
Ann. Inst. H. Poincaré
Anal. Non Linéaire 39 (2022), 575–646
DOI 10.4171/AIHPC/15

© 2022 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Freely floating objects on a fluid governed by the
Boussinesq equations

Geoffrey Beck and David Lannes

Abstract. We investigate here the interactions of waves governed by a Boussinesq system with a
partially immersed body allowed to move freely in the vertical direction. We show that the whole
system of equations can be reduced to a transmission problem for the Boussinesq equations with
transmission conditions given in terms of the vertical displacement of the object and of the average
horizontal discharge beneath it; these two quantities are in turn determined by two nonlinear ODEs
with forcing terms coming from the exterior wave field. Understanding the dispersive contribution
to the added mass phenomenon allows us to solve these equations, and a new dispersive hidden
regularity effect is used to derive uniform estimates with respect to the dispersive parameter. We
then derive an abstract general Cummins equation describing the motion of the solid in the return
to equilibrium problem and show that it takes an explicit simple form in two cases, namely, the
nonlinear nondispersive and the linear dispersive cases; we show in particular that the decay rate
towards equilibrium is much smaller in the presence of dispersion. The latter situation also involves
an initial boundary value problem for a nonlocal scalar equation that has interest of its own and for
which we consequently provide a general analysis.

1. Introduction

1.1. General setting

Water waves have been studied quite intensively in the last decades, from the theoretical,
modeling, and numerical viewpoints. Even though considerable progress has been made,
the water waves equations (or free surface Euler equations) remain too complex to be
used for most applications and reduced asymptotic models are used instead. In coastal
regions in particular, shallow-water models are used. These models are simpler because
they take advantage of the vertical structure of the velocity field in shallow water to get
rid of the dependence on the vertical variable (see the review paper [28]): the equations
are therefore d -dimensional instead of .d C 1/-dimensional for the water waves problem
(d is the horizontal dimension), and the problem is no longer a free boundary problem. For
instance, in dimension d D 1 and to first order with respect to the so-called shallowness
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parameter (see Appendix A), one finds the nonlinear shallow-water equations8̂<̂
:
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(1.1)

where � denotes the elevation of the surface with respect to the rest state, h D h0 C � the
total height of the water column (h0 is the depth of the fluid at rest), and q is the horizontal
discharge, that is, the vertical integral of the horizontal velocity of the fluid; we also denote
by � the constant density of the fluid and by P the pressure at the surface (for instance, a
constant atmospheric pressure). This system is an hyperbolic quasilinear system.

To second order with respect to the shallow-water parameter, but under a weak non-
linearity assumption, a popular model is the Boussinesq–Abbott system8̂<̂

:
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(1.2)

which can be seen as a dispersive perturbation of the nonlinear shallow-water equations
(1.1). Other equivalent Boussinesq systems can be derived, and the weak-nonlinearity
assumption can be lifted, leading to the more complicated Serre–Green–Naghdi equations;
we refer to [28] for more details on these models, which will not be addressed in this paper.

Motivated by ship motion and more recently by applications to marine renewable ener-
gies (offshore wind energies, or wave energy convertors), several authors have addressed
the issue of the interaction of waves with a floating object. This problem adds another
layer of complexity to the water waves problem because it involves several other free
boundary problems (the position of the object, the motion of the contact line with the sur-
face of the fluid) and CFD simulations such as Reynolds averaged Navier–Stokes (RANS)
simulations are far from being able to simulate a full sea state for a single floating object
([14]). A less precise and less general, but potentially much more efficient, alternative is
to develop an approach based on the aforementioned reduced models; this study has to be
understood as a step in this direction.

Early studies considered infinitesimal motions and focused mainly on the stability of
the equilibrium of floating bodies ([2, 21]) and engineers use a phenomenological linear
integro-differential equation, the so-called Cummins equations ([11, 31]) to describe the
motion of the floating object. In these linear models, the pressure P i exerted by the fluid
on the object is given by the (linear approximation of the) Bernoulli equation,

�
1

�
P i D g�w C @tˆjzD�w ;

where �w is the parametrization of the wetted part of the floating body and ˆ the velocity
potential of the fluid. The first term on the right-hand side is called hydrodynamic pressure
and the second one the dynamic pressure. The velocity potential necessary to compute
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this latter is found by solving a Poisson equation in the fluid domain with mixed boundary
condition at the surface (homogeneous Dirichlet on the free surface, nonhomogeneous
Neumann on the bottom of the object); finally, the equations are complemented by the
(linearized) kinematic equation @t� D @zˆjzD0 for the free surface � and by Newton’s
equation for the motion of the solid. A simpler linear shallow-water approximation was
also proposed in dimension d D 1 in [21], basically consisting in replacing @zˆjzD0 by
�@2xˆjzD0 in the kinematic equation (see Remark 4.2 below).

The above formulation of the problem of waves interacting with a floating body can
easily be extended to the nonlinear case (see for instance [12] where Zakharov’s Hamil-
tonian formulation of the water waves problem is extended in the presence of a floating
object, or for instance [13,39] for numerical studies). We do not provide too many details
here because instead we use the approach of [27] in which the pressure P i exerted by the
fluid on the object is understood as the Lagrange multiplier associated to the constraint
that, under the object, the surface of the fluid coincides with the bottom of the object.
More precisely, a formulation of the water waves equations in terms of the surface eleva-
tion � and the horizontal discharge Q 2 Rd was proposed in [27] that reads8̂<̂

:
@t� Cr �Q D 0;

@tQCr �

�Z �

�h0

V ˝ V
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1

�

Z �

�h0

rPNH D �
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hrP ;

(1.3)

where V is the horizontal component of the velocity field in the fluid domain, P is the
pressure at the surface, and PNH is the nonhydrostatic pressure in the fluid, whose exact
expression has no importance here. In the parts where the object is not in contact with the
water (the exterior region), P is the constant atmospheric pressure and the right-hand side
vanishes in the second equation. In the region located under the object (the interior region),
one has P D P i, which is the Lagrange multiplier of the aforementioned constraint, that
can be written, using the first equation, as

r �Q D �@t�w:

One must therefore handle a system of equations of “compressible” type in the exterior
region, with a system of equation of “incompressible” type in the interior region; this
coupling is reminiscent of what happens in other contexts for congested flows ([40]). Note
that there are other ways of exploiting the fact that the pressure is a Lagrange multiplier, as
in [23] for instance where a discrete constrained variational numerical scheme is proposed
for the simulation of wave–buoy interactions in shallow water.

The interest of this approach, whose relevance has been confirmed by comparisons
with numerical simulations solving the fully nonlinear equations ([39]), is that it is quite
flexible; indeed, instead of the full water waves equations in .�; Q/ formulation (1.3), it
is possible to implement it with simpler asymptotic models, and even numerical schemes.
In this paper we shall analyze the equations obtained when this method is applied with
the nonlinear shallow-water equations (1.1) and, more specifically, with the Boussinesq
equations (1.2).
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The equations obtained in the case of the nonlinear shallow-water equations have been
studied and solved in [19]; the problem is surprisingly difficult because of the dynamics
of the contact points at the transition between the interior and the exterior region. The
problem can be reduced to a free boundary hyperbolic transmission problem reminiscent
of the one obtained for the stability of shocks ([4,35,37]), but with the Rankine–Hugoniot
condition replaced by a fully nonlinear condition. One way to circumvent this difficulty is
to consider floating objects with vertical sidewalls; in this case, the horizontal position of
the contact points is no longer a free boundary problem, as it is known if the position of
the object is known. This situation was considered for a solid allowed to move in vertical
translation only in [27] in dimension d D 1, and in [5] when d D 2 with radial symmetry.
In [34] the same situation was considered with d D 1 in the presence of viscosity. This
approach has also been used to model a wave energy converter named the oscillating water
column in [7]. These references deal with the exact nonlinear shallow-water equations
with a constraint accounting for the presence of the floating body; it can be interesting,
especially for numerical simulations, to relax this constraint and use techniques similar to
those used to study low-Mach regimes in gases; this is the approach followed in [16, 17].

The equations obtained in the case of the Boussinesq equations have been much less
studied. The reason is that while initial boundary value problems are quite well understood
for hyperbolic systems ([4, 35, 37], as well as [19] for more recent and precise results in
the specific case d D 1), there is no such theory for dispersive perturbations of such sys-
tems, such as the Boussinesq–Abbott equations (1.2). In [20] and [8], the authors propose
a system of two Boussinesq systems (one in the interior region and one in the exterior
region), while P i is numerically solved so that these two sets of equations are compati-
ble but the formulation used there does not allow us to write the simple explicit elliptic
equation on P i used here and associated with the constraint on the surface. The approach
consisting in using constrained Boussinesq equations to model the presence of a floating
object has only been treated in [9], with d D 1 and with a fixed object. Moreover, the
Boussinesq system used there is a variant of (1.2), physically less interesting but mathe-
matically more convenient because in the case of a fixed object the problem can then be
reduced to a transmission problem with linear transmission conditions; as we shall see,
working with (1.2) and/or a nonfixed object leads to more complicated nonlinear trans-
mission conditions. One of the main features of [9] is that it shows the role of dispersive
boundary layers associated with the dispersive term of the Boussinesq equations and we
will of course have to deal with that here.

The goal of this paper is to treat the interaction of waves governed by the Boussinesq–
Abbott system (1.2) with an object with vertical sidewalls allowed to move freely in the
vertical direction. To this end, we need to address several issues. For the modeling aspects,
if the elliptic equation for P i is quite straightforward to derive, the boundary conditions
necessary to solve it are not clear and require some work; one also needs to understand the
coupling with Newton’s equations that govern the motion of the solid, and in particular
the influence of the dispersive terms on the added mass phenomenon. The formulation
of the whole set of equations involved as a quite simple transmission problem for the
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Boussinesq–Abbott equations is also of particular interest since it is very adapted for
efficient numerical simulations (work in progress) and can be used to provide a useful
qualitative insight, as shown here for the return to equilibrium problem (also called “decay
test”; it is a standard benchmark used by engineers in particular to calibrate coefficients
in the Cummins equation). For the theoretical aspects, the contribution of the dispersive
effects to the added mass phenomenon (that were not treated in [9] because the object was
fixed) require special attention, and the nonlinear nature of the dispersive contribution in
the transmission conditions makes the derivation of a uniform energy estimate much more
complicated than in [9]: we have to exploit a new type of hidden regularity at the bound-
ary, granted by the dispersive terms, and that is of independent interest for the analysis of
initial boundary value problems in the presence of dispersive terms. Also, the dispersive
terms induce nonlocal effects in the analysis of the return to equilibrium problem; this
leads us to develop a general study for the analysis of initial boundary value problems for
nonlocal scalar equations that exhibits interesting phenomena when the “local” limit is
considered and a dispersive smoothing that can also be of interest in other contexts where
nonlocal scalar equations are involved.

1.2. Organization of the paper

Section 2 is devoted to the derivation of the wave–structure interaction equations in the
framework described above. We briefly describe (in dimensionless form) in Section 2.1
the Boussinesq–Abbott system used to describe the propagation of the waves and provide
in Section 2.2 the dimensionless version of Newton’s equations for a solid allowed to
move only in the vertical direction. We also need coupling conditions between the interior
and exterior regions; they are described in Section 2.3. The issue mentioned above for
the boundary conditions on the interior pressure P i is addressed in Section 2.4. It is then
possible to solve for P i and to reduce the equations in the interior region to a set of two
ODEs on the vertical displacement ı and on the horizontal average discharge hqii, with
source terms accounting for the coupling with the exterior wave field.

These elements are used in Section 3 to reduce all the equations involved in the
wave–structure interaction problem under consideration to a transmission problem; see
Section 3.1. The mathematical structure of this transmission problem is investigated in
Sections 3.2 and 3.3 where we propose a reformulation of the equations to exhibit the
nontrivial contribution of the dispersive terms to the added mass phenomenon. We then
show in Section 3.4 that the whole system can be reduced to an infinite-dimensional ODE,
allowing us to establish well-posedness. In order to control the existence time as the dis-
persive parameter � goes to zero, we address in Section 3.5 the issue of uniform estimates
and exhibit in particular a new hidden regularity phenomenon associated with the disper-
sive terms.

In Section 4 we describe a special configuration, the return to equilibrium (or decay
test), which is both of practical interest because it is a classical benchmark for engineers,
and theoretically interesting because it allows one to provide details on the qualitative
behavior of the solutions. In particular, we want to investigate whether the solid motion
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is governed by the Cummins equation, an integro-differential equation used by engineers,
and whether we are able to generalize this equation to the nonlinear framework. We show
in Section 4.1 how to derive an abstract evolution equation of Cummins type to describe
the solid motion. This abstract equation turns out to reduce to a second-order nonlinear
scalar ODE in the nonlinear nondispersive case and to a linear integro-differential equation
in the linear dispersive case; see Sections 4.2 and 4.3 respectively. The qualitative behavior
of the solutions is commented on in both cases; in particular, we numerically observe and
theoretically prove that the presence of dispersion makes the return to equilibrium slower.
It is also shown that the waves in the exterior domain can be found by solving an initial
boundary value problem for a Burgers equation in the nonlinear case, and for a nonlocal
perturbation of a linear transport equation in the dispersive case.

The nonlocal initial boundary value problem just mentioned does not fit into any
general theory, and since similar problems are likely to appear in other contexts where
nonlocal equations play a role, we address this issue in Section 5. We consider a non-
local perturbation of a scalar transport equation (we consider both positive and negative
velocity). We show the well-posedness of these problems, but under one additional com-
patibility condition on the data. We explain why this additional compatibility condition
disappears as the dispersive parameters tend to zero and the nonlocal transport equations
formally converge to the standard transport equation. We also exhibit a smoothing effect
associated with these nonlocal initial boundary value problems.

Finally, the link between the equations with dimensions and their dimensionless coun-
terparts is made in Appendix A.

1.3. Notation

The horizontal axis R is decomposed throughout this paper into an interior region 	 D

.�`; `/ and an exterior region E D EC [ E� with E� D .�1;�`/ and EC D .`;1/,
and two contact points x D ˙`. For any function f admitting left and right limits at ˙`,
we use the following notation:

• restriction to the interior domain fi D f j	 ,

• restriction to the exterior domain fe D f jE ,

• exterior jump Jf K and interior jump JfiK defined as

Jf K D fe.`/ � fe.�`/; JfiK D fi.`/ � fi.�`/; (1.4)

• exterior average hf i and interior average hfii defined as

hf i D
1

2
.fe.`/C fe.�`//; hfii D

1

2
.fi.`/C fi.�`//; (1.5)

• exterior trace at the boundary points of a function f ,

f˙ WD .fe/jxD˙` D lim
x!.˙`/˙

f .x/;
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• in dimensionless variables, the bottom of the floating object is parametrized by
"�w.t; x/, the water height at equilibrium under the object is heq.x/ < 1, and "ı.t/
denotes at time t the distance of the center of mass to its equilibrium position; these
quantities are related by

"�w.t; x/ D "ı.t/C .heq.x/ � 1/:

We also need to introduce the following functional spaces and notation:

• If f is a function of time, we sometimes use the notation Pf D d
dt f and Rf D d2

dt2
f .

• For all f 2 L2.E/ we simply write jf j2 for the associated norm.

• For all n 2 N we denote by Hn.E/ the standard Sobolev space on E , and define

Hn
WD HnC1.E/ �HnC2.E/:

• For all �0 2 R we denote

C�0 WD
®
s 2 C j Re.s/ > �0

¯
:

• For all s D �C i! 2 C (�; ! 2 R), we denote by
p
s the square root with positive

real part.

2. Derivation and analysis of the wave–structure interaction
equations

This section is devoted to the derivation of wave–structure interaction equations in the
case of a floating object allowed to move freely in the vertical direction (see Figure 1),
and using a nonlinear dispersive wave model to describe the propagation of the waves.
To this end, we follow the strategy of [27] where it was proposed to see the pressure P i

exerted by the fluid on the object as the Lagrange multiplier associated with the constraint
that under the object, the surface of the water coincides with the bottom of the floating
object. The first step, considered in Section 2.1, is to choose the model used to describe the
propagation of waves; we choose here the Boussinesq–Abbott system which is a nonlinear
dispersive set of equations commonly used to model wave propagation. We then write in
Section 2.2 the dimensionless version of Newton’s equations for a solid allowed to move
only in the vertical direction. The way these two systems of equations are coupled is
described in Section 2.3. One of the coupling conditions turns out to be that the total
(fluid + solid) energy of the system has to be conserved at the order of precision of the
model; it is shown in Section 2.4 that this imposes boundary conditions on the interior
pressure P i. These boundary conditions allow one to solve the pressure equation in the
interior region (under the object); it follows that in this region, all the equations can be
reduced to a set of two ODEs on the vertical displacement ı and on the horizontal average
hqii of the horizontal discharge; source terms in these ODEs account for the coupling with
the exterior wave field.
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Figure 1. The physical configuration (dimensionless variables).

2.1. The equations for the fluid

We consider in this paper weakly nonlinear waves in shallow water, which are known to
be described with a good accuracy by Boussinesq-type systems and which are of inter-
est in a wide range of applications. To be more precise, let us define the dimensionless
nonlinearity parameter " and the shallowness parameter � as

" D
a

H
; � D

H 2

L2
;

where a is the typical amplitude of the waves, L their typical horizontal scale, and H the
depth at rest. The shallowness assumption means that �� 1 and the statement that we
have a weak nonlinearity means that " D O.�/. Under this latter assumption, Boussinesq
systems are approximations of the full free surface Euler equations of order O.�2/ (see
for instance [26, 28] for more details on the derivation and full justification of these mod-
els). There are actually many different Boussinesq systems that are formally equivalent
since they differ from each other only by terms of order O.�2/, which do not affect the
precision of the model. One of the most popular of these Boussinesq systems is the so-
called Boussinesq–Abbott system ([1, 15]), which reads, in dimensionless variables (see
Appendix A) and when a pressure Patm C P (where Patm is a constant reference value for
the atmospheric pressure) is applied at the surface,8<:@t� C @xq D 0;�

1 �
�

3
@2x

�
@tq C "@x

�1
h
q2
�
C h@x� D �

1

"
h@xP .h D 1C "�/:

(2.1)

Here, "� is the dimensionless surface elevation with respect to its rest position, hD 1C "�
is the dimensionless water height, and q is the horizontal discharge (the vertical integral
of the horizontal velocity). In general, the pressure at the surface is a constant atmospheric
pressure and @xP D 0, so that the right-hand side in the second equation of (2.1) vanishes;
we present the general system here because it is relevant in the presence of a floating body,
under which the pressure is no longer equal to the atmospheric pressure (see Section 2.4
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below). Note that P can be nontrivial in other contexts, for instance when one wants to
study the impact of atmospheric disturbances on the waves ([36]).

What makes the Boussinesq–Abbott system an interesting model is that it is a disper-
sive perturbation of the nonlinear shallow-water equations written in conservative form8<:@t� C @xq D 0;@tq C "@x

�1
h
q2
�
C h@x� D �

1

"
h@xP I

its drawback is that local (and global) conservation of energy is only satisfied to order
O."�/. Defining the local energy density e and the local energy flux F as8̂̂<̂

:̂
e.�; q/ D

1
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1

2
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h
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1
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.@xq/

2;

F.�; q/ D q
�
� C

1

"
P C "

1

2

q2

h2
� �

1

3h
@x@tq

�
;

(2.2)

one has indeed
@teC @xF D

1

"
P@xq C "�R; (2.3)

with R given by

R D
1

6h2
.@xq/

3
C

1

3h2
q.@t@xq/@x�I (2.4)

the right-hand side of (2.3) is formally of size O."�/ when P D 0 and therefore of size
O.�2/ in the weakly nonlinear regime " D O.�/. Setting � D 0 in (2.2) and (2.3), one
recovers the exact local conservation of energy associated with the nonlinear shallow-
water equations.

Remark 2.1. In the second equation of the Boussinesq–Abbott system, one can replace
"@x.

1
h
q2/ by "@x.q2/ up to a term of order O."2/ which is of order O.�2/ in the weakly

nonlinear regime. To order O.�2/ and when P D 0, the following system is therefore
formally equivalent to the Boussinesq–Abbott system (2.1):8<:@t� C @xq D 0;�

1 �
�

3
@2x

�
@tq C "@x.q

2/C h@x� D 0:
(2.5)

This system is no longer a dispersive perturbation of the nonlinear shallow-water equations
because the nonlinear terms are not the same, but it was used in [9] because it satisfies an
exact local conservation of energy,

@t QeC @x zF D 0; (2.6)

but for a slightly different energy/flux pair,

Qe D
1

2
�2 C

1

2
q2 C

"

6
�3 C

1

6
�.@xq/

2;

zF D q
�
� C "

2

3
q2 C "

1

2
�2 � �

1

3
@x@tq

�
I
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in spite of this convenient property, we prefer to work with the Boussinesq–Abbott system
(2.1) rather than (2.5) because, contrary to Qe, e is an asymptotic expansion of the mechan-
ical energy of the waves associated with the full water waves equations (see for instance
[26, §6.3.1]).

2.2. The equations for the solid

We refer to Appendix A for the derivation of the dimensionless Newton equations that
we state here. We recall that we consider here a floating object with vertical lateral walls
located, in dimensionless coordinates, at x D ˙` (` > 0) and allowed to move only ver-
tically (heave motion). At time t , the part of the bottom of the object in contact with the
fluid is parametrized in dimensionless variables by a function "�w (the subscript w stands
for the “wetted” part of the object), with

�w.t; x/ D ı.t/C
1

"
.heq.x/ � 1/; (2.7)

where "ı.t/ measures the vertical deviation of the object from its equilibrium position
and heq the distance at equilibrium between the bottom of the object and the bottom of the
fluid layer.

Denoting by P i.t; x/ the pressure exerted by the fluid on the object at the point
.x; "�w.t; x// of the wetted surface, Newton’s equation describing the vertical motion
of the floating object under the action of its weight and of the hydrodynamic forces can be
written as (see Appendix A)

�2buoy
Rı C

1

"
m D

1

"

1

2`

Z `

�`

P i.t; x/ dx; (2.8)

where 2��buoy is the dimensionless buoyancy period (see Appendix A) and m the dimen-
sionless mass which, by virtue of Archimedes’ principle, satisfies the relation

m D
1

2`

Z `

�`

.1 � heq/: (2.9)

A convenient equivalent formulation of Newton’s equation is obtained by introducing the
hydrodynamic pressure …i defined in the interior region .�`; `/ as

…i.t; x/ D P i.t; x/C "�w.t; x/I (2.10)

using (2.7), Newton’s equation (2.8) is then equivalent to

�2buoy
Rı C ı D

1

"

1

2`

Z `

�`

…i.t; x/ dx: (2.11)

Remark 2.2.
• One can of course add an external force to the right-hand side of (2.11).
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• In the case of an object with prescribed motion, the function ı is known, and there is
no need to use (2.8).

One naturally associates its mechanical energy Esolid with the object, which is the sum
of its potential and kinetic energies. In dimensionless form, it is given by

Esolid D 2`
�1
"
mı C

1

2
�2buoy
Pı2
�
:

The variations of the mechanical energy of the solid are due to the hydrodynamic forces;
more precisely, we have

d
dt

Esolid D 2` Pı
�1
"
mC �2buoy

Rı
�

and therefore, using (2.8),
d
dt

Esolid D

�
1

"

Z `

�`

P i

�
Pı: (2.12)

2.3. The wave–structure equations

We recall that the Boussinesq–Abbott equations with a relative pressure P exerted at the
surface are given by8<:@t� C @xq D 0�

1 �
�

3
@2x

�
@tq C "@x

�1
h
q2
�
C h@x� D �

1

"
h@xP :

(2.13)

Among the three quantities involved in (2.13), namely, �, q, and P , only two are not
constrained, but not always the same two. To make a more precise statement, we must
distinguish between the interior domain 	 D .�`; `/ which is the projection on the hori-
zontal axis of the region where the surface of the water is in contact with the object, and
the exterior domain E D .�1;�`/ [ .`;1/, where it is in contact with the air:

• In the exterior domain, the surface of the fluid is free, but the pressure is constrained. In
the absence of surface tension, the pressure at the surface should match the atmospheric
pressure, which we assume to be constant. Recalling that if f is a function on R, we
denote by fe its restriction to the exterior domain E , and we have therefore

P e D 0; (2.14)

while �e and qe must solve the standard Boussinesq–Abbott system8<:@t�e C @xqe D 0;�
1 �

�

3
@2x

�
@tqe C "@x

� 1
he
q2e

�
C he@x�e D 0;

for t � 0; x 2 E: (2.15)

• In the interior domain we have a symmetric situation in the sense that the pressure is free
but the surface of the water is constrained: by definition of the interior domain, it should
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coincide with the bottom of the object which is parametrized by "�w.t; x/. Recalling that
fi denotes the restriction of a function f to the interior domain 	, we have therefore

�i D �w; (2.16)

with �w given by (2.7), while qi and P i must solve8<:@xqi D �Pı

@tqi C "@x

� 1
hw
q2i

�
C hw@x�w D �

1

"
hw@xP i;

for t � 0; x 2 	; (2.17)

with hw D 1C "�w and where we used the facts @t�w D Pı and that @2xqi D 0.

Constraints (2.14) and (2.16), together with the systems of equations (2.15) and (2.17)
and Newton’s equation (2.11), are not enough to fully determine .�; q; P / in both regions
E and 	, and the position ı.t/ of the object. Indeed, coupling conditions between the
exterior and interior regions are required:

• Continuity of the discharge, namely

qi.t;˙`/ D qe.t;˙`/: (2.18)

• Conservation of the total energy at the order of precision of the model. As already
noticed in [9] in the case of a fixed object, (2.18) is not enough to obtain a closed set
of equations. In [9], where system (2.5) was used, the exact equation (2.6) for local con-
servation of energy was used and a boundary condition for the pressure was derived by
imposing exact conservation of energy of the fluid, or equivalently, since the solid was
considered fixed, of the energy of the fluid + solid system. In the present case where
the object is allowed to move, this condition becomes more complex and because local
conservation of energy (2.3) is only satisfied to order O."�/ for the Boussinesq–Abbott
system (2.1), the additional conditions must be stated as

the total energy of the fluid + solid system is conserved to order O."�/; (2.19)

We show in Section 2.4.1 below how to derive boundary conditions on P i at˙` from this
condition.

The remainder of this section and Section 3 are devoted to the proof of the fact that
constraints (2.14) and (2.16), systems of equations (2.15) and (2.17), and coupling condi-
tions (2.18) and (2.19), together with Newton’s equation (2.11), form a well-posed system
of equations (in a sense made precise below) that fully determines .�; q;P / in both regions
E and 	, as well as the position ı.t/ of the floating object.

2.4. The equations in the interior domain and the solid motion

As said above, in the interior domain 	 D .�`; `/, the surface elevation is constrained
(one has �i D �w with �w given by (2.7)) but the surface pressure is an unknown quantity,
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denoted by P i. As seen in (2.17), the mass conservation equation and the constraint on
the free surface also imply that in the interior domain, one has @xqi D �Pı and therefore

qi.t; x/ D �x Pı C hqii.t/ (2.20)

where the mean horizontal discharge hqii is a function of time that needs to be determined.
We show in Section 2.4.1 how to derive equations for the interior pressure; these equa-

tions can be used to make more explicit the equation for the mean discharge hqii (see
Section 2.4.2) as well as for the displacement ı of the floating object, exhibiting in partic-
ular the added mass phenomenon (see Section 2.4.3).

N.B. For the sake of clarity, we shall derive the evolution equations for the mean
discharge and for the displacement under the assumption that the function heq is even (i.e.,
the solid has a vertical axis of symmetry); the general case is more technical but not more
difficult (see [27] for the corresponding equations in the shallow-water case).

2.4.1. The interior pressure. We first show how condition (2.19) on the conservation of
total energy can be used to find the boundary values of the interior pressure at xD˙`. The
energy Efluid of the fluid can be decomposed into two parts corresponding to the exterior
and interior regions, respectively denoted E D .�1;�`/ [ .`;1/ and 	 D .�`; `/,

Efluid D

Z
E

ee C

Z
	

ei;

with e as in (2.2), while we recall that the mechanical energy of the solid is given by

Esolid D 2`
�1
"
mı C

1

2
�2buoy
Pı2
�
I

the total energy of the fluid + solid system is

Etot D Efluid CEsolid:

The following proposition shows that if the energy flux F introduced in (2.2), namely

F.�; q/ D q
�
� C

1

"
P C "

1

2

q2

h2
� �

1

3h
@x@tq

�
;

is continuous across the contact points x D ˙` then the total energy is conserved up to
O."�/ terms.

Proposition 2.1. Any sufficiently regular and decaying solution of the wave–structure
equations (2.11) and (2.14)–(2.17) satisfies

d
dt

Etot D JFeK � JFiKC "�
�Z

	

Ri C

Z
E

Re

�
;

with F as in (2.2) and R as in (2.4).
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Proof. For the sake of clarity, we simply write O."�/ instead of "�.
R

	
Ri C

R
E

Re/ in
the computations below. One computes

d
dt

Efluid D

Z
E

@tee C

Z
	

@tei

D �

Z
E

@xFe �

Z
	

�
@xFi �

1

"
P i@xqi

�
CO."�/;

where we used the approximate conservation of local energy (2.3). Recalling the definition
(1.4) of the exterior and interior jumps, and since @xqi D �Pı, this yields

d
dt

Efluid D JFeK � JFiK �
�
1

"

Z `

�`

P i

�
Pı CO."�/:

Together with (2.12), this directly gives the result.

The following corollary shows that if the coupling condition (2.18) is satisfied then
condition (2.19) on conservation of total energy can be achieved by imposing boundary
conditions at x D ˙` on the interior pressure P i or equivalently on the interior hydro-
dynamic pressure …i given by (2.10), namely

…i D P i C "�w:

Corollary 2.1. Assume that, in addition, condition (2.18) on the continuity of the dis-
charge is satisfied, and that the traces …˙i of the interior hydrodynamic pressure at
x D ˙` are given by

1

"
…˙i D �

˙
e CG˙e �G˙i ; (2.21)

where …i is as defined in (2.10) and

G D "
1

2

q2

h2
�
�

3h
@x@tq: (2.22)

Then one has
d
dt

Etot D "�

�Z
	

RC

Z
E

R

�
:

Remark 2.3. Recalling that the first equation of (2.17) implies

qi D �x Pı C hqii; @x@tqi D �Rı;

and that �i D �w with �w given by (2.7) (so that hw D heq C "ı), we have

G˙i D "
1

2

.hqii � ` Pı/
2

hw.˙`/2
C

�

3hw.˙`/
Rı;

which does not depend on any other unknown of the problem than the functions ı and hqii.
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Proof of Corollary 2.1. From the proposition, it is enough to show that under the assump-
tions of the corollary, one has

JFeK � JFiK D 0:

Using the hydrodynamic pressure … D P C "�, one can write

F D q
�1
"
…CG

�
with G as in the statement of the corollary. Using the identity

JfgK D Jf Khgi C hf iJgK;

and remarking that the continuity of q at ˙` implies that hqi D hqii and JqK D JqiK, this
yields

JqiK
hD

Ge �Gi C
1

"
.…e �…i/

Ei
C hqii

h
JGe �Gi C

1

"
.…e �…i/K

i
D 0:

Since JqiK and hqii are two uncorrelated functions of time, this leads us to impose J…iK
and h…ii, and therefore …˙i D ˙

1
2
.J…iK˙ 2h…ii/,

1

"
…˙i D �

˙
e CG˙e �G˙i ;

where we also used the fact that …e D "�e.

We can rewrite the second equation of the Boussinesq equations (2.17) in the interior
domain using the hydrodynamic pressure …i introduced in (2.10) under the form

@tqi C "@x

� 1
hw
q2i

�
D �

1

"
hw@x…i: (2.23)

Differentiating this equation with respect to x and substituting @t@xqi D �Rı, one obtains
a second-order elliptic equation for …i, while Corollary 2.1 provides nonhomogeneous
Dirichlet boundary conditions. The resolution of this elliptic boundary value problem is
straightforward and fully determines …i.

Proposition 2.2. The hydrodynamic interior pressure …i is the unique solution of the
elliptic problem 8̂̂<̂

:̂
�@x

�1
"
hw@x…i

�
D �Rı C "@2x

� 1
hw
q2i

�
;

1

"
…ijxD˙` D �

˙
e CG˙e �G˙i ;

(2.24)

where hw.t; x/ D heq.x/C "ı.t/ and G is as in (2.22).



G. Beck and D. Lannes 590

2.4.2. An equation for hqii. We have already seen that in the interior region, the equation
for conservation of mass in the fluid shows that the discharge is given by qi D�x PıC hqii.
The following proposition shows that hqii is determined by an ODE with a source term
related to the wave field in the exterior domain. Note that Ge accounts for the contribution
of the nonlinear and the dispersive terms of this exterior wave field.

Proposition 2.3. Assume that heq is an even function. Then if P i and qi solve the interior
fluid equations (2.17) and if the interior pressure satisfies the boundary conditions given
in Corollary 2.1, then hqii satisfies the ODE

˛."ı/
d
dt
hqii C "˛

0."ı/ Pıhqii D �
1

2`
J�e CGeK (2.25)

with G as in (2.22) and

˛."ı/ D
1

2`

Z `

�`

1

heq.x/C "ı
dx and ˛0."ı/ D �

1

2`

Z `

�`

1

.heq.x/C "ı/2
dx: (2.26)

Remark 2.4. The assumption that the bottom parametrization is symmetric with respect
to the vertical axis ¹x D 0º simplifies the computations but is not necessary. It could be
handled as in [27] for the hyperbolic (� D 0) case.

Proof of Proposition 2.3. Let us first state some relations that will be used throughout this
proof and that can easily be deduced from the first equation of (2.17):

qi D �x Pı C hqii; @2x@tqi D 0; Jq2i K D �4` Pıhqii;
1

2`

Z `

�`

qi

hw
D ˛hqii;

where the last relation stems from the assumption that the bottom of the object is symmet-
ric with respect to the vertical axis ¹x D 0º.

Rewriting the momentum equation as in (2.23), namely

@tqi C "@x

� 1
hw
q2i

�
D �

1

"
hw@x…i;

dividing by hw D heq C "ı, and integrating between �` and ` one obtains

2`˛
d
dt
hqii C "

r q2i
h2w

z
C "

Z `

�`

@xhw

h3w
q2i D �

1

"
J…iK:

Using the relations derived above, this gives

2`˛
d
dt
hqii � 4"`

D 1
h2w

E
Pıhqii � 2"

�Z `

�`

x@xhw

h3w

�
Pıhqii D �

1

"
J…iK:

The result then follows upon noting that (see Corollary 2.1, Remark 2.3 and use the fact
that heq is even)

r1
"
…i

z
D J�e CGeKC 2"`

D 1
h2w

E
Pıhqii

and (after integration by parts)

˛0."ı/ D �
D 1
h2w

E
�
1

`

Z `

�`

x@xhw

h3w
:
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2.4.3. Reformulation of the equation for the solid motion. We recall that the solid
motion is governed by Newton’s equation that can be put in the form (2.11), namely

�2buoy
Rı C ı D

1

"

1

2`

Z `

�`

…i.t; x/ dx:

Now that the interior hydrodynamical pressure …i is fully determined by Proposition 2.2,
it is possible to rewrite this equation in a more explicit form, namely a second-order non-
linear ODE on ı with a source term coming from the exterior wave field.

Proposition 2.4. Assume that heq is an even function. For sufficiently smooth and decay-
ing solutions of the wave–structure equations (2.11), (2.14)–(2.18), and (2.21), the dis-
placement ı of the floating object solves the ODE

��."ı/
2 Rı C ı � "ˇ."ı/ Pı2 �

"

2
˛0."ı/hqii

2
D h�e CGei; (2.27)

with G as in (2.22) and ˛0."ı/ as in Proposition 2.3, and where ��."ı/ and ˇ."ı/ are
given by

��."ı/
2
D �2buoy C

1

2`

Z `

�`

x2

heq.x/C "ı
dx C

1

3
�
D 1

heq C "ı

E
; (2.28)

ˇ."ı/ D
1

2

1

2`

Z `

�`

x2

.heq.x/C "ı/2
dx: (2.29)

Remark 2.5. Recalling that 2��buoy is the dimensionless buoyancy period defined by

�2buoy D
h20
L2
m;

where m is the dimensionless mass (see Appendix A), one can write (2.28) in the form

��."ı/
2
D
h20
L2
.mCma."ı//

where ma."ı/ acts as an added mass,

ma."ı/ D
L2

2`h20

Z `

�`

x2

heq.x/C "ı
dx C

1

3

D 1

heq C "ı

E
: (2.30)

The buoyancy period is therefore affected by the added mass phenomenon, that is, by the
fact that when it moves in a fluid, a solid not only has to accelerate its own mass but also
the mass of the fluid around it. One can check from (2.30) that, in shallow water, the added
mass can actually be larger than the proper mass of the solid, a fact that has been noticed
in ocean engineering ([43]). One deduces from (2.28) that the added mass effect increases
the value of the buoyancy period.

Note also that the last term in (2.28) is due to the presence of the dispersive term in the
equations. This is not the only contribution of dispersion to the added mass effect. As we
shall see later (see Remark 3.2), dispersion induces a qualitatively new added mass effect
in the form of a coupling with the equation on hqii.
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Proof of Proposition 2.4. For the sake of conciseness, we use here the notation
¬ `
�`
D

1
2`

R `
�`
f . Newton’s equation (2.11) can be written

�2buoy
Rı C ı D

1

"

1

2`

Z `

�`

…i.t; x/ dx

D �
1

"

− `

�`

x@x…i.t; x/ dx C
D1
"
…i

E
; (2.31)

where we used an integration by parts to derive the second equation. In order to compute
the integral on the right-hand side, let us remark that from Proposition 2.2 we get

�
1

"
@x.hw@x…i/ D �Rı C "@

2
x

� 1
hw
q2i

�
:

Integrating this relation, there is a constant c0.t/ such that

�
1

"
@x…i D �

x

hw

Rı C "
1

hw
@x

� 1
hw
q2i

�
C
c0.t/

hw
:

Recalling that heq (and therefore hw D heq C "ı) is an even function, and using (2.20), we
get

�
1

"

− `

�`

x@x…i D �

�− `

�`

x2

hw

�
Rı C "

− `

�`

x

hw
@x

� 1
hw
q2i

�
D �

�− `

�`

x2

hw

�
Rı C "

�
�

− `

�`

x2

hw
@x

� x
hw

�
C

Dx2
h2w

E�
Pı2

C "

�
�

− `

�`

1

hw
@x

� x
hw

�
C

D 1
h2w

E�
hqii

2:

We now need the following lemma.

Lemma 2.1. The following identities hold (with hw D heq C "ı):

�

− `

�`

x2

hw
@x

� x
hw

�
dx C

1

2

Dx2
h2w

E
D ˇ."ı/;

�

− `

�`

1

hw
@x

� x
hw

�
dx C

1

2

D 1
h2w

E
D
1

2
˛0."ı/:

Proof of the lemma. For the first identity, one just has to note that

�

− `

�`

x2

hw
@x

� x
hw

�
D �

− `

�`

x2

h2w
�
1

2

− `

�`

x3@x

� 1
h2w

�
D
1

2

− `

�`

x2

h2w
�
1

2

Dx2
h2w

E
;

the last identity stemming from an integration by parts.
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For the second identity, since ˛0."ı/ D �
¬ `
�`

1
h2w

, we just have to note that

�

− `

�`

1

hw
@x

� x
hw

�
D �

− `

�`

1

h2w
�
1

2

− `

�`

x@x

� 1
h2w

�
D �

1

2

− `

�`

1

h2w
�
1

2

D 1
h2w

E
;

the last line following from an integration by parts.

Corollary 2.1 and Remark 2.3 imply thatD1
"
…i

E
D h�e CGei � "

D1
2

hqii
2 C `2 Pı2

h2w

E
�
1

3
�
D 1
hw

E
Rı;

so that we can deduce from (2.31) and the lemma that�
�2buoy C

− `

�`

x2

hw
C
1

3

D 1
hw

E
�

�
Rı C ı D "ˇ Pı2 C "

1

2
˛0hqii

2
C h�e CGei;

which is the result stated in the proposition.

3. Wave–structure interaction as a transmission problem

Taking advantage of the analysis performed in the previous section, our aim here is to
formulate the wave–structure interaction equations under the form of a transmission prob-
lem and to study this latter. The transmission problem, formed by the Boussinesq–Abbott
equations in both components of the exterior domain coupled with transmission condi-
tions involving forced ODEs on ı and hqii, is made explicit in Section 3.1. A toy model
for this transmission problem (with more standard transmission conditions) is then pro-
posed in Section 3.2; based on this analysis, a first reformulation of the wave–structure
transmission problem is performed in Section 3.3, exhibiting in particular a nontrivial
contribution of the dispersive terms to the added mass phenomenon. In Section 3.4, a sec-
ond reformulation is proposed, in which we show that the whole system can be recast as
an ODE; taking advantage of this structure, we show that the wave–structure equations
are well posed. The existence time thus obtained is however not uniform with respect to
the dispersive parameter �; we therefore address in Section 3.5 the issue of proving uni-
form estimates and establish a conditional uniform estimate as well as uniform estimates
for equations linearized around nontrivial states. To this end, we exhibit a new hidden
regularity phenomenon granted by the dispersive terms.

We shall use the following notation throughout this section.

Notation 1. • For the sake of clarity we simply write f instead of fe when dealing with
the restriction of a function f to the exterior domain E . To avoid any confusion, we still
keep the subscript and write fi for the restriction to the interior domain 	.
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• Dispersive boundary layers play a central role in the analysis performed in this section.
Since their decay rate is

p
�=3, it is convenient to introduce the parameter � as

� D

r
�

3
:

• We shall denote by fsw the momentum flux associated with the shallow-water equations,
namely

fsw D
h2 � 1

2"
C "

q2

h
D � C "

�1
2
�2 C

q2

h

�
; (3.1)

so that the Boussinesq–Abbot equations (2.1) in the exterior domain can be written in the
more compact form´

@t� C @xq D 0;

.1 � �2@2x/@tq C @xfsw D 0;
for t � 0; x 2 E:

3.1. Derivation of a wave–structure transmission problem

Recalling that the interior discharge is given by qi.t; x/D�x Pı.t/C hqii.t/, the continuity
condition (2.18) on the discharge can be equivalently written in the form

JqK D �2` Pı and hqi D hqii;

where we recall that the jump J�K and average h�i are defined in (1.4) and (1.5). The anal-
ysis performed in Section 2 shows that the wave–structure equations (2.13)–(2.19) can
be reduced to a transmission problem for the Boussinesq–Abbott system written on both
components of the exterior domain E . This is summarized in the following theorem.

Theorem 3.1. Assume that heq is an even function and let fsw be as in (3.1). For smooth
enough solutions, the resolution of the wave–structure equations (2.11), (2.14)–(2.18),
and (2.21) is equivalent to the resolution of the standard Boussinesq–Abbott system´

@t� C @xq D 0;

.1 � �2@2x/@tq C @xfsw D 0;
for t � 0; x 2 E; (3.2)

on both components of the exterior domain E and with transmission conditions

hqi D hqii and JqK D �2` Pı; (3.3)

and where hqii and ı solve

˛."ı/
d
dt
hqii C "˛

0."ı/ Pıhqii D �
1

2`
J� CGK; (3.4)

��."ı/
2 Rı C ı � "ˇ."ı/ Pı2 � "

1

2
˛0."ı/hqi i

2
D h� CGi; (3.5)

where we recall that

G D "
1

2

q2

h2
� �2

1

h
@x@tq;

and that ˛."ı/ is as in Proposition 2.3, and ��."ı/ and ˇ."ı/ as in Proposition 2.4.
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The energy of the fluid in the exterior domain, associated with (3.2) is

Eext D
1

2

Z
E

�
�2 C

1

h
q2 C �2

1

h
.@xq/

2
�
; (3.6)

and we also introduce an “interior energy” that depends only on Z D .hqii; ı; Pı/,

Eint D `.ı
2
C ��."ı/

2 Pı2 C ˛."ı/hqii
2/: (3.7)

They satisfy the following energy estimate in which we do not seek to close the estimate by
providing a control of the residual term; this more delicate issue is addressed in Section 3.5
below.

Proposition 3.1. Under the assumptions of Theorem 3.1, the following energy estimate
holds,

d
dt
ŒEext CEint�C "�

2`
D 1

.heq C "ı/2

E
Pı3 D 3"�2

Z
E

R;

where we recall that R D 1
6h2
.@xq/

3 C
1
3h2
q.@t@xq/@x�.

Proof. There are two ways to derive the energy estimate of the proposition. The first one
consists in multiplying the two equations of (3.2) by � and q respectively and integrating
by parts, and multiplying (3.4) and (3.5) by hqii and Pı respectively, and adding the result-
ing identities. The second method is to deduce it from the approximate conservation of
total energy established in Corollary 2.1, namely

d
dt

Etot D 3"�
2

�Z
	

RC

Z
E

R

�
; (3.8)

and Etot can be written as

Etot D Eext C

Z
	

ei CEsolid with Esolid D 2`
�1
"
mı C

1

2
�2buoy
Pı2
�
;

where we recall that eD 1
2
�2C 1

2
1
h
q2C �2 1

2h
.@xq/

2. Since in the interior region, one has
qi D �x Pı C hqii and �i D �w with �w given by (2.7), namely �w D ı C

1
"
.heq � 1/, one

deducesZ
	

R D
d
dt

��Z `

�`

1

6"hw
�
`

3"

D 1
hw

E�
Pı2
�
�
`

3

D 1
h2w

E
Pı3;Z

	

ei D
.heq � 1/

2

2"2
� 2`

1

"
mı C `ı2 C hqii

2

Z `

�`

1

2hw
C
1

2
Pı2
Z `

�`

x2 C �2

hw
;

where we used Archimedes’ principle (2.9) for the second term on the right-hand side of
the second identity. Plugging these identities into (3.8) yields the result.
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3.2. Study of a general transmission problem for the Boussinesq–Abbott system

Before addressing the transmission problem derived in the previous section, where the
transmission conditions involve ODEs that are coupled with the solution of the transmis-
sion problem itself, it is instructive to study a simpler, yet quite general, transmission
problem, where the transmission conditions are given in terms of known functions. More
precisely, we consider in this section the Boussinesq–Abbott equations´

@t� C @xq D 0;

.1 � �2@2x/@tq C @xfsw D 0;
for t � 0; x 2 E (3.9)

(with �2 D �=3 and fsw as in (3.1)) on both components of the exterior domain E and
with transmission conditions

hqi D f and JqK D 2g; (3.10)

where f; g 2 C 1.RC/ are known functions.

Remark 3.1. One can see the boundary value problem on the half-line .`;1/,´
@t� C @xq D 0;

.1 � �2@2x/@tq C @xfsw D 0;
for t � 0; x > `;

with boundary condition qjxD` D f as a particular case of the transmission problem (3.9)–
(3.10). Indeed, it suffices to extend � and q as �.t;�x/D �.t; x/ and q.t;�x/D �q.t; x/
for all x > ` and to take g D 0. The associated initial boundary value problem has been
considered in [22] in the linear case ("D 0, so that fsw D �) using Fokas’ unified transform
method. This initial boundary value problem has also been considered both theoretically
and numerically, but with a boundary condition on � rather than q, in [30].

In the case where � D 0 (the shallow-water equation), it is well known that the initial
boundary value problem associated with (3.9)–(3.10) is locally well posed in Hn.E/ �

Hn.E/ (n � 2) provided that n compatibility conditions are satisfied (see for instance
[19] or the lecture notes [29]). The presence of the dispersive term ��

3
@2x@t makes things

different; as observed in [9, 30] in related situations, a single compatibility condition is
enough to obtain a regular solution because dispersion smoothes the solution by creating
a dispersive boundary layer of order O.�/.

Indeed, it is possible to reduce (3.9)–(3.10) to an infinite-dimensional ODE. To per-
form this, it is necessary to introduce the regularizing operators R0 and R1 defined as
the inverses of .1� �2@2x/ with homogeneous Dirichlet and Neumann data respectively at
x D ˙`, that is,

R0f D u and R1f D v; (3.11)

where ´
.1 � �2@2x/u D f;

ujxD˙` D 0;
and

´
.1 � �2@2x/v D f;

.@xv/jxD˙` D 0:
(3.12)



Freely floating object with the Boussinesq equations 597

In the statement below, we denote

Hn
D HnC1.E/ �HnC2.E/:

Proposition 3.2. Let f; g 2 C 1.RC/, n 2 N, and U in D .� in; qin/ 2 Hn be such that

inf.1C "� in/ > 0; hqin
i D f .0/; and JqinK D 2g.0/:

Then for all � > 0, there is T > 0 such that system (3.9)–(3.10) has a unique solution
.�; q/ 2 C 1.Œ0; T ŒIHn/ with initial data U in.

Proof. The key ingredient of the proof is to reformulate the problem as an ODE.

Lemma 3.1. Let T > 0, .f; g/ 2 C 1.Œ0; T �/, and U D .�; q/ 2 C 1.Œ0; T �IH0/ be such
that infŒ0;T ��E 1C "� > 0, and such that the transmission conditions are initially satisfied:

hqjtD0i D f .0/ and JqjtD0K D 2g.0/:

Then U solves (3.9)–(3.10) if and only if it solves´
@t� D �@xq;

@tq D �@xR1fsw C . Pf ˙ Pg/e
� 1� jx�`j;

in E˙: (3.13)

Proof of the lemma. Recalling that R0 is the inverse of .1 � �2@2x/ with Dirichlet bound-
ary conditions on each side of E , the second equation of (3.9) is equivalent to

@tq D �R0@xfsw C . Pf ˙ Pg/e
� 1� jx�`j on E˙: (3.14)

Using the fact that R0@x D @xR1 we obtain the expected equation (3.13). The only thing
left to prove is therefore that if (3.14) is satisfied, and if the transmission condition (3.10)
holds at t D 0, then it holds for all time. This is obvious after remarking that one readily
gets from (3.14) that

d
dt
hqi D Pf and

d
dt

JqK D 2 Pg:

Proving that (3.13) is actually an ODE also requires the following lemma which, clas-
sically, can be established by multiplying both equations of (3.12) by u and integrating by
parts.

Lemma 3.2. The operators R`, �@xR`, and �2

2
@2xR` for ` D 0; 1 are bounded operators

on L2.E/, with operator norm smaller than 1.

Let O denote the open subset of Hn of the U D .�; q/ such that infE.1C "�/ > 0. Let
us also write (3.13) in compact form as

d
dt
U D ˆ.U /;
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where ˆ D .�1; �2/ and

�1 D �@xq; �2 D �@xR1fsw C . Pf ˙ Pg/e
� 1� jx�`j:

Since @xR1WHn ! HnC1 is a bounded operator (as a consequence of Lemma 3.2), we
can deduce from standard trace and product estimates in Sobolev spaces that ˆ is a
smooth mapping from O to Hn and the local existence follows from the Cauchy–Lipschitz
theorem.

3.3. Reformulation of the wave–structure transmission problem

The quantities JGK and hGi that appear as source terms in the differential equations (3.4)
and (3.5) for hqii and ı depend themselves on these two terms; indeed, in order to compute
JGK and hGi, one must solve the transmission problem (3.2)–(3.3) in which the transmis-
sion conditions are given in terms of hqii and ı.

In the nondispersive case (� D 0, shallow-water equations), this dependence is of
lower order and JGK and hGi can be treated as source terms in the ODEs for hqii and ı
(see Remark 3.2 below). A new phenomenon appears in the presence of dispersion: these
quantities contain leading-order terms in the differential equations for ı and hqii. As for the
added mass coefficient, they cannot therefore be treated as source terms, both theoretically
and numerically. This issue is addressed in the following theorem, where we essentially
show that JGK and hGi can be decomposed as the sums of explicit leading-order terms
and lower-order terms JHK and hHi that can be treated as source terms. We recall that we
denote respectively by R0 and R1 the inverses of .1� �2@2x/ with homogeneous Dirichlet
and Neumann data at x D ˙` (see (3.11), (3.12)).

Theorem 3.2. Assume that heq is an even function and let fsw be as in (3.1). For smooth
enough solutions, the resolution of the wave–structure equations (2.11), (2.14)–(2.18),
and (2.21) is equivalent to the resolution of the standard Boussinesq–Abbott system´

@t� C @xq D 0;

.1 � �2@2x/@tq C @xfsw D 0;
for t � 0; x 2 E; (3.15)

on both components of the exterior domain E and with transmission conditions

hqi D hqii and JqK D �2` Pı; (3.16)

and where hqii and ı solve the coupled system of ODEs

T�."ı; "�˙/
d
dt

�
hqii

Pı

�
C

 
"˛0."ı/ Pıhqii

ı � ".ˇ."ı/ Pı2 C 1
2
˛0."ı/hqi i

2/

!
D

�
�
1
2`

JHK
hHi

�
; (3.17)

with ˇ."ı/ as defined in (2.29) and with H D H.�; q/ given by

H.�; q/ D
1

2
"
�1
h
�2 �

q2

h2

�
C
1

h
R1fsw; (3.18)
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while T�."ı; "�˙/ is the invertible matrix given by

T�."ı; "�˙/ D

�
˛."ı/C 1

`
�h 1
h
i �

1
2
�J 1
h
K

�
1
2
�J 1
h
K ��."ı/

2 C `�h 1
h
i

�
; (3.19)

where we recall that ��."ı/ and ˛."ı/ are defined in (2.28) and (2.26) respectively.

Remark 3.2. The difference between (3.17) and the evolution equations (2.27) and (2.25)
on ı and hqii is that a new contribution to the added mass effect (see Remark 2.5) coming
from the dispersive term has been exhibited. It is of interest to note that the dispersive
terms not only provide a quantitative contribution to the added mass effect, but also a
qualitative one since it induces a new coupling between the equations on hqii and ı. This
is not the case in the nondispersive case where the matrix T�."ı; "�˙/ is diagonal and the
equations are only coupled through the nonlinear and source terms, namely8̂̂<̂

:̂
˛."ı/

d
dt
hqii C "˛

0."ı/ Pıhqii D �
1

2`

r
� C "

1

2

q2

h2

z
;

�0."ı/
2 Rı C ı � "ˇ."ı/ Pı2 �

"

2
˛0."ı/hqii

2
D

D
� C "

1

2

q2

h2

E
(this system can either be derived directly as in [5, 27, 34], or formally be derived from
(3.17) by setting � D 0 and observing that lim�!0R1fjxD˙` D f .˙`/).

Proof of Theorem 3.2. Taking into account the transmission conditions (3.16), formula
(3.14) for @tq becomes

@tq D �R0@xfsw C

� d
dt
hqii � ` Rı

�
e�

1
� jx�`j on E˙: (3.20)

We then obtain, after differentiating in space, multiplying by 1
h

, and taking the jump,

�2
r1
h
@t@xq

z
D ��2

r1
h
@xR0@xfsw

z
� 2�

D1
h

E d
dt
hqii C `�

r1
h

z
Rı:

Therefore the evolution equation (3.4) on hqii is equivalent to

� �2
r1
h
@xR0@xfsw

z
� 2�

D1
h

E d
dt
hqii C `�

r1
h

z
Rı

D

r
� C "

1

2

q2

h2

z
C 2`

�
˛

d
dt
hqii C "˛

0 Pıhqii

�
and therefore �

`˛ C �
D1
h

E� d
dt
hqii �

1

2
`�

r1
h

z
Rı C "`˛0."ı/ Pıhqii

D �
1

2

�
�2

r1
h
@xR0@xfsw

z
C

r
� C "

1

2

q2

h2

z�
:
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Remarking further that R0@x D @xR1, where R1 is the inverse of .1 � �2@2x/ with Neu-
mann boundary conditions on each side of E , one can write

�2@xR0@xfsw D
�

3
@2xR1fsw

D �fsw CR1fsw;

so that a first ODE on hqii and Pı is given by�
`˛."ı/C �

D1
h

E� d
dt
hqii �

1

2
`�

r1
h

z
Rı D �"`˛0."ı/ Pıhqii �

1

2
JHK; (3.21)

with H given by

H.�; q/ D � C
1

2
"
q2

h2
�
1

h
.1 �R1/fsw;

or equivalently by the formula given in (3.18).
Similarly, differentiating (3.20) with respect to x, multiplying by 1

h
, and taking the

average yields

�2
D1
h
@t@xq

E
D ��2

D1
h
@xR0@xfsw

E
�
1

2
�
r1
h

z d
dt
hqii C `�

D1
h

E
Rı;

which we can plug into (2.27) to obtain�
��."ı/

2
C `�

D1
h

E�
Rı�
1

2
�
r1
h

z d
dt
hqii D �ı C "ˇ."ı/ Pı

2
C
"

2
˛0."ı/hqii

2
C hHi: (3.22)

The result therefore follows from (3.20)–(3.22).

3.4. Reduction to an ODE

It was remarked in [9] in the case of a fixed structure (and for the simpler Boussinesq
system (2.5)) that the transmission problem could be reduced to an infinite-dimensional
ODE. We show here that this remains true in the case of a freely floating structure and
for the Boussinesq–Abbott system. In the statement below, we assume that .�; q/ 2 H
with H D H 1.E/ � H 2.E/; this regularity ensures that the traces of �, q, and @xq are
well defined at ˙`. Note also that the condition inf.t;x/2Œ0;T ��R h.t; x/ > 0 means that
inf.t;x/2Œ0;T ��E¹1C "�.t;x/º>0 and inf.t;x/2Œ0;T ��	¹heq.x/C "ı.t/º>0; this is therefore
a condition on � and on ı.

Proposition 3.3. For U D .�; q/ 2 C 1.Œ0; T �IH/ and Z D .hqii; ı; Pı/ 2 C
1.Œ0; T �IR3/

such that infŒ0;T ��R h > 0, and

JqjtD0K D �2` Pı.0/; hqjtD0i D hqii.0/;

system (3.15)–(3.17) is equivalent to8̂̂̂<̂
ˆ̂:
@t� D �@xq;

@tq D �@xR1fsw C
�
Q.Z; JHK/� `D.Z; hHi/

�
e�

1
� jx�`j;

d
dt

Z D Z.Z; hHi; JHK/;

(3.23)
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where the first two equations are cast on E˙, H is defined in (3.18), and where
Z.Z; hHi; JHK/ WD .Q.Z; JHK/; Pı;D.Z; hHi//T, with�

Q.Z; JHK/
D.Z; hHi/

�
D T�."ı; "�˙/

�1

 
�"˛0."ı/ Pıhqii �

1
2`

JHK
�ı C "ˇ."ı/ Pı2 C "1

2
˛0."ı/hqi i

2 C hHi

!
:

Proof. Let us remark first that if the initial data satisfy JqjtD0K D �2` Pı.0/ and hqjtD0i D
hqii.0/ then the transmission condition (3.3) is equivalent to

d
dt

JqK D �2` Rı and
d
dt
hqi D

d
dt
hqii: (3.24)

As already noticed in (3.20), the second equation of (3.15) together with the jump condi-
tion d

dt JqK D �2` Rı is equivalent to

@tq D �R0@xfsw C

� d
dt
hqii � ` Rı

�
e�

1
� jx�`j on E˙:

Using the fact that R0@x D @xR1 and replacing d
dt hqii and Rı by the formula provided by

(3.17), one obtains the result.

Using the fact that (3.23) is an ODE on the space Hn � R3, with Hn D HnC1.E/ �

HnC2.E/, we obtain the following well-posedness result for the wave–structure interac-
tion problem.

Theorem 3.3. For n � 0, consider initial data U in D .� in; qin/ 2 Hn and Zin D .hqii
in;

ı0; ı1/ 2 R3 satisfying inf hin > 0. Then for all " 2 Œ0; 1� and � > 0, there is T > 0 such
that system (3.23) has a unique solution in .U;Z/ 2 C 1.Œ0; T ŒIHn �R3/ with initial data
.U in; Zin/, which in addition belongs to C1.Œ0; T ŒIHn � R3/. Moreover, if T � denotes
the maximal existence time and T � <1, one has

lim sup
t!T �

hˇ̌̌�
�; q;

1

1C "�

�
.t/
ˇ̌̌
L1.E/

C jPı.t/j C jhqii.t/j C
ˇ̌̌ 1

heq C "ı.t/

ˇ̌̌
L1.	/

i
D C1:

Remark 3.3. Since relations (3.24) obviously hold for the solution, the transmission con-
ditions

hqi D hqii and JqK D �2` Pı

are satisfied for all time if the initial data satisfy

JqinK D �2`ı1; hqin
i D hqii

in:

Proof of Theorem 3.3. Let O denote the open subset of Hn �R3 of the .U;Z/D .�;q; hqii;

ı; Pı/ such that infR h > 0 (as already explained in the comments before Proposition 3.3,
this latter is a condition on � in the exterior domain, and on ı in the interior domain). Let
us also write (3.23) in compact form as

d
dt
.U; Z/ D ˆ.U; Z/;
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where ˆ D .�1; �2; �3; �4; �5/ and

�1 D �@xq; �2 D �@xR1fsw C .Q� `D/e�
1
� jx�`j;

�3 D Q.Z; JHK/; �4 D Pı; �5 D D.Z; hHi/:

From standard trace and product estimates in Sobolev spaces, ˆ is a smooth mapping
from O to Hn �R3 and the local existence follows from the Cauchy–Lipschitz theorem.
From Mose-type estimates, we also get

jˆ.U; Z/jHn�R3 � C�

�ˇ̌̌
�; q;

1

h

ˇ̌̌
L1.E/

; jhqii; ı; Pıj;
ˇ̌̌ 1
hi

ˇ̌̌
L1.	/

�
j.U; Z/jHn�R3 ; (3.25)

with C� a smooth nondecreasing function of its arguments. Classically, this means that if
the maximal existence time is finite, one of the arguments of C� has to blow up. Remark-
ing further that ı cannot blow up in finite time without Pı also blowing up, one gets the
result.

3.5. Uniform estimates

Theorem 3.3 shows that the equations are locally well posed, but the existence time is not
uniform with respect to " and � (or equivalently �) and may shrink to zero when these
parameters become very small. It is however possible to derive a uniform estimate on a
time interval of size O.1

"
/ under the assumption that .�; q/ remains uniformly bounded in

W 1;1.E/. This estimate is a generalization of the estimate one can derive for the Boussi-
nesq equations on the full line (see Step 0 of the proof), and implies in particular that for
a timescale O.1

"
/ the solid cannot touch the bottom if �, q, and their first-order spatial

derivatives remain bounded (note that we do not track the dependence on ` in the theorem
below; it is treated as a fixed quantity).

Theorem 3.4. Assume that the assumptions of Theorem 3.3 are satisfied and let M0 > 0

be such that

inf
E[	

� 1
hin

�
C j.� in; qin; �@xq

in/j2 C j.hqii
in; ı0; ı1/j �M0;

and assume moreover that there are T > 0 and M > 0 such that the solution provided by
Theorem 3.3 exists on Œ0; T � and that j.�; q/jL1.Œ0;T ��W 1;1.E// �M .

Then there exists T1 D T1.M0; M/ > 0 such that for all 0 � t � min¹T ; 1
"
T1º, one

has
inf

E[	

�1
h

�
C j.�; q; �@xq/.t/j2 C j.hqii; ı; Pı/.t/j � C.M0/;

with C.�/ a nondecreasing function of its argument.

Remark 3.4. The time T1 and the upper bound C.M0/ only depend on M0 and M ; in
particular they are uniform with respect to ."; �/ 2 .0; 1/2.

Proof of Theorem 3.4. For the sake of clarity, throughout this proof we generically denote
by C.�/ a nondecreasing function of its arguments that does not depend on " nor �, but
whose exact expression may differ from one line to another. We also recall that �2 D �=3.
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Step 0: Energy estimates for the Boussinesq equations on the full line. For the sake of
clarity we first explain here how to derive an energy estimate for the Boussinesq equations
(2.1) when they are cast on the full line R. More precisely, we show that if .�; q/ is a
smooth solution on a time interval Œ0; T � on which h � hmin > 0, then

8t 2 Œ0; T �; EBouss.t/ � EBouss.0/ exp
�
"tC

� 1

hmin
; j.�; q/jL1.Œ0;T �IW 1;1.R//

��
;

where EBouss is the energy associated with the Boussinesq system,

EBouss
D
1

2

Z
R

�
�2 C

1

h
q2 C �2

1

h
.@xq/

2
�
:

Using (2.3), one readily gets

d
dt

EBouss
D 3"�2

Z
R

R with R D
1

6h2
.@xq/

3
C

1

3h2
q.@t@xq/@x�;

so that

�2
Z

R
R � C

� 1

hmin
; j.@x�; @xq/jL1.R/

��
�2
ˇ̌̌ 1
p
h
@xq

ˇ̌̌2
L2.R/

C

ˇ̌̌ 1
p
h
q
ˇ̌̌
2
j�2@x@tqjL2.R/

�
:

Now, using the second equation of the Boussinesq system, one has

�2@x@tq D ��
2.1 � �2@2x/

�1@2xfsw; (3.26)

and therefore,

j�2@x@tqjL2.R/ � C
� 1

hmin
; j.�; q/jL1.R/

�ˇ̌̌�
�;

1
p
h
q
�ˇ̌̌
L2.R/

:

It is then straightforward to deduce that

d
dt

EBouss
� "C

� 1

hmin
; j.�; q/jW 1;1

�
EBouss;

which yields the energy estimate stated above.
We shall follow the general scheme of this proof for our wave–structure system; the

main differences are that some control is needed for the quantities ı, Pı, and hqii associated
with the interior region and that one has to consider an initial boundary value problem
instead of a simple initial value problem for the Boussinesq system; in particular, (3.26)
is no longer valid and boundary terms make the analysis more delicate.

Step 1: Adaptation for the wave–structure system, assuming that h � hmin on E for some
hmin > 0. We shall work here with the formulation (3.2)–(3.5) of the problem, as derived
in Theorem 3.1. The quantity EBouss used in Step 0 is here replaced by Eext, which is
also the integral of the local density of energy e but on the exterior region E instead of
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the whole line R, see (3.6), and we also need the interior energy Eint defined in (3.7). As
shown in Proposition 3.1, we have

d
dt
ŒEext CEint�C "�

2`
D 1
h2i

E
Pı3 D 3"�2

Z
E

R:

Controlling R as in Step 0, we have

d
dt
ŒEext CEint�C "�

2`
D 1
h2i

E
Pı3 � "C

� 1

hmin
; j.@x�; @xq/j1

�
Eext C "j�

2@x@tqj
2
2 (3.27)

(recall that the notation j�j2 stands for j�jL2.E/), and, as in the previous step, the key point is
to control j�2@x@tqj2. Because of the boundaries, and as shown by Proposition 3.3, (3.26)
must be replaced by

@t@xq D �@
2
xR1fsw �

1

�
Pq˙e
� 1� jx�`j;

where we recall that q˙ D qjxD˙` , so that

�2j@x@tqj2 . j�2@2xR1fswj2 C �
3=2
j. Pq�; PqC/j:

Since �2@2xR1WL
2 ! L2 is uniformly bounded (with respect to �), the first term on the

right-hand side can be controlled exactly as in (3.26), so that one gets from (3.27) that

d
dt
ŒEext CEint�C "�

2`
D 1
h2i

E
Pı3

� "C
� 1

hmin
; j.�; q/jW 1;1

�
Eext
C "�3j. Pq�; PqC/j

2: (3.28)

To close the estimate, we still need a control on j. Pq�; PqC/j.

Step 2: Control of j. Pq�; PqC/j. According to Proposition 3.3, one has

j. Pq�; PqC/j � .jQj C `jD j/; (3.29)

with Q and D defined in Proposition 3.3. We remark first that hHi and JHK, with H as
defined in (3.18), can be controlled as

jhHij C jJHKj � C
� 1

hmin
; j�j1

�
Œ".1C Pı2 C hqii

2/C j.R1fsw/˙j�;

with .R1fsw/˙ D .R1fsw/jxD˙` . Let us now remark that for all f 2 L2.E/, one has

.R1f /˙ D �
�1

Z
E˙

exp
�
�
1

�
jx � `j

�
f .x/ dx

so that
j.R1f /˙j � .2�/

�1=2
jf j2: (3.30)
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It follows from the above that

jhHij C jJHKj � C
� 1

hmin
; j.�; q/j1

�h
".1C Pı2 C hqii

2/C
1

�1=2
j.�; q/j2

i
:

We directly deduce from the definition of Q and D provided in Proposition 3.3 and (3.29)
that

j. Pq�; PqC/j � C
� 1

hmin
; j.�; q/j1

�h
jıj C ".1C Pı2 C hqii

2/C
1

�1=2
j.�; q/j2

i
: (3.31)

Step 3. We show here that one can choose T1 such that the assumption h � hmin > 0 is
satisfied on min¹T ; 1

"
T1º. Indeed, since by assumption infE h

in > 0, there exists hmin > 0

such that infE h
in � 2hmin. Since @t� D �@xq, one can write

h.t; x/ D hin.x/ � "

Z t

0

@xq.s; x/ ds;

and choosing T1 > 0 such that "T1M � hmin yields the result.

Step 4: Conclusion. Using (3.31) in (3.28), and plugging the resulting estimate into
(3.27), one obtains

d
dt
ŒEext CEint� � "F.Eext CEint/

for some smooth function F that does not depend on � 2 .0; 1/ and " 2 .0; 1/. From the
theorem of comparison for ODEs, one deduces that is possible to choose T1 > 0 such that
Eext CEint is uniformly bounded from above by a constant depending only on M0 on the
time interval min¹T ; 1

"
T1º. We have already seen that h � hmin > 0 on E over this time

interval. Taking a smaller T1 if necessary, one gets similarly that hi � hmin > 0 on 	. The
results follows.

Theorem 3.4 is only a conditional result, since it assumes that the solution remains
uniformly bounded inW 1;1.E/. This is the equivalent of the basicL2-estimate for hyper-
bolic initial boundary value problems. In the hyperbolic framework, the next natural steps
would be to obtain a similar control on the time derivatives of the solution by the ini-
tial value of these time derivatives, to express these latter quantities in terms of spatial
derivatives of the initial data, and finally to use some ellipticity property to control space
derivatives in terms of time derivatives. By Sobolev embedding, one could then control the
W 1;1.E/ by energy norms and obtain an unconditional result (see for instance [19] or the
lecture notes [29] for the implementation of this strategy for the shallow-water equations).

In the presence of dispersion, this strategy is much more delicate to implement; con-
trolling the initial value of the time derivatives in terms of spatial derivatives of the initial
data, and recovering information on the space derivatives from the control of the time
derivatives is considerably more difficult than in the hyperbolic case. This program has
been achieved in [9], where well-posedness is established for a timescaleO.1

"
/, uniformly

with respect to � (or equivalently �), but for the formally equivalent Boussinesq system
(2.5) instead of (2.1), and for a fixed object – these two conditions made possible the
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reduction to a transmission problem with linear transmission conditions. The situation
here is made more complicated for at least three reasons:

• The floating object is not fixed and one needs to understand its coupling with the
exterior wave field and in particular the dispersive contribution to the added mass
effect.

• The contribution of the dispersive term in the transmission conditions (3.3)–(3.5),
namely � �

3h
@x@tq, is nonlinear (in [9] it is given by the linear expression ��

3
@x@tq);

as shown below, this is why we need the hidden regularity effect exhibited here.

• The energy conservation is not exact as in [9]. Proposition 3.1 shows that the residual
is formally small, namely of order O."�2/, but it is not obvious at all that it can be
controlled by the natural energy of the system.

A full proof of the uniform well-posedness for (3.2)–(3.5) requires considerable work
and would probably double the size of this paper; we therefore postpone it for future
work. We want however to address here the issue of energy estimates for the linearized
equations since this might be where the main difference with respect to [9] lies, and
because it exhibits a phenomenon of independent interest that can be interpreted as a
dispersive equivalent of the trace estimates obtained in the hyperbolic case through Kreiss
symmetrizers.

In order to understand where the difficulty comes from, let us remark that when one
applies @jt (j � 1) to the linear expression ��

3
.@x@tq/˙, one finds ��

3
.@x@t .@

j
t q//˙

which is the same term with q replaced by @jt q. The transmission conditions one has to
deal with in [9] for the time derivatives of the solution have therefore the same structure
as the original one, and can be dealt with using the basic L2-estimate (the equivalent of
Theorem 3.4). Now, when applying @jt to the nonlinear term � �

3h
.@x@tq/˙ D

�
3h
.@2t �/˙,

one finds

@
j
t

� �
3h
.@2t �/˙

�
D

�

3h
.@2t .@

j
t �//˙

� �"
j

3
@t

�@t�
h2
@
j
t �
�
˙
C
�"

3

h
j @t

�@t�
h2

�
�
@2t �

h2

i
@
j
t �˙: (3.32)

The first term on the right-hand side of this expression is the same as the original one with
� replaced by @jt �, but the other two are new and they involve the trace of @jt � and @jC1t �

at x D ˙`. These quantities cannot be controlled by the energy norms of .@jt �; @
j
t q/ and

require a specific treatment that we now describe and which is based on a hidden regularity
effect of a completely different nature to the one, based on Kreiss symmetrizers, that
is used in the hyperbolic case get control on the trace of the solution (see for instance
[4, 19, 38]).

We consider a system linearized around a couple of functions .�; q/ (typically the
exact solution), and with source terms f , g1, and g2 in the linearized momentum and
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transmission condition equations respectively, namely8̂<̂
:
@t� C @xq D 0;

.1 � �2@2x/@tq C
�
h � "2

q2

h2

�
@x� C 2"

q

h
@xq D "f;

(3.33)

with the transmission conditions

hqi D hqii and JqK D �2` Pı; (3.34)

where hqii and Pı are provided by the linear ODEs

˛."ı/
d
dt
hqii C "b1ŒZ� � Z D �

1

2`
J� CG C "�2.c2Œ��� C @t .c1Œ���//KC "g1; (3.35)

��."ı/
2 Rı C ı C "b2ŒZ� � Z D h� CG C "�2.c2Œ��� C @t .c1Œ���//i C "g2; (3.36)

where ck Œ�� (k D 1; 2) is a smooth function of �, @t�; : : : ; @kt � and, recalling that Z D
.hqii; ı; Pı/

T,

b1ŒZ� D
�
˛0."ı/Pı;

d
dt
.˛0."ı/hqii/; ˛

0."ı/hqii

�T
;

b2ŒZ� D
�
�˛0."ı/hqii; 2

d
dt
.��."ı/��

0."ı/Pı/C ˇ0."ı/Pı
2
�
"

2
˛00."ı/hqii

2;�2ˇ."ı/Pı
�T
;

while G is given by

G D �"2
q2

h3
� C "

q

h2
q � �2

1

h
@x@tq: (3.37)

Remark 3.5. If .�ex; qex/ denotes an exact solution to the wave–structure equations (3.2)–
(3.5), then for all j � 1, the time derivatives .@jt �ex; @

j
t qex/ solve a system of the form

(3.33)–(3.36), with .�; ı/ D .�ex; qex/, .�; q/ D .@
j
t �ex; @

j
t qex/ and, according to (3.32),

c1Œ�ex� D �j
@t�ex

h2ex
and c2Œ�ex� D

h
j @t

�@t�ex

h2ex

�
�
@2t �ex

h2ex

i
;

while f , g1, and g2 are lower-order commutator terms; for instance for j D 1,

f D @t

�
�ex � "

q2ex

h2ex

�
@x�ex and g1 D g2 D 0:

The following theorem shows that the linearized problem (3.33)–(3.36) is well posed,
and provides a control on the augmented energy Eaugm defined as

Eaugm D jZj2 C j.�; q; �@xq/j22 C "�
3
j.��; �C/j

2
C "�5j. P��; P�C/j

2
I (3.38)

this energy contains the energy Eext CEint used in the proof of Theorem 3.4 but provides
in addition a control on the traces of �˙ and their first time derivatives. This is a hidden
regularity property granted by the dispersive terms. For the sake of clarity, in the following
statement, we simply write cj instead of cj Œ��.
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Theorem 3.5. Let .�; q/ 2 C 1.RC � E/ and assume that .c1; @tc1; c2/jxD˙` and .Z; PZ/
are continuous functions of time. Also let M > 0 be such that

j.�; @t�; @x�; q; @xq/jL1.RC�E/ �M and j.c1; c2; Z; PZ/jL1.RC/ �M;

and assume that there exists hmin > 0 and cmin > 0 such that

inf
RC�E

h � hmin and inf
RC�E

�
h � "2

q2

h2

�
� cmin:

Then for all .� in; qin/ 2 L2 � H 1.E/ and all Zin 2 R3, there exists a unique solution
.�; q; Z/ in C 1.RCIL2 � H 1.E/ � R3/ to (3.33)–(3.36) with initial data .� in; qin; Zin/.
Moreover, �jxD˙` exist in W 1;1

loc .RC/ and there are constants C0 D C0.
1
hmin

; 1
cmin
/ and

C D C.C0;M/ such that if "�C < 1, the following estimate holds for all t > 0:

Eaugm.t/ � C0

�
Eaugm.0/C "C

Z t

0

.jf j22 C j.g1; g2/j
2/

�
exp.
p
"C t/:

Remark 3.6. Without the extra control provided by the theorem on the hidden trace reg-
ularity of �, one could not close the energy estimate. Hidden regularity at the boundary
for hyperbolic systems was noticed in [33] and can be obtained in many cases by using
Kreiss symmetrizers that make the boundary condition maximal dissipative. The hidden
regularity is granted here by the dispersion (rather than a Kreiss symmetrizer), but it is of
a different nature since it provides a control for each time t of the traces, as opposed to
an L2-norm in time for maximally dissipative hyperbolic systems (see for instance [4,38]
and, more related to the present context, [19, 29], as well as [3] for a generalization of
Kreiss’ approach to a class of linear dispersive equations that does not cover the linear ver-
sion of the Boussinesq–Abbott system). Note also that even with this hidden regularity,
equations (3.33)–(3.36) do not obviously make sense because (3.35) and (3.36) involve
the traces @x@tqjxD˙ . This difficulty is removed if instead we work with the equivalent
formulation (3.44) derived in the proof.

Remark 3.7. The constants C0 and C involved in the statement of the theorem depend
only on hmin, cmin, and M ; in particular, they are uniform with respect to " 2 .0; 1/ and
� 2 .0; 1/ (equivalently, with respect to �). The theorem provides therefore uniform esti-
mates over a large timescale, namelyO."�1=2/, which is however shorter than theO."�1/
timescale classically associated with the existence time of solutions to a Boussinesq sys-
tem on the full line. This is due to the necessity of controlling the traces of the solution
at x D ˙`. Note that the O."�1=2/ timescale is the same as the one obtained in [32] for
the existence of a Boussinesq system on the full line using dispersive methods. Using
other methods, it was however later proved ([10, 42]) that the timescale O."�1/ could be
reached. The O."�1/ timescale was also attained in [9] for Boussinesq system (2.5) in
the presence of a fixed object, but, as explained above, no control of the traces is needed
there. It is therefore an open question to assess whether the shorter timescale O."�1=2/
of Theorem 3.5 is dictated by the dispersive control of the traces, or whether it is only a
technical limitation.
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Remark 3.8. This theorem furnishes uniform bounds for the time derivatives to the solu-
tions of (3.2)–(3.5) (see Remark 3.5); as explained above, this is the key step towards
well-posedness on a uniform timescale, and it differs strongly from the linear estimates
of [9] because of the necessary control of the trace of the solution. The other steps of the
proof are expected to be more similar to [9] and for the sake of conciseness, we prefer to
treat them in a separate work.

Proof of Theorem 3.5. Throughout this proof, for the sake of clarity we use the same nota-
tion, C0 D C0. 1

hmin
; 1
cmin
/ and C D C.C0;M/, for various constants that may differ from

one line to another. In the first four steps of the proof, we establish the energy estimate
stated in the theorem for smooth solutions of the problem. We then prove existence and
uniqueness of regular solutions in Step 5, and extend this result to the regularity con-
sidered in the theorem using a density argument and the control of the trace of � at the
boundaries furnished by the energy estimate.

Step 1. Defining, for the linearized equations, energies Eext and Eint that are analogous
to those defined in (3.6) and (3.7), namely

Eext D

Z
E

1

2h

�
h � "2

q2

h2

�
�2 C

1

2h
q2 C

�2

2h
.@xq/

2;

Eint D `˛."ı/hqii
2
C `��."ı/

2 Pı2 C `ı2;

the first step is to prove the following lemma. Note that the inequality stated in the lemma
corresponds to (3.27) in the proof of Theorem 3.4. As explained above, the nonlinear
structure of the dispersive terms in the transmission conditions makes the analysis of the
linearized equations more delicate. The last two terms in the estimate stated in the lemma
come from the subprincipal terms involving c1Œ�� and c2Œ�� in (3.35) and (3.36) and that
are not present in the original (nonlinear) equations. Note in particular the appearance
of the traces �˙ D �jxD˙` , which cannot be controlled by the energy norm Eext. Another
consequence of these subprincipal terms is that, on the left-hand side of (3.39), the energy
Eext CEint must be modified by adding nonsigned trace terms.

Lemma 3.3. The following inequality holds (denoting cj D cj Œ��):

d
dt
ŒEext CEint C "�

2.hqiiJc1�K � 2` Pıhc1�i/�

� ".j�2@t@xqj
2
2 C jf j

2
2 C j.g1; g2/j

2/

C "C
�
Eext C

�
1C

�
p
"

�
Eint C �

3"1=2j.��; �C/j
2
�

C "1=2�j. Pq�; PqC/j
2: (3.39)

Proof of the lemma. Multiplying the first equation of (3.33) by 1
h
.h� "2

q2

h2
/� and the sec-

ond one by 1
h
q and integrating by parts, after some computations one obtains

d
dt

eext C @x.q.� CG// D "r C 3"�2R; (3.40)
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with G as in (3.37) and

eext D
1

2h

�
h � "2

q2

h2

�
�2 C

1

2h
q2 C

�2

2h
.@xq/

2;

r D �"@x

�q2
h3

�
�q C

h
@x

� q
h2

�
�

1

2h2
.@t�/

i
q2 C

1

h
f q;

R D �
1

6h2
.@t�/.@xq/

2
C

1

3h2
.@x�/q.@t@xq/:

Integrating (3.40) over E and remarking that JqGK D hqiJGKC JqKhGi, we get from the
transmission conditions (3.34) that

d
dt

Eext � hqiiJ� CGKC 2` Pıh� CGi D "

Z
E

r C 3"�2
Z

E

R�:

With (3.35) and (3.36), this yields

d
dt
.Eext CEint/ D �2"`.b1.Z/ � Zhqii C b2.Z/ � Z Pı/

� "�2hqiiJc2� C @t .c1�/KC 2"�2` Pıhc2� C @t .c1�/i

C "

Z
E

r C 3"�2
Z

E

RC 2"`.g1hqii C g2 Pı/:

Decomposing,

�hqiiJ@t .c1�/KC 2` Pıh@t .c1�/i D @t .�hqiiJc1�KC 2` Pıhc1�i/

�

�
�

d
dt
hqiiJc1�KC 2` Rıhc1�i

�
;

using that "�2ab . "1=2�a2 C "3=2�3b2, and remarking that j d
dt hqiij C jRıj . j. Pq�; PqC/j,

one readily gets the result.

The next step consists in controlling the term j�2@x@tqj2 that appears in (3.39). This
step is an adaptation of Step 1 in the proof of Theorem 3.4, which does not require any
qualitative change. Rewriting the second equation of (3.33) as

.1 � �2@2x/@tq C @xfsw D " Qf ;

with

fsw D

�
h � "2

q2

h2

�
� C 2"

q

h
q and Qf D f C @x

��
� � "

q2

h2

��
� C 2@x

�q
h

�
q;

we get as in Step 1 of the proof of Theorem 3.4 that, on E˙,

@t@xq D �@
2
xR1fsw C "@xR0 Qf � Pq˙

1

�
exp

�
�
1

�
jx � `j

�
: (3.41)
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Recalling that �2@2xR1 and �@xR0 are uniformly bounded operators on L2.E/, we deduce
that

j�2@x@tqj2 � C E
1=2
ext C jf j2 C �

3=2
j. PqC; Pq�/jI

with (3.39) this yields

d
dt
ŒEext CEint C "�

2.hqiiJc1�K � 2` Pıhc1�i/�

� ".jf j22 C j.g1; g2/j
2/

C "C
�
Eext C

�
1C

�

"1=2

�
Eint C �

3"1=2j.��; �C/j
2
�

C "1=2�j. Pq�; PqC/j
2
I (3.42)

this inequality should be compared with (3.28) in the proof of Theorem 3.4. The coeffi-
cient "1=2� in front of j. Pq�; PqC/j2, inherited from (3.39), is much larger than the coefficient
"�3 in (3.28); moreover, a control on the traces of � at the boundary is also needed.

Step 2: Control on j. PqC; Pq�/j. We show here that

j PqCj C j Pq�j � C
�
jZj C "�2j.�C; ��; P�C; P��/j C

1

�1=2
j.�; q/j2

C "jf j2 C "j.g1; g2/j
�
I (3.43)

the main difference from (3.31) in the proof of Theorem 3.4 is the presence on the right-
hand side of a term involving the traces �˙ and their time derivatives, but the strategy of
the proof is quite similar. Recalling that qi D �x Pı C hqii, it suffices to prove that j Rıj and
j

d
dt hqiij are bounded from above by the right-hand side of (3.43). Following a procedure

similar to the one used to derive (3.31), we get, using the fact that ��2@2xR1 D 1 �R1 in
(3.41) and with definition (3.37) of G that, on E˙,

� CG C "�2.c2� C @t .c1�// D H � "�2
1

h
@xR0 Qf ˙ �

1

h
Pq˙ exp

�
�
1

�
jx � `j

�
;

with
H D �"

q

h2
q C "�2.c2� C @t .c1�//C

1

h
R1fsw:

Replacing � C G C "�2.c2� C @t .c1�// by the above expression in (3.35) and (3.36)
yields the following linearized version of (3.17):

T�

d
dt

�
hqii

Pı

�
C

�
0

ı

�
C "

�
b1ŒZ� � Z
b2ŒZ� � Z

�
D

 
�
1
2`

JH � "�2 1
h
@xR0 Qf KC "g1

hH � "�2 1
h
@xR0 Qf i C "g2

!
; (3.44)

where T� D T�."ı; "�˙/; see (3.19). From the above definition of H, one gets with the
trace estimate (3.30) that

jH˙j � C
�
"jZj C "�2j.�˙; P�˙/j C

1

�1=2
j.�; q/j2

�
:
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Inverting the matrix T�, we therefore getˇ̌̌ d
dt
hqii

ˇ̌̌
C jRıj � C

�
jZj C "�2j.�C; ��; P�C; P��/j C

1

�1=2
j.�; q/j2 C "jf j2 C "j.g1; g2/j

�
;

and we thus obtain (3.43).
From (3.42), we therefore get

d
dt
ŒEext CEint C "�

2.hqiiJc1�K � 2` Pıhc1�i/�

� "C
� 1

"1=2
Eext C

�
1C

�

"1=2

�
Eint C jf j

2
2 C j.g1; g2/j

2

C �3"1=2j.��; �C/j
2
C "3=2�5j. P��; P�C/j

2
�
:

In order to control the singular "�1=2 term in front of Eext, which is due to the subprincipal
terms in the linearized transmission conditions, one has to change the " in front of the
right-hand side into an "1=2 (this is the reason why the estimate of the theorem is only
valid over an O."�1=2/ timescale), leading to

d
dt
ŒEext CEint C "�

2.hqiiJc1�K � 2` Pıhc1�i/�

� "1=2C
�
Eext CEint C "

1=2
jf j22 C "

1=2
j.g1; g2/j

2

C "�3j.��; �C/j
2
C "2�5j. P��; P�C/j

2
�
: (3.45)

Contrary to Step 4 in the proof of Theorem 3.4, this inequality is not enough to derive
an energy estimate; we still need to find a control on the trace terms "1=2�3=2j�˙j and
"�5=2j P�˙j . "1=2�5=2j P�˙j that appear on the right-hand side of (3.45). Such a control
is also necessary to absorb the nonsigned perturbation of the energy that appears on the
left-hand side.

Step 3: Control on "1=2�3=2j�˙j and "1=2�5=2j P�˙j. Introducing a trace energy as

Etrace WD
1

2

h
�2."1=2�3@t�˙/

2
C

�
h � "2

q2

h2

�
˙
."1=2�3�˙/

2
i
;

we show here that

d
dt

Etrace � "
1=2C

�
Eext CEint CEtrace C "

1=2
jf j22 C "

1=2
j.g1; g2/j

2
2

�
: (3.46)

Recalling that @2t � D �@t@xq, one gets, evaluating (3.41) at x D ˙`, that

@2t �˙ C
1

�2

�
h � "2

q2

h2

�
˙
�˙ D �

"

�2

�
2
q

h

�
˙
q˙ C

1

�2
.R1fsw/˙ � ".@xR0 Qf /˙ ˙

1

�
Pq˙:

Since we want a control on "1=2�3=2�˙, we multiply both sides of the equation by
"�5@t�˙; using the trace estimate (3.30) and observing that jq˙j . jZj, one readily
deduces (3.46).
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Step 4: Conclusion. Summing (3.45) and (3.46) one obtains

d
dt
ŒEext CEint CEtrace C "�

2.hqiiJc1�K � 2` Pıhc1�i/�

� "1=2C
�
Eext CEint CEtrace C "

1=2
jf j22 C "

1=2
j.g1; g2/j

2
�
: (3.47)

We can now notice that "�2.hqiiJc1�K � 2` Pıhc1�i/ is a lower-order term in the sense that

"�2jhqiiJc1�K � 2` Pıhc1�ij � "1=2�1=2C.Eint CEtrace/;

so that it can be absorbed by the sum of the three energies when "� is small enough to
have "1=2�1=2C < 1. For instance, if "1=2�1=2C < 1=2, and denoting

zE WD Eext CEint CEtrace;

one obtains after a Gronwall estimate,

zE.t/ � 3

�
zE.0/C "C

Z t

0

.jf j22 C j.g1; g2/j
2/

�
exp.
p
"C t/:

Since moreover there exists a constant C0 D C0. 1
hmin

; 1
cmin
/ such that

zE � C0
�
jZj2 C j.�; q; �@xq/j22 C "�

3
j.��; �C/j

2
C "�5j. P��; P�C/j

2
�

and
jZj2 C j.�; q; �@xq/j22 C "�

3
j.��; �C/j

2
C "�5j. P��; P�C/j

2
� C0 zE;

one deduces the estimate stated in the theorem.

Step 5: Well-posedness. By a straightforward adaptation of the proof of Theorem 3.3,
one can observe that (3.33)–(3.36) can be reformulated as an ODE for .�; q; Z/ 2
H 1 � H 2.E/ � R3 and prove existence and uniqueness of a solution in this space by
the Cauchy–Lipschitz theorem. For data in .�; q; Z/ 2 L2 � H 1.E/ � R3, this strategy
does not work directly because the traces �˙ that appear in the component of ODE (3.44)
for hqii and Pı cannot be controlled by the L2-norm of �. However, the energy estimate
just proved provides such a control and one can obtain the result by a classical density
argument (as used for instance in the proof of [37, Theorem 3.1.1], for hyperbolic initial
boundary value problems where the control on the trace is furnished by using a Kreiss
symmetrizer).

4. Return to equilibrium

We now deal with a specific kind of wave–structure interaction that was called the return
to equilibrium problem in [27] and is commonly referred to as a “free decay test” in
engineering. This is a situation where the solid is released at zero speed from an out of
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equilibrium position (ı.t D 0/ ¤ 0), in a fluid that is at rest. The solid then oscillates
vertically and its motion sends waves outwards; by this process, the solid loses energy and
its oscillations are damped so that the solid asymptotically stabilizes to its equilibrium
position. Engineers use this free decay test because by measuring the oscillations of the
object, they deduce some buoyancy properties of the object. More precisely, assuming that
the motion of the object satisfies the phenomenological Cummins equation ([11, 31])

M Rı C k � Pı C aı D 0; (4.1)

with M; a 2 RC and k 2 L1loc.R
C/, they calibrate these coefficients with experimental

measurements. These measurements are also used to propose nonlinear extensions to (4.1)
(by fitting coefficients with ad hoc nonlinear terms; [41]).

Our goal in this section is to study this problem from a mathematical viewpoint, by
proposing a qualitative analysis of the solutions to the transmission problem (3.2)–(3.5)
in the particular configuration corresponding to the return to equilibrium problem. This
approach is expected to lead in some cases to an equation of the form (4.1), which would
provide an analytic description of the coefficients involved, and also to nonlinear exten-
sions that could be of interest to engineers.

This program was initiated and achieved in [27] for the (nondispersive) nonlinear
shallow-water equations, where it was found that ı solves a nonlinear second-order ODE
without integro-differential term. Still working with the shallow-water equations but in
horizontal dimension d D 2, assuming radial symmetry and neglecting the nonlinear
effects in the exterior region, it was shown in [6] that the equation on ı should contain
an integro-differential term. Such a term is also necessary for the nonlinear shallow-water
equations in dimension d D 1 if viscosity is taken into account ([34]). The goal of this
section is to investigate the contribution of the dispersive terms of the Boussinesq system
to the equation satisfied by ı in this specific configuration of the return to equilibrium
problem.

From now, we assume that the initial data correspond to the configuration of the return
to equilibrium problem, namely,

q.t D 0/ D �.t D 0/ D 0 and ı.t D 0/ D ı0; Pı.t D 0/ D 0: (4.2)

Notation 2. Throughout this section we use the same notation as in Section 3, namely,
we write � D

p
�=3 and denote by fsw the momentum flux of the nonlinear shallow-water

equations,

fsw D
h2 � 1

2"
C "

q2

h
D � C "

�1
2
�2 C

q2

h

�
:

We also recall that the buoyancy frequency �buoy is defined in Appendix A.

We introduce in Section 4.1 two Cummins operators that allow us to derive an abstract
evolution equation for the solid. We then investigate two specific cases where it is possible
to derive an explicit expression of these operators. The nondispersive case (" ¤ 0, � D 0)
is considered in Section 4.2 where it is shown that the motion of the object can be found
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by solving a simple nonlinear second-order scalar ODE. Waves can then be described by
solving an initial boundary value problem for a scalar Burgers equation. The opposite case,
namely the linear dispersive case (" D 0, � ¤ 0), is addressed in Section 4.3. Here again,
it is possible to derive an explicit expression for the Cummins operators leading us to an
integro-differential Cummins-type equation for the motion of the solid; qualitative prop-
erties of the solutions, such as their decay rate are then investigated. Finally, it is shown
that the motion of the waves can be found by solving a nonlocal (in space) perturbation of
the transport equation.

4.1. The general Cummins equation

Quite obviously, if heq is an even function, any smooth solution of the transmission prob-
lem (3.2)–(3.5) with initial condition (4.2) is such that � is an even function while q is odd
– such solutions will be called symmetric. This implies that hqii D 0 and that the transmis-
sion problem can be reduced to a simpler boundary value problem stated in the following
direct corollary of Theorem 3.2.

Corollary 4.1. Any smooth symmetric solution to the transmission problem (3.2)–(3.5)
solves the following boundary value problem on the half-line .`;1/:´

@t� C @xq D 0;

.1 � �2@2x/@tq C @xfsw D 0;
for t � 0; x 2 EC; (4.3)

with boundary condition
qjxD` D �`

Pı; (4.4)

where ı solves the ODE�
��."ı/

2
C `�

1

hC

�
Rı C ı D "ˇ."ı/ Pı2 C HC; (4.5)

where hC D hjxD` , HC D HjxD` , and we recall that H D H.�; q/ with

H.�; q/ D
1

2
"
�1
h
�2 �

q2

h2

�
C
1

h
R1fsw;

and that ��."ı/ and ˇ."ı/ are defined in Proposition 2.4, namely

��."ı/
2
D �2buoy C

1

`

Z `

0

x2

heq.x/C "ı
dx C

�2

heq.`/C "ı
;

ˇ."ı/ D
1

2

1

`

Z `

0

x2

.heq.x/C "ı/2
dx:

We know by Proposition 3.2 that if f is a given C 1 function of time then there is a
unique solution .�; q/ to (4.3) with boundary condition qjxD` D � f̀ with initial condition
corresponding to the return to equilibrium problem, namely .�; q/.t D 0/ D .0; 0/. It is
in particular possible to compute the trace of � at x D `, so that the following definition
makes sense.
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Definition 4.1 (Cummins operators). Let " 2 RC, � D �2=3 > 0. Also let f 2 C 1.RC/
and T > 0, and .�; q/ 2 C 1.Œ0; T IH 1.EC/ � H 2.EC// be the solution to (4.3) with
boundary condition qjxD` D � f̀ and initial condition .�; q/.t D 0/ D .0; 0/. We define
the Cummins operators c";� and C";� as

c";�Œf � WD �jxD` and C";�Œf � WD �H.�; q/jxD` :

Remark 4.1. The Cummins operators can be defined for more general cases, for instance,
the solution .�; q/ to the initial boundary value problem needs only to be regular near the
boundary x D ` (regular enough for the trace to make sense). This allows one to extend
the definition of the Cummins operators in the case � D 0, as done in Section 4.2 below.

Corollary 4.2. ODE (4.5) can be reformulated in a compact form as what we shall refer
to as the Cummins equation�

��."ı/
2
C `�

1

1C "c";�Œ Pı�

�
Rı C ıCC";�Œ Pı� D "ˇ."ı/ Pı

2; (4.6)

with initial conditions ı.0/ D ı0 and Pı.0/ D 0.

Equation (4.6) is compact but not simple since the Cummins operators are nonlinear
nonlocal operators which require the resolution of the equations for the fluid in the exterior
domain. In order to get some qualitative insight on the Cummins equation, we describe it
in two limiting cases: in the nonlinear nondispersive case (" > 0, not necessarily small,
and � D 0), and in the linear, dispersive case (" D 0 and � > 0, not necessarily small).
Note that in both cases, it is not necessary to compute the first Cummins operator c";�Œ Pı�

and that it is possible to provide an explicit expression of the second one C";�Œ Pı�.

4.2. The nonlinear nondispersive case

Neglecting the dispersive effects is equivalent to setting �D �2=3D 0 in equations (4.3)–
(4.6); in particular, the model considered for the propagation of the waves is now the
shallow-water equations8<:@t� C @xq D 0@tq C "@x

�1
h
q2
�
C h@x� D 0;

for t � 0; x 2 EC; (4.7)

the boundary condition is unchanged,

qjxD` D �`
Pı; (4.8)

and the ODE solved by ı is simplified into

�0."ı/
2 Rı C ıCC";0Œ Pı� D �"�0."ı/�

0
0."ı/

Pı2; (4.9)
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where we used the fact that ˇ."ı/ D ��0."ı/� 00."ı/ when � D 0 (see (2.28) and (2.29)),
and where the definition of the second Cummins operator has been extended to the case
� D 0 as

C";0Œ Pı� WD �
�
� C "

1

2

q2

h2

�
jxD`

:

The fact that this definition makes sense follows from the decomposition of the shallow-
water invariants into Riemann invariants, as shown in the proof of the following theorem,
where an explicit expression of the Cummins operator is provided. This theorem is a
reformulation of [27, Corollary 1], but with a slight difference in the function  , and so
we reproduce a sketch of the proof.1

Theorem 4.1. Let T > 0, ı 2 C 2.Œ0; T �/, and .�; q/ be a continuous, piecewise C 1 solu-
tion of (4.7)–(4.9) on Œ0; T � � .`;1/ satisfying the nonvanishing depth condition

inf
Œ0;T ��E

h > 0 and inf
Œ0;T ��	

heq C "ı > 0:

If moreover `" Pı < 2r0, with r0 WD 4
27

, we have
p
hjxD` D �0.�"

1
2
q/ D �0."

`
2
Pı/ with the

real function

�0.r/ D
1

3

�
1C C�.r/C CC.r/

�
; C˙.r/ D

3

2

�
�4r C 2r0 ˙ 4

p
r.r � r0/

�1=3
;

and the Cummins operator C";0 is given explicitly by

C";0Œ Pı� D �"
�1
�
�0

�
"
`

2
Pı
�
� 1

��
3�0

�
"
`

2
Pı
�
� 1

�
DW ` PıC" Pı2." Pı/; (4.10)

where  W .�1; 2r0/! R is a smooth function such that .0/ D 1
4
`2 and whose exact

expression is given in (4.11) below.

Proof. The proof of [27, Corollary 1] is based on the fact that the shallow-water equations
can be put in diagonal form,

@tRC
�p

hC "
q

h

�
@xR D 0 and @tL �

�p
h � "

q

h

�
@xL D 0;

where R and L are respectively the right and left Riemann invariants

R D
q

h
C
2

"

�p
h � 1

�
and L D

q

h
�
2

"

�p
h � 1

�
:

1The difference comes from the fact that in [27] the choice of the boundary condition for the inte-
rior pressure was made by assuming that the jump of pressure at the contact point was purely hydrostatic;
as in [5, 34], here we instead use a choice of the boundary condition on the pressure which is consis-
tent with the approach used throughout this paper and motivated by the conservation of total energy, as
explained in Corollary 2.1. With the choice of [27], one would have C";0Œ Pı� D ��jxD` and consequently
�` Pı � " Pı2." Pı/ D 1

"
.�0."

`
2
Pı/2 � 1/.
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One then notices that with the initial and boundary conditions considered here,L vanishes
identically on .`;1/, which allows one to find

p
h in terms of q as a root of the third-order

polynomial equation in � ,

�3 � �2 � "
1

2
q D 0:

If �"1
2
q < r0, then, as discussed in [27], the relevant root is �0.�"12q/.

Recalling that qjxD` D �` Pı, we have
p
h.`/ D �0."

`
2
Pı/. Moreover, L D 0 implies

"
1

2

q2

h2 jxD`
D 2"�1

�
�0

�
"
`

2
Pı
�
� 1

�2
:

Remarking that �jxD` D
1
"
.�0."

`
2
Pı/2 � 1/, one gets�

� C "
1

2

q2

h2

�
jxD`

D "�1.�0 � 1/.3�0 � 1/

DW �` Pı�" Pı2." Pı/; (4.11)

where we used the fact that �0.0/ D �� 00.0/ D 1. The fact that .0/ D 1
4
`2 follows from

the observation that � 000 .0/ D �4.

A first corollary is that the motion of the solid can be reduced to a simple nonlinear
ODE, provided that the initial displacement satisfies an upper bound ensuring that the
velocity of the object does not become too big.

Corollary 4.3. Under the assumptions of the theorem, and with the same notation, let us
assume moreover that

"2ı20 < �0."jı0j/
2
�2r0
`

�2
:

Then, using the notation of the theorem, the motion of the solid is found by solving the
nonlinear second-order ODE

�0."ı/
2 Rı C ` Pı C ı C "

�
�0."ı/�

0
0."ı/C ."

Pı/
�
Pı2 D 0; (4.12)

with initial condition ı.0/ D ı0, Pı.0/ D 0.

Remark 4.2. In the linear case ("D 0), this equation is almost the same as [21, (3.2.12)],
the only difference being that the author neglected the buoyancy frequency �buoy in the
expression for �0.0/.

Proof of Corollary 4.3. One just needs to check that the condition `" Pı < 2r0, which
ensures by Theorem 4.1 that the Cummins operator takes the form (4.10), is satisfied
for all times. Since at t D 0, one has Pı D 0, we know that this condition is satisfied for
small times. Since moreover one can deduce from Proposition 3.1 (by setting � D 0) that

�0."ı/
2 Pı2 C ı2 � ı20 ; (4.13)

one deduces that jıj � jı0j and therefore that Pı2 � �0."jı0j/�2ı20 . The assumption made
in the statement of the corollary therefore grants the result.
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The interest of reducing the motion of the solid to an ODE on the surface displacement
is that it is possible to solve it even in situations when singularities arise in the exterior
domain (typically, when shocks happen). It is in particular possible to obtain a global
existence result for ODE (4.12), while such a result cannot be expected for strong solutions
to the full transmission problem (4.7)–(4.9) due to shock formation. Note that the first
condition on ı0 means that at t D 0, the solid neither touches the bottom nor is lifted
from a height greater than the height of the water column under the object when it is at
equilibrium.

Proposition 4.1. Let ı0 2 R be such that

inf
	
heq � "jı0j > 0 and "jı0j < �0."jı0j/

2r0

`
:

Then there exists a unique global solution ı 2 C1.RC/ to ODE (4.12) with initial condi-
tion .ı; Pı/jtD0 D .ı0; 0/.

Remark 4.3. A by-product of the proof is that C";0Œ Pı� Pı � 0 and that this quantity corre-
sponds to the energy transferred at each instant to the exterior fluid domain; that is, with
the notation of Proposition 3.1, one has

d
dt

Eext D C";0Œ Pı� Pı � 0:

Remark 4.4. The second condition of the proposition is a smallness condition on ı0, but
this condition is not restrictive as it allows ı0 to be of size O."�1/. As communicated to
us by the author, it is possible, under stricter smallness conditions, to prove exponential
decay of the solution of ODEs related to (4.12) using techniques developed in [25].

Proof of Proposition 4.1. There exists a positive time T > 0 such that on Œ0; T /, there is
a solution ı such that inf	 heq C "ı > 0 and `" Pı < 2r0. We want to show that one can
take T D C1. As in the proof of Corollary 4.3, this follows from (4.13). We therefore
need to prove that (4.13) holds, without appealing to Proposition 3.1 as in the proof of
Corollary 4.3, but by direct manipulation of the solution to ODE (4.12). We need the
following two lemmas.

Lemma 4.1. The function �0 is decreasing on .�1; r0/.

Proof of the lemma. By construction, one has for all r < r0,

�0.r/
3
� �0.r/

2
C r D 0:

Differentiating this identity yields

� 00.r/.3�0.r/
2
� 2�0.r// D �1;

so that � 00.r/ and 3�0.r/2 � 2�0.r/ have opposite sign. It is therefore enough to prove that
3�0.r/

2 � 2�0.r/ > 0 for all r < r0. Since �0.0/ D 1, this quantity is positive at r D 0
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and must therefore vanish if it changes sign. This means that for some r1 < r0, one must
have �0.r1/ D 0 or �0.r1/ D 2

3
. Using the cubic equation solved by �0.r1/, this implies

that r1 D 0 or r1 D r0. Both cases have to be excluded because �0.0/D 1¤ 0 and r1 < r0
by assumption. The result follows.

Lemma 4.2. If Pı ¤ 0 and "` Pı < 2r0, the Cummins operator satisfies

C";0Œ Pı� Pı > 0:

Proof of the lemma. Recalling that from (4.10), one has

C";0Œ Pı� Pı D �"
�1
�
�0

�
"
`

2
Pı
�
� 1

��
3�0

�
"
`

2
Pı
�
� 1

�
Pı;

the conclusion follows from the previous lemma and the observation that �0.0/ D 1 and
�0.r0/ D 2=3.

We can now use the second lemma to conclude: multiplying (4.9) by Pı and integrating
in time yields

�0."ı/
2 Pı2 C ı2 D ı20 �

Z t

0

C";0Œ Pı� Pı < ı
2
0 ;

which implies (4.13); the proposition is therefore proved.

The following corollary then shows that, once ODE (4.12) has been solved, the solu-
tion in the exterior domain reduces to a simple initial boundary value problem for a scalar
Burgers-type equation. This is a simple by-product of the proof of Theorem 4.1 where it
was shown that the nonlinear shallow-water equations were reduced to the scalar equation
on the right-going Riemann invariant.

Corollary 4.4. Under the assumptions of Corollary 4.3, q is found in the exterior domain
by solving the initial boundary value problem8̂̂̂<̂

ˆ̂:
@tq C

�
3�0

�
�
"

2
q
�
� 2

�
@xq D 0 .t > 0; x > `/;

qjtD0 D 0;

qjxD` D �`
Pı;

with ı furnished by Proposition 4.1, while � is given in terms of q by the algebraic expres-
sion

� D
1

"

�
�0

�
�
"

2
q
�2
� 1

�
: (4.14)

Remark 4.5. More generally, if one wants to compute the waves created by an object in
forced motion, one must solve the same equations as in the corollary, but with ı corre-
sponding to this forced motion rather than given by Proposition 4.1.
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4.3. The linear dispersive case

In the previous section we studied the situation where dispersive effects could be neglected
(� D �2=3 D 0) in front of the nonlinear effects. We consider here the opposite situation
where nonlinear effects are negligible (" D 0) but the dispersive effects are taken into
account. That is, we consider the linear approximation to (4.3)–(4.5). The model consid-
ered for the propagation of the waves is therefore´

@t� C @xq D 0;

.1 � �2@2x/@tq C @x� D 0;
for t � 0; x 2 EC; (4.15)

the boundary condition is unchanged,

qjxD` D �`
Pı; (4.16)

and the ODE solved by ı is simplified to

.�2� C `�/
Rı C ı C C0;�Œ Pı� D 0; (4.17)

where we recall that according to the definition of the Cummins operator (see Defini-
tion 4.1 and (3.18)),

C0;�Œ Pı� WD �.R1�/jxD` ;

and where, for the sake of clarity, we simply write throughout this section,

�2� D ��.0/
2
D �2buoy C

1

`

Z `

0

x2

heq
C �2

1

heq
:

We know by Theorem 3.3 that for all n 2 N and T > 0, there exists a unique solution
.�; q; ı/ 2 C1.Œ0;T �IHn �R/ of (4.15)–(4.17) with initial conditions (4.2); we want here
to analyze the behavior of this solution. As for the nonlinear nondispersive case in the
previous section, we first provide an explicit expression for the Cummins operator, from
which we are able to derive an uncoupled scalar equation for the evolution of ı, whose
solution can be used to find � and q in the exterior domain through the resolution of a
simpler scalar initial boundary value problem. All the equations involved in this section
are linear, the difficulty coming from their nonlocal nature.

4.3.1. Preliminary material. In order to give an explicit representation of the Cummins
operator C0;�, we first need to recall the definition of the Bessel functions Jn ([18, §8.41])

Jn.t/ D
1

�

Z �

0

cos.n� � t sin �/ d� I

we also define the causal convolution kernels K0
� and K1

� as

K0
�.t/ D

1

�
J0

� t
�

�
and K1

�.t/ D
1

t
J1

� t
�

�
; for all t � 0; (4.18)
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and use the following standard notation for the convolution of time causal functions:

8t � 0; f � g.t/ D

Z t

0

f .t � s/g.s/ ds:

We also need to use the Laplace transform with respect to the time variable, which we
define as

LW q 7! Oq;
where

LŒq�.s/ D

Z 1
0

q.t/e�st dt with s 2 C0 WD
®
s 2 C j Re.s/ > 0

¯
:

We shall in particular use the following properties of Bessel functions ([18]):

L�1
� 1
p
1C �2s2

�
DK0

�.t/ and L�1
� 1
p
1C �2s2 C �s

�
DK1

�.t/; (4.19)

with K0
� and K1

� as defined in (4.18).

4.3.2. Analysis of the equations. Using the linear structure of the equations, one can
obtain an explicit expression for the Cummins operator C0;�.

Theorem 4.2. The Cummins operator C0;� is given explicitly by

C0;�Œ Pı� WD `K
1
� �
Pı;

where K1
� is defined in (4.18).

Proof. Applying the Laplace transform to equations (4.15) and (4.16), which is possible
since all the functions are continuous and bounded in time (as a consequence of Proposi-
tion 3.1), and taking into account that �jtD0 D qjtD0 D 0, this yields´

s O� C @x Oq D 0;

.1 � �2@2x/s Oq C @x
O� D 0;

and OqjxD` D �`
OPı: (4.20)

This is an ODE for . O�; Oq/ on the half-line .`;1/ that can be explicitly solved in terms of OPı
(note that a representation of the solution in terms of the Laplace transform in space is also
possible ([22]) but not adapted to our purpose here; see also [3] for other types of linear
dispersive equations). The formula of the lemma below provides “right-going” solutions
to the linear Boussinesq equations and it is therefore no surprise that the relationship
between O� and Oq is the same as the one that arises when imposing transparent boundary
conditions as in [24].

Lemma 4.3. There is one and only one solution . O�; Oq/ to (4.20) that does not grow expo-
nentially at infinity; it is given by8̂<̂

:
Oq.s; x/ D �`

OPı.s/e
� sp

1C�2s2
.x�`/

;

O�.s; x/ D
1

p
1C �2s2

Oq.s; x/;

where the square root is taken in order to have a positive real part.
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Proof of the lemma. From (4.20), one deduces

@2x Oq.s/ �
s2

1C �2s2
Oq.s/ D 0; (4.21)

and there are therefore two constants A.s/ and B.s/ such that

Oq.s; x/ D A.s/e
� sp

1C�2s2
x
C B.s/e

sp
1C�2s2

x
:

Since exponentially increasing functions are not allowed, we have B.s/ D 0 and thus

Oq.s; x/ D A.s/e
� sp

1C�2s2
x
:

Then using the boundary condition on Oq at x D `, we find the expected formula for Oq. By
using the first equation of (4.20), we get the formula for O�.

Let us now remark that for all f 2 L2.EC/, one has

.R1f /jxD` D �
�1

Z
EC
e��

�1.x�`/f .x/ dx

so that, using the lemma,

2
C0;�Œ Pı�.s/ D �.R1 O�/jxD`

D
`
OPı.s/

�
p
1C �2s2

Z
EC
e
�. 1�C

sp
1C�2s2

/.x�`/
dx:

It follows that
2
C0;�Œ Pı�.s/ D

`
p
1C �2s2 C �s

OPı.s/:

Using (4.19), this yields
C0;�Œ Pı� D `K

1
� �
PıI

note also for future use that we also get from the lemma that

�.t; x/ DK0
� � q:

As in Corollary 4.3 in the nondispersive case, it is possible to determine the motion
of the solid by the resolution of a single scalar equation on ı; due to the presence of the
dispersive terms however, this equation is no longer an ordinary differential equation but
an integro-differential equation.

Corollary 4.5. The motion of the floating object for problem (4.15)–(4.17) can be found
directly by solving the linear second-order integro-differential equation

.�2� C `�/
Rı C `K1

� �
Pı C ı D 0; (4.22)

with initial conditions ı.0/ D ı0 and Pı.0/ D 0.
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Remark 4.6. In [34] the authors consider the linearized shallow-water equations with
some viscosity �. More precisely, they consider (4.15) with ��@2xq instead of ��2@2x@tq
in the second equation and find the Cummins equation

�2�
RıC
p
�`ı.

3
2 / C � PıC `F� � PıC ı D 0 with F� WDL�1

h 1
p
1C �s C

p
�s

i
; (4.23)

where ı.
3
2 / stands for the fractional derivative of order 3=2 of ı. This equation shares

some similarities with (4.22), in particular the convolution term, although with a different
kernel (note that one gets yK1

�.s/ by replacing �s by �2s2 in yF�.s/). On the contrary,
there is in (4.23) a viscous damping term � Pı that has no equivalent in (4.22). Note finally
that the fractional derivative term

p
�`ı.

3
2 / in (4.23) can be related to the added mass

term `� Rı in (4.22). Indeed, in the analysis of [34], this fractional derivative is the leading-
order term of a convolution term `F � Pı with yF .s/D

p
1C �s. In the dispersive case, the

same analysis would give a symbol
p
1C �2s2 and the leading-order term of the same

convolution would be the dispersive added mass term `� Rı.

In the linear nondispersive case (" D � D 0), Corollary 4.3 shows that the motion of
the object is governed by the same equation as a damped harmonic oscillator; the return to
equilibrium occurs therefore at an exponential rate. In the presence of dispersion, Corol-
lary 4.5 states that the motion of the solid is now governed by the integro-differential
equation (4.22), and numerical simulations (see Figure 2) suggest that the decay gets
slower as the dispersion parameter � D

p
�=3 increases. This issue is addressed in the

following proposition. In particular, the fact that ı belongs to H 2.RC/ implies that ı and
Pı tend to zero at infinity, but the third point of the proposition shows that the decay cannot
be stronger than O.t�3=2/ (as opposed to the exponential convergence rate in the linear
nondispersive case), bringing a theoretical confirmation to the above numerical observa-
tions.

Proposition 4.2. (i) There is a unique solution ı 2C 2.RC/\W 1;1.RC/ to (4.22)
with initial data ı.0/ D ı0 and Pı.0/ D 0.

(ii) Moreover, ı 2 H 2.RC/, but for k 2 ¹0; 1; 2º, tı.k/ 62 L2.RC/.

(iii) For all ˛ > 0 and k 2 ¹0; 1; 2º and for all c > 0 and T0 > 0, there exists t > T0
such that

jı.k/.t/j > ct�
3
2�˛:

Remark 4.7. The dispersive delay (convolution) term in (4.22) is responsible for the slow
decay of the solution. Indeed, in the nondispersive limit case � D 0, the branching points
s D ˙i��1 disappear from the transfer function yH� derived in (4.24) below, which then
becomes

yH0.s/ WD
�20 s C `

�20 s
2 C s`C 1

;

whose poles have a strictly negative real part, hence an exponential decay for ı.
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Figure 2. Return to equilibrium: evolution of ı.t/ with increasing value of � and ı0 D 1, �buoy D

1=6, heq D 1.

Proof of Proposition 4.2. Since the kernel K1 belongs to L1.RC/ (recall that the Bessel
function J1.t/ decays like O.t�1=2/), the proof of the first part of the proposition does
not raise any particular problem. To prove the second part of the proposition, we need
a careful analysis of the transfer function yH� defined by the relation Oı D yH�ı0. Since
.ı; Pı/ 2 C \ L1.RC/, the Laplace transforms of ı and Pı are well defined on C0, and
after remarking that

�s C
1

p
1C �2s2 C �s

D

p
1C �2s2;

the Laplace transform of ı is, owing to (4.22),

Oı D yH�.s/ı0 where yH�.s/ WD
�2�s C `

p
1C �2s2

�2�s
2 C s`

p
1C �2s2 C 1

: (4.24)

Lemma 4.4. The transfer function yH� defined in (4.24) is holomorphic on C0 and admits
only two branching points at˙i��1. Moreover, all the zeros of the denominator in (4.24)
have strictly negative real part.

Proof of the lemma. We denote by P the holomorphic function on C0,

P.s/ WD �2�s
2
C s`

p
1C �2s2 C 1;

where the square root stands for the square root with positive real part. Since P has only
two singularities, which are the branching points ˙i��1, we can extend it analytically
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on all the complex plane except on the cuts i.�1;���1/ and i.��1;1/, and extend it
continuously by a function P � on the imaginary axis by

P �.i!/ WD

´
1 � �2�!

2 C i!`
p
1 � �2!2; j!j � ��1;

1 � �2�!
2 � j!j`

p
�2!2 � 1; j!j > ��1:

We first show that the zeros cannot be purely imaginary, then that if a zero is real it must
be strictly negative, and finally that if a zero is not a real number, it must satisfy<.s/ < 0.

Step 1: The zeros of P cannot be purely imaginary. Indeed, if ! were a solution of
P �.i!/ D 0, then, from the expression of P.i!/ given above, !2 would be a real root of
the second-order polynomial

.�4� � `
2�2/X2 C .`2 � 2�2�/X C 1:

But the discriminant of this polynomial is � D `4 C 4`2.�2 � �2�/ < �`
2=3 (since �2� >

�2 C `2=3), which is negative, implying that the polynomial cannot have a real root.

Step 2. The zeros of P cannot belong to RC from the simple observation that P.�/ > 0
for all � 2 RC.

Step 3: The zeros of P cannot have positive real part. In order to prove this, we show
here that =.P.s// ¤ 0 for all s D �C i! with s … iR[R (the case s 2 RC having been
dealt with in Step 2). The imaginary part of P.s/ is given by

=ŒP.s/� D 2�2��! C �`=
�p
1C �2s2

�
C !`<

�p
1C �2s2

�
:

By definition of the square root, <Œ
p
1C �2s2� � 0 and the sign of =Œ

p
1C �2s2� is the

same as the sign of the product �!. The following table summarizes the signs of some
quantities in different cases (where C stands for strictly positive, � stands for strictly
negative, and ind. signifies that the sign is indeterminate).

� ! 2�2�! �=
�p
1C �2s2

�
!<

�p
1C �2s2

�
=ŒP.s/�

� � C � � ind.
� C � C C ind.
C � � � � �

C C C C C C

Therefore, if � > 0 then =ŒP.s/� is either strictly positive or strictly negative, so that it
does not vanish.

Using Lemma 4.4, we can extend the transfer function yH� continuously on the imag-
inary axis by

yH��.i!/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�2�i! C `
p
1 � �2!2

��2�!
2 C i!`

p
1 � �2!2 C 1

ı0; j!j � �
�1;

�2�i! C i`sign.!/
p
�2!2 � 1

��2�!
2 � j!j`

p
�2!2 � 1C 1

ı0; j!j > �
�1:
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Integrating j yH��.i!/j
2 over R we getZ

R
j yH��.i!/j

2 d! D
Z ��1

���1
j yH��.i!/j

2 d! C
Z
j!j>��1

j yH��.i!/j
2 d!:

The first integral is obviously finite (the denominator in (4.24) does not vanish on iR). The
second integral is also finite since j yH��.i!/j

2 �
j!j!1 !�2. Then yH� belongs to the stan-

dard Hardy space H2.C0/ and by the Paley–Wiener theorem (see Theorem 5.1 below),
one has ı 2 L2.RC/.

The same reasoning can be applied to

OPı D
�

�1

�2�s
2 C s`

p
1C �2s2 C 1

�
ı0

and
ORı D

�
�s

�2�s
2 C s`

p
1C �2s2 C 1

�
ı0;

so that Pı and Rı also belong to L2.RC/.
Let us now prove that u.t/ WD tı.t/ does not belong to L2.RC/. Denoting by U the

Laplace transform of u, one has

U.s/ WD .�1/
� d

ds

�
H�.s/ı0 on C0;

and the following extension to the imaginary axis holds:

U �.i!/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
.�1/

� d
d!

� �2�i! C `
p
1 � �2!2

��2�!
2 C i!`

p
1 � �2!2 C 1

ı0; j!j � �
�1;

.�1/
� d

d!

� �2�i! C i`sign.!/
p
�2!2 � 1

��2�!
2 � j!j`

p
�2!2 � 1C 1

ı0; j!j > �
�1:

But U is no longer bounded on the imaginary axis as it contains two nonisolated singular-
ities (of order �1=2 in the Puiseux series expansion) at˙i��1; the integralZ ��1

���1
jU �.i!/j2 d!

is not finite and thus U … H2.C0/. By the Paley–Wiener theorem, this implies that u …
L2.RC/. The same reasoning can be applied to

V.s/ D .�1/
� d

ds

��
�1

�2�s
2 C s`

p
1C �2s2 C 1

�
ı0

and
W.s/ D .�1/

� d
ds

��
�s

�2�s
2 C s`

p
1C �2s2 C 1

�
ı0;
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which are respectively the Laplace transforms of t Pı and t Rı. This completes the proof of
the second point of the proposition.

Let us now prove the third point by contradiction. Assuming that there exists C > 0

such that for t large enough,
jı.k/.t/j � Ct�

3
2�˛;

one gets
jtı.k/.t/j2 � Ct�1�2˛

which implies tı.k/ 2 L2.RC/, which contradicts the second point.

In the nondispersive case, we showed in Corollary 4.4 that once the motion of the
object is known, it is possible to find q in the exterior domain by solving an initial bound-
ary value problem for a Burgers-type scalar equation. This remains true in the present
dispersive linear case, but the initial boundary value problem one has to solve is now
nonlocal in time. Note that as in Remark 4.5, the corollary can easily be generalized to
describe the waves created by an object in forced motion.

Corollary 4.6. The return to equilibrium problem for the linear Boussinesq equations
(4.15)–(4.17) with initial condition (4.2) can be equivalently formulated as a scalar non-
local initial boundary value problem on q,8̂̂<̂

:̂
@xq CK0

� � @tq D 0 .t > 0; x > `/;

qjtD0 D 0;

qjxD` D �`
Pı;

(4.25)

where K0
� is defined in (4.18) while � is given in terms of q by a convolution in time

� DK0
� � q; (4.26)

with ı furnished by Proposition 4.2.

Remark 4.8. The nonlocal initial boundary value problem (4.25) is not standard. The
most convenient way to handle it is to see it as an evolution equation with respect to
x rather than t ; it then becomes a particular case of the nonlocal initial boundary value
problems considered in Section 5. It is in particular a consequence of Theorem 5.2 below
that (4.25) admits a unique solution q 2C.RCx IH

1.RCx //\C
1.RCx IL

2.RCx //. Moreover,
Proposition 5.2 and Corollary 5.1 imply that the solution is actually of class C 2.RC �
RC/ and infinitely regular with respect to time, showing that the dispersive terms induce
a smoothing effect. Indeed, when � D 0, the first equation in (4.25) becomes

@tq C @xq D 0 (4.27)

and the solution to the initial boundary value problem, explicitly given by

q.x; t/ D

´
�` Pı.t � .x � `// for t � .x � `/ � 0;

0 for t � .x � `/ < 0;

does not belong to C 1.EC �RC/ because Rı.0/ D � 1

�2�
¤ 0.
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5. The initial boundary value problem for a class of nonlocal
transport equations

As shown in the previous section, the analysis of the return to equilibrium problem in
the linear dispersive case leads to a nonlocal generalization of the transport equation. The
analysis of the initial value problem for such equations is not standard and we address
it in this section. Since this subject is of interest in its own right, we work here with
more standard notation. More precisely, we consider an evolution with respect to the time
variable and a nonlocal term with respect to the space variable (this is the reverse of
Section 4.3). The domain of consideration is the quadrant ¹x � 0; t � 0º. The typical
initial boundary value problem we shall consider is therefore of the form,8̂̂<̂

:̂
@tuCK �x @xu D f;

ujxD0 D u;

ujtD0 D u
in;

for some convolution kernel K to be made precise later.
After presenting some technical material in Section 5.1.1 for the functional setting

and the Laplace transform, we recall in Section 5.2 some very classical facts on the initial
and/or boundary value problems for the standard transport equation, making a distinction
between the cases of a positive and a negative velocity. The nonlocal generalizations of
these transport problems, in which @xu is replaced by a nonlocal term K �x @xu, are
addressed in Section 5.3; in particular, similarities and differences (such as the presence of
an additional compatibility condition and a smoothing effect) from their local counterparts
are commented on.
NB. To avoid confusion with the computations performed in Section 4.3 where the Laplace
transform Ou was taken with respect to time (with dual variable s), throughout this section
we denote by Qu the Laplace transform with respect to x (with dual variable p D ˛ C i�).

5.1. Functional setting and a brief reminder of the Laplace transform

We gather here some definitions of functional spaces that play an important role in the
analysis of initial boundary value problems, as well as some classical facts on the Laplace
transform.

5.1.1. Functional setting. In the study of initial boundary value problems for hyperbolic
systems of equations, the space Xn plays a central role; it is defined for all n 2 N as

Xn D
n\

jD0

C j .RCt IH
n�j .RCx //I

in particular, for all u 2 Xn, one can define for all t � 0 the quantity

9u.t; �/9n WD sup
jCk�n

j@
j
t @
k
xu.t; �/jL2.RC/:
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Let us also define Yn as

Yn
D

n\
jD0

W
j;1

loc .R
C
t IH

n�j .RCx //:

When working with nonlocal transport equations, it is convenient to introduce
weighted versions of these spaces. For any a 2 R, and k 2 N, we introduce therefore

L2a.R
C/ WD

®
u 2 L2loc.R

C/; jujL2a WD .
R

RC e
�2axju.x/j2 dx/1=2 <1

¯
;

H k
a .R

C/ WD
®
u 2 L2a.R

C/; jujHk
a
WD
Pk
lD0 j@

l
xujL2a <1

¯
;

and denote by Xna and Yn
a the weighted versions of the spaces Xn and Yn obtained by

replacing all L2.RCx /-based spaces by their L2a.R
C
x / analogues; we also write

9u.t; �/9a;n WD sup
jCk�n

ˇ̌
@
j
t @
k
xu.t; �/

ˇ̌
L2a.RC/

:

5.1.2. Some results on the Laplace transform. For all u 2 L1loc.R
C/, the Laplace trans-

form is defined by

Qu.p/ D

Z 1
0

e�pxu.x/ dx

for all p D ˛ C i� 2 C such that this integral converges absolutely. Using for all a 2 R
the notation

Ca D
®
p 2 C; <p > a

¯
;

we can define the Hardy space

H2.Ca/ WD
®
U holomorphic on CaI kU k

2
H2.Ca/

WD sup˛>a
R

R jU.˛ C i�/j
2 d� <1

¯
:

Every function U 2 H2.Ca/ admits a boundary trace denoted U � on a C iR, which
belongs to L2.aC iR/, and H2.Ca/ is a Hilbert space for the scalar product

hF;GiH2.Ca/ D
1

2�

Z 1
�1

F �.aC i�/G�.aC i�/ d�:

Recalling that the weighted space L2a.R
C/ is defined in the previous section, we can state

the well-known Paley–Wiener theorem.

Theorem 5.1. Let a 2 R. The Laplace transform

L W L2a.R
C/

u 7!Qu

! H2.Ca/

is an isometry between Hilbert spaces.

Recalling that fdu
dx
.p/ D p Qu.p/ � u.0/

(whenever these quantities make sense), we also have the following characterization of
the weighted Sobolev spaces H k

a .R
C/.
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Proposition 5.1. Let k 2N and .u0; : : : ;uk�1/ 2Rk . The following assertions are equiv-
alent:

(i) One has u 2 H k
a .R

C/ and for all 0 � j � k � 1, limx!0C @
j
xu.x/ D uj .

(ii) For all 0 � j � k, the mapping p 7! pj Qu.p/ �
Pj�1
iD0 p

j�1�iui belongs to
H2.Ca/ (with the sum taken to be zero if j D 0).

Moreover, for all 0 � j � k, one has e@jxu D pj Qu.p/ �
Pj�1
iD0 p

j�1�iui .

5.2. Reminder on the standard transport equation

Let us start with some consideration of the standard initial boundary value problem for the
transport equations @tuC@xuDf (referred to as the right-going case) and @tu�@xuDf
(left-going case).

5.2.1. The right-going case. We consider here the following initial boundary value prob-
lem: 8̂̂<̂

:̂
@tuC @xu D f;

ujxD0 D u;

ujtD0 D u
in;

(5.1)

with f 2 Y1, uin 2 H 1.RC/, and u 2 H 1
loc.R

C/. In order for (5.1) to admit a solution
u 2X1DC.RCt IH

1.RCx //\C
1.RCt IL

2.RCx //, and therefore be continuous on Œ0;1/�
Œ0;1/, it is necessary that

u.t D 0/ D uin.x D 0/:

This compatibility condition is actually sufficient to ensure the existence and uniqueness
of such a solution. Even if the data are more regular, i.e., if f 2 Yn, uin 2 Hn.RC/, and
u 2 Hn

loc.R
C/ for some n > 1, one cannot expect the solution to be in Xn in general. It

is a general feature of first-order hyperbolic systems that such regularity is achieved if
and only if n algebraic compatibility conditions are satisfied (see for instance [4, 19, 37,
38]). Of course, the situation is the same if we choose to work in the weighted space Xna
since the presence of the weight changes the integrability properties at infinity, but not
local regularity. In the present case, this can easily be checked on the following explicit
representation of the solution:

u.t; x/ D uin.x � t /C u.t � x/C

Z t

0

f .t 0; x � t C t 0/ dt 0; (5.2)

where uin, u, and f .t; �/ are extended by zero in order to be considered as functions defined
on the full line R instead of RC.

5.2.2. The left-going case. It is well known that an initial boundary value problem sim-
ilar to (5.1) is ill posed for the left-going transport equation @tu � @xu D f . Indeed, the
initial value problem (without boundary condition)´

@tu � @xu D f;

ujtD0 D u
in;

(5.3)
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is well posed, and the solution can be explicitly written as

u.t; x/ D uin.x C t /C

Z t

0

f .t 0; x C t � t 0/ dt 0I (5.4)

in particular, the boundary value u is given in terms of uin and f through the relation

u.t/ D uin.t/C

Z t

0

f .t 0; t � t 0/ dt 0

and therefore cannot be freely prescribed. Note that using this relation in (5.4), one can
express the solution in terms of the boundary data instead of the initial data, namely

u.t; x/ D u.x C t / �

Z x

0

f .x C t � x0; x0/ dx0: (5.5)

This proves in particular that the boundary value problem (without initial condition)´
@tu � @xu D f;

ujxD0 D u;
(5.6)

is also well posed for the left-going transport equation.
We note finally that for the initial value problem (5.3) as well as for the boundary

value problem (5.6) (which are essentially the same by switching the variables t and x)
the solution u belongs to X1 if the data are smooth enough without having to impose any
compatibility condition, contrary to what we saw for the right-going case.

5.3. The nonlocal transport equation

The aim of this section is to investigate the behavior of nonlocal perturbations of the right-
going and left-going transport equations respectively given by

@tuCK0
� �x @xu D f and @tu �K0

� �x @xu D f; (5.7)

where �x stands for the causal convolution with respect to the space variable,

8x 2 RC; f �x g.x/ D

Z x

0

f .x � x0/g.x0/ dx0

and with the Bessel kernel K0
� as in (4.18); in particular, we recall that

eK0
�.p/ D

1p
1C �2p2

.�2 D �=3/:

Remark 5.1. Though we consider here the Bessel kernel K0
�, the results of this section

can easily be adapted to other kernels.
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An important feature of the family .K0
�/�>0 is that it formally converges to the Dirac

mass at x D 0 as �! 0, so that the nonlocal transport equations (5.7) formally converge
to the standard right-going and left-going transport equations respectively, namely

@tuC @xu D f and @tu � @xu D f:

A natural question to ask therefore is whether the nonlocal initial and/or boundary value
problems have similar behavior to their local counterparts described in Section 5.2.

5.3.1. The right-going case. We want to address in this section the same kind of initial
boundary value problem as (5.1), but where the space derivative is now replaced by a
nonlocal term, namely, we consider8̂̂<̂

:̂
@tuCK0

� �x @xu D f;

ujxD0 D u;

ujtD0 D u
in:

(5.8)

As for (5.1), if there exists a solution u2X1 (or more generally in the weighted version
X1a with a � 0) to (5.8), then it is continuous at x D t D 0 and the data must therefore
satisfy the same compatibility condition

u.t D 0/ D uin.x D 0/ (5.9)

as for the standard transport equation.
There is however a new compatibility condition that arises here. Indeed, since K0

� 2

L1loc.R
C/, the trace of K0

� �x @xu at x D 0 is well defined if @xu 2 C.RCt IL
2
loc.R

C
x //,

and it must be equal to zero by definition of the convolution. Taking the trace of the first
equation in (5.8), one therefore finds the following additional compatibility condition for
the existence of solutions with the aforementioned regularity:

8t 2 RC; @tu.t/ D f .t; 0/: (5.10)

Remark 5.2. The similar procedure applied to the standard transport problem (5.8) yields
the relation

@xu.t; 0/ D �@tu.t/C f .t; 0/;

which is not a compatibility condition but information on the behavior of the trace of @xu
at the boundary.

If these two compatibility conditions are satisfied, the theorem below shows the well-
posedness of the nonlocal initial boundary value problem (5.8). We recall that the func-
tional spaces were defined in Section 5.1.1; note also that we have to work in weighted
spaces here in order to compensate the slow decay of K0

� at infinity (which is of order
O.jxj�1=2) and that more information on the regularity of the solution is given in Corol-
lary 5.1 below.
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Theorem 5.2. Let a > 0 and f 2 Y1
a , uin 2H 1

a .R
C
x /, and u 2W 1;1

loc .R
C
t /. Assume more-

over that the compatibility conditions (5.9) and (5.10) hold. Then there exists a unique
solution u 2 X1a to the nonlocal initial boundary value problem (5.8), and there exists
ca > 0 such that, for all t 2 RC,

ju.t; �/jH1
a .R

C
x /
� e�cat juin

jH1
a .R

C
x /
C

Z t

0

e�ca.t�t
0/Œjf .t 0; �/jH1

a .R
C
x /
C jK0

�jL2a
ju.t 0/j� dt 0:

If moreover u D 0 then the result still holds with a D ca D 0.

Proof. For the sake of clarity, we simply write K instead of K0
�. Taking the Laplace

transform of (5.8) with respect to space, one gets

@t QuC zK.p/.p Qu � u/ D Qf on RC:

Solving this ODE with initial condition QujtD0 D �uin, one gets the following expression
for Qu, for all p 2 Ca and t 2 RC:

Qu.t; p/ D e�p
zK.p/t �uin.p/C

Z t

0

e�p
zK.p/.t�t 0/ Qf dt 0 C

Z t

0

e�p
zK.p/.t�t 0/ zK.p/u.t 0/ dt 0

DW �u1 C �u2 C �u3: (5.11)

Since the Paley–Wiener Theorem 5.1 states that the Laplace transform is an isometry
between L2a.R

C/ and H2.Ca/, the following lemma shows that both u1 and u2 belong to
C.RCt IL

2
a.R

C
x // if uin 2 L2a.R

x/ and f 2 L1loc.R
C
t IL

2
a.R

C
x //.

Lemma 5.1. Let a � 0. For all U 2 H2.Ca/, the mapping

RC ! H2.Ca/;

t 7! .p 7! e�p
zK.p/tU.p//

is well defined and continuous, and for all t 2 RC, ke�p zK.p/tU kH2.Ca/ � kU kH2.Ca/.
If moreover a > 0 then there exists ca > 0 such that for all t 2 RC,

ke�p
zK.p/tU kH2.Ca/ � e

�catkU kH2.Ca/:

Proof of the lemma. Except for the last assertion, we consider only the case a D 0 since
the case a > 0 can easily be deduced from it. From the definition of H2.C0/ and from
Lebesgue’s dominated convergence theorem, it is sufficient to prove that e�p zK.p/t is holo-
morphic and bounded on C0. The fact that it is holomorphic directly stems from the
explicit expression zK.p/ D .1C �2p2/�1=2. For the boundedness, this is a consequence
of the fact that <.p zK.p// � 0 on C0, as we now prove. For all p D ˛ C i� 2 C0, one
computes

<.p zK.p// D
˛<
�p
1C �2p2

�
C �=

�p
1C �2p2

�ˇ̌p
1C �2p2

ˇ̌2 : (5.12)
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Since <.
p
1C �2p2/ is positive (by definition of the square root) and the sign of

=.
p
1C �2p2/ is the same as the sign of the product ˛�, one gets the result.

Since we have proved that <.p zK.p// � 0 on C0, the last assertion follows if we can
prove that <.p zK.p// does not vanish on Ca if a > 0. Since both terms in the numera-
tor in (5.12) are positive, both must vanish if <.p zK.s// vanishes. Since ˛ > 0 on C0,
this implies that there should be p D ˛ C i� 2 Ca such that <.

p
1C �2p2/ D 0 and

�=.
p
1C �2p2/ D 0, which is obviously not possible.

Remarking that for any a > 0, one has zK 2 H2.Ca/, it is also a direct consequence
of the lemma that there is ca > 0 such that

k�u3kH2.Ca/ � k
zKkH2.Ca/

Z t

0

e�ca.t�t
0/
ju.t 0/j dt 0:

Together with the results already proved on �u1 and �u2, we deduce (see the Paley–Wiener
Theorem 5.1 below) that

ju.t; �/jL2a.RCx / � e
�cat juin

jL2a.R
C
x /
C

Z t

0

e�ca.t�t
0/Œjf .t 0; �/jL2a.RCx / C jKjL2a ju.t

0/j� dt 0:

In order to conclude the proof of the theorem, we still need to control @xu and @tu:

• Control of @xu. We want to show that @xu 2 C.RCt IL
2
a.R

C
x //, or equivalently that

e@xu 2 C.RCt IH2.Ca//. Since e@xu D p Qu � u, we consider

p Qu.t; p/ D e�p
zK.p/tp �uin.p/C

Z t

0

e�p
zK.p/.t�t 0/p Qf dt 0

C

Z t

0

e�p
zK.p/.t�t 0/p zK.p/u.t 0/ dt 0:

Writing p �uin DA@xuin C uin.0/, p Qf .t; p/ D e@xf .t; p/C f .t; 0/, we can remark thatZ t

0

e�p
zK.p/.t�t 0/p zK.p/u.t 0/ dt 0 D

Z t

0

@t 0.e
�p zK.p/.t�t 0//u.t 0/ dt 0

D u.t/ � e�p
zK.p/tu.0/ �

Z t

0

e�p
zK.p/.t�t 0/@tu.t

0/ dt 0;

from which we deduce that

e@xu.t; p/ D e�p zK.p/tA@xuin.p/C

Z t

0

e�p
zK.p/.t�t 0/e@xf dt 0

C e�p
zK.p/t .uin.0/ � u.0//C

Z t

0

e�p
zK.p/.t�t 0/.f .t 0; 0/ � @tu.t

0// dt 0:

While the first two components of the right-hand side belong to C.RCt IH
2.Ca// by

Lemma 5.1, the last two do not, unless the compatibility conditions given in the state-
ment of the theorem are satisfied, in which case these two components cancel and the
result follows together with the upper bound

j@xu.t; �/jL2a � j@xu
in
jL2a
C

Z t

0

e�ca.t�t
0/
j@xf .t

0; �/jL2a dt 0:
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• Control of @tu. Using the equations, one has

j@tujL2a � jK �x @xujL2a C jf jL2a

� jKjL1a j@xujL2a C jf jL2a ;

with L1a D L
1.RC; e�ax dx/, showing as needed that @tu 2 C.RCt IL

2
a.R

C
x //.

The theorem follows easily.

Remark 5.3. As explained above in Remark 5.1, the initial boundary value problem (5.8)
can be seen as a nonlocal perturbation of the standard transport problem (5.1) towards
which it formally converges when �! 0. There seems however to be some discrepancy
because two compatibility conditions, namely (5.9) and (5.10), are needed to ensure the
existence of solutions u 2 X1a to (5.8), while the sole compatibility condition (5.9) is suf-
ficient to get a similar result for the standard transport problem (5.1). One should explain
why the second compatibility condition (5.10) disappears in the formal limit � D 0.

The reason is that (5.10) is here to ensure continuity of the solution at the bound-
ary x D 0. Indeed, by the initial value theorem, we know that limx!0C u.t; x/ D

limp2Ca;jpj!1 p Qu.t; p/, and we therefore get from the Laplace representation formula
(5.11) that

lim
x!0C

u.t; x/ D e�
t
� uin.0/C

Z t

0

e�
t�t 0

� f .t 0; 0/ dt 0 C
Z t

0

e�
t�t 0

�
1

�
u.t 0/ dt 0;

where we used the fact that limp2Ca;jpj!1 p
zK.p/ D ��1; after an integration by parts,

the right-hand side can be written

u.t/C e�
t
� .uin.0/ � u.0//C

Z t

0

e�
t�t 0

� .f .t 0; 0/ � @tu.t
0// dt 0;

so that, if the first compatibility condition (5.9) is satisfied, one has

lim
x!0C

u.t; x/ � u.t/ D

Z t

0

e�
t�t 0

� .f .t 0; 0/ � @tu.t
0// dt 0;

which is nonzero if the second compatibility condition is not satisfied, hence a lack of
continuity at x D 0 (there would therefore be a Dirac mass at x D 0 in the expression
for @xu.t; �/ that would therefore not be in L2a.R

C
x / as seen in the proof). However, one

readily observes that

lim
�!0

Z t

0

e�
t�t 0

� .f .t 0; 0/ � @tu.t
0// dt 0 D 0 .�2 D �=3/;

so that this discontinuity shrinks to zero in the limit �! 0, explaining why the second
compatibility condition is no longer necessary in the endpoint case � D 0.
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Before going further, we recall that there are two possibilities to define fractional
derivatives of order ˛ 2 .0;1/ on RC using the convolution kernel K˛.x/D x

�˛=�.1 � ˛/

with ˛ 2 .0; 1/ and � the Euler gamma function, namely the Riemann–Liouville and
Caputo derivatives, defined respectively as

D˛
RLu D @x.K˛ �x u/ and D˛

Cu D K˛ �x @xu:

In the nonlocal initial boundary value problem (5.8), the space derivative @xu in the stan-
dard transport equation has been replaced by the nonlocal term K0

� � @xu, which can be
considered as a generalized derivative of Caputo type, with the kernel K˛ replaced by the
Bessel kernel K0

�. It is noteworthy that working with the Riemann–Liouville version of
this operator, namely @x.K0

� �x u/, the situation is drastically different. Indeed, as shown
in the following proposition, it is not possible to impose boundary data anymore since
knowledge of the initial data suffices to fully determine the solution; in other words, the
initial value problem ´

@tuC @x.K
0
� �x u/ D f;

ujtD0 D u
in;

(5.13)

is well posed on RCt �RCx . In particular, the trace of the solution at the boundary x D 0 is
determined by f and uin and therefore cannot be imposed. We also show that if the data
uin and f are smoother, then the solution is in X2a, but generally not in X3a or higher in the
absence of an additional compatibility condition (but we show however that the regularity
in time can be higher).

Proposition 5.2. Let a > 0, nD 1 or 2, and f 2 Yn
a and uin 2Hn

a .R
C
x /. Then there exists

a unique solution u 2Xna to the nonlocal initial boundary value problem (5.13). Moreover,
one has u.t; �/jxD0 D u.t/ for all t 2 RC, with u.t/ given by

u.t/ D e�
t
� uin.0/C

Z t

0

e�
t�t 0

� f .t 0; 0/ dt 0:

If in addition f 2C q.RCt IH
n
a .R

C
x // for some q2N then one has u2C qC1.RCt IH

n
a .R

C
x //

also.

Remark 5.4. Comparing the representation of the solution given in (5.14) below to the
representation of the solution to the initial boundary value problem (5.8) given in (5.11),
one can check that they are both the same if u D 0, which is not surprising since one can
compute

@x.K
0
� �x u/.t; x/ D .K

0
� �x @xu/.t; x/CK0

�.x/u.t/;

so that the Caputo and Riemann–Liouville nonlocal initial boundary value problems coin-
cide when u D 0.

Proof of Proposition 5.2. As done previously , we simply write K D K0
�. Taking the

Laplace transform of (5.13) one readily gets

Qu.t; p/ D e�p
zK.p/t �uin.p/C

Z t

0

e�p
zK.p/.t�t 0/ Qf .t 0; p/ dt 0I (5.14)
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by the initial value theorem, one gets that limx!0C u.t; x/ D u.t/, with u as in the state-
ment of the theorem.

For all j and l , one deduces from the above formula for Qu that

pj
e
@ltu D .�p

zK.p//l
�
e�p

zK.p/tpj �uin C

Z t

0

e�p
zK.p/.t�t 0/pj Qf

�
C

lX
mD1

.�p zK.p//l�mpjB@m�1t f :

Replacing in this expression

pj Qv De@jxv C
j�1X
iD0

pj�1�i .@ixv/jxD0

for v D uin, Qf , B@m�1t f , we obtain

pj
e
@ltu D

j�1X
iD0

pj�1�iUli .p/C Flj .t; p/

(using the convention that the summation is zero if j � 1 < 0) with

Uli .p/ WD .�p zK.p//l
�
e�p

zK.p/t@ixu
in.0/C

Z t

0

e�p
zK.p/.t�t 0/.@ixf /.t

0; 0/ dt 0
�

C

lX
mD1

.�p zK.p//l�m.@m�1t @ixf /jxD0

and

Flj .t; p/ WD .�p zK.p//l
�
e�p

zK.p/tA@jxuin
C

Z t

0

e�p
zK.p/.t�t 0/e@jxf

�
C

lX
mD1

.�p zK.p//l�m C@m�1t @jxf :

Remarking that limjpj!1p zK.p/D ��1, and introducing uli D limjpj!1Uli .p/, namely

uli D .��/
�l

�
e�

t
� @ixu

in.0/C

Z t

0

e�
t�t 0

� .@ixf /.t
0; 0/ dt 0

�
C

lX
mD1

.��/�lCm.@m�1t @ixf /jxD0

(of course, u00 D u), we can write

pj
e
@ltu �

j�1X
iD0

pj�1�iuli .p/ D

j�1X
iD0

pj�1�i .Uli .p/ � uli /C Flj .t; p/:
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From Proposition 5.1 we can deduce that @jx@ltu belongs to C.RCt IL
2
a.R

C
x // if the right-

hand side of the above equality is in C.RCt IH
2.Ca//. This is obvious for Flj under the

assumptions made in the statement of the proposition (see Lemma 5.1); for the summa-
tion, the problem reduces to determining whether the mapping p 7! pj�1.p zK.p/� ��1/

belongs to H2.Ca/ or not. This mapping being holomorphic on Ca, we just need to check
that it is square integrable on a C iR. Recalling that zK.p/ D 1=

p
1C �2p2, and using

the fact that for all p 2Ca one has
p
p2 D p, one has pj�1.p zK.p/� ��1/�� 1

2�3
pj�3

at infinity; the mapping is therefore square integrable on aC iR if and only if j � 2, hence
the results.

As a corollary, we can exhibit a smoothing effect for the nonlocal transport problem
(5.8) that does not exist for the standard transport problem (5.1). Indeed, as one can easily
check in the explicit expression (5.2), even if the data uin, u, and f are very smooth,
the solution is not C 1.RC � RC/ if the additional compatibility condition @tu.0/ D
�@xu

in.0/C f .0; 0/ is not imposed. There is a smoothing effect for the nonlocal prob-
lem in the sense that the solution constructed in Theorem 5.2 actually belongs to X3a �
C 2.RC � RC/ without any additional compatibility condition if the data are smooth
enough. Note that using the last statement of Proposition 5.2, the proof shows that addi-
tional regularity in time on @xf would yield additional regularity in time on @xu.

Corollary 5.1. Under the assumptions of Theorem 5.2, if moreover f 2 Yn
a , uin 2

Hn
a .R

C
x /, and u 2 W n;1

loc .R
C
t / for n D 2 or 3, then the solution u provided by the the-

orem belongs to Xna.

Proof. Taking the space derivative of the nonlocal transport equation in (5.8), it is easy to
see that v D @xu solves the initial boundary value problem´

@tv C @x.K �x v/ D @xf;

vjtD0 D @xu
in:

It follows therefore from Proposition 5.2 that @xu 2 Xn�1. We are therefore left to prove
that @jt u 2 C.R

C
t IL

2
a.R

C
x // for 1 � j � n; this easily follows from the observation that

@
j
t u D �K �x @

j�1
t @xuC @

j�1
t f

and from the fact that K 2 L1a.R
C/.

5.3.2. The left-going case. As for the right-going case in the previous section, we want
to consider a nonlocal perturbation of the standard transport problem in which the space
derivative @x is replaced by a nonlocal term K0

� � @x . As recalled in Section 5.2, for the
standard left-going transport equation, one has to consider either the initial value problem
or the boundary value problem. While both cases are symmetric in the case of the standard
transport equation, this is no longer the case and, as we shall see, the boundary value
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problem leads to simpler expressions. We therefore consider here its nonlocal analogue
(see Remark 5.6 below for the nonlocal analogue of the initial value problem),´

@tu �K0
� �x @xu D f;

ujxD0 D u:
(5.15)

As for the boundary value problem (5.6) for the standard left-going transport equation,
there is no compatibility condition like (5.9) since uin is not prescribed. On the other
hand, the analysis leading to the second compatibility condition (5.10) remains valid, and
it is still necessary to have

8t 2 RC; @tu.t/ D f .t; 0/ (5.16)

in order to expect a solution u that belongs to X1. In the statement below, we use the
notation

H 1
a .R

C
t �RCx / WD H

1.RCt IL
2
a.R

C
x // \ L

2.RCt IH
1
a .R

C
x //

(note that the assumptions on the time dependence of f and u are chosen in order to
ensure the convergence of the integral term over the range .t;C1/ and that they could
easily be weakened).

Theorem 5.3. Let a > 0, f 2 H 1
a .R

C
t �RCx /, and u 2 H 1.RCt /. Assume moreover that

the compatibility condition (5.16) holds. Then there exists a unique solution u 2 X1a to the
nonlocal boundary value problem (5.15), and there exists ca > 0 such that, for all t 2RC,

ju.t; �/jH1
a .R

C
x /
�

Z 1
t

eca.t�t
0/Œjf .t 0; �/jH1

a .R
C
x /
C jK0

�jL2a
ju.t 0/j� dt 0:

Proof. Still denoting K D K0
� and following the same procedure as for the proof of

Theorem 5.2, one readily finds that

Qu.t; p/ D �

Z 1
t

ep
zK.p/.t�t 0/. Qf .t 0; p/ � zK.p/u.t 0// dt 0I

as for the right-going case, one can check that the compatibility condition (5.16) is nec-
essary for the continuity of the solution at x D 0. We omit the proof, which is an easy
adaptation of the proof of Theorem 5.2.

Remark 5.5. As for the standard boundary transport problem (5.6), the initial data is
determined in terms of the source term f and the boundary data u by evaluating the
Laplace representation formula given in the proof at t D 0, namely

�uin.p/ D �

Z 1
0

e�p
fK0
�.p/t

0

. Qf .t 0; p/ �eK0
�.p/u.t

0// dt 0: (5.17)

In the limit case � D 0 (and therefore yK�.p/ D 1), one can check that the representation
formula of the proof is equivalent to (5.5); the additional compatibility condition (5.16)
which is not necessary for (5.6) also disappears at the limit using a mechanism similar to
the one described in Remark 5.3.
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Remark 5.6. For the standard left-going transport equation, the initial value problem
(5.4) and the boundary value problem (5.5) can be treated in a totally symmetric case by
switching the variables t and x. The presence of the nonlocal term breaks this symme-
try, and the nonlocal initial value problem would be more delicate to deal with than the
boundary value problem addressed above. In particular, one would need to find u in terms
of f and uin by solving the nonlocal equation (5.17).

A. Nondimensionalization of the equations

We show here how to derive the dimensionless equations of motion used throughout this
paper. To begin with, the Boussinesq–Abbott system describing the propagation of weakly
nonlinear waves in a fluid of mean depth h0 and with a pressure Patm C P exerted at the
surface (Patm is a constant reference value for the atmospheric pressure) is given by8̂<̂

:
@t� C @xq D 0;�
1 �

h20
3
@2x

�
@tq C @x

�1
h
q2
�
C gh@x� D �

h

�
@xP .h D h0 C �/:

(A.1)

Remark A.1. Introducing the hydrodynamic pressure … as

… D P C �g�; (A.2)

an alternative formulation of (A.1) is8̂<̂
:
@t� C @xq D 0;�
1 �

h20
3
@2x

�
@tq C @x

�1
h
q2
�
D �

h

�
@x…I

(A.3)

we shall sometimes use this alternative formulation under the floating object.

Let us now consider the equations for the solid. We recall that we consider here a
floating object with vertical lateral walls located at x D ˙` (` > 0) and allowed to move
only vertically (heave motion). There is therefore only one degree of freedom for the
motion of the solid which can be fully deduced from the signed distance ı.t/ between the
center of mass G D .xG ; zG.t// and its equilibrium position Geq D .xG ; zG;eq/, namely
ı D zG.t/ � zG;eq.

Let us also assume that the water depth below the object is given at equilibrium by
a nonnegative single-valued function x 7! heq.x/; the part of the bottom of the object in
contact with the water (the wetted surface) is therefore given at all time t by the graph of
the function �w defined as

�w.t; x/ D ı.t/C heq.x/ � h0: (A.4)

Newton’s equation for a body of mass m that only moves vertically and subject to gravity
and hydrodynamic forces is given by

m Rı Cmg D

Z `

�`

P i.t; x/ dx; (A.5)
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where P i.t; x/ is the pressure exerted by the fluid on the object at the point .x; �w.t; x//.
Note that at equilibrium, the pressure is hydrostatic, P i D ��g.heq � h0/, so that

m D �

Z `

�`

.h0 � heq.x// dx (Archimedes’ principle);

and we can rewrite Newton’s equation in the form

m Rı D

Z `

�`

.P i.t; x/C �g.heq � h0// dx:

By definition of the hydrodynamic pressure, its value …i in the interior domain .�`; `/ is
given by

…i D P i C �g�w;

from which we infer, using (A.4),

�2buoy
Rı C ı D

1

2�g`

Z `

�`

…i.t; x/ dx; (A.6)

where 2��buoy is the buoyancy period defined through

�2buoy D
m

2`�g
:

We now proceed to derive dimensionless versions of (A.1), (A.4), (A.5), and (A.6).
We recall that h0 denotes the water depth at rest, and also denote by a and L the typical
amplitude of the waves and a typical horizontal scale respectively. For the Boussinesq–
Abbott equations (A.1), we use the scalings

Qx D
x

L
; Qz D

z

h0
; Qt D

t

L=
p
gh0

; Q� D
�

a
; Qq D

q

a
p
gh0

; zP D
P

�gh0

and consequently QhD 1C " Q�. We also introduce the nonlinearity and shallowness param-
eters " and � as

" D
a

h0
; � D

h20
L2
:

For the sake of clarity the tildes used to denote dimensionless quantities are omitted
throughout this paper. System (A.1) thus becomes8<:@t� C @xq D 0;�

1 �
1

3
�@2x

�
@tq C "@x

�1
h
q2
�
C h@x� D �

1

"
h@xP .h D 1C "�/:

(A.7)

Remark A.2. The dimensionless form of the hydrodynamic pressure is naturally

z… D
…

�gh0
D zP C " Q�;
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so that the dimensionless version of the alternative formulation (A.3) is (omitting the
tildes) 8<:@t� C @xq D 0;�

1 �
�

3
@2x

�
@tq C "@x

�1
h
q2
�
D �

h

"
@x…I

(A.8)

In order to derive the dimensionless versions of (A.4) and (A.5), we also need the
scalings

Q�w D
�w

a
; Qı D

ı

a
; Qheq D

heq

h0
; QmD

m

2`�h0
; Q�buoy D

�buoy

L=
p
gh0
D
p
� Qm; Q̀ D

`

L

so that, again omitting the tildes for the sake of readability, we can rewrite (A.4) and (A.5)
as

�w.t; x/ D ı.t/C
1

"
.heq.x/ � 1/ (A.9)

and

�2buoy
Rı C

1

"
m D

1

"

1

2`

Z `

�`

P i.t; x/ dxI (A.10)

note that in these dimensionless coordinates, the coordinates of the vertical sides of the
object are x D ˙` and that Archimedes’ principle written in dimensionless form is

m D
1

2`

Z `

�`

.1 � heq/:

Finally, the dimensionless version of (A.6) is

�2buoy
Rı C ı D

1

"

1

2`

Z `

�`

…i.t; x/ dx:
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