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Anisotropy and stratification effects in the dynamics of
fast rotating compressible fluids

Edoardo Bocchi, Francesco Fanelli, and Christophe Prange

Abstract. The primary goal of this paper is to develop robust methods to handle two ubiquitous fea-
tures appearing in the modeling of geophysical flows: (i) the anisotropy of the viscous stress tensor
and (ii) stratification effects. We focus on the barotropic Navier–Stokes equations with Coriolis and
gravitational forces. Two results are the main contributions of the paper. Firstly, we establish a local
well-posedness result for finite-energy solutions, via a maximal regularity approach. This method
allows us to circumvent the use of the effective viscous flux, which plays a key role in the weak
solutions theories of Lions–Feireisl and Hoff, but seems to be restricted to isotropic viscous stress
tensors. Moreover, our approach is sturdy enough to take into account nonconstant reference den-
sity states; this is crucial when dealing with stratification effects. Secondly, we study the structure
of the solutions to the previous model in the regime when the Rossby, Mach and Froude numbers
are of the same order of magnitude. We prove an error estimate on the relative entropy between
actual solutions and their approximation by a large-scale quasi-geostrophic flow supplemented with
Ekman boundary layers. Our analysis holds for a large class of barotropic pressure laws.

1. Introduction

This paper is devoted to the study of a class of barotropic Navier–Stokes systems. Our
focus is on developing robust methods to handle two ubiquitous effects appearing in the
modeling of geophysical fluids: (i) the strong anisotropy of the viscous stress tensor and
(ii) stratification effects. As for the first aspect, we consider systems with anisotropic
viscosity tensors
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where the parameters � and " are dimensionless numbers such that

� > 0 and " > 0; with "� �:

Concerning the second point, we consider highly rotating fluids with a strong Corio-
lis force 1

"
e3 � �u and a strong gravitational potential 1

"2
�rG D � 1

"2
�e3, where u D

u.x; t/ 2 R3 denotes the velocity field of the fluid, � D �.x; t/ 2 R represents the density

2020 Mathematics Subject Classification. 35Q86, 35Q30, 76D50, 76N10, 35B40, 76M45.
Keywords. Compressible Navier–Stokes equations, rotating fluids, anisotropy, stratification, Ekman
boundary layers, relative entropy, maximal regularity.



E. Bocchi, F. Fanelli, and C. Prange 2

of the fluid and e3 D .0; 0; 1/T is the unit vertical vector. We handle barotropic fluids, so
the pressure of the fluid is assumed to be a function of the density only, i.e. P D P.�/; see
(1.10) for precise assumptions on the pressure law. We consider the simplest possible geo-
metrical setups and scalings enabling us to study nontrivial phenomena, such as boundary
layers and vertical stratification.

Our goal in this paper is twofold. The first part of the paper is concerned with the
existence and uniqueness of strong solutions for the barotropic Navier–Stokes equations
with potential force rG:´

@t�Cr � .�u/ D 0;

@t .�u/Cr � .�u˝ u/CrP.�/ D ��;"uC �r.r � u/C �rG:
(1.2)

The term rG is responsible for stratification effects, thus the equilibrium density N� of
the previous system becomes nonconstant. As a consequence, there are two main diffi-
culties in handling the well-posedness study for system (1.2): on the one hand, the strong
anisotropy of the viscous tensor (see (1.1)) and, on the other hand, the fact that N� introduces
variable coefficients in the equations (see more details below). Our main result in this
direction is Theorem 1. We set system (1.2) in the simple space-time domain R3 � .0; T /,
with T > 0; domains with boundaries, such as .R2 � .0; 1// � .0; T /, may be handled
by the same method, at the price of more technical difficulties. Here we work with fixed
values of the parameters .�; �; "/, and do not keep track of how the estimates depend on
them: the existence of solutions to (1.2) is a challenge in itself. Our well-posedness result
still holds if one incorporates a Coriolis force �e3 � u on the left-hand side of (1.2).

The second part of the paper is devoted to the asymptotic analysis of the barotropic
Navier–Stokes equations in presence of fast rotation and gravitational stratification. We
consider the following system:8<:@t�Cr � .�u/ D 0;@t .�u/Cr � .�u˝u/C

�

"
e3 �uC

rP.�/

"2
D ��;"uC�r.r � u/C

�

"2
rG;

(1.3)

set on the strip .R2 � .0; 1// � .0; T /, with the no-slip boundary conditions

u D 0 at x3 D 0; 1: (1.4)

HereG is the gravitational potential, i.e.G.x3/D�x3. We describe the structure of weak
solutions in the limit "! 0 for well-prepared data, analyze the Ekman boundary layers
and their effect on the limit quasi-geostrophic flow and prove quantitative bounds based
on relative entropy estimates. Our main result in this direction is Theorem 2. Our results
hold for a large class of monotone pressure laws. Here our focus is on the asymptotic
behavior for a family of weak solutions, under the assumption that such global-in-time
weak solutions exist.

Let us emphasize a further aspect of the connection between the two parts of the paper.
The quantitative stability estimates obtained in the second part lay the ground for a large-
time well-posedness result for system (1.3) in the limit when "! 0. Inspired by previous
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results for incompressible flows ([8, 25, 40, 41]), we believe that strong solutions may be
constructed for large data close to the two-dimensional limit quasi-geostrophic flow, by
using a variation of the well-posedness result of the first part. In that perspective, our goal
with the first part of this work is to have a robust local well-posedness result that can be
adapted in subsequent works to handle the global existence for large data. In order to carry
out this program, there are a number of issues to deal with, notably the adjustment of the
local well-posedness result to the infinite slab R2 � .0; 1/. We give additional comments
about this problem above Theorem 1. Therefore, we leave this work for further studies.

1.1. Modeling of geophysical flows

We consider mid-latitude and high-latitude motions of fast rotating compressible fluids,
typically the Earth’s atmosphere or oceans. System (1.3) is a particular case of the general
nondimensional system8̂̂̂̂

<̂
ˆ̂̂:
@t�Cr � .�u/ D 0;

@t .�u/Cr � .�u˝ u/ �
1

Reh
�hu �

1

Re3
@23u �

1

Re
rr � u

C
1

Ro
e3 � .�u/C

1

Ma2
rP.�/ D

1

Fr2
�rG:

(1.5)

As usual, the Reynolds number measures the ratio of inertial forces to viscous forces. Sys-
tem (1.5) modeling large-scale geophysical flows has, in particular, a horizontal Reynolds
number Reh D UL

�h
and a vertical Reynolds number Re3 D UL

�3
that may be of different

orders of magnitude; see below the comments about the anisotropy in the viscous stress
tensor. Here U represents the typical speed of the flow, L the typical length, �h the hori-
zontal viscosity and �3 the vertical one. The Mach number is defined as Ma D U

c
, where

the constant c is the propagation speed of acoustic waves. For strong jet streams near the
tropopause,U D 50m s�2, which corresponds to MaD 0:15; see [30]. The Rossby number,
defined as Ro D U

2�L
, measures the effect of the Earth’s rotation; here� D 7:3 � 10�5 s�1

is the module of the Earth’s angular velocity. In the case of the Gulf Stream, the length
L D 100 km and U D 1m s�1 are smaller than typical oceanic scales, and the Rossby
number is about 0:07. Notice that here we consider the f-plane approximation of the Cori-
olis force.

Stratification. The gravitational force deriving from the geopotential G D �gx3 tends
to raise regions of fluid with lower density and lower regions of fluid with higher density.
In the equilibrium configuration, the density profile decreases with respect to the vertical
direction. The Froude number is then defined as Fr D Up

gH
, where g D 9:81m s�2 is

the acceleration of gravity. It measures the ratio of inertial forces of a fluid element to its
weight. The centrifugal force also derives from a potential. It is often neglected in models
for the atmosphere ([12, 20]), but in certain regimes it can have a dramatic effect. The
mathematical analysis of the centrifugal force poses different challenges that we do not
dwell upon in the present work.
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Anisotropy. In general, the horizontal and vertical viscosities are not equal, in particular
when dealing with large-scale motions of geophysical flows. For instance, in the ocean
the horizontal turbulent viscosity �h ranges from 103 to 108 cm2 s�1, while the vertical
viscosity �3 is much smaller and ranges from 1 to 103 cm2 s�1. A justification of this fact
can be seen in (i) the anisotropy between the horizontal and the vertical scales of the flows
and (ii) the stabilizing effect of the Coriolis force, which makes the large-scale motion
almost two-dimensional (see also Section 3). Hence, a frequent (and crude) modeling
assumption is to suppose that the diffusion in the vertical direction is much weaker than
the horizontal viscosity, which is enhanced by turbulent phenomena. For further insights
about the physics of anisotropic diffusion, we refer to [45], in particular to [39, (2.122),
Chapter 4], to [6] and [10].

Scaling. In (1.3), the dimensionless number " denotes the Rossby number, which mea-
sures the strength of the rotation. We consider the scaling where the Rossby, the Mach and
the Froude numbers are of the same order of magnitude, i.e. RoD MaD FrD ". This is the
richest scaling, since the effects due to the rotation are in balance with the compressible
and gravitational effects. Notice however that other scalings are considered in the physical
literature ([31]), for application to meteorology, as well as in the mathematical literature,
see e.g. [16, 20].

Ekman layers. Ekman boundary layers are regions near horizontal boundaries with no-
slip boundary condition where viscous effects balance the Coriolis force. The thickness of
these boundary layers (see [11, Part I]) is

ıE D
��3
�

� 1
2
;

which does not depend on the velocity. Note that the faster the rotation, the smaller is the
layer affected by viscosity. See also [12, Chapter 8].

Pressure laws. We consider barotropic flows, for which the pressure is a function of the
density only. A typical example is that of Boyle’s law P.�/D a� , with a > 0 and  � 1.
For the precise definition of the pressure law, we refer to (1.10).

1.2. Mathematical challenges related to anisotropy and stratification

We outline here some aspects of the study of compressible viscous fluids. We focus on
two points in particular: (i) well-posedness and the difficulties related to the anisotropy in
the viscosity and (ii) asymptotic analysis in the presence of stratification.

Well-posedness. For fluids modeled by the incompressible Navier–Stokes equations, the
fact that the viscous stress tensor is isotropic or anisotropic does not affect the well-
posedness theory. One can prove the existence of weak (Leray–Hopf), mild or strong
solutions regardless of the structure of the viscous stress tensor.

For compressible fluids modeled by the compressible Navier–Stokes system though,
anisotropy represents a major hurdle. Interestingly, the obstacle has similar roots for sev-
eral well-posedness theories of weak solutions.
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In the isotropic case, �D " in (1.2), one has a pointwise relation between the pressure
and the divergence of u. Indeed, applying the divergence to the momentum equation and
using the algebraic relation r � .rr � u/ D �r � u D r ��u, one gets

�..�C �/r � u � P.�/C P.1// D r � .�@tuC �u � ru/: (1.6)

This suggests defining the quantity

F WD .�C �/r � u � P.�/C P.1/;

which is dubbed the effective viscous flux. According to (1.6), one obtains the relation

�F D r � .�@tuC �u � ru/: (1.7)

Property (1.7) is key to the existence of global finite-energy weak solutions in the Lions
([32]) and Feireisl ([19, 38]) theory on the one hand, and to the existence of global weak
solutions with bounded density in the Hoff theory ([29]) (see also [13]).

In the anisotropic case�¤ ", the above analysis breaks down, and the relation between
r � u and P.�/ becomes nonlocal. Indeed, (1.7) becomes

.��;" C ��/r � u ��P D r � .�@tuC �u � ru/;

so that the definition of a modified effective flux should read

Fani WD �
�1.��;" C ��/r � u � P.�/C P.1/:

The nonlocal operator ��1.��;" C ��/ changes the picture dramatically. In view of the
existence of Hoff-type solutions with bounded density ([13,29]), one of the major flaws of
Fani is the lack of boundedness of ��1.��;" C ��/ on L1. Similarly, for the existence
of global finite-energy weak solutions, the nonlocality is a major obstacle to getting the
compactness of a sequence of approximate solutions; see [6,7]. In the breakthrough work
of Bresch and Jabin ([7]), a totally new compactness criterion was proved that enables the
existence of global weak solutions to the compressible system (1.2) to be proved in the
anisotropic case. There remains a restriction that j� � "j < � � �

3
which is compatible

with the modeling of large-scale geophysical flows. A more important limitation of the
result in [7] is on the pressure law  � 2 C

p
10
2

, where  is defined in (1.10). On that
subject, Bresch and Burtea proved recently in [4] the global existence of weak solutions
for the quasi-stationary compressible Stokes equations and to the stationary compressible
Navier–Stokes system ([5]) with an anisotropic viscous tensor. Their approach is based on
the control of defect measures.

The anisotropy prompts us to consider the framework of strong solutions, in partic-
ular those with minimal regularity assumptions as in [13]. In that perspective, a further
challenge for the well-posedness theory is the presence of nonconstant reference density
states, due to the gravitational term. Indeed, the fact that the densities are perturbations of
a constant state plays a major role in the analysis of [13]. This question seems to remain
broadly unexplored in general. In our work we are able to incorporate nonconstant refer-
ence density states in the approach of [13].
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Asymptotic analysis. We review here some of the literature concerned with the quanti-
tative analysis of viscous barotropic fluids in high rotation (for an overview of this topic
for incompressible fluids, we refer to [11]). For systems of type (1.3), results on the com-
bined low Mach and low Rossby limits were obtained in several directions: well-prepared
data (data close to the kernel of the penalization operator; see (3.57) for what it means in
our context), ill-prepared data, slip or no-slip boundary data, with or without stratification
(centrifugal force or gravitational force), and different scaling regimes. We do not attempt
to be exhaustive here, but select some works that are relevant to our study here.

In the well-prepared case, [6] studies the limit for the same scaling as in (1.3), with
no-slip boundary conditions and G D 0. They study the Ekman layers and prove stability
estimates in the limit "! 0 in the case of pressure laws with  D 2. As far as we know,
this seems to be the only work concerned with the study of Ekman layers for compressible
fluids. Extending it to more general pressure laws, and taking into account gravitational
stratification effect, is an obvious motivation for our present work. The analysis with a
gravitational potential was considered in [23], for fluids slipping on the boundary, using
the relative entropy method.

In the ill-prepared case, the fact that the initial data is away from the kernel of the
penalization operator is responsible for the propagation of high frequency acoustic-
Poincaré waves. Different scaling regimes of Ma and Ro were analyzed in [16, 17, 20,
35, 37]. All of these works are concerned with fluids in the whole space or in an infinite
slab satisfying the slip boundary condition, hence no boundary layers are needed in the
asymptotic expansions. Let us point out that [16] manages to handle the centrifugal force.

1.3. Novelty of our results

We comment here on the main theorems of the paper.

Well-posedness of system (1.2): Theorem 1. We prove the short-time existence of finite-
energy solutions to system (1.2). We introduce a simple and sturdy method based on
a priori bounds obtained via maximal regularity estimates, following the approach of
[13, 43]. However, our techniques are robust enough to deal with both effects mentioned
above: (i) the anisotropy in the viscous stress tensor and (ii) the presence of a noncon-
stant reference density state. Thus, our result represents a generalization of [13, 43] in
both directions. However, as already explained in Section 1.2, the anisotropy makes it
impossible to use Hoff’s effective viscous flux as in [13], so we need to look for higher-
regularity estimates for the density, in order to get compactness for passing to the limit in
the pressure term. For this reason, we require some regularity on the initial data: roughly,
the initial density �in is sufficiently well localized around the reference profile N�, namely
�in � N� 2H

2, while the initial velocity uin is taken inH 3=2C. So the solutions that we con-
struct are strong solutions with finite energy; roughly, they are halfway between the Hoff
solutions ([13, 29]) with bounded density and the strong solutions of Matsumura–Nishida
([34]) (which require �in � 1 2 H

3).
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We emphasize that the initial density �in can be taken close to an arbitrary reference
density profile N� D N�.x3/ 2 W 3;1.R/. Thus, setting G D G.x3/ D H 0. N�.x3//, with H
defined in (1.11) below, we infer that N� is a static state of system (1.2), namely N� satisfies
the logistic equation

rP. N�/ D N�rG: (1.8)

However, the smallness condition rests only on the quantity k�in � N�kL1 , and not on
higher-order derivatives. Finally, we point out that the assumption N�D N�.x3/ is made only
for modeling purposes (we have in mind the case when G is the gravitational potential),
but our method works also in the more general situation N�D N�.x/, x 2R3. So our theorem
opens the way to achieving the well-posedness of systems with stratification effects, such
as (1.3), in the strip R2 � .0; 1/ with the physical gravitational potential G D �x3.

Asymptotic analysis of system (1.3): Theorem 2. We build an asymptotic expansion for
the solutions of the compressible system (1.3) when "! 0 and prove quantitative esti-
mates on the errors. We consider well-prepared initial data, i.e. close to the kernel of the
penalization operator. The scaling Ro D Ma D Fr D " which is considered in (1.3) is the
richest scaling, in the sense that the Coriolis force, the pressure and the gravitational force
balance each other. In addition, we analyze the effect of boundary layers on the limiting
two-dimensional quasi-geostrophic equation. This limit equation, see (3.36) below, rep-
resents the large-scale dynamics of the bulk flow. It is a two-dimensional incompressible
Navier–Stokes equation written in terms of the stream function Q, where u D r?Q is
the limit velocity. Frictional effects dissipate energy in the Ekman boundary layer flow, so
a damping term appears in (3.36). Such effects have been pointed out for incompressible
([10, 11, 26, 33]) or compressible ([6]) fluids in high rotation.

As far as we know, [6] is the only work dealing with the asymptotic analysis of com-
pressible fluids in high rotation in the presence of Ekman layers. Our result extends the
state of the art in two main directions: (i) we take into account stratification effects due
to gravitation, hence we handle nonconstant reference density states, and (ii) we consider
general pressure laws P.�/ � � , with  � 3

2
(see (1.10) below). Concerning (i), let us

stress that our work seems to be the first one able to tackle the combined effect of the grav-
itational force and boundary layers. As for (ii), [6] handles the case  D 2. Incidentally,
the threshold 3

2
for the number  is the same as that for the Lions–Feireisl theory of weak

solutions.
Our approach is based on relative entropy estimates for system (1.3); see [18, 22, 23,

27]. The progress achieved in this paper is made possible thanks to the introduction of a
simple tool, which seems to be new in this context: we rely on anisotropic Sobolev embed-
dings; see Lemma 3.12 below. This enables us to compensate for the lack of coercivity for
@3uh, due to the strong anisotropy in the Lamé operator (1.9). Doing so, we are able to
extend the range of values for the parameter  , and also to improve the quantitative error
bounds.
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1.4. Outline of the paper

The paper consists of two parts. The first one, treated in Section 2, is devoted to the proof
of the well-posedness result for system (1.2). The main result is Theorem 1. The proof
relies on maximal regularity estimates for a parabolic equation related to an anisotropic
and variable coefficient Lamé operator; see Proposition 2.3. The second part, which is the
matter of Section 3, is concerned with the proof of the quantitative estimates for (1.3) in the
limit "! 0. We first build an expansion based on a formal multi-scale analysis. Second,
we derive a relative entropy inequality. Finally, we carry out the quantitative estimates,
using in particular the anisotropic Sobolev embeddings of Lemma 3.12.

1.5. Main notation and definitions

Since our interest is in real fluid flows, the whole paper is written in space dimension d D
3. Notice though that some results, in particular those of Section 2 such as the maximal
regularity statement, can easily be extended to higher-dimensional systems. The domain
� denotes an open set, usually � D R3 or R2 � .0; 1/ in this paper.

When appropriate, we use Einstein’s convention on repeated indices for summation.
Given a two-dimensional vector v D .v1; v2/, we define v? WD .�v2; v1/. Given a

vector field v 2 R3, we will often use the notation r � v and r � v to denote respectively
div v and curl v. For a vector x 2 R3, we often use the notation x D .xh; x3/ 2 R3 to
denote the horizontal component xh 2 R2 and the vertical component x3 2 R. According
to this decomposition, we define the horizontal differential operators rh, �h and rh� as
usual; we also set r?

h
WD .�@2; @1/. These operators act just on the xh variables. Notice

that the third component of the vector r � v is @1v2 � @2v1: this quantity will be denoted
by r?

h
� vh.

We introduce ��;" as in (1.1). Similarly, we define the modified gradient operator
r�;" WD .

p
�@1;

p
�@2;

p
" @3/. The anisotropic Lamé operator L is defined by

Lu D ���;"u � �rr � u: (1.9)

Throughout this paper, given a Banach space X and a sequence .a"/" of elements
of X , the notation .a"/" � X is to be understood as the fact that the sequence .a"/"
is uniformly bounded in X . We will often denote, for any p 2 Œ1;1� and any Banach
space X , LpT .X/ WD L

p..0; T /IX.�//. When T D C1, we will simply write Lp.X/.
For the definition and basic properties of Besov spaces, we refer to [2, Chapter 2] or

to [13, Sections 2.2 and 2.3].

Pressure law. We consider barotropic flows, for which the pressure P is supposed to
be a smooth function of the density only. We assume (see e.g. [17, 18, 20, 22]) that P 2
C.Œ0;1// \ C3..0;1// enjoys

P.0/ D 0; P 0.�/ > 0 8� > 0; lim
�!1

P 0.�/

��1
D a > 0; (1.10)
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for some  � 1. Given P , we define the internal energy function H by the formula

H.�/ WD �

Z �

1

P.z/

z2
dz for all � 2 .0;1/: (1.11)

Notice that the relation �H 00.�/ D P 0.�/ holds for all � > 0.

2. A well-posedness result in the presence of a strongly anisotropic
viscous stress tensor and stratification

In this section we show a well-posedness result for the barotropic Navier–Stokes system
(1.2). As explained in Section 1.2, there are two main difficulties. The first one is to handle
the anisotropy of the viscous stress tensor. It prevents one from using classical compact-
ness techniques to prove the existence of weak solutions having finite energy (see e.g.
[21, 32, 38] and the comments in [6, 7]). It is also a major obstacle to the use of the effec-
tive flux (1.6) as in [13, 29]. The second one is the nonconstant reference density state N�,
due to the potential force rG.

Our approach is reminiscent of [13,43]. It is based on maximal regularity estimates for
the velocity field. This approach enables us to fully exploit the parabolic gain of regularity
due to the momentum equation, and to use it in the mass equation in order to transport
higher-order Sobolev norms of the density function. Moreover, it allows us to consider
nonconstant density reference states, which is crucial in view of studying stratification
effects; see system (1.3) and Section 3.

It is not clear whether or not the whole method of [13] works in the presence of an
anisotropic Lamé operator, since it makes substantial use of Hoff’s effective flux (1.6)
and algebraic cancellations appearing in its equation, see (1.7). Thus, compared to [13],
we will work with solutions in the energy space, so with less integrability, but with more
regularity. We are also able to deal with parabolic operators with variable coefficients
when applying the maximal regularity results.

Our main result in this direction is the following statement. Our aim is to give a stream-
lined method for well-posedness, appropriate for proving the existence and uniqueness of
finite-energy solutions in the presence of (i) an anisotropic viscous stress tensor given by
(1.1) and (ii) nonconstant reference density states. A small compromise consists, on the
one hand, in the fact that we do not strive for optimality in the assumptions of the theorem
and, on the other hand, in the fact that we work in the space domain � D R3. We believe
that our strategy is robust enough to be adapted to problems in bounded domains. There
are however a number of technical difficulties. One is related to the technique that we use
in the whole space case. Indeed, since we do not have maximal regularity estimates for
the Lamé operator in domains, we carry out the study of maximal regularity estimates for
the divergence-free and potential parts of the solutions. This approach does not seem to
be directly applicable to the case of a bounded domain, because it is unclear which would
be the right boundary conditions for the two parabolic problems.
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We remark also that we fix reference density profiles N�D N�.x3/ depending only on the
vertical variable, since this corresponds to the physically relevant case where the external
force G is the gravity. As a matter of fact, our analysis works exactly the same for more
general profiles N� depending on all the variables, at the price of dealing with more com-
plicated commutator terms.

Theorem 1. Let  � 1. Let N� D N�.x3/ 2 W 3;1.R/. Assume that N� is uniformly bounded
from below, i.e. N� � � > 0. We define the potential by G D H 0. N�/, where H is defined by
(1.11). Then for any � > 0 which verifies

� � min
� 1

8C0
;
�

8

�
; (2.1)

where C0 is the constant given by Proposition 2.3, the property below holds.
Consider system (1.2), supplemented with the initial datum .�; u/jtD0 D .�in; uin/. For

any .�in; uin/, with �in � N� 2 H
2 and uin 2 B

3=2

2;4=3
and such that

k�in � N�kL1 � �;

there exist a time T �.; �; "; �; k N�kW 3;1 ; �; kuinkB3=2
2;4=3

; k�in � N�kH2/ > 0 and a unique

solution .�; u/ to (1.2) on Œ0; T �� ��, such that

(1) � � N� 2 CT �.H
2/, with k� � N�kL1

T�
.L1/ � 4�;

(2) u 2 L1T .L
2/ \ L2T �.L

1/, with in addition ru 2 L4T �.L
2/ \ L2T �.L

1/, r2u 2
L4T �.L

2/, r3u 2 L4=3T � .L
2/ and @tu 2 L

4=3
T � .H

1/;

(3) .�; u/ satisfies the classical energy inequality (see estimate (3.42) below).

Remark 2.1. Notice that we have some freedom in the regularity of the initial datum. In
this sense, we takeB3=2

2;4=3
regularity for u0 for simplicity of presentation, but this condition

can be somehow weakened.
Notice also that H s ,! B

3=2

2;4=3
for any s > 3

2
.

Remark 2.2. Going along the lines of the proof of Theorem 1, it is possible to see that our
estimates, applied to the rescaled system (1.3), are not uniform in the small parameter "
because of the presence of the Coriolis term (and possible remainders arising from the
pressure term, when looking at higher-order estimates). Thus, the solutions exist on small
time intervals Œ0; T"/, with T"!0C when "! 0C.

The rest of this section is devoted to the proof of Theorem 1. The proof is based only
on elementary methods, namely energy estimates and maximal regularity. We will limit
ourselves to showing a priori estimates for smooth solutions to system (1.2). The proof
of existence by an approximation scheme is rather standard; see e.g. [13] and references
therein.
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2.1. Maximal regularity for an anisotropic Lamé operator

Here we prove the following maximal regularity result for a parabolic equation with an
anisotropic Lamé operator and vertical stratification due to the coefficient N�. Pay attention
to the fact that, in the definition of W 2;1

p2;r2 below, the indices for space and time are in
reverse order, in order to stick to the classical definition (see e.g. [42]).

Proposition 2.3. Let N� 2 W 1;1.R/. Assume that N� is uniformly bounded from below, i.e.
N� � � > 0. Let ..pj ; rj //jD0;1;2 satisfy 1 < p2; r2 <C1, r2 < r0 <C1, r2 < r1 <C1,
p0 � p2, p1 � p2, together with the relations

2

r2
C

3

p2
D 1C

2

r1
C

3

p1
and

2

r2
C

3

p2
D 2C

2

r0
C

3

p0
:

Let hin be in PBs2p2;r2 with s2 WD 2 � 2
r2

, and let f be in Lr2loc.RCIL
p2.Rd //.

Then there exists a constant C0 D C0.�; "; �; r0; p0; r1; p1; r2; p2; k N�kW 1;1 ; �/ > 0

such that, for all T > 0 and all h 2 Lr2T .W
1;p2/, with h a solution to the Lamé system´

N�.x3/@thCLh D f;

hjtD0 D hin;
(2.2)

where L is defined by (1.9), one has the properties h 2 Lr0.Œ0; T �I Lp0/ and rh 2
Lr1.Œ0; T �ILp1/, together with the estimate

khk
L1T .

PB
s2
p2;r2

/
C khk

L
r0
T .L

p0 /
C krhk

L
r1
T .L

p1 /
C k.@th;r

2h/k
L
r2
T .L

p2 /

� C0.khink PB
s2
p2;r2
C kf k

L
r2
T .L

p2 /
C khk

L
r2
T .L

p2 /
C krhk

L
r2
T .L

p2 /
/: (2.3)

To prove this result, we follow the idea of [13]. We apply the Leray projector P to
system (2.2) and rely on the maximal regularity for a divergence-form parabolic equation.
Because of the stratification, additional commutators involving P and the reference den-
sity N� have to be analyzed. We do not strive for making the dependence of C0 explicit in
", �, �, k N�kW 1;1 and �, because our aim is to obtain a well-posedness theorem for a fixed
set of parameters; see Theorem 1.

Remark 2.4. Notice that the two last terms on the right-hand side of estimate (2.3) can-
not be got rid of. Their appearance is due to the commutator terms involving the Leray
projector. It is not possible to swallow them in the left-hand side of (2.3). In spite of this,
estimate (2.3) can be used as such to prove the well-posedness result stated in Theorem
1. Indeed, the terms khk

L
r2
T .L

p2 /
and krhk

L
r2
T .L

p2 /
are of lower order and can be handled

by interpolating with the finite energy. Such an analysis will also be done for the source
term f , which contains in particular the nonlinear term �u � ru; see below in Section 2.4.

Proof of Proposition 2.3. We proceed in several steps.
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Step 1: reduction to the heat equation. We first rewrite system (2.2) in divergence form:
we have

@th � r�;" �
� 1

N�.x3/
r�;"h

�
� �r

� 1

N�.x3/
r � h

�
D F; (2.4)

where, for simplicity of notation, we have defined

F WD
1

N�.x3/
f C "

N�0.x3/

N�.x3/2
@3hC �

N�0.x3/

N�.x3/2
.r � h/e3: (2.5)

As in [13], we apply the Leray projector P on the equation. The difference compared to
[13] is that we now have commutator terms appearing. Recall that

P D Id�Q; Q WD �r.��/�1r�; (2.6)

where the formulas have to be interpreted in the sense of Fourier multipliers. Applying P
to (2.4) we get

@tPh � r�;" �
� 1

N�.x3/
r�;"Ph

�
D PF C C; (2.7)

where the commutator term C is defined by

C WD �r�;" �
�h 1

N�.x3/
;P
i
r�;"h

�
: (2.8)

Here above, the symbol ŒA; B� WD AB � BA denotes the commutator between two oper-
ators A and B .

We now compute the equation for Qh D h � Ph. Notice that, using (2.6), we have

rr � h D rr �Qh D �Qh:

Therefore, rewriting (2.4) in the form

@th � r�;" �
� 1

N�.x3/
r�;"h

�
� �

1

N�.x3/
rr � h D

1

N�.x3/
f C "

N�0.x3/

N�.x3/2
@3h

and taking the difference of this equation with (2.7), we immediately find

@tQh � r�C�;"C� �
� 1

N�.x3/
r�C�;"C�Qh

�
D Q

� 1

N�.x3/
f
�
� P

�
"
N�0.x3/

N�.x3/2
@3hC �

N�0.x3/

N�.x3/2
.r � h/e3

�
� CC �

N�0.x3/

N�.x3/2
@3Qh: (2.9)

Both equations (2.7) and (2.9) are heat-type equations with a variable coefficient. The next
step will show that all the quantities appearing in their right-hand sides are of lower order
in h.
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Step 2: computation of the commutators. Our goal is now to compute the commutator
term C, defined by (2.8). Owing to (2.6) and switching the position of the constant factors,
we have

C WD �r�;" �
�h 1

N�.x3/
;P
i
r�;"h

�
D r �

�h 1

N�.x3/
;Q
i
r�2;"2h

�
:

Recall the definition of Q in (2.6). We start by applying the divergence operator to the
various quantities: after observing that r � r�2;"2 D ��;", we findh1

N�
;Q
i
r�2;"2h D �

1

N�
r.��/�1��;"hCr.��/

�1
r �

�1
N�
r�2;"2h

�
:

Therefore, we find

C D r �
�h 1

N�.x3/
;Q
i
r�2;"2h

�
D �r �

� 1

N�.x3/
r.��/�1��;"h

�
Cr �

�
r.��/�1r �

� 1

N�.x3/
r�2;"2h

��
D
N�0.x3/

N�.x3/2
@3.��/

�1��;"hC
1

N�.x3/
��;"h � r �

� 1

N�.x3/
r�2;"2h

�
;

which in the end leads us to

C D
N�0.x3/

N�.x3/2
.@3.��/

�1��;"hC "@3h/: (2.10)

Since the operator .��/�1��;" is a singular integral operator, whose symbol is homoge-
neous of degree 0, the previous computations show that C is indeed a lower-order term,
as claimed.

Step 3: estimates via maximal regularity. We apply the maximal regularity estimates
of [28] for the divergence-form parabolic operator

@t .�/ � r�;" � . N�
�1
r�;".�// (2.11)

to equation (2.7). We obtain

k.@tPh;r
2Ph/k

L
r2
T .L

p2 /
� C.kPhink PB

s2
p2;r2
C kPF C Ck

L
r2
T .L

p2 /
/:

Using the continuity of P and .��/�1��;" on Lp2 (since 1 < p2 <C1) and keeping in
mind definition (2.5) of F and (2.10), it is easy to bound

kPF C Ck
L
r2
T .L

p2 /
� C.kf k

L
r2
T .L

p2 /
C krhk

L
r2
T .L

p2 /
/:

So, in the end we find

k.@tPh;r
2Ph/k

L
r2
T .L

p2 /
� C0.kPhink PB

s2
p2;r2
C kf k

L
r2
T .L

p2 /
C krhk

L
r2
T .L

p2 /
/: (2.12)
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Next, thanks to the Gaussian bounds on the fundamental solution of the parabolic equation
(2.11) (see [1, 36]), arguing as in [13, Lemma 2.4] we infer that

kPhk
L
r0
T .L

p0 /
� C0.kPhink PB

s2
p2;r2
C kf k

L
r2
T .L

p2 /
C krhk

L
r2
T .L

p2 /
/: (2.13)

Thus, in order to complete the proof, it remains for us to bound the Lr1T .L
p1/ norm of

rPh. This is the goal of the next step.

Step 4: a functional inequality. We claim that, for any w 2 W 2;1
p2;r2.R

3 � .0; T //, one
has the estimate

krwk
L
r1
T .L

p1 /
� C.kr2wk

L
r2
T L

p2 .R3�.0;T //
C k@twkLr2T L

p2 .R3�.0;T //
/: (2.14)

In fact, estimate (2.14) is a functional inequality, which does not use the parabolic equa-
tion. We are going to deduce it from the corresponding inequality in a bounded domain;
see in particular [44, Proposition 2.1].

In order to prove (2.14), we take ' 2 C1c .B.0; 1// such that ' D 1 on B.0; 1
2
/. For

k 2 N, we consider wk WD '. �
k
/w. Notice that wk is supported in B.0; k/. Then we

consider the rescaled function w�
k

for � � k, according to the parabolic scaling

w�k D wk.��; �
2
�/ D '

��
k
�
�
w.��; �2�/:

Notice that w�
k

is supported in B.0; 1/. By the mixed norm parabolic Sobolev embedding
in the bounded domain B.0; 1/, we have

krw�kkLr1T L
p1 .B.0;1/�.0;T=�2//

� Ckw�kkW 2;1
p2;r2

.B.0;1/�.0;T=�2//
;

where C is a constant independent of T . Then, by rescaling, we obtain

�

�
3
p1
C 2
r1

krwkkLr1T L
p1 .B.0;k/�.0;T //

� C
� 1

�
3
p2
C 2
r2

kwkkLr2T L
p2 .B.0;k/�.0;T //

C
�

�
3
p2
C 2
r2

krwkkLr2T L
p2 .B.0;k/�.0;T //

C
�2

�
3
p2
C 2
r2

kr
2wkkLr2T L

p2 .B.0;k/�.0;T //
C

�2

�
3
p2
C 2
r2

k@twkkLr2T L
p2 .B.0;k/�.0;T //

�
;

and letting �!1 we deduce

krwkkLr1T L
p1 .R3�.0;T //

� C.kr2wkkLr2T L
p2 .R3�.0;T //

C k@twkkLr2T L
p2 .R3�.0;T //

/: (2.15)

From estimate (2.15) and the fact that w 2 W 2;1
p2;r2 , we get that rwk is a Cauchy sequence

in Lr1T .L
p1/. Hence we can pass to the limit in (2.15): thus, we obtain (2.14), as claimed.



Anisotropy and stratification in compressible fluids 15

Step 5: end of the proof. Owing to the fact that 1 < p2 <C1 and to (2.12), we have that
Ph belongs toW 2;1

p2;r2.R
3 � .0;T //. Therefore, we can apply inequality (2.14) tow D Ph.

We find

krPhk
L
r1
T .L

p1 /
� C0.kPhink PB

s2
p2;r2
C kf k

L
r2
T .L

p2 /
C krhk

L
r2
T .L

p2 /
/; (2.16)

for a possibly new constant C0 > 0. In addition, since Qh solves equation (2.9), which is
analogous to (2.7), estimates similar to (2.12), (2.13) and (2.16) hold true for Qh and its
derivatives. Then writing h D PhCQh completes the proof of the proposition.

2.2. Basic energy estimates

Let us take a smooth solution .�; u/ to system (1.2), such that � � N� and u decay suffi-
ciently fast at space infinity. We want to find a priori estimates in suitable norms. For this,
we are going to work with the variables

r.t/ WD �.t/ � N� and u:

In the same way, we set rin D �in � N�. Recall that

krinkL1 � �: (2.17)

We start by performing classical energy estimates, which provides us with a bound for
the low frequencies of the velocity field. Namely, by multiplying the momentum equation
in (1.2) by u and integrating by parts we get, in a standard way, the control

k
p
� ukL1.L2/ C krukL2.L2/ � Cenergy: (2.18)

See Section 3.2 for similar bounds. Of course, the constant Cenergy depends also on the
(fixed) values of the coefficients .�; "; �/. From this control andZ

�

N�juj2 D

Z
�

�juj2 �

Z
�

r juj2;

we infer that, for any T > 0,

kukL1T .L2/ � �
�1.Cenergy C krkL1T .L1/kukL

1
T .L

2//; (2.19)

where we recall that � is a lower bound for N�. Hence, if T > 0 is such that

krkL1T .L1/ � 4� <
�

2
; (2.20)

where � > 0 is the size of the initial datum in the L1 norm (recall (2.17)) we deduce

kukL1T .L2/ � 2Cenergy�
�1: (2.21)

The next goal is to exhibit a control on the density variation function r . We will work
in higher Sobolev norms, namely in H 2. However, we are going to bound its L1 norm
independently (i.e. without using Sobolev embeddings), in order to get, in view of (2.20),
a smallness condition only on krinkL1 , and not on the higher-order norm of rin.
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2.3. Estimates for the density function

In this subsection we find transport estimates for the density variation function r . First of
all, from the mass equation in (1.2) we find that r fulfills

@tr C u � rr C rr � u D �u3 N�
0
� N�r � u: (2.22)

A basic Lp estimate for this equation gives, for any t > 0,

kr.t/kLp � krinkLp C

�
1 �

1

p

� Z t

0

kr.�/kLpkr � u.�/kL1 d�

C

Z t

0

k N�0kL1.ku3.�/kLp C kr � u.�/kLp / d�:

On the one hand, in the case p D 2, we get

krkL1T .L2/ � krinkL2 C
1

2

Z T

0

krkL2kr � ukL1 d�

C

Z T

0

k N�0kL1.ku3.�/kL2 C kr � u.�/kL2/ d� (2.23)

for any time T > 0. In turn, Grönwall’s lemma gives the bound

krkL1T .L2/ � e
R T
0 kr�u.�/kL1 d�

�

�
krinkL2 C

Z T

0

k N�0kL1.ku3.�/kL2 C kr � u.�/kL2/ d�

�
: (2.24)

On the other hand, by letting p !C1, from Grönwall’s lemma again we deduce

krkL1T .L1/ � e
R T
0 kr�u.�/kL1 d�

�

�
krinkL1 C

Z T

0

k N�0kL1.ku3.�/kL1 C kr � u.�/kL1/ d�

�
: (2.25)

We now define the time T > 0 as

T WD sup
°
t > 0 j

R t
0
k N�0kL1ku3.�/kL1 d�

C
R t
0
.1C k N�kL1/kr � u.�/kL1 d� � min¹�; log 2º

±
; (2.26)

where � > 0 is as in (2.17). From the previous bound we gather then

krkL1T .L1/ � 2krinkL1 C 2� � 4�: (2.27)

We now differentiate equation (2.22) with respect to xj , for any j 2 ¹1; 2; 3º. We get
that @j r verifies

@t@j r C u � r@j r C @j rr � u D �@ju � rr � rr � @ju

� @ju3 N�
0
� u3@j N�

0
� @j N�r � u � N�r � @ju: (2.28)
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The same L2 energy estimate for the continuity equation as above yields

k@j r.t/kL2 � k@j rinkL2 C
1

2

Z t

0

k@j rkL2kr � ukL1 d�

C

Z t

0

.krkL1kr � @jukL2 C krrkL2k@jukL1 C k@j N�
0
kL1ku3kL2

C k N�0kL1k@ju3kL2 C k@j N�kL1kr � ukL2 C k N�kL1kr � @jukL2/ d�;

for any t � 0. Hence, for all t � 0 one has

krr.t/kL2 � krrinkL2 (2.29)

C C

Z t

0

.krkL1kr
2ukL2 C krrkL2krukL1 C k N�kW 2;1kukH2/ d�:

We do not apply Grönwall’s lemma directly on this inequality. It is better to first bound the
second-order derivatives of r . For this, let us differentiate equation (2.28) with respect to
xk , for any k 2 ¹1; 2; 3º. We deduce the following equation for the quantity rjk WD @2kj r :

@trjk C u � rrjk C rjkr � u D �.@
2
jku � rr C @ju � r@kr C @kr � r@ju � rr � @

2
kju/

� @k.@ju3 N�
0
C u3@j N�

0
C @j N�r � uC N�r � @ju/:

Performing another energy estimate, we infer, for any t � 0, the inequality

krjk.t/kL2 � krin;jkkL2 C
1

2

Z t

0

krjkkL2kr � ukL1 d�

C

Z t

0

.krrkL4kr
2ukL4 C krukL1kr

2rkL2

C krkL1kr
3ukL2 C k N�kW 3;1kukH3/ d�;

where we have defined rin;jk WD @
2
jk
rin. After using the interpolation inequality

k�kL4 � k�k
1=4

L2
k�k

3=4

L6
; (2.30)

together with the Sobolev embedding PH 1.R3/ ,! L6.R3/, we obtain

krrkL4kr
2ukL4 � krrk

1=4

L2
kr

2rk
3=4

L2
kr

2uk
1=4

L2
kr

3uk
3=4

L2

� .krrkL2 C kr
2rkL2/.kr

2ukL2 C kr
3ukL2/:

In view of this inequality, the previous bound on rjk yields, on the time interval Œ0; T �,

kr
2rkL1T .L2/ � kr

2rinkL2 (2.31)

C C

Z t

0

�
krkL1kr

3ukL2 C k N�kW 3;1kukH3

C .krrkL2 C kr
2rkL2/.krukL1 C kr

2ukL2 C kr
3ukL2/

�
d�:
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Let us now introduce the notation

R.t/ WD krkL1t .H2/ C krkL1t .L1/:

Summing (2.24), (2.27), (2.29) and (2.31) we deduce the following bound:

R.T / � C

�
krinkH2 C

Z T

0

.k N�kW 3;1 CR.�//.krukL1 C kukH3/ d�

�
: (2.32)

To end this part, we observe that, for almost all t 2 Œ0; T � and x 2 R3, jr.x; t/j � 4�.
So, by assumptions (1.10) on the pressure, there exists a constant C > 0, depending on
the function P and k N�kL1 , such that, for any parameter s 2 Œ0; 1�, on Œ0; T � �R3 one has

jP. N�C rs/j C jP 0. N�C rs/j C jP 00. N�C rs/j C jP 000. N�C rs/j � C: (2.33)

2.4. Maximal regularity estimates for the velocity field

It remains to find a bound on u. For this, we mimic an approach used in [13], based on the
maximal regularity estimates of Section 2.1. To begin with, we recast the equation for u
as

N�@tuCLu D �r@tu � f; (2.34)

where the anisotropic Lamé operator L is defined by (1.9), and where we have set

f WD . N�C r/u � ruCrP.�/ � �rG: (2.35)

In the computations below, when convenient, we will resort to the notation N�C r D �, and
use the bounds (2.18) and (2.27) for

p
� u and

p
� respectively.

In view of (2.32) above, we are interested in H 3 bounds for u: for this, we will apply
Proposition 2.3 to both u and ru. To this end, we fix the following values of the parame-
ters:

.p2; r2/ D .2;
4
3
/; .p0; r0/ D .C1; 2/; .p1; r1/ D .2; 4/: (2.36)

With these choices, all the hypotheses in Proposition 2.3 are satisfied. Indeed, thanks to
the energy estimates (2.18) and (2.21) and maximal regularity (2.12), one can easily verify
that, a priori, both u and ru belong to the space W 2;1

2;4=3
. We choose p0 D C1 in order

to have, thanks to (3.53) above, a control on u in any Lp , p 2 Œ2;C1�. Notice also that
we have some freedom for the values of r2 and p1, which then determine r0 and r1. Here
we take the simple choice r2 D 4

3
and p1 D 2. This implies s2 D 1

2
.

For t � 0, let us introduce the quantity

U.t/ WD kukL1t .L2/\L2t .L1/ C krukL4t .L2/\L2t .L1/

C kr
2ukL4t .L2/

C kr
3uk

L
4=3
t .L2/

C k@tukL4=3t .H1/
:

On Œ0; T �, where T > 0 is the time defined in (2.26), we have

U.T / � C0.kuink PB1=2
2;4=3

C kruink PB1=2
2;4=3

(2.37)

C kr@tuC f kL4=3T .H1/
C kuk

L
4=3
T .L2/

C kruk
L
4=3
T .L2/

C kr
2uk

L
4=3
T .L2/

/;
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where f is defined in (2.35). Notice that

kuink PB1=2
2;4=3

C kruink PB1=2
2;4=3

� kuink PB1=2
2;4=3
\ PB

3=2
2;4=3

� kuinkB3=2
2;4=3

;

where the last inequality holds in view of the fact that Bsp;r D PB
s
p;r \ L

p for any s > 0;
see also [2, Chapter 2].

Next we bound the term containing the time derivative. Notice that for any j 2 ¹1;2;3º
we have

@j .r@tu/ D r@t@juC @j r@tu:

Therefore we have

kr@tukL4=3T .L2/
C kr@trukL4=3T .L2/

� 4�k@tukL4=3T .H1/
;

so this term can be absorbed into the left-hand side of (2.37), if � > 0 is fixed so that
condition (2.1) is fulfilled. As for the remaining term @j r@tu, we notice first of all that
from (2.27), the lower bound for N�, the momentum equation in (1.2) and (2.18), we can
bound

k@tukL2T .L2/
� Ck�@tukL2T .L2/

� CkLuC �u � ruCrP � �rGkL2T .L2/
:

At this point, we obviously have

kLukL2T .L2/
� T .1=2/�.1=4/kLukL4T .L2/

� CT 1=4U.T /:

In addition, one has

k�u � rukL2T .L2/
� CT .1=2/�.1=2/k

p
�ukL1T .L2/krukL2T .L1/

� CU.T /: (2.38)

Let us now turn to the pressure and potential force terms. In view of (1.8) we have

rP.�/ � �rG D r.P.�/ � P. N�// � .� � N�/rG D r.P 0. N�C sr/r/ � rrG; (2.39)

for some s 2 �0; 1Œ. On the one hand, since G D H 0. N�/, G is bounded; so, for a constant
C > 0 depending on k N�kW 1;1 and on the function P , we have

krrGkL2T .L2/
� CT 1=2krkL1T .L2/:

On the other hand, by writing

r.P 0. N�C sr/r/ D P 0. N�C sr/rr C P 00. N�C sr/rr N�C sP 00. N�C sr/rrr (2.40)

and making use of (2.33) and (2.27), direct computations show that

kr.P 0. N�C sr/r/kL2T .L2/
� CT 1=2krkL1T .H1/:

Here, the constant C > 0 depends on the constant appearing in (2.33), on � and k N�kW 1;1 .
Assuming without loss of generality that T � 1, we have thus proved that

k@tukL2T .L2/
� C.R.T /CU.T //: (2.41)
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With this control at hand, let us return to the bound of @j r@tu in L4=3T .L2/, for j 2
¹1; 2; 3º. By resorting again to the interpolation inequality (2.30), in view of the Sobolev
embedding PH 1 ,! L6 and of Young’s inequality we get

k@j r@tukL4=3T .L2/
� krrk

1=4

L1T .L
2/
kr

2rk
3=4

L1T .L
2/
k@tuk

1=4

L
4=3
T .L2/

k@truk
3=4

L
4=3
T .L2/

� CR.T /.T .3=4/�.1=2/k@tukL2T .L2/
/1=4k@truk

3=4

L
4=3
T .L2/

� CT 1=16R.T /.R.T /CU.T //1=4.U.T //3=4

� CT 1=16.R.T /CU.T //2:

Inserting all the previous bounds in (2.37), under condition (2.1) we deduce that

U.T / � C
�
kuinkB3=2

2;4=3

C T 1=16.R.T /CU.T //2 C kf k
L
4=3
T .H1/

C kuk
L
4=3
T .H2/

�
� C

�
kuinkB3=2

2;4=3

C T 1=16.1CR.T /CU.T //2 C kf k
L
4=3
T .H1/

�
: (2.42)

Our next goal is to bound f in the L4=3T .H 1/ norm. First of all, let us focus on the
L
4=3
T .L2/ norm. Repeating the computations which led to (2.41), we easily find that

kf k
L
4=3
T .L2/

� C.T 3=4R.T /C T 1=4U.T // � CT 1=4.R.T /CU.T //;

where again, without loss of generality, we have assumed that T � 1. Next, for j 2
¹1; 2; 3º, from the definition (2.35) of f , we get

@jf D @j�u � ruC �@ju � ruC �u � r@juC @j .rP.�/ � �rG/: (2.43)

We first bound the convective terms in (2.43). By (2.27), interpolation between Lebesgue
spaces and (2.30), we have

k�u � r@jukL4=3T .L2/
� CT .3=4/�.1=2/kukL4T .L4/

kr
2ukL4T .L4/

� CT 1=4kuk
1=2

L1T .L
2/
kuk

1=2

L2T .L
1/
kr

2uk
1=4

L4T .L
2/
kr

3uk
3=4

L4T .L
2/

� CT 1=4.U.T //2:

Arguing in a similar way, we obtain

k�@ju � rukL4=3T .L2/
� CT .3=4/�.1=2/kruk2

L4T .L
4/

� CT 1=4.kruk
1=4

L4T .L
2/
kr

2uk
3=4

L4T .L
2/
/2 � CT 1=4.U.T //2:

Finally, writing � D N� C r , we split the term @j�u � ru D @j N�u � ruC @j ru � ru. We
estimate on the one hand, similarly to (2.38),

k@j N�u � rukL4=3T .L2/
� CT

1
4U.T /;
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and on the other hand,

k@j ru � rukL4=3T .L2/
� CT .3=4/�.1=4/�.5=12/krrkL1T .L4/krukL4T .L6/

kuk
L
12=5
T .L12/

� CT 1=12krrk
1=4

L1T .L
2/
kr

2rk
3=4

L1T .L
2/

� kr
2ukL4T .L2/

kuk
1=6

L1T .L
2/
kuk

5=6

L2T .L
1/

� CT 1=12R.T /.U.T //2:

We now turn to the last term in (2.43). Thanks to (2.39) and (2.40) we have

@j .rP.�/ � �rG/ D P
00.@j N�C s@j r/rr C P

0@jrr C P
000.@j N�C s@j r/rr N�

C P 00@j rr N�C P
00r@jr N�C sP

000.@j N�C s@j r/rrr

C sP 00@j rrr C sP
00r@jrr � @j rrG � r@jrG;

where all the functions P 0, P 00 and P 000 are computed at the point N�C sr . Making repeated
use of (2.33), (2.27) and (2.30),

k@j .rP.�/ � �rG/kL4=3T .L2/
� CT 3=4

�
R.T /C .R.T //2

�
;

where C D C.P; k N�kW 3;1/ > 0.
Putting all those bounds together, assuming again T � 1, we deduce that

krf k
L
4=3
T .L2/

� CT 1=12.1CR.T /CU.T //3;

which in turn implies that

kf k
L
4=3
T .H1/

� CT 1=12.1CR.T /CU.T //3: (2.44)

In the end, inserting (2.44) into (2.42), we find

U.T / � C
�
kuinkB3=2

2;4=3

C T 1=16.1CR.T /CU.T //3
�
: (2.45)

On the other hand, the integral term in (2.32) can be bounded by

.k N�kW 3;1 CR.T //.T 1=2krukL2T .L1/
C T 3=4kukL4T .H2/ C T

1=4
kr

3uk
L
4=3
T .L2/

/;

which implies that

R.T / � C
�
krinkH2 C T 1=4.1CR.T /CU.T //2

�
: (2.46)

Define now, for all t � 0, the quantity

N .t/ WD R.t/CU.t/:

Summing estimates (2.45) and (2.46), we infer that

N .T / � C
�
kuinkB3=2

2;4=3

C krinkH2 C T 1=16.1CN .T //3
�
:



E. Bocchi, F. Fanelli, and C. Prange 22

From this inequality, it is a standard matter to deduce the existence of a time T �.;�; ";�;
k N�kW 3;1 ; �; kuinkB3=2

2;4=3

; krinkH2/ > 0, with T � � min¹1; T º, such that

N .T �/ � 2C.kuinkB3=2
2;4=3

C krinkH2/:

The a priori estimates are hence proved in the interval Œ0; T ��.

2.5. Uniqueness

The uniqueness of solutions, claimed in Theorem 1, is a consequence of the following
statement.

Proposition 2.5. Let  � 1. Let N� 2 W 3;1.R/. Assume that N� is uniformly bounded from
below, i.e. N� � � > 0. We define the potential byG DH 0. N�/, whereH is defined by (1.11).
Let .�in; uin/ be such that �in � N� 2H

2 and uin 2 B
3=2

2;4=3
, with k�in � N�kL1 � �, for some

� > 0 satisfying (2.1). Assume that .�1; u1/ and .�2; u2/ are two solutions to system (1.2),
related to the same initial datum .�in; uin/ and belonging to the space

XT WD
®
.�; u/ 2 L1T .L

1/ � L1T .L
2/ j Properties (1)–(2) of Theorem 1 hold true

¯
;

for some T > 0.
Then �1 D �2 and u1 D u2 almost everywhere in Œ0; T � ��.

First we show a simple lemma.

Lemma 2.6. Let .�in; uin/ be as in Proposition 2.5 above, and let .�; u/ be a solution
to system (1.2), related to the initial datum .�in; uin/ and belonging to the space XT , for
some T > 0.

Then � 2 C.Œ0;T ���/ and u 2 C.Œ0;T �IH 1.�//. In addition, the following estimate
holds true, for a “universal” constant C > 0:

kuk2
L1T .H

1/
� C.kuink

2

B
3=2
2;4=3

C k@tukL2T .L2/
kukL2T .H2//:

Proof of Lemma 2.6. By definition of the space XT , we know that r WD � � N� belongs
to CT .H

2/, which, by Sobolev embeddings, is continuously embedded in CT .C \ L
1/.

Thus � D N�C r is continuous with respect to both x and t .
Next let us consider u. We showed in (2.41) above that @tu 2 L2T .L

2/ and that u 2
L2T .H

2/. From these properties, one easily derives (see e.g. [15, Section 5.9]) that u 2
CT .H

1/. The quantitative estimate is a simple consequence of the bound given in [15,
Theorem 3, p. 305], combined with the embedding B3=2

2;4=3
,! H 1. The lemma is hence

proved.

We can now prove uniqueness.

Proof of Proposition 2.5. For j D 1; 2, let us define rj WD �j � N�. We also set

ır WD r1 � r2 D �1 � �2 and ıu WD u1 � u2:
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Let us deal with ır first. Its equation reads as follows:

@tır C u
1
� rır C ırr � u1 D �. N�r � ıuC ıu3 N�

0
C ıu � rr2 C r2r � ıu/:

An L2 estimate for this equation (see the beginning of Section 2.3 above) yields, for all
t 2 Œ0; T �, the bound

kır.t/kL2 � kırinkL2 C
1

2

Z t

0

kırkL2kr � u
1
kL1 d�

C

Z t

0

.kr2kL1kr � ıukL2 C kıukL1krr
2
kL2/ d�

C

Z t

0

.k N�0kL1kıu3kL2 C k N�kL1kr � ıukL2/ d�:

We also look for an L2 bound on rır . To this end, we differentiate the equation for ır
with respect to the space variables and we perform an energy estimate. We get

krır.t/kL2 � krırinkL2 C
1

2

Z t

0

krırkL2kr � u
1
kL1 d�

C

Z t

0

.kru1kL1krırkL2 C krr � u
1
kL4kırkL4

C krr � ıukL2kr
2
kL1 C krıukL4krr

2
kL4

C kıukL1kr
2r2kL2 C k N�kW 2;1kıukH2/ d�: (2.47)

Using the embedding H 1.R3/ ,! L4.R3/ (see (2.30) above), and summing the previous
estimate with (2.47), we finally get

kır.t/kH1 � kırinkH1 C C

Z t

0

kırkH1.kru1kL1 C kr
2u1kL4/ d�

C C

Z t

0

�
.kr2kL1 C krr

2
kL4/.krıukL2 C kr

2ıukL2/

C kıukL1kr
2r2kL2 C k N�kW 2;1kıukH2

�
d�: (2.48)

Observe that, by definition of the space XT , we have ru1 2 L2T .L
1/. In addition, from

the control (2.30) applied to kr2u1kL4 and Young’s inequality, we infer that r2u1 2
L
4=3
T .L4/. By the same token we get rr2 2 L1T .L

4/, while we already know that r2 2
L1T .L

1/ \ L1T .H
2/. Hence, estimate (2.48) above tells us that the quantity

�.t/ WD sup
�2Œ0;t�

kır.�/kH1

verifies the following bound, for a suitable exponent ˛ > 0:

�.t/ � C

�
t˛�.t/C

Z t

0

.kıukH2 C kıukL1/ d�

�
(2.49)

for all t 2 Œ0;min¹T; 1º�. Notice that here we used the fact that ırin D 0.
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We now turn to velocity estimates. Taking the difference of the equations for u1 and
u2 yields the following equation for ıu:

�1@tıuC �
1u1 � rıuCLıu

D �ır@tu
2
� r.P.�1/ � P.�2//C ırrG � .�1u1 � �2u2/ � ru2: (2.50)

We observe that

.�1u1 � �2u2/ � ru2 D �1ıu � ru2 C ıru2 � ru2;

r.P.�1/ � P.�2// D P 0.�1/rır C P 00.�/ırr. N�C r2/;

for some �D �.x; t/ in between the values of �1.x; t/ and �2.x; t/. A basic energy estimate
for the equation then gives, for any t 2 Œ0; T �, the bound

1

2

d

dt

p�1 ıu2
L2
C

Z
�

jr�;"ıuj
2
C �

Z
�

jr � ıuj2

� kıukL2.kırkL4k@tu
2
kL4 C k�

1
kL1kıukL2kru

2
kL1

C kırkL4ku
2
kL4kru

2
kL1 C CkrırkL2 C CkırkL2

C CkırkL4krr
2
kL4/;

where we have also used the L1T .L
1/ boundedness of �1 and �2 in order to control

the terms involving derivatives of the pressure function. Let us forget about the viscosity
terms for a while. A simple argument allows one to deduce the following control, for any
t 2 Œ0; T �:

kıukL1t .L2/ � C

Z t

0

.kıukL2kru
2
kL1

C �.�/.1C k@tu
2
kH1 C ku2kL4kru

2
kL1 C krr

2
kL4// d�;

where we have used the fact that ıuin D 0. At this point, we observe that u2 and ru2

both belong to L2T .L
1/. Moreover, by (2.30) and the fact that u2 2 L1T .L

2/ and ru2 2
L4T .L

2/, one gathers that u2 2L16=3T .L4/. Finally, @tu2 2L
4=3
T .H 1/. In the end, similarly

to what is done in (2.49), we deduce the existence of a positive exponent, that we keep
calling ˛ without loss of generality, such that

kıukL1t .L2/ � Ct
˛.�.t/C kıukL1t .L2// (2.51)

for all t 2 Œ0;min¹T; 1º�.
As a last step, we rewrite equation (2.50) in the form

N�@tıuCLıu D �.r1@tıuC ır@tu
2
C ıf /; (2.52)

where we have defined

ıf WD �1u1 � rıuC �1ıu � ru2 C ıru2 � ru2

C P 0.�1/rır C P 00.�/ırr. N�C r2/ � ırrG:
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Applying Proposition 2.3 to equation (2.52), with the choice (2.36) of the parameters, and
using the smallness condition (2.1), we get, for any t 2 Œ0; T �, the inequality

kıukL2t .L1/
C krıukL4t .L2/

C k.@tıu;r
2ıu/k

L
4=3
t .L2/

� C.kıuink PB1=2
2;4=3

C kır@tu
2
k
L
4=3
t .L2/

C kıf k
L
4=3
t .L2/

C kıuk
L
4=3
T .L2/

C krıuk
L
4=3
T .L2/

/: (2.53)

Recall that @tu2 2 L2T .L
2/ by virtue of (2.41) and @tru2 2 L

4=3
T .L2/ by definition of

XT . Hence, using Sobolev embedding and interpolation (2.30), we deduce that @tu2 2
L
16=11
T .L4/. Therefore, we can bound

kır@tu
2
k
L
4=3
t .L2/

� t3=4�11=16kırkL1t .L4/k@tu
2
k
L
16=11
t .L4/

� t1=16kırkL1t .H1/k@tu
2
k
1=4

L2T .L
2/
k@tru

2
k
3=4

L
4=3
T .L2/

� Ct1=16�.t/:

Next we are going to bound ıf in L4=3t .L2/. This has already been done for the energy
estimate (2.51) above, but here we have to take special care of the integrability in time.
For the pressure terms and the potential force term we have

kP 00.�/ırr. N�C r2/k
L
4=3
t .L2/

� Ct3=4.kırkL1t .L2/kr N�kL
1
T .L

1/

C kırkL1t .L4/krr
2
kL1T .L

4// � Ct
3=4�.t/;

kP 0.�1/rırk
L
4=3
t .L2/

� Ct3=4krırkL1t .L2/ � Ct
3=4�.t/;

kırrGk
L
4=3
t .L2/

� Ct3=4�.t/:

Thus, it remains for us to bound the convective terms. First of all, recall that we showed
above that ku2kL4kru2kL1 belongs to L16=11T . Therefore,

kıru2 � ru2k
L
4=3
t .L2/

� t .3=4/�.11=16/kırkL1t .L4/ku
2
� ru2k

L
16=11
T .L4/

� Ct1=16�.t/:

In addition, we have

k�1ıu � ru2k
L
4=3
t .L2/

� t .3=4/�.1=2/k�1kL1T .L1/kıukL
1
t .L

2/kru
2
kL2T .L

1/

� Ct1=4kıukL1t .L2/:

Finally, for the last term we use the following Gagliardo–Nirenberg-type inequality (see
e.g. [24, Lemma II.3.3]): kukL1 � kuk

1=4

L2
kr2uk

3=4

L2
. This, combined with Young’s

inequality, implies u2 2L4T .L
1/ (recall the definition of the spaceXT ). Using this bound,

we can estimate

k�1u1 � rıuk
L
4=3
t .L2/

� t .3=4/�.1=2/k�1kL1T .L1/ku
1
kL4T .L

1/krıukL4t .L2/

� Ct1=4krıukL4t .L2/
:
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Putting all the previous estimates into (2.53), we have shown that there exists a positive
exponent ˛ > 0 for which, for all t 2 Œ0;min¹1; T º�, one has

kıukL2t .L1/
C krıukL4t .L2/

C k.@tıu;r
2ıu/k

L
4=3
t .L2/

� Ct˛.�.t/C kıukL1t .L2/ C krıukL4t .L2/
/: (2.54)

Let us now introduce the quantity

D.t/ WD kıukL1t .L2/ C kıukL2t .L1/
C krıukL4t .L2/

C k.@tıu;r
2ıu/k

L
4=3
t .L2/

:

Summing inequalities (2.49), (2.51) and (2.54), we finally deduce that, for all t 2
Œ0;min¹1; T º�, we have

�.t/CD.t/ � Ct˛.�.t/CD.t//;

for a suitable exponent ˛ > 0. Therefore, if t is now small enough, we can absorb the
right-hand side into the left-hand side, deducing that both �.t/ and D.t/ have to be 0. In
particular, we deduce that �1 � �2 and u1 � u2 almost everywhere on Œ0; t � ��. In this
way, we also infer that

krıukL2t .L1/
C k.r3ıu; @trıu/kL4=3t .L2/

D 0;

from which we deduce that
kıukL1t .H1/ D 0;

where we have also used (2.41) and the estimate in Lemma 2.6.
To complete the argument, let us define the set

I WD
®
t 2 Œ0; T � j k�1.�/ � �2.�/kH1 C ku1.�/ � u2.�/kH1 D 0 8� 2 Œ0; t �

¯
:

Of course, I ¤ ;, since 0 2 I . In addition, the previous argument, combined with Lemma
2.6, shows that I is open. On the other hand, by continuity in time of the norms appearing
in the definition of the space XT (again see Lemma 2.6 above), we infer that I is also
closed. Then, by connectedness, we must have I D Œ0; T �. This completes the proof of the
proposition.

3. Quantitative asymptotic analysis with stratification effects and
anisotropic diffusion

The goal of this section is to analyze the structure of the solutions to the highly rotat-
ing compressible system (1.3) with vertical stratification. The main result of this part is
contained in Theorem 2 (see Section 3.3): there we derive an asymptotic expansion and
quantify the error in terms of the parameter ". This stability result relies on relative entropy
estimates.
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3.1. Formal asymptotic expansion

In this section we perform formal computations in order to have a grasp on the structure of
the solutions to system (1.3). Because of the no-slip boundary conditions (1.4), boundary
layers appear in the limit "! 0 both in the vicinity of the top boundary R2 � ¹1º and of
the bottom boundary R2 � ¹0º.

We will specify later the precise hypotheses on the initial conditions

�jtD0 D �in and ujtD0 D uin

at time t D 0. For the purpose of the formal analysis, let us say in a loose way that we
impose the following far field conditions, for jxj ! 1:

�in.x/! N�.x3/ and uin.x/! 0;

where N� is a strictly positive function satisfying the logistic equation

rP. N�/ D N�rG: (3.1)

In addition, the initial densities are assumed to be far away from vacuum. Moreover, we
focus on well-prepared initial data, in the sense specified in Section 3.3 below.

3.1.1. Construction of the ansatz. We start by expanding the solution .u"; �"/ to (1.3)
as

u" D u0.xh; x3; t /C u
bl
0;b

�
xh;

x3
"
; t
�
C ubl

0;t

�
xh;

1�x3
"
; t
�

C "
�
u1.xh; x3; t /C u

bl
1;b

�
xh;

x3
"
; t
�
C ubl

1;t

�
xh;

1�x3
"
; t
��
CO."2/;

�" D �0.xh; x3; t /C �
bl
0;b

�
xh;

x3
"
; t
�
C �bl

0;t

�
xh;

1�x3
"
; t
�

C "
�
�1.xh; x3; t /C �

bl
1;b

�
xh;

x3
"
; t
�
C �bl

1;t

�
xh;

1�x3
"
; t
��

C "2.�2.xh; x3; t /C �
bl
2;b

�
xh;

x3
"
; t
�
C �bl

2;t

�
xh;

1�x3
"
; t
��
CO."3/: (3.2)

The superscript bl stands for “boundary layer”, while the subscripts b and t stand for
“bottom” and “top” respectively. For simplicity of presentation, in the next computations
we are going to consider only the boundary layer near the bottom, since the terms related
to the top boundary layer are dealt with in the exact same way. Therefore, from now on
we omit the subscript b for the boundary layer terms. However, when needed, we will
explicitly write t or b subscripts to avoid confusion.

Below we denote by �D x3
"

the fast vertical variable in the boundary layer. The bound-
ary layer profiles are supposed to decay to 0 at an exponential rate when � !1, since
their effect is almost negligible in the interior of the domain: we will use this fact repeat-
edly in the following computations.

We remark that, at this level, (3.2) is just a formal ansatz. As is usual, we will first
formally derive the equations for the profiles: this is the purpose of the present section.
After that, we will prove quantitative estimates for the difference between the solution and
the profiles we have constructed, using the relative entropy method: this will be done in
Section 3.
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Identification of the profiles. In order to identify the profiles, we plug the ansatz (3.2)
into (1.3) and identify the terms of the same order of magnitude in ". We immediately
notice that the highest-order term is of order "�3, which appears in the third component
of the momentum equation:

P 0.�0 C �
bl
0 /@��

bl
0 D 0:

We assume that �0 C �bl
0 stays bounded away from zero. This hypothesis is fully justified

here below. In view of hypothesis (1.10) on the pressure and the fact that �bl
0 has to vanish

for � !1, we immediately deduce that �bl
0 � 0. Thanks to that property, and ignoring

terms of order O."2/, which have been neglected in (3.2) in the expansion of the velocity
fields, we find the following cascade of equations: from the conservation of mass equation,
we get

�0@�u
bl
0;3 D 0; (mass-"�1)

@t�0 Crh � .�0.u0;h C u
bl
0;h//C @3.�0u0;3/C @3�0u

bl
0;3

C �1@�u
bl
0;3 C @� .�

bl
1 u

bl
0;3/C @��

bl
1 u0;3 C �0@�u

bl
1;3 D 0; (mass-"0)

and from the momentum equation we get

rP.�0/C

�
0

P 0.�0/@��
bl
1

�
D

 
0

�@2
�
ubl
0;3

!
C �0rG; (mom-"�2)

�0.u0;3 C u
bl
0;3/ � @�u

bl
0 C e3 � �0.u0 C u

bl
0 /

C

 
rh.P

0.�0/.�1 C �
bl
1 //

@3.P
0.�0/�1/C @3.P

0.�0//�
bl
1 C P

00.�0/�
bl
1 @��

bl
1 C P

0.�0/@��
bl
2

!

D @2�

 
ubl
0;h

0

!
C �

 
rh@�u

bl
0;3

@�rh � u
bl
0;h
C @2

�
ubl
1;3

!
C .�1 C �

bl
1 /rG: (mom-"�1)

We will examine the equation of order O."0/ coming from the momentum equation
later. Let us first infer some properties for the profiles.

The terms in the interior. Recall that the boundary layer profiles are expected to go to
zero when � !1. Therefore, it follows from (mom-"�2) that

rP.�0/ D �0rG; (3.3)

which yields, by using (1.10), the properties

H 0.�0/ D G C c.t/ and rh�0 D 0: (3.4)

Hence �0 is independent of xh, namely �0 D �0.x3; t /, and satisfies the ODE

P 0.�0/@3�0 D ��0: (3.5)
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Since P 0 2 C1..0;1// and is nonzero, we can use the Cauchy–Lipschitz theorem to get
that �0.t/ 2 C1..0; 1//, and is hence bounded. Moreover, from (mom-"�1) we infer

�0

 
u?
0;h

0

!
C

 
P 0.�0/rh�1

@3.P
0.�0/�1/

!
D �1rG:

This equation is called geostrophic balance; it implies the Taylor–Proudman theorem (see
Section 1). In particular, its third component reads

@3.P
0.�0/�1/ D ��1:

Using the previous relation together with (3.3), we get

@3

�P 0.�0/
�0

�1

�
D 0; (3.6)

hence the quantity

Q WD
P 0.�0/

�0
�1 verifies Q D Q.t; xh/; (3.7)

i.e. Q is independent of the vertical variable. From the horizontal component, instead we
get (recall that rh�0 D 0)

u0;h D r
?
h

�P 0.�0/
�0

�1

�
D r

?
h Q: (3.8)

In particular, we deduce that u0;h D u0;h.xh; t /, which justifies the introduction of bound-
ary layer terms in order to enforce the no-slip boundary conditions on x3 D 0; 1. In
addition, applying the horizontal divergence we obtain

rh � u0;h D rh � r
?
h

�P 0.�0/
�0

�1

�
D 0;

so that u0;h is a two-dimensional horizontal divergence-free vector field.
We now exploit (mass-"0): considering it in the interior of the domain (i.e. neglecting

the boundary terms) and using the inequalities just proved, after an integration in the
vertical variable we infer thatZ 1

0

@t�0 dx3 D �

Z 1

0

@3.�0u0;3/ dx3 D 0: (3.9)

By taking the time derivative of (3.4) and using (1.10) we have

@t�0 D
@tc

H 00.�0/
:

We integrate in the vertical variable and, from (3.9), we get @tc D 0, hence @t�0 D 0.
This implies that �0 has to be independent of time also, and hence it is equal to a positive
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function N�.x3/, solution of (3.3), or equivalently (3.1). Thanks to this fact, we now have
that @3.�0u0;3/ D 0. Using the no-slip boundary condition and the positivity of �0 D N�,
we find u0;3 � 0.

From now on N� denotes �0. Let us now consider the equations outside the boundary
layers: at order O."/ in the mass equation,

@t�1 Cr � . N�u1/Crh � .�1u0;h/ D 0; (mass-"1)

and at order O."0/ in the momentum equation,

N�@tu0 Cr � . N�u0 ˝ u0/C e3 � .�1u0 C N�u1/

Cr

�P 00. N�/
2

�21 C P
0. N�/�2

�
D ��hu0 C �r.r � u0/C �2rG: (mom-"0)

Recall that u0D .u0;h.t;xh/;0/. Taking the curl of the horizontal component in (mom-"0),
we obtain an equation for the horizontal vorticity !0 D r?h � u0;h:

N�@t!0 C N�u0;h � rh!0 Crh � .�1u0;h/Crh � . N�u1;h/ � ��h!0 D 0:

Notice that, by (3.8), we get

!0 D !0.t; xh/ D �hQ;

where Q is defined in (3.7); from the previous relation it follows that

N�@t�hQC N�r
?
h Q � rh�hQCrh � . N�u1;h/ � ��

2
hQ D 0; (3.10)

where we have used the cancellation

rh � .�1r
?
h �1/ D

1

2
rh � r

?
h .�

2
1/ D 0 (3.11)

in order to get rid of the term rh � .�1u0;h/. In order to compute the term rh � . N�u1;h/ in
(3.10), we use equation (mass-"1) and cancellation (3.11) again: we find

rh � . N�u1;h/ D �@t�1 � rh � .�1u0;h/ � @3. N�u1;3/ D �@t�1 � @3. N�u1;3/: (3.12)

After integrating both (3.10) and (3.12) in x3 and summing the resulting expressions, we
eventually obtain

@t

�
h N�i�hQ �

D
N�

P 0. N�/

E
Q
�
C h N�ir?h Q � rh�hQ � ��

2
hQ

D N�.1/u1;3.xh; 1; t/ � N�.0/u1;3.xh; 0; t/; (3.13)

where hf i D
R 1
0
f .x3/ dx3 denotes the vertical mean of f .



Anisotropy and stratification in compressible fluids 31

Boundary layer terms. We now consider the boundary layer terms. These terms are
crucial to compute the right-hand side of (3.13): indeed

ubl
j;3;b.xh; 0; t/ D �uj;3.xh; 0; t/ and ubl

j;3;t .xh; 0; t/ D �uj;3.xh; 1; t/ (3.14)

for j D 0; 1, in order to enforce the no-slip boundary condition on the bottom and top
boundaries.

First of all, (mass-"�1) yields ubl
0;3 D u

bl
0;3.xh; t /, and hence

ubl
0;3 � 0: (3.15)

Using (3.15), we obtain from (mom-"�2) that

P 0. N�/@��
bl
1 D �@

2
�u

bl
0;3 D 0:

Hence, thanks to (1.10), �bl
1 D �

bl
1 .xh; t / is constant in the boundary layer and goes to zero

when � !1, therefore �bl
1 � 0. Taking into account this last equality and reading the

horizontal component of (mom-"�1), one has

N�.ubl
0;h/
?
D @2�u

bl
0;h: (3.16)

Notice that, in (3.16), xh is a parameter. We use the Taylor formula of first order

N�.x3/ D N�.0/C x3

Z 1

0

@3 N�.sx3/ ds

to write (3.16) as

N�.0/.ubl
0;h/
?
C

�
x3

Z 1

0

@3 N�.sx3/ ds

�
.ubl
0;h/
?
D @2�u

bl
0;h: (3.17)

Let us now consider the equation

N�.0/.ubl
0;h/
?
D @2�u

bl
0;h; (3.18)

supplemented with the boundary condition

ubl
0;h.xh; 0; t/ D �u0;h.xh; t / (3.19)

at � D 0, in view of (1.4) and (3.14). We remark that the system of ODEs (3.18)–(3.19) is
the same (here in general N�.0/¤ 1) as in the incompressible case; see e.g. [11, Chapter 7]
and references therein. Its solutions are exponentially decaying and have a spiral structure.
Indeed, we have the following formula:

ubl
0;h;b.xh; �; t/

D �

0B@ e��
q
N�.0/
2

h
u0;1.xh; t / cos

�
�

q
N�.0/
2

�
C u0;2.xh; t / sin

�
�

q
N�.0/
2

�i
e��

q
N�.0/
2

h
� u0;1.xh; t / sin

�
�

q
N�.0/
2

�
C u0;2.xh; t / cos

�
�

q
N�.0/
2

�i
1CA :
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Let us move further. The vertical component in (mom-"�1) is

0 D �.@�rh � u
bl
0;h C @

2
�u

bl
1;3/C P

0. N�/@��
bl
2 : (3.20)

Equation (mass-"0), together with the fact the N� is strictly positive, yields

rh � u
bl
0;h C @�u

bl
1;3 D 0: (3.21)

Hence P 0. N�/@��bl
2 D 0 and, similarly to the argument used for �bl

1 , we get �bl
2 � 0. The

previous equality (3.21) determines ubl
1;3 up to a constant in �, which we take so that ubl

1;3

converges to zero when � !1:

ubl
1;3;b.xh; �; t/ D �

e��
q
N�.0/
2p

2 N�.0/

�
cos
�
�

q
N�.0/
2

�
C sin

�
�

q
N�.0/
2

��
r
?
h � u0;h.xh; t /:

Similar computations can be done for the top boundary layers. Indeed, denoting by � D
1�x3
"

the fast vertical variable in the upper boundary layer, we use the Taylor formula at
first order

N�.x3/ D N�.1/ � .1 � x3/

Z 1

0

@3 N�.1 � s.1 � x3// ds (3.22)

to define ubl
0;h;t

as the solution to the equation

N�.1/.ubl
0;h;t /

?
D @2�u

bl
0;h;t ; (3.23)

supplemented with the boundary condition

ubl
0;h;t .xh; 0; t/ D �u0;h.xh; t / (3.24)

at � D 0; recall (3.14). We have

ubl
0;h;t .xh; �; t/

D �

0B@ e��
q
N�.1/
2

h
u0;1.xh; t / cos

�
�

q
N�.1/
2

�
C u0;2.xh; t / sin

�
�

q
N�.1/
2

�i
e��

q
N�.1/
2

h
�u0;1.xh; t / sin

�
�

q
N�.1/
2

�
C u0;2.xh; t / cos

�
�

q
N�.1/
2

�i
1CA :

and, from (3.21) with @� replaced by �@� ,

ubl
1;3;t .xh; �; t/ D

e��
q
N�.1/
2p

2 N�.1/

�
cos
�
�

q
N�.1/
2

�
C sin

�
�

q
N�.1/
2

��
r
?
h � u0;h.xh; t /:

Hence, using (3.14), one can now compute the right-hand side of equation (3.13):

N�.1/u1;3.xh; 1; t/ � N�.0/u1;3.xh; 0; t/ D � N�.1/u
bl
1;3;t .xh; 0; t/C N�.0/u

bl
1;3;b.xh; 0; t/

D �

p
N�.0/C

p
N�.1/

p
2

!0

D �

p
N�.0/C

p
N�.1/

p
2

�hQ: (3.25)
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This is the so-called Ekman pumping term, which represents the secondary (global) circu-
lation created by the boundary layer. It appears as a damping term for the quasi-
geostrophic dynamics, described by equation (3.13).

Final choices for correctors. It remains to choose the functions �2, u1 and ubl
1;h

. These
terms are auxiliary terms which do not appear in the final result.

We choose the interior terms in order to make the terms of orderO."/ in the mass equa-
tion and the terms of order O."0/ in the momentum equation vanish identically. Notice
that (mom-"0) determines u1;h in terms of u0, �1 and �2, and hence, through relation
(3.8), in terms of �1 and �2 only. Specifically,

u1;h WD
1

N�

�
� ��hu

?
0;h C N�@tu

?
0;h

C N�u0;h � rhu
?
0;h � u0;h�1 Cr

?
h

�
P 0. N�/�2 C

P 00. N�/

2
�21

��
: (3.26)

Next, the vertical component of (mom-"0) reads

@3

�
P 0. N�/�2 C

P 00. N�/

2
�21

�
D ��2; (3.27)

where we have used that u0;3 � 0. Since, by (1.10), P 0. N�/ > 0, �2 can be defined as the
solution of the ODE

@3�2 C
@3.P

0. N�//C 1

P 0. N�/
�2 D �

@3.P
00. N�/�21/

2P 0. N�/
; (3.28)

up to an arbitrary constant c.xh; t /, that we take equal to zero for simplicity. We remark
that this choice does not affect the choice of the other quantities since �2 appears only in
(mom-"0) or higher-order equations. Moreover, since �1 and r�1 are bounded in time and
space (Q, defined in (3.7), satisfies the quasi-geostrophic equation (3.13), which admits
regular solutions; see Lemma 3.3 later), �2 and r�2 are also bounded in time and space.

Next, equation (mass-"1) determines u1;3 up to a constant in x3, which we take equal
to �ubl

1;3.xh; 0; t/ in order to enforce the no-slip boundary condition for the vertical com-
ponent at order O."/. Therefore, thanks to (3.12) we get

N�.x3/u1;3.xh; x3; t / D � N�.0/u
bl
1;3.xh; 0; t/ �

Z x3

0

.@t�1 C N�rh � u1;h/ dz: (3.29)

Differently from the case without the gravitational potential, this term does not have an
affine structure as in the incompressible case (see again [11, Chapter 7]), since u1;h does
not depend only on xh.

In order to enforce the no-slip boundary condition at order O."/ for the horizontal
component also, we impose

ubl
1;h.xh; 0; t/ D �u1;h.xh; 0; t/ (3.30)
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at � D 0. It remains to choose the boundary layer term ubl
1;h

. The specifications for the
boundary layer term ubl

1;h
are that it is exponentially decaying to 0 for �!1 and satisfies

(3.30) at the boundary � D 0. Hence, we define ubl
1;h;b

in the following way: for all � 2
Œ0;1/ and xh 2 R2,

ubl
1;h;b.xh; �; t/ WD �u1;h.xh; 0; t/e

��

q
N�.0/
2 :

Analogously, ubl
1;h;t

is defined for all � 2 Œ0;1/ and xh 2 R2 by

ubl
1;h;t .xh; �; t/ WD �u1;h.xh; 1; t/e

��

q
N�.1/
2 :

Remark 3.1. Contrary to the interior terms, it is not possible to make the terms of order
O."/ in the mass equation and the terms of orderO."0/ in the momentum equation vanish
identically. Indeed that would come down to imposing

N�rh � u
bl
1;h D�rh�1 � u

bl
0;h � @3 N�u

bl
1;3;

�@� .rh � u
bl
1;h/ D� @

2
�u

bl
1;3 D @� .rh � u

bl
0;h/;

(3.31)

which is overdetermined. This fact is due to the lack of higher-order correctors, since we
truncate the expansion at order 1 in ".

Notice that, due to exponential decay to zero in the interior of the domain, the bound-
ary layer terms are small. Moreover, we can exploit their decay by relying on Hardy’s
inequality (see the computations in Section 3.3.3). The final stability estimate, though,
will be worse than in the absence of boundary layer phenomena (as e.g. for complete
slip boundary conditions). Improving this estimate would require considering higher-order
correctors in the ansatz (3.2).

Notice also that, using (3.14), we have at the bottom x3 D 0,

u0;h.xh; t /C u
bl
0;h;b.xh; 0; t/C u

bl
0;h;t

�
xh;

1
"
; t
�
D ubl

0;h;t

�
xh;

1
"
; t
�
;

u1.xh; 0; t/C u
bl
1;b.xh; 0; t/C u

bl
1;t

�
xh;

1
"
; t
�
D ubl

1;t

�
xh;

1
"
; t
�
;

(3.32)

and at the top x3 D 1,

u0;h.xh; t /C u
bl
0;h;b

�
xh;

1
"
; t
�
C ubl

0;h;t .xh; 0; t/ D u
bl
0;h;b

�
xh;

1
"
; t
�
;

u1.xh; 1; t/C u
bl
1;b

�
xh;

1
"
; t
�
C ubl

1;t .xh; 0; t/ D u
bl
1;b

�
xh;

1
"
; t
�
:

(3.33)

It means that we have an (exponentially small, but still nonzero) trace of the top bound-
ary layer on the bottom boundary and vice versa. Hence, we will add corrector terms in
the ansatz (3.34) below, in order to keep homogeneous boundary conditions. This is a
technical point, but needed to apply Hardy’s inequality later.
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The ansatz. To put it in a nutshell, we have obtained the following ansatz for the structure
of the solutions to (1.3)–(1.4):

�"app.xh; x3; t / D N�.x3/C "�1.xh; x3; t /C "
2�2.xh; x3; t /;

u"app.xh; x3; �; �; t/ (3.34)

D

 
r?
h
Q.xh; t /C u

bl
0;h;b

.xh; �; t/C u
bl
0;h;t

.xh; �; t/ � u
bl
0;h;1="

.xh; x3; t /

0

!

C "

 
u1;h.xh; x3; t /C u

bl
1;h;b

.xh; �; t/C u
bl
1;h;t

.xh; �; t/ � u
bl
1;h;1="

.xh; x3; t /

u1;3.xh; x3; t /C u
bl
1;3;b

.xh; �; t/C u
bl
1;3;t .xh; �; t/ � u

bl
1;3;1="

.xh; x3; t /

!
with Q defined in (3.7) and

ubl
0;h;1=".xh; x3; t / D x3u

bl
0;h;b

�
xh;

1
"
; t
�
C .1 � x3/u

bl
0;h;t

�
xh;

1
"
; t
�
;

ubl
1;1=".xh; x3; t / D x3u

bl
1;b

�
xh;

1
"
; t
�
C .1 � x3/u

bl
1;t

�
xh;

1
"
; t
�
:

(3.35)

In addition, it follows from (3.13) that

@t

�D
N�

P 0. N�/

E
Q � h N�i�hQ

�
� h N�ir?h Q � rh�hQC ��

2
hQ

�

p
N�.0/C

p
N�.1/

p
2

�hQ D 0: (3.36)

This is the quasi-geostrophic equation. Similar limit equations without damping term have
been shown in e.g. [14], [17] and [23], where the boundary layers do not appear due to
the complete slip condition. Notice that in [23] the parabolic term disappears, since the
authors also consider the inviscid limit. We state here the well-posedness and the regularity
results for the quasi-geostrophic equation (3.36), whose detailed proofs are given in [3].

Proposition 3.2. Let Qin 2 H
1.R2/. Then there exists a unique global weak solution Q

to the quasi-geostrophic equation (3.36) with initial datum Qin, such that

Q 2 C.RCIH
1.R2// \ L1.RCIH

1.R2// and rhQ 2 L
2.RCIH

1.R2//:

Lemma 3.3. Let n � 1 be an integer and Qin 2 H
n.R2/. Then, there exists a constant

Cn�1 > 0 such that any weak solution to (3.36) with initial datumQin satisfies the follow-
ing inequality for all t � 0:

n�1X
jD0

.kr
j

h
Q.t/k2

L2
C kr

jC1

h
Q.t/k2

L2
/C

n�1X
jD0

�Z t

0

kr
jC1

h
Qk2

L2
C kr

jC2

h
Qk2

L2

�

� Cn�1

n�1X
jD0

.kr
j

h
QinkL2 C kr

jC1

h
Qink

2
L2
/; (3.37)

where C0 D C1 D 1 and Cn�1 D Cn�1.kQinkHn�1/ for n � 1 � 2.
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The boundary layer profiles ubl
0;h;b

and ubl
0;h;t

are solutions of the systems (3.18)–(3.19)
and (3.23)–(3.24) respectively. We refer to the previous computations for the precise defi-
nitions of the higher-order terms.

We conclude this part by remarking that, according to the previous computations, we
have that .�"app; u

"
app/ solves the following system:8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@t�
"
app Cr � .�

"
appu

"
app/ D "R

bl
C "2R";

�"app@tu
"
app C �

"
appu

"
app � ru

"
app C

1

"
e3 � �

"
appu

"
app C

1

"2
rP.�"app/

D
1

"2
�"apprG C

x3

"

Z 1

0

@3 N�.sx3/ ds e3 � u
bl
0;h;b

�
1 � x3

"

Z 1

0

@3 N�.1 � s.1 � x3// ds e3 � u
bl
0;h;t

C��;"u
"
app C �r.r � u

"
app/C S

bl
C "S"

(3.38)

in the slab � with no-slip boundary conditions (1.4). The remainder terms R" and S" are
of the form

R" D R"
�
xh; x3;

x3
"
;
1�x3
"
; t
�

and S" D S"
�
xh; x3;

x3
"
;
1�x3
"
; t
�

while the boundary layer terms are

Rbl�xh; x3; x3" ; 1�x3" ; t
�
D N�rh � .u

bl
1;h;b C u

bl
1;h;t /

Crh�1 � .u
bl
0;h;b C u

bl
0;h;t /C @3 N�.u

bl
1;3;b C u

bl
1;3;t /;

Sbl�xh; x3; x3" ; 1�x3" ; t
�
D N�@t .u

bl
0;b C u

bl
0;t /C N�u0;h � rh.u

bl
0;b C u

bl
0;t /

C N�.ubl
0;b C u

bl
0;t / � rhu0 C N�.u

bl
0;b C u

bl
0;t / � rh.u

bl
0;b C u

bl
0;t /

C N�.u1;3 C u
bl
1;3;b C u

bl
1;3;t /@�.u

bl
0;b C u

bl
0;t /

� ��h.u
bl
0;t C u

bl
0;b/ � @

2
�.u

bl
1;b C u

bl
1;t /

� �

 
0

@�rh � .u
bl
1;h;b
C ubl

1;h;t
/

!
C e3 � .�1.u

bl
0;b C u

bl
0;t /C N�.u

bl
1;b C u

bl
1;t //:

The remainders "2R" and "S" also contain the terms of order O.e�1="/ coming from the
correctors ubl

0;h;1="
and ubl

1;1="
, defined in (3.35). Notice that Sbl appears at order O.1/,

but has fast, exponential, decay inside �: more precisely, we have kSblkLp � C"
1
p for all

p 2 Œ1;1�.
The choice of the regularity of the initial datum Qin guarantees enough regularity

for the approximate solution .�"app; u
"
app/ in order to derive the stability estimates later in

Section 3.3. This is stated in the following lemma, which is a straightforward consequence
of Lemma 3.3 above.
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Lemma 3.4. The approximated density �"app and velocity field u"app can be written as

�"app.xh; x3; t / D N�.x3/CQ.t; xh/
N�

P 0. N�/
.x3/CQ.t; xh/l.x3/;

u"app.xh; x3; �; �; t/ D

NX
iD1

fi .t; xh/gi .x3/hi .�/wi .�/;

for some N � 1, with N�; l; gi 2 C 1.Œ0; 1�/ and hi ; wi 2 C1.RC/. In addition, for Qin 2

H 5.R2/, we have

Q 2 L1.RCIH
5.R2//; fi 2 L

1.RCIH
ki .R2// with ki � 1:

3.1.2. Large-scale quasi-geostrophic equation. We recover here the equation for u0
from (3.36). For this we need the following standard lemma, which gives the Helmholtz
decomposition for two-dimensional vector fields.

Lemma 3.5. Let p 2 .1;1/. Let a and b be two scalar fields in Lp.R2/.
Then there exists a unique vector field F , belonging to the homogeneous Sobolev space

PW 1;p.R2IR2/, which solves the system´
r?
h
� F D a;

rh � F D b:
(3.39)

Moreover, the following formula holds:

F D �r?h .��h/
�1a � rh.��h/

�1b:

The previous result being classical, we do not give the proof here: rather, we refer to
[9, Sections 1.2 and 1.3] and [19, Section 10.6] for details. We just give some explanation
about the uniqueness, which will be needed below. By linearity, let us suppose that F
solves (3.39) with a D b D 0. In particular, r � F D 0, hence (see [9, Corollary 1.2.1])
F D rh, for some h 2 Lp . But from r � F D 0, we deduce that ��h D 0, which admits
the only solution h D 0 in Lp .

Now, let � 2 PH 1.R2/ be the (unique, up to additive constants) solution to

��h� D h N�irh � .u0;h � rhu0;h/ D h N�irhu0;h W rhu0;h: (3.40)

We then define F.�; t / 2 L2.R2IR2/ for almost every t � 0 by the formula

F WD h N�i@tu0;h C h N�iu0;h � rhu0;h � ��hu0;h C

p
N�.0/C

p
N�.1/

p
2

u0;h Crh�:

Notice that, thanks to equations (3.40) and (3.36) and the divergence-free condition
rh � u0;h D 0, we have

r
?
h � F D

D
N�

P 0. N�/

E
@tQ and rh � F D 0:
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Therefore, the uniqueness part of Lemma 3.5 implies that

F D r?h .�h/
�1
D
N�

P 0. N�/

E
@tQ D

D
N�

P 0. N�/

E
@t .�h/

�1u0;h;

where we have also used (3.8). Eventually, we find that u0;h solves the system8̂̂̂̂
<̂̂
ˆ̂̂̂:
@t

�
h N�i �

D
N�

P 0. N�/

E
.�h/

�1
�
u0;h

Ch N�iu0;h � rhu0;h � ��hu0;h C

p
N�.0/C

p
N�.1/

p
2

u0;h Crh� D 0;

rh � u0;h D 0;

(3.41)

in R2. The second term appearing in the time derivative is a consequence of the combi-
nation of the effects due to density stratification and fast rotation. Notice that both (3.13)
and (3.41) are averaged (in x3) versions of (mom-"0).

3.2. Weak solutions and uniform a priori bounds

We recall here some basics about finite energy weak solutions to system (1.3). We refer
e.g. to [32], [38] and [19] for details.

Definition 3.6. Let N� > 0 be the solution to the logistic equation (3.1), and let .�in; uin/

verify Z
�

�1
2
�injuinj

2
C
1

"2
E.�in; N�/

�
dx <1:

A couple .�; u/ is a finite-energy weak solution to system (1.3) on Œ0; T � ��, related to
the initial datum .�in; uin/, if the following conditions are satisfied:

• � � 0, with � � N� 2 L1..0; T /I .L2 CL /.�//, with  > 1 appearing in (1.10), and
u 2 L2..0; T /IH 1.�IR3//;

• the mass equation is satisfied in the weak sense: namely, for any test function ' 2
C10 .Œ0; T / ��/, one has

�

Z T

0

Z
�

.�@t' C �u � r'/ dx dt D

Z
�

�in'.0/ dxI

• P.�/ 2 L1loc..0; T / ��/, and the momentum equation is verified in the weak sense:
for any  2 C10 .Œ0; T / ��IR

3/, one hasZ T

0

Z
�

�
� �u � @t � �u˝ u W r C

1

"
e3 � .�u/ �  �

1

"2
P.�/r �  

Cr�;"u W r�;" C �r � ur �  �
1

"2
�rG �  

�
dx dt D

Z
�

�inuin �  .0/I
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• the following energy inequality holds true for almost every t 2 .0; T /:Z
�

�1
2
�.t/ju.t/j2 C

1

"2
E.�.t/; N�/

�
dx

C

Z t

0

Z
�

.�jrhuj
2
C "j@3uj

2
C �jr � uj2/ dx d�

�

Z
�

�1
2
�injuinj

2
C
1

"2
E.�in; N�/

�
dx; (3.42)

where we have defined the relative energy functional

E.�; N�/ WD H.�/ �H. N�/ �H 0. N�/.� � N�/: (3.43)

The solution is said to be global if the previous conditions hold true for all T > 0.

Consider now a family of global-in-time finite-energy weak solutions .�"; u"/" to sys-
tem (1.3). Recall that the existence of such a family is only assumed here, but open in
general, because of anisotropy of the viscous stress tensor. We collect here some uniform
bounds verified by that family. These bounds will be important in the next subsection,
when proving stability estimates.

By assumption, for any " 2 .0; 1� the energy inequalityZ
�

�
�".t/ju".t/j2 C

1

"2
E.�".t/; N�/

�
C

Z t

0

Z
�

.�jrhu
"
j
2
C "j@3u

"
j
2
C �jr � u"j2/

�

Z
�

�
�"inju

"
inj
2
C
2

"2
E.�"in; N�/

�
(3.44)

holds for almost every t > 0. According to [22, inequality (4.15)], we have the following
control, which holds for any positive scalar functions �.x; t/ and r.x; t/, with 0 < r� �
r.x; t/ � rC, for some real numbers r�; rC: there exist constants c1; c2 > 0 such that, for
almost all .x; t/ 2 � �RC, one has

c1.j�.x; t/ � r.x; t/j
21¹j��rj.�;t/<1º C j�.x; t/ � r.x; t/j1¹j��rj.�;t/�1º/

� E.�.x; t/; r.x; t//

� c2.j�.x; t/ � r.x; t/j
21¹j��rj.�;t/<1º C j�.x; t/ � r.x; t/j1¹j��rj.�;t/�1º/; (3.45)

where the notation ¹j� � r j.�; t / < 1º stands for the set of x 2 � such that j�.x; t/ �
r.x; t/j< 1 (and analogously for the� symbol) and 1A denotes the characteristic function
of a set A � �. Notice that the same inequalities hold if we replace 1 by any constant
M > 0, up to changing the value of the constants c1 and c2.

Now, following [19, Chapters 4 and 5], let us introduce the essential set and the resid-
ual set as follows: for almost every t > 0, we set

�ess.t/ WD
®
x 2 � j j�".x; t/ � N�.x3/j < �

¯
and �res.t/ WD � n�ess.t/; (3.46)

for some � (to be fixed later) such that

0 < � < inf
.0;1/
N�:
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Accordingly, given any function h, we define its essential part and residual part as

Œh�ess WD h1�ess and Œh�res WD h1�res D h � Œh�ess:

Keep in mind that such a decomposition depends on �".
After this preparation, let us establish uniform bounds for .�"; u"/". First of all, in

view of the assumptions we will fix on the initial data .�"in; u
"
in/" in the next subsection, we

can assume that the right-hand side of (3.44) is uniformly bounded for " 2 .0; 1�. Then,
using (3.45), we deduce the existence of a constant C > 0 such that, for all T > 0 fixed
and all 0 < " � 1, one has

k
p
�" u"kL1T .L2/; � C (3.47)

1

"
kŒ�" � N��esskL1T .L

2/ � C ; (3.48)

sup
t2Œ0;T �

L.�res.t//C kŒ�
"�resk



L1T .L
 /
� C"2; (3.49)

where L.A/ denotes the Lebesgue measure of a set A � �. We refer to [17, Section 2]
and [20, Section 4] for details.

Next, let us consider the viscosity terms: recalling that � > 0 and � > 0, from (3.44)
we immediately get

krhu
"
kL2T .L

2/ C kr � u
"
kL2T .L

2/ � C ; (3.50)
p
" k@3u

"
hkL2T .L

2/ � C; (3.51)

for some universal constant C > 0 independent of " and of the fixed time T > 0. In
addition, owing to the identity

@3u
"
3 D r � u

"
� rh � u

"
h;

we also deduce that
k@3u

"
3kL2T .L

2/ � C: (3.52)

Finally, arguing exactly as in [17, Section 2], we deduce that there exists a constant
C > 0 such that, for all " > 0 and all T > 0, one has

ku"kL2T .L2/
� C: (3.53)

3.3. Stability estimates

This section is devoted to estimating the error between weak solutions to (1.3) and their
smooth approximation built in Section 3.1. We consider well-prepared initial data. Specifi-
cally, the initial density .�"in/" and velocity fields .u"in/" satisfy the following requirements:

• for all " 2 .0; 1�, one has

�"in D N�C "r
"
in; with .r"in/" � .L

2
\ L1/.�/I (3.54)
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• we have .u"in/" � L
2.�/;

• there exists Qin 2 H
5.R2/ such that, after defining

rin WD
N�

P 0. N�/
Qin and uin WD .�@2Qin; @1Qin; 0/; (3.55)

we have the strong convergence properties

r"in ! rin and u"in ! uin in L2.�/: (3.56)

Remark 3.7. Condition (3.55) implies in particular that

N�

 
u?in;h
0

!
C

 
P 0. N�/rhrin

@3.P
0. N�/rin/

!
D rinrG: (3.57)

Remark 3.8. Our analysis does not hold for ill-prepared initial data. In this case, in fact,
a careful analysis of the fast time oscillations of the solutions must be performed. This
would correspond to adding a fast variable t

"
with respect to time in the asymptotic expan-

sion of the approximated profiles.
In the incompressible case, a key point of the analysis for ill-prepared data (see e.g.

[11]) is to show that dispersive effects linked to Strichartz estimates are not destroyed by
the presence of the boundary layer. In the compressible case, dispersive estimates are less
precise (see e.g. [17]), which makes the problem harder.

From the uniform bounds in Section 3.2, it is classical to derive that, up to extraction
of a suitable subsequence, weak solutions .�"; u"/" converge to a limit state . N�; Nu/ which
belongs to the kernel of the singular perturbation operator. We refer to e.g. [16, 17, 20]
for details. The goal of the present subsection is to make this convergence quantitative,
to show the general structure of the solutions and to take into account the correctors due
to Ekman boundary layers. We aim to prove the following result. Recall that the relative
entropy E is defined in (3.43).

Theorem 2. For  � 3
2

, suppose that there exists a finite-energy weak solution .�"; u"/"
to (1.3) with well-prepared initial data .�"in; u

"
in/" 2 L

1 �L2 verifying hypotheses (3.54),
(3.55) and (3.56). Let .�"app; u

"
app/" be defined as in (3.34), and define ıu" D u" � u"app.

Then there exist functions C1.t/; C2.t/ 2 L1.Œ0; T // for all T > 0, and constants C > 0

and "0 2 .0; 1/ such that, for all " 2 .0; "0/, the following estimate holds, for almost every
t > 0:Z

�

�".t/jıu".t/j2 dx C
1

"2

Z
�

E.�".t/; �"app.t// dx

C

Z t

0

Z
�

.�jrhıu
"
j
2
C "j@3ıu

"
j
2
C �jr � ıu"j2/ dx

� Ce2
R t
0 C1.s/ ds

�Z
�

�"injıu
"
inj
2 dx C

1

"2

Z
�

E.�"in; �
"
in;app/ dx C "

Z t

0

C2.�/ d�

�
:
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Remark 3.9. The lower bound for the exponent  comes from the control of the source
term in the relative entropy inequality (3.64): in particular, in (3.83) we need  � 3

2
to

apply Hölder’s inequality and get estimate (3.84).

In order to prove the previous result, we resort to the technique of the relative entropy/
relative energy inequality; see e.g. [18, 20, 22, 23, 27]. The relative entropy estimate of
these works is directly applicable in our framework, but it is not immediately clear how to
take advantage of the small remainders in (3.38). Instead, we directly derive the entropy
inequality on the system for .ı�"; ıu"/ and take into account from the beginning that
.�"app; u

"
app/ is almost a solution to (1.3). On the contrary, the relative entropy inequality of

e.g. [20] holds for a much wider class of smooth functions.

3.3.1. The relative entropy inequality. We set

ı�" WD �" � �"app and ıu" WD u" � u"app:

From systems (1.3) and (3.38), it is easy to find an equation for ı�" and ıu": after setting
ıP " WD P.�"/ � P.�"app/, we get

@tı�
"
Cr � .u"appı�

"/ D �r � .�"ıu"/ � "Rbl
� "2R"; (3.58)

�"@tıu
"
C �"u" � rıu" C

1

"
e3 � �

"ıu" C
1

"2
rıP " ���;"ıu

"
� �rr � ıu"

D
1

"2
ı�"rG � ı�"@tu

"
app C .�

"
appu

"
app � �

"u"/ � ru"app

�
1

"
e3 � ı�

"u"app � S
bl
� "S" �

x3

"

Z 1

0

@3 N�.sx3/ ds e3 � u
bl
0;h;b

C
1 � x3

"

Z 1

0

@3 N�.1 � s.1 � x3// ds e3 � u
bl
0;h;t : (3.59)

From the point of view of energy estimates, the main term to work on is the difference
of the pressure terms. Testing it against ıu" yieldsZ

�

rıP " � ıu" dx D

Z
�

rP.�"/ � u" dx �

Z
�

rP.�"app/ � u
"
app dx

C

Z
�

r � u"appıP
" dx �

Z
�

rP.�"app/ � ıu
" dx: (3.60)

By standard computations, using the mass equation in (1.3), we getZ
�

rP.�"/ � u" dx D

Z
�

r.H 0.�"// � �"u" dx D
d

dt

Z
�

H.�"/ dx:

Similarly, from the first equation in (3.38) we gatherZ
�

rP.�"app/ � u
"
app dx D

d

dt

Z
�

H.�"app/ dx � "

Z
�

H 0.�"app/.R
bl
C "R"/ dx:
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In identity (3.60), we now add and subtract the term d
dt

R
H 0.�"app/ı�

" dx, in order to
make the relative entropy E.�".t/; �"app.t// appear. Then, from (3.60) and the previous
computations, we inferZ
�

rıP " � ıu" dx D
d

dt

Z
�

E.�"; �"app/ dx C

Z
�

r � u"appıP
" dx �

Z
�

rP.�"app/ � ıu
" dx

C
d

dt

Z
�

H 0.�"app/ı�
" dx C "

Z
�

H 0.�"app/.R
bl
C "R"/ dx:

Using the mass equations in (1.3) and (3.38) again, we get

d

dt

Z
�

H 0.�"app/ı�
" dx D

Z
�

@tH
0.�"app/ı�

" dx C

Z
�

H 0.�"app/@tı�
" dx

D

Z
�

@tH
0.�"app/ı�

" dx C

Z
�

rH 0.�"app/ � .�
"u" � �"appu

"
app/ dx

� "

Z
�

H 0.�"app/.R
bl
C "R"/ dx:

This relation yieldsZ
�

rıP " � ıu" dx D
d

dt

Z
�

E.�"; �"app/ dx �

Z
�

rP.�"app/ � ıu
" dx C I; (3.61)

where we have defined

I WD

Z
�

r � u"appıP
" dx C

Z
�

@tH
0.�"app/ı�

" dx C

Z
�

rH 0.�"app/ � .�
"u" � �"appu

"
app/ dx:

Let us work on this term for a while. We use the Taylor expansion

P.�"; �"app/ WD P.�
"/ � P.�"app/ � P

0.�"app/ı�
"

D
1

2
.ı�"/2

Z 1

0

.1 � s/P 00.�"app C sı�
"/ ds; (3.62)

and the fact thatH 00.z/D P 0.z/
z

according to (1.11), to obtain the next series of equalities:

I D

Z
�

r � u"appP
0.�"app/ı�

" dx C

Z
�

r � u"appP.�
"; �"app/ dx

C

Z
�

H 00.�"app/@t�
"
appı�

" dx C

Z
�

H 00.�"app/r�
"
app � .�

"u" � �"appu
"
app/ dx

D

Z
�

r � u"appP
0.�"app/ı�

" dx �

Z
�

H 00.�"app/�
"
appr � u

"
appı�

" dx

C

Z
�

H 00.�"app/.@t�
"
app Cr � .�

"
appu

"
app//ı�

" dx

C

Z
�

H 00.�"app/r�
"
app � ıu

"�" dx C

Z
�

r � u"appP.�
"; �"app/ dx

D

Z
�

H 00.�"app/r�
"
app � ıu

"�" dx C "

Z
�

H 00.�"app/ı�
".Rbl

C "R"/ dx

C

Z
�

r � u"appP.�
"; �"app/ dx:
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The last two terms in the above identity are small (in a sense to be made precise later). So
let us focus on the first term on the right-hand side: we haveZ
�

H 00.�"app/r�
"
app � ıu

"�" dx �

Z
�

rP.�"app/ � ıu
" dx D

Z
�

H 00.�"app/r�
"
app � ıu

"ı�" dx:

Inserting this expression into the last equality for I , from (3.61) we finally findZ
�

rıP " � ıu" dx D
d

dt

Z
�

E.�"; �"app/ dx C

Z
�

H 00.�"app/r�
"
app � ıu

"ı�" dx

C "

Z
�

H 00.�"app/ı�
".Rbl

C "R"/ dx C

Z
�

r � u"appP.�
"; �"app/ dx: (3.63)

At this point, we can perform energy estimates directly on equations (3.58)–(3.59). Using
(3.63) above, we obtain
d

dt

Z
�

�1
2
�"jıu"j2 C

1

"2
E.�"; �"app/

�
dx

C �

Z
�

jrhıu
"
j
2 dx C "

Z
�

j@3ıu
"
j
2 dx C �

Z
�

jr � ıu"j2 dx

�
1

"2

Z
�

ı�"rG � ıu" dx �
1

"2

Z
�

H 00.�"app/r�
"
app � ıu

"ı�" dx

�
1

"

Z
�

H 00.�"app/ı�
".Rbl

C "R"/ dx �
1

"2

Z
�

r � u"appP.�
"; �"app/ dx

�
1

"

Z
�

e3 � ı�
"u"app � ıu

" dx �

Z
�

ı�"@tu
"
app � ıu

" dx

C

Z
�

.�"appu
"
app � �

"u"/ � ru"app � ıu
" dx �

Z
�

Sbl
� ıu" dx � "

Z
�

S" � ıu" dx

�
1

"

Z
�

x3

Z 1

0

@3 N�.sx3/ ds .u
bl
0;h;b/

?
� ıu"h dx

C
1

"

Z
�

.1 � x3/

Z 1

0

@3 N�.1 � s.1 � x3// ds .u
bl
0;h;t /

?
� ıu"h dx D

11X
jD1

Ij : (3.64)

Remark 3.10. In order to rigorously justify the relative entropy inequality (3.64), where
the equality holds if the solutions are regular enough, one may either proceed as in [18],
or use a regularization argument (see for instance [22] and [27]).

Our next goal is to bound each term appearing in the sum
P11
jD1 Ij on the right-hand

side of (3.64). Before doing that, let us remark that, since �1; �2 2 L1.� � RC/, up to
restricting our attention to all " � "0, with "0 depending on k�1kL1t;x and k�2kL1t;x , we can
assume that��

2
� "�1C "

2�2 �
�
2

with � > 0 as in (3.46). Consequently, we can suppose
that

0 < ��app � �
"
app.x; t/ � �

C
app for all " > 0;

with ��app D inf.0;1/ N� � � and �Capp D sup.0;1/ N�C � . Then, in view of (3.45), we have the
following control:

E.�"; �"app/.x; t/ � c.jı�
".x; t/j21¹jı�"j.�;t/<1º C jı�".x; t/j1¹jı�"j.�;t/�1º/: (3.65)
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Resorting to definitions (3.46), from (3.65) we derive the following lower bound.

Lemma 3.11. There exist � > 0 small enough (depending on inf.0;1/ N�) and a positive
constant c > 0, independent of " 2 �0; "0�, such that, for almost all .x; t/ 2 � �RC, the
following bound holds:

E.�".x; t/; �"app.x; t// � c.Œı�
"�2ess.x; t/C 1�res.t/.x//: (3.66)

Proof. We divide the proof of the inequality into two steps. First we show that

E.�".x; t/; �"app.x; t// � cjı�
".x; t/j21¹jı�".x;t/j<1º

implies the lower bound

E.�".x; t/; �"app.x; t// � cŒı�
"�2ess.x; t/: (3.67)

For this, we just need to show that �ess.t/ � ¹jı�
".x; t/j < 1º. Let x 2 �ess.t/; then

�
3

2
� � �� � "�1.x; t/ � "

2�2.x; t/ < ı�
".x; t/ < �"�1.x; t/ � "

2�2.x; t/C � �
3

2
�;

where we have used that ��
2
� "�1.x; t/ C "

2�2.x; t/ �
�
2

. By choosing � such that
� < min.2

3
; inf.0;1/ N�/, we deduce that jı�".x; t/j < 1. Thus, (3.67) is proved.

Afterwards, we prove that, for x 2 �res.t/, one has

E.�".x; t/; �"app.x; t// � c; (3.68)

where c is a positive constant independent of ", t and x. By the definition of�res.t/, either
�".x; t/ � N�.x3/ � � or �".x; t/ � N�.x3/ C � . Hence, since E.�; �"app.x; t// is strictly
decreasing before �"app.x; t/ and strictly increasing after �"app.x; t/, we get

E.�".x; t/; �"app.x; t// � E. N�.x3/ � �; �
"
app.x; t//

if �".x; t/ � N�.x3/ � � , and

E.�".x; t/; �"app.x; t// � E. N�.x3/C �; �
"
app.x; t//

if �".x; t/ � N�.x3/ C � . Now, by Taylor’s formula, up to taking a smaller � (which
amounts to choosing a smaller "0), we have

E. N�.x3/ � �; �
"
app.x; t// �

H 00.�"app.x; t//

4
.�� � "�1.x; t/ � "

2�2.x; t//
2

�
H 00.�"app.x; t//�

2

16
;

E. N�.x3/C �; �
"
app.x; t// �

H 00.�"app.x; t//

4
.� � "�1.x; t/ � "

2�2.x; t//
2

�
H 00.�"app.x; t//�

2

16
:

Then, using the uniform boundedness in time and space of �"app and hypothesis (1.10), we
get (3.68). The lemma is proved.



E. Bocchi, F. Fanelli, and C. Prange 46

Notice that Œjı�"j�ess is uniformly bounded. Next we claim that there exists a constant
C > 0 such that, for all T > 0 fixed, one has

kŒı�"�reskL1T .L
p/ � C"

2=p
8p 2 Œ1; �: (3.69)

Indeed, by Hölder’s inequality, the L1 control on �"app and (3.49), we deduceZ
�

jŒı�"�resj �

Z
�

Œ�"�res C

Z
�

Œ�"app�res

�

�Z
�

.�"/1�res

�1=
.L.�res//

1= 0
C CL.�res/ � C"

2;

which yields (3.69) for p D 1. As for the L norm, we write

�res.t/ D
®
0 < �".x; t/ � N�.x3/ � �

¯
[
®
�".x; t/ � N�.x3/C �

¯
: (3.70)

For the first set, we just apply (3.49) again, since �" is bounded therein. For the second
set, we use the fact that, for a � ı and b � 0, with b � b�, one has ja � bj � .aC b/ �
Cı;b�.a

 C 1/. The case 1 < p <  follows from interpolation.

3.3.2. Anisotropic Sobolev embedding. We introduce an anisotropic version of the stan-
dard Sobolev embedding PH 1 ,! L6. This estimate enables us to handle the anisotropy of
the viscosity in the stability estimates below; see in particular the treatment of I7.

Lemma 3.12 (Anisotropic Sobolev embedding). Let�D R2 � .0; 1/. There exists a uni-
versal constant C > 0 such that, for all � > 0 and all u 2 H 1

0 .�/, one has

kukL6.�/ � C.�
� 12 krhukL2.�/ C �k@3ukL2.�//: (3.71)

Proof. Let � > 0 and u 2 H 1
0 .�/. We first extend u by zero on R3 n� and still denote

the extended function by u. Now u 2 H 1.R3/. We then consider the rescaled function

u�.yh; y3/ D u
� yh
�
1
2

; �y3

�
; .yh; y3/ 2 R3:

By Sobolev’s inequality [24, estimate (II.3.7)] for the whole space, there exists a universal
constant C 2 .0;1/ such that

ku�kL6.R3/ � Ckru�kL2.R3/:

Estimate (3.71) then follows by a change of variables and the fact that u is zero outside
the strip R2 � .0; 1/,

ku�kL6.R3/ D kukL6.�/;

kru�kL2.R3/ D �
� 12 krhukL2.�/ C �k@3ukL2.�/:

This concludes the proof.
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3.3.3. Conclusion of the stability estimates. Below we estimate every source term Ij
appearing in (3.64), for 0 < " � "0 ("0 is given by Lemma 3.11). For the terms I1, I2, I3,
I5 and I6 we need to treat the cases  � 2 and 3

2
�  < 2 separately, since we use different

estimates, whereas the terms I4, I8, I9, I10 and I11 can be controlled in the same way for
any  � 3

2
. Term I7 is more intricate; it is written as the sum of five terms: for some of

them, again we need to distinguish the cases  � 2 and 3
2
�  < 2.

The easiest terms to handle are I3, I4, I6 and I9. Terms I1 and I2 are combined with
the Coriolis term I5; For the remaining part of I5, we rely on Hardy’s inequality, which
is also useful for dealing with I7, I8, I10 and I11. The basic idea, borrowed from [6], is
that whenever there is a boundary layer term Gbl.x3

"
/ we gain one additional " by using

the decay of Gbl in �. The price to pay is a @3 derivative on ıu", which however can be
swallowed by the third term on the left-hand side of (3.64).

For every term, we decompose u"app according to (3.34). The terms which require more
care are those of order O.1/, which involve in general u0;h and ubl

0;h
, except for I7 where

the product u"app � ru
"
app also involves u1;3 and ubl

1;3 at orderO.1/. For the terms which are
not of order O.1/ the analysis can be always reduced to the cases I3, I4, I6, I9, and the
same estimates are used.

For every term involving a boundary layer, one has to consider the top and bottom
boundary layers equally; again, for simplicity, we focus on the boundary layer at the bot-
tom only. In the computations below, U and U bl generically denote remainder terms in the
expansion for u"app or its derivatives. The definitions of these remainder terms may change
from the estimate of one Ii to another Ij .

First, we deal with the terms for which estimates hold for any  .

Term I4. We start by considering I4, when restricted to the essential set. Using (3.62),
the assumptions on the pressure function and the fact that Œjı�"j�ess is uniformly bounded,
we can estimateˇ̌̌̌

1

"2

Z
�

r � u"appŒP.�
"; �"app/�ess

ˇ̌̌̌
�
1

"2
kr � u"appkL1kŒı�

"�essk
2
L2

� C"
1

"2

Z
�

E.�"; �"app/;

where we have also used that r � u"app D ".r � u1 Crh � u
bl
1;h
/.

Let us consider the integral over the residual set. By (3.62) again, we have ŒP �res D

ŒP.�"/� P.�"app/�res � P
0.�"app/Œı�

"�res. The second term can be easily controlled, in view
of the uniform boundedness of �"app and the L1 estimate in (3.69). For the first term, we
use decomposition (3.70): when �" is bounded, the same argument as above applies. On
the set ¹�" � N�C �º, instead we use hypothesis (1.10), the uniform boundedness of �"app
and the controls in (3.49) to get

1

"2

Z
�

jr � u"appj jP.�
"/ � P.�"app/j1¹�"� N�C�º �

C

"

Z
�

jP.�"/ � P.�"app/j1¹�"� N�C�º

�
C

"
.kŒ�"�resk


L CL.�res// � C":
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Putting everything together, we finally infer that

jI4j � C"C C"
1

"2

Z
�

E.�"; �"app/; (3.72)

where the last term will be handled by Grönwall’s lemma.

Term I9. The control of I9 is direct, as no �" or ı�" enters into play. We get

jI9j � "kS
"
kL2kıu

"
kL2 � C"K2.t/; (3.73)

where the functionK2.t/D ku".t/kL2 Cku"app.t/kL2 belongs to L2.Œ0;T // for all T > 0.

Terms I8, I10 and I11. We deal with I8 using Hardy’s inequality. This gives

jI8j D "

ˇ̌̌̌Z
�

x3

"
Sbl
�x3
"

�
�
ıu"

x3

ˇ̌̌̌
� Cı"k�S

bl
k
2
L2
C ı"k@3ıu

"
k
2
L2
� Cı"

2
C ı"k@3ıu

"
k
2
L2
; (3.74)

for some small ı > 0 to be chosen later. The same holds for I10 and I11: since @3 N� is
uniformly bounded we have

jI10j D "

ˇ̌̌̌Z
�

x23
"2

�Z 1

0

@3 N�.sx3/ ds

�
.ubl
0;h;b/

?
�
ıu"
h

x3

ˇ̌̌̌
� Cı"k�

2ubl
0;h;bk

2
L2
C ı"k@3ıu

"
hk
2
L2
� Cı"

2
C ı"k@3ıu

"
hk
2
L2
; (3.75)

jI11j D "

ˇ̌̌̌Z
�

.1 � x3/
2

"2

�Z 1

0

@3 N�.1 � s.1 � x3// ds

�
.ubl
0;h;t /

?
�
ıu"
h

1 � x3

ˇ̌̌̌
� Cı"k�

2ubl
0;h;bk

2
L2
C ı"k@3ıu

"
hk
2
L2
� Cı"

2
C ı"k@3ıu

"
hk
2
L2
: (3.76)

In the estimates above, we have used the fact that the terms k�Sblk2
L2
; k�2ubl

0;h;b
k2
L2

and
k�2ubl

0;h;t
k2
L2

are O."2/.
Now we consider the terms whose bounds must be treated differently if  � 2 or

3
2
�  < 2.

Term I3. First of all, observe that kRbl.x3
"
/k2
L2x
D O."/. Thus, we can estimate

1

"

ˇ̌̌̌Z
�

H 00.�"app/Œı�
"�ess.R

bl
C "R"/

ˇ̌̌̌
� C

1

"
kRbl
C "R"kL2kŒı�

"�esskL2

� C"C
C

"2

Z
�

E.�"; �"app/;

where we have used also (3.66). As for the residual part, in view of (3.69), we can argue in
exactly the same way if  � 2. If 3

2
�  < 2, instead we put theL1 norm on the remainder

terms and use the L1 bound of (3.69) to get

1

"

ˇ̌̌̌Z
�

H 00.�"app/Œı�
"�res.R

bl
C "R"/

ˇ̌̌̌
� C":

In any case, in the end we arrive at the bound

jI3j � C"C
C

"2

Z
�

E.�"; �"app/: (3.77)
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Term I6. Once again, we use the decomposition of ı�" into essential and residual parts.
For the term involving the essential part, thanks to Young’s inequality and to the controls
(3.53) and (3.66), one hasˇ̌̌̌Z

�

Œı�"�ess@tu
"
app � ıu

"

ˇ̌̌̌
� kŒı�"�esskL2k@tu

"
appkL1kıu

"
kL2

� C"2K1.t/C
1

"2
E.�"; �"app/;

where the function K1 D ku"k2L2 C ku
"
appk

2
L2

belongs to L1.Œ0; T // for all T > 0.
Next let us consider the term involving the residual part: when  � 2, we can argue

exactly as above, in view of (3.69). If instead 3
2
�  < 2, we start by writingZ

�

Œı�"�res@tu
"
app � ıu

"
D

Z
�

Œ�"�res@tu
"
app � ıu

"
�

Z
�

Œ�"app�res@tu
"
app � ıu

":

For the second term, we use the uniform boundedness of �"app and estimate (3.49) to gather,
for some function K2 2 L2.Œ0; T // for all T > 0, the inequalityˇ̌̌̌Z

�

Œ�"app�res@tu
"
app � ıu

"

ˇ̌̌̌
� Ckıu"kL2.L.�res//

1=2
� C"K2.t/:

For the term involving Œ�"�res, we use decomposition (3.70) for the residual set. The inte-
gral over the first set can be treated exactly as just done for �"app (because �" is uniformly
bounded therein). Concerning the integral over the second set, we haveˇ̌̌̌Z

�

�"1¹�"� N�C�º@tu"app � ıu
"

ˇ̌̌̌
� C

p�" ıu"
L2

�Z
�

�"1¹�"� N�C�º
�1=2

� C
p�" ıu"2

L2
C C"2;

since the last integral in the first line can be bounded by the integral over the residual set,
for which we can use (3.49).

Let us introduce the following notation: we set ı2�./ D 1 if 3
2
�  < 2, ı2�./ D 0

otherwise. In the end, from the previous computations we get

jI6j � C"."K1.t/C ı2�./K2.t/C ı2�./"/

C C

�
1

"2

Z
�

E.�"; �"app/C ı2�./
p�" ıu"2

L2

�
: (3.78)

Terms I1, I2 and I5. Terms I1, I2 and I5 have to be combined, enabling us to see a
cancellation at the highest order in ". Such a cancellation is a key point in [20]. After
setting U WD u"app � .u0;h C u

bl
0;h
; 0/, we can write

I1 C I2 C I5 D
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"2

Z
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ı�"rG � ıu" �
1
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Z
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H 00.�"app/@3 N�ıu
"
3ı�
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Z
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"

Z
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.r?h �1/

?
� ıu"h

�
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"

Z
�

ı�".ubl
0;h/
?
� ıu"h �

Z
�

ı�"e3 � U
�
xh; x3;

x3
"
;
1�x3
"
; t
�
� ıu":
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Notice that H 00. N�/ D P 0. N�/
N�

and .r?
h
�1/
? D �rh�1. Moreover, from (3.1) we get

N�rG D P 0. N�/r N�:

Therefore, we find

I1 C I2 C I5 D�
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Z
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ı�"U?h
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xh; x3;

x3
"
;
1�x3
"
; t
�
� ıu"h D J1 C J2 C J3 C J4 C J5:

Using a Taylor expansion for h.z/ D H 00.z/ with integral remainder, we can write

J1 C J2 D�
1

"

Z
�

.h0. N�/�1@3 N�C h. N�/@3�1/ıu
"
3ı�

"

�

Z
�

�21

�Z 1
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.1 � s/h00. N�C s"�1/ ds
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@3 N�ıu
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3ı�
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D�

Z
�

�21

�Z 1

0

.1 � s/h00. N�C s"�1/ ds

�
@3 N�ıu

"
3ı�

";

where we have used (3.6) in the last equality. Since �1, N� and @3 N� are L1t;x , in view of
(1.10) the control of J1 C J2 becomes similar to that exhibited for I6. In the same way,
after noticing that rh�1 and "�1.H 00.�"app/ �H

00. N�// are uniformly bounded in time and
space, the control of J3 is obtained. Then J1C J2 and J3 verify estimate (3.78). The same
can be said about J5, because in addition Uh belongs to L1t;x .

Therefore, it remains to deal with J4, for which we rely on Hardy’s inequality. More
precisely, let us start, as usual, by dealing with the essential part: we haveˇ̌̌̌

1
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Z
�

Œı�"�ess.u
bl
0;h/
?
� ıu"h
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"
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Z
�

E.�"; �"app/C C"
2
k�ubl

0;hk
2
L1
t;x;�
k@3ıu

"
hk
2
L2
:

Notice that, for " small enough, the second term can be swallowed by the third term on
the left-hand side of (3.64). As for the control of the residual part, suppose that  � 2 for
a while: in this case, we can argue in the exact same way and obtain, in view of (3.69),
that ˇ̌̌̌

1

"

Z
�

Œı�"�res.u
bl
0;h/
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� ıu"h
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k@3ıu

"
hk
2
L2
:
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The case 3
2
�  < 2 is slightly more involved. The control over ¹0 < �" � N� � �º does

not present any special difficulty, since we have uniform bounds for �" (and obviously for
�"app) on that set: then we can argue as for controlling the essential part. Hence, let us focus
on ¹�" � N�C �º. First of all, using that

p
aC b �

p
aC
p
b, we notice thatˇ̌̌̌

1

"

Z
�

Œı�"�res.u
bl
0;h/
?
� ıu"h

ˇ̌̌̌
�
1

"

Z p
ı�" 1¹�"� N�C�ºjubl

0;hj
p
�" jıu

"
hj

C
1

"

Z p
ı�" 1¹�"� N�C�ºjubl

0;hj

q
�"app jıu

"
hj: (3.79)

For the first term on the right-hand side of (3.79), we proceed in the following way:Z
�

p
ı�" 1¹�"� N�C�ºjubl

0;hj
p
�" jıu

"
hj

� kŒı�"�resk
1=2
L ku
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0;hkL1k

p
�" ıu

"
hkL2.L.�res//

1=q;

where 1
2
C

1
2
C

1
q
D 1. Using (3.65) and (3.66), we deduce that
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p
�" ıu

"
hkL2 :

After applying Young’s inequality, this term can be controlled by Grönwall’s lemma in the
final estimate. For the last term in (3.79), we argue in the following way:Z p

ı�" 1¹�"� N�C�ºjubl
0;hj

p
�"app jıu

"
hj D "
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"
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ˇ̌̌x3
"
ubl
0;h
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x3
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1=2
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L .L.�res//

1=q
C k�"appkL1.L.�res//

1=2
�
;

where q is defined as above. Notice that, in view of (3.49), we have kŒ�"�reskL DO."
2= /

and L.�res/ D O."
2/. Therefore, we finally find

1

"

Z p
ı�" 1¹�"� N�C�ºjubl

0;hj
p
�"app jıu

"
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:

In the end, we deduce the following control:

jI1 C I2 C I5j �
C

"2

Z
�

E.�"; �"app/C Cı2�./k
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�" ıu"hk

2
L2

C C"."K1.t/C ı2�./K2.t/C ı2�.//

C .C"2 C ı2�./ı"/k@3ıu
"
hk
2
L2
; (3.80)
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where the last term on the right-hand side can be absorbed into the left-hand side of the
relative entropy inequality (3.64).

Finally, let us deal with I7.

Term I7. We start by considering the following decomposition:

I7 D �

Z
�

ı�"u"app � ru
"
app � ıu

"
�
1

"

Z
�

�"ıu"3@�u
bl
0;h

�x3
"

�
� ıu"h

�

Z
�

�"ıu"3@�u
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�x3
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�
� ıu" �

Z
�

�"ıu"h � rh.u0;h C u
bl
0;h/ � ıu

"
h

� "

Z
�

�"ıu" � U � ıu"

D J6 C J7 C J8 C J9 C J10;

where "U D ".ru1 C
�
rh
0

�
ubl
1 / is the remainder term in the expansion for ru"app.

The first term J6 can be handled as done with I6. Indeed, one has

u"app � ru
"
app D .u0;h C u

bl
0;h/ � rh.u0;h C u

bl
0;h/C .u1;3 C u

bl
1;3/@�u

bl
0;h

�x3
"

�
C h:o:t:;

where h.o.t. represents higher-order terms in ". Then u"app � ru
"
app is uniformly bounded in

L1t;x . Therefore, J6 verifies an inequality similar to (3.78) above.
Terms J8, J9 and J10 can be simply bounded as

jJ8j � Ck@�u
bl
1 kL

1
t;x
k
p
�" ıu"k2

L2
;
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;

jJ10j � C"kU kL1t;xk
p
�" ıu"k2

L2
:

We remark that these estimates hold for  � 3
2

.
We now focus on the remaining term J7, which is the most difficult one to deal with.

The difficulties come from the need to gain smallness in " (by using Hardy’s inequality
as above) from the low integrability of the residual part and from the fact that this term is
quadratic in ıu". We first decompose

�" D Œı�"�ess C Œı�
"�res C �

"
app: (3.81)

The essential part is easy to bound: owing to the boundedness of �" on that set and to an
application of Hardy’s inequality, we get
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2
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:
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The control of the part involving �"app is similar, so let us turn to the residual part. Two
different estimates are computed if  is larger or smaller than the critical exponent 2. For
 � 2, we write, for ˛ 2 .0; 1/ to be chosen later on,

ıu"3 D .ıu
"
3/
1�˛ .ıu

"
3/
˛

x˛3
x˛3

and then apply Sobolev’s and Hardy’s inequalities: this yields
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3k
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: (3.82)

We use the same technique for ıu"
h

with ˇ 2 .0;1/. Then, choosing ˛, ˇ such that ˛C ˇD
1
2

, we have, for all ı > 0 to be chosen later,
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whereK1.t/D kru"3.t/k
2
L2
C kru"app;3.t/k

2
L2

belongs to L1.Œ0; T // for all T > 0. In the
second inequality we have used the lower bound

E.�".x; t/; �"app.x; t// � cjı�
".x; t/j2;

which comes from (3.65) when  � 2.
For 3

2
�  < 2, we use the same argument as in the case  � 2 for ıu"3. The control of

ıu"
h

is instead done via the anisotropic Sobolev embedding given in Lemma 3.12. Hence,
for ˛ 2 Œ0; 1� such that 2 � 3
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Hence we can swallow the whole right-hand side on the conditions that  > 6
5

(which is
the case, since  � 3

2
) and " is sufficiently small.

To put it in a nutshell, we obtain the following bound on J7:
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Therefore, we finally get the following estimate for I7:
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Remark 3.13. The anisotropic Sobolev embedding in Lemma 3.12 can be used to provide
better estimates only for  small. For instance, in (3.79), using Lemma 3.12 we get a
remainder term of order "˛ , with 0 < ˛ < 1 for 3

2
�  < 2 and ˛ > 1 only for  < 12

11
,

while by using the smallness of the Lebesgue measure of �res we get a remainder term of
order " for 3

2
�  < 2.

In the end, summing our estimates, we get from (3.64) the following differential
inequality: there exist functions C1.t/; C2.t/ 2 L1.Œ0; T //, and constants C3 > 0 and
"0 2 .0; 1/, such that, for all " 2 .0; "0/, all t 2 .0; T / and all ı > 0, one has
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(3.85)

C �

Z
�

jrhıu
"
j
2 dx C "

Z
�

j@3ıu
"
j
2 dx C �

Z
�

jr � ıu"j2 dx

� C1.t/

�Z
�

�"jıu"j2 dx C
1

"2

Z
�

E.�"; �"app/ dx

�
C "C2.t/

C
�min.�;�/

10
C C"

. 52�
3
 /�
�
krhıu

"
k
2
L2
C C3.ı"C "

1C/k@3ıu
"
k
2
L2

C
�min.�;�/

10
C C"

1
2
�
k@3ıu

"
3k
2
L2
: (3.86)
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Let us stress that C1.t/, C2.t/, C3 and "0 do not depend on ". The quantities these con-
stants depend on have been written explicitly in the computations above; in particular,
C1.t/ and C2.t/ contain the functions K1.t/ and K2.t/.

Choosing ı small enough and using the identity @3ıu"3 D r � ıu
" � rh � ıu

"
h
, the last

three terms in (3.86) can be swallowed in the left-hand side. The estimate in Theorem 2
follows from Grönwall’s lemma.
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