations from each other,
respectively, yields a new system for u� � u�

0

and m� � m�
0

. Multiplying the equations
satisfied by u� � u�

0

and m� � m�
0

, respectively, by m� � m�
0

and u� � u�
0

, and then
integrating over QT , leads to the identity

M�;�0 CM�0;� CMg CMf CK
�
�;�0 CK

�
�0;� D K CK

C

�;�0 CK
C

�0;�;
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where

M�;�0 D

“
QT

m�.H �0
�H �

�DpH
�
� .Dxu

�0
�Dxu

�//;

Mg D

Z
Td

.g.�; m�.�; T // � g.�; m�
0

.�; T //.m�.�; T / �m�
0

.�; T //;

Mf D

“
QT

.f .�; m�/ � f .�; m�
0

//.m� �m�
0

/;

K˙�;�0 D

“
QT

�0.logm�
0

/˙m�; K D

“
QT

�.�0 logm�
0

m�
0

C � logm�m�/;

andH � DH.�;Dxu
�/,DpH � DDpH.�;Dxu

�/. By (5.4), and the fact that the mapm 7!
m logm is bounded below, K ! 0 as �; �0 ! 0. Similarly, (5.4) implies that the quantity
logm�

0

m� is bounded above, and thus KC�;�0 ! 0 as �; �0 ! 0. Since, by monotonicity
and convexity, each term on the left-hand side of the equation is non-negative, all of them
converge to zero. Every claim of a.e. convergence in what follows is tacitly meant to hold
after extracting a subsequence. Since Mf ! 0, we have m� ! m a.e. in QT . Similarly,
sinceMg ! 0, there exists a functionmT 2 L1.Td / such thatm�.T /!mT a.e. in Td .
Now, using (H1), one obtains

1

2C0

“
QT

.m� Cm�
0

/jDxu
�
�Dxu

�0
j
2
�M�;�0 CM�0;�;

which implies (5.12). Finally, sending �0 ! 0 first and then � ! 0, using the fact that
K��0;� ! 0, yields (5.13).

Next we show the continuity properties of m, which in particular give a meaning to
the expression m.�; T /. Integrating the equation for m� �m�

0

over a cylinder Td � Œ0; t �

against a test function � 2 C1.Td / yieldsZ
Td

.m� �m�
0

/� D �

Z t

0

Z
Td

.m�DpH.�;Dxu
�/ �m�

0

DpH.�;Dxu
�0// �D�;

which implies

sup
t2Œ0;T �

km�.�; t / �m�
0

.�; t /kH�1.Td /

�
p
T km�DpH.�;Dxu

�/ �m�
0

DpH.�;Dxu
�0/kL2.QT /:

Consequently, (2.1) and (5.12) together imply that m� ! m in C 0.Œ0; T �; H�1.Td //.
Similarly, testing � against the continuity equation for m� in a cylinder Td � Œs; t � yieldsZ

Td

.m�.x; t/ �m�.x; s//�.x/ dx D �

Z t

s

Z
Td

m�DpH.x;Dxu
�/ �D�.x/ dx dt;

thus
km�.�; t / �m�.�; s/kH�1.Td / �

p
t � skm�DpH.�;Dxu

�/kL2.QT /;

and sending � ! 0 produces the desired Hölder estimate.
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Since m�.�; T /! mT a.e. in Td , and m�.�; T /! m.�; T / in H�1.Td /, it follows
thatmT Dm.�; T /, and that u�.�; T /D g.�;m�.�; T //! g.�;m.�; T // almost everywhere.
Moreover, (5.9) implies that u�.�; T /

�
* u.�; T / in C1.Td /�, and therefore u.�; T / D

g.�; m.�; T //.
It remains to show (5.14). For this purpose, performing once more the Lasry–Lions

computation, this time on the system for .u�; m�/, and integrating on Td � Œs; T � yieldsZ T

s

Z
Td

m�.x; t/.H �
�DpH

�
�Dxu

�
� f .x;m�/ � � logm�/ dx dt

D

Z
Td

.m�.x; T /g.x;m�.x; T // �m�.x; s/u�.x; s// dx:

By Fubini’s theorem, for a.e. s 2 Œ0; T �, u�.�; s/ and m�.�; s/ converge, respectively, to
u.�; s/ 2 L1.Td / and m.�; s/ 2 L1.Td / a.e. in Td . Thus, for such s, using (5.12), one
obtains (5.14) after letting � ! 0. When s D 0, m�.s/ D m0, and thus the C1.Td /�-
convergence of u�.0/ is sufficient to conclude.

We now prove the main result for the degenerate elliptic problem, Theorem 1.2.

Proof of Theorem 1.2. First we will establish that .u; m/ is indeed a weak solution. By
Lemmas 5.3 and 5.4, .u;m/ satisfies condition (i) of Definition 5.1. Next, by the HJ equa-
tion for u� ,

�u�t CH
�
D f .�; m�/C � logm� � f .�; m�/C �.logm�/C:

Integration against a non-negative function � 2 C1.QT / then yieldsZ
Td

.�u�.�; T /�.�; T /C u�.�; 0/�.�; 0//C

“
QT

u��t C

“
QT

H ��

�

“
QT

f .�; m�/� C �.logm�/C�: (5.15)

Using the convexity of H ,“
QT

H.�;Dxu/� CDpH.�;Dxu/ � .Dxu
�
�Dxu/� �

“
QT

H.�;Dxu
�/�;

and therefore, since Dxu� *Dxu in L2.QT /,“
QT

H� � lim inf
�!0C

“
QT

H ��:

Letting � ! 0 in (5.15), Lemmas 5.3 and 5.4 and (5.9) thus yieldZ
Td

.�u.�; T /�.�; T /C u.�; 0/�.�; 0//C

“
QT

u�t C

“
QT

H� �

“
QT

f �:
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This completes the proof of condition (ii) in Definition 5.1. The third condition follows
immediately by testing the continuity equation of m� against an arbitrary � 2 C1.QT /,
and appealing to Lemma 5.4 to let � ! 0 in the equalityZ

Td

.m�.�; T /�.�; T / �m0�.�; 0// �

“
QT

m��t C

“
QT

m�DpH.�;Dxu
�/ �Dx� D 0:

Finally, condition (iv) of Definition 5.1 has already been established in Lemma 5.4.
Next is the proof of uniqueness. Let .u0; m0/ be another weak solution to (MFG). By

the fact that every non-negative distribution can be identified with a non-negative measure,
the HJ inequality for u0 may be written as

�u0t CH.�;Dxu
0/C � D f .�; m0/;

where � 2 C.QT /� is a non-negative, finite measure on QT . We carefully apply the
Lasry–Lions procedure to the .u�; m�/ and .u0; m0/ systems. Set v� D u� � u0, w� D
m� � m0. Subtracting the two corresponding HJ equations for u0, u� , and integrating
against m� , we obtain“

QT

.v�tm
�
C .H 0 �H �/m�/C

“
QT

m�d� D

“
QT

m�.f 0 � f �/; (5.16)

where H 0 D H.�; Dxu
0/, f 0 D f .�; m0/. Integrating the HJ equation for u� against m0

gives “
QT

.�u�tm
0
CH �m0/ D

“
QT

m0f �:

Now subtracting the continuity equations for m� , m0 and testing against u� yields“
QT

.�u�tm
�
C u�tm

0/C .m�DpH
�
�m0DpH

0/ �Dxu
�
D�

Z
Td

v�.T /m0.T /; (5.17)

and integrating the continuity equation for m� against �u0 we get“
QT

.m�u0t �m
�DpH

�Dxu
0/ D

Z
Td

.m�.T /u0.T / �m0u
0.0//: (5.18)

Finally, by condition (iv) in Definition 5.1 and the fact that .u0; m0/ is a weak solution,“
QT

�m0.H 0 �DpH
0
�Dxu

0/D�

“
QT

m0f 0 �

Z
Td

.m0.T /u0.T /�m0u
0.0//: (5.19)

Adding (5.16), (5.17), (5.18), and (5.19) yields

M�;1 CM�;2 CMg;� CMf;� CK
�
� CK1;� D K2;� CK

C
� ; (5.20)
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where

M�;1 D

“
QT

m�.H 0 �H �
�DpH

0
� .Dxu

�
�Dxu

0//;

M�;2 D

“
QT

m0.H �
�H 0 �DpH

�
� .Dxu

0
�Dxu

�//;

Mg;� D

Z
Td

.m�.�; T / �m0.�; T //.g.�; m�.�; T // � g.�; m0.�; T ///;

Mf;� D

“
QT

.f .�; m�/ � f .�; m0//.m� �m0/;

K˙� D

“
QT

�.logm�/˙m0; K1;� D

“
QT

m�d�; K2;� D �

“
QT

� logm�m�:

The only new term relative to the proof of Lemma 5.4 is K1;� , which is clearly non-
negative. Thus, as before, each individual term on the left-hand side of (5.20) converges to
zero as �! 0. In particular, sinceMf;�! 0, it follows thatmDm0 a.e. A posteriori, since
M�;2 ! 0, (5.12) and the strict convexity of H imply that Dxu D Dxu0 a.e. in ¹m > 0º.
Moreover, Mg;� ! 0 implies m.�; T / D m0.�; T / a.e., and thus u.�; T / D g.�; m.�; T // D
g.�; m0.�; T // D u0.�; T / a.e. in Td .

It remains to show that u.s/ D u0.s/ a.e. in ¹m.s/ > 0º, for a.e. s 2 Œ0; T � includ-
ing the case s D 0. The function Nu D max.u; u0/ is in BV.QT / \ L1.QT /, and, since
Dxu;Dxu

0 2 L2.QT /, the chain rule yields Dx Nu D Dxu a.e. in ¹u � u0º and Dx Nu D
Dxu

0 a.e. in ¹u� u0º. In particular,Dx NuDDxu a.e. in ¹m> 0º. Following [4, Thm. 5.2],
through a mollification procedure, the theory of viscosity solutions implies that Nu is a dis-
tributional subsolution to the HJ equation. Therefore, testing the HJ inequality of Nu against
m� in an interval Œs; T �,Z
Nu.s/m�.s/

�

Z
Td

Nu.T /m�.T /C

Z T

s

Z
Td

.�m�t Nu �m
�H.x;Dx Nu//Cm

�f .x;m/ dx dt

D

Z
Td

u.T /m�.T /

C

Z T

s

Z
Td

.� div.m�DpH �/ Nu �m�H.x;Dx Nu/Cm
�f .x;m// dx dt

D

Z
Td

u.T /m�.T /C

Z T

s

Z
Td

m�.DpH
�
�Dx Nu �H.x;Dx Nu/C f .x;m// dx dt:

Using Lemma 5.4 and the dominated convergence theorem to let � ! 0,Z
Td

Nu.s/m.s/

�

Z
Td

u.T /m.T /C

Z T

s

Z
Td

m.DpH �Dx Nu �H.x;Dx Nu/C f .x;m// dx dt
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D

Z
Td

u.T /m.T /C

Z T

s

Z
Td

m.DpH �Dxu �H.x;Dxu/C f .x;m// dx dt

D

Z
Td

u.s/m.s/

for a.e. s 2 Œ0; T �, including s D 0, where (5.14) was used in the last equality. Given
that Nu � u, this implies Nu.s/ D u.s/ a.e. in ¹m.s/ > 0º for such s. At last, applying the
Lasry–Lions method to the system for .u� � u0, m�), over an interval Œs; T �, yieldsZ T

s

Z
Td

..H 0 �H �/m� Cm�DpH
�
� .Dxu

�
�Dxu

0//C

Z T

s

Z
Td

m�d�

C

Z T

s

Z
Td

m�.f � � f 0/C

Z
Td

.m�.T /v�.T / �m�.s/v�.s// D 0:

Since
R T
s

R
Td m

�d� �
’
QT
m�d� D K1 ! 0, sending � ! 0 results inZ

Td

m.T /.u.T / � u.T // �m.s/.u.s/ � u0.s// D 0;

that is, Z
Td

m.s/u.s/ D

Z
Td

m.s/u0.s/:

By the fact that u.s/ D Nu.s/ � u0.s/ a.e. in ¹m.s/ > 0º, one then concludes that u D u0

a.e. in ¹m > 0º and, since m0 > 0, we have u.0/ D u0.0) a.e. in Td .

Next we prove that when the data is independent of the space variable, the solution u
is Lipschitz continuous.

Theorem 5.5. Assume that (DE) holds, and letH , f , and g be independent of x. Then the
sequence u� is uniformly bounded in C 1.QT / as � ! 0. In particular, the weak solution
u D lim�!0 u

� and the terminal condition m.�; T / are globally Lipschitz continuous.

Proof. There is no loss of generality in assuming f .0/ < �1. By Remark 3.3,

minm0 � m�.�; T / � maxm0: (5.21)

We set, for K > 0,

��.w/ D .f �/�1.w/ � f �m..f
�/�1.w//; h� D

p
��;

ˇ�K D kf
�
kC 1.Œ 1K ;K�/

C kgkC 1.Œ 1K ;K�/
C

 1
��


C 0.Œ�K;1//

C kh�wkC 0.Œ�K;1//:

Then, in view of (DE), (5.21), and Lemma 3.8, there exist constants C and C1, with
C D C.C1; ˇ

�
C1
/ and C1 D C1.C0; T; T �1; .1 � �/�1; ku�kC 0.QT //, such that

kDu�kC 0.QT / � C:
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The only issue here is that the quantities

K1;�.�C1/ D
 1
��


C 0.Œ�C1;1//

and K2;�.�C1/ D kh
�
wkC 0.Œ�C1;1//

may not be bounded independently of �. However, the proof of Lemma 3.8 shows that,
defining Qu� as in said proof, the gradient bound depends only on K1;�.a/ and K2;�.a/,
where a 2 R is any number satisfying the following condition: for all small enough
0 � c1 < 1, at any maximum point .x0; t0/ of H.Dxu�/ C c1

2
. Qu�/2, the inequality

f �.m.x0; t0// � a holds. At such a point .x0; t0/, for small enough � and c1, Corollary
3.5 yields

f �.m.x0; t0// D �u
�
t CH.Dxu

�/ � f �.minm0/ � kH.Dxu�/kC 0 CH.Dxu
�/

� f �.minm0/ �
c1

2
k Qu�k2

C 0
D f .minm0/C � log minm0 � c1k Qu�k2C 0

> f
�1
2

minm0
�
:

Thus, the condition is satisfied by a D f .1
2

minm0/. Since a > f .0/, it follows from
(F1), (F2) that K1;�.a/ and K2;�.a/ are bounded uniformly as � ! 0. The Arzelà–Ascoli
theorem implies the result.

We finally note that, in the case d D 1, since there exists an a priori lower bound for
the density m in terms of its boundary values (obtained in [1, 11, 15]), the solutions are
seen to be smooth. However, when d > 1, even in the special case of Theorem 5.5, where
an a priori bound for the gradient was obtained, we do not know whether the solution to
the degenerate elliptic problem enjoys higher regularity.
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