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Optimal decay rate for higher-order derivatives of the
solution to the Lagrangian-averaged Navier–Stokes-˛

equation in R3

Jincheng Gao, Zeyu Lyu, and Zheng-an Yao

Abstract. Recently, Bjorland and Schonbek [Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008)
907–936] investigated the upper bound of the decay rate for the solution to the Lagrangian-averaged
Navier–Stokes-˛ equation under the condition that the initial data belongs to L1.Rn/ \HN

� .R
n/

with n D 2; 3; 4. The decay rate can eventually be shown to be optimal if the average of the initial
data is nonzero. Thus, the target in this paper is to study the optimal decay rate of the solution
when the average of the initial data is zero. If the initial data belongs to L1.R3/ \HN

� .R
3/ and

some weighted Sobolev space, we show that the lower and upper bounds of decay rates for the kth-
order (k 2 Œ0; N �) spatial derivatives of the solution tending to zero in L2-norm are .1C t /�

5C2k
4 ,

which implies these decay rates are optimal. As a by-product, we show that the optimal decay rate
(including lower and upper bounds) of the time derivative of the solution tending to zero inL2-norm
is .1C t /�

9
4 .

1. Introduction

In this paper we are interested in establishing the upper and lower bounds of decay rate for
the unfiltered velocity in the Lagrangian-averaged Navier–Stokes-˛ equation (LANS-˛)
(also known as the viscous Camassa–Holm equation (VCHE) or Navier–Stokes-˛ (NS-˛)
equation) in three-dimensional whole space. For this purpose, we consider the following
LANS-˛ equation in R3:´

@tv C u � rv C v � ru
T D ��v � rp;

divu D 0;
(1.1)

where uDO�1vD .I � ˛2�/�1v, and the operator OD I � ˛2� denotes the Helmholtz
operator. We adopt the notation v � ruT D

P
i virui . Also, t � 0 and x D .x1; x2; x3/ 2

R3 are the time and spatial variables respectively, the material coefficient (normal stress
moduli) ˛ > 0 is a regularization length-scale parameter representing the width of the
filter, the unknown function u D .u1; u2; u3/.t; x/ represents the filtered fluid velocity
and the unknown function v D u � ˛2�u denotes the unfiltered velocity. The function p
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denotes the filtered pressure. The mean quantities u.t; x/ and p can reflect the uncertainty
of accurately reproducing the initial data when the same fluid experiment is repeated many
times. The constant � > 0 is the viscosity coefficient. We consider the solution of system
(1.1) with the initial data

v.x; t/jtD0 D v0: (1.2)

Moreover, we assume the far field behavior is

lim
jxj!1

u.x/ D 0: (1.3)

Chen et al. ([15]) gave the detailed derivation of the LANS-˛ equation. Holm et al.
([34]; see also [42]) derived the LANS-˛ equation by virtue of variational principles in
the Lagrangian formalism. Based on modifying the Navier–Stokes system, Foais et al.
([22]) derived the LANS-˛ equation. The LANS-˛ equation is built to provide a valid
value simulation of three-dimensional turbulence over a periodic domain; see [21, 33].
It should be demonstrated analytically and numerically that this model is an approxima-
tion of the Navier–Stokes equation (also called N-S), where in partial terms, the unknown
velocity v of the Navier–Stokes equation is represented by the smoother velocity func-
tion u, that is, v D u � ˛2�u. Meanwhile, this model gives an approximation in the
research on many problems related to turbulent flow; refer to [32, 44] and the refer-
ences therein. For a discussion of the physical importance and mathematical significance,
see [15–18].

Many researchers have addressed the well-posedness of the LANS-˛ equation. Based
on a fixed point argument, Marsden and Shkoller proved global well-posedness and reg-
ularity of the LANS-˛ equation in a three-dimensional bounded domain with a smooth
boundary in [42]. Coutand et al. ([19]) established the global well-posedness and regular-
ity of weak solutions for the case of no-slip boundary conditions on a three-dimensional
bounded domain, which generalizes the periodic-box results of [23]. Global-in-time well-
posedness of weak solutions to the Cauchy problem in a three-dimensional periodic region
was first shown by Foais et al. with the help of the Galerkin method and the smooth-
ing property of solutions was also studied in [23]. Later, Bjorland and Schonbek ([4])
improved the work in [42] by the Galerkin method on an n-dimensional bounded domain
or n-dimensional whole space with n D 2; 3; 4. Zhou and Fan ([57]) showed various reg-
ularity criteria for the strong solution in n-dimensional whole space and established the
existence of a global smooth solution when n � 4. For more results on the well-posedness
of the LANS-˛ equation, see [43] and the references therein.

It should be noted that the LANS-˛ equation generalizes the incompressible Navier–
Stokes equation due to the fact that the LANS-˛ equation reduces to the incompressible
Navier–Stokes equation as ˛D 0. See [4,22,23] and the references therein for more results
about the convergence of the LANS-˛ equation to the Navier–Stokes equation. Also note
that when � ! 0, the solution v of the LANS-˛ equation will converge to u˛ , which
satisfies the well-known Euler-˛ equation (also known as the Lagrangian-averaged Euler
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equations),8̂̂<̂
:̂
@t .u

˛ � ˛2�u˛/C u˛ � r.u˛ � ˛2�u˛/C .u˛ � ˛2�u˛/ � r.u˛/T D �rp˛;

divu˛ D 0;

u˛.x; t/jtD0 D u
˛
0.x/:

We remark here that the Euler-˛ equation arises as the zero-viscosity case of the incom-
pressible non-Newtonian fluids of second grade introduced in [20]. Chen et al. ([15, 16]),
took the viscosity factor into account in the Euler-˛ equation and introduced the LANS-˛
equation as a consequence. By a variable formulation, the Euler-˛ equation introduced in
[34] is a natural mathematical generalization of the integrable invisible one-dimensional
Camassa–Holm equation which was discovered in [11]. Local well-posedness of solu-
tions to the Euler-˛ equation has been shown in some contexts; refer to [7, 9, 37, 38, 53]
for instance. For the three-dimensional axisymmetric Euler-˛ equation without swirl, the
global well-posedness of classical solutions was obtained by Busuioc and Ratiu in [7];
later, the global existence and uniqueness of strong solutions on a bounded domain were
shown in [8], and the global existence of a weak solution was established by Jiu et al.
([35]) very recently. However, the global existence of smooth solutions to the Euler-˛
equation in R3 is still an open problem, which parallels the famous open problem of the
existence of smooth solutions to the three-dimensional Euler equations. See [6,39,40,55]
and the references therein for more results on the convergence of the solution of the Euler-
˛ equation to the solutions of the incompressible Euler equation.

In the past two decades, the following Camassa–Holm (CH) equation, describing the
one-way propagation of shallow water waves, has attracted a great deal of attention from
scholars in the study of nonlinear integrable equations:

@tv C u@xv C 2v@xu D 0; v D u � @xxu;

where the function u denotes the height of the water at the bottom. Local well-posedness
of the CH equation in the Sobolev spaceH s.R/ with s > 3

2
has been shown in [36]. Later,

local ill-posedness was shown in [10] and [31] for the cases s < 3
2

and s D 3
2

respectively.
For the CH equation with fractional dissipation, Gui and Liu ([28]) proved global well-
posedness inH

3
2� .R/ with the dissipative operator power  2 Œ1

2
; 1/. For the case of the

dissipative operator power  D 2 and the constant � > 0, it reduces to the classical viscous
CH equation; Xin and Zhang showed the global well-posedness of the weak solution to
the Cauchy problem in [54]. Also, there are other types of CH equations, for instance
the modified CH equations, the two-component CH equations and the �-CH equations.
Mathematical properties of the modified CH equations that could be viewed as a cubic
extension of the CH equation have been studied in many works; for example, the blow-up
mechanism has been investigated in [14] and results about the well-posedness of solutions
have been shown in [24,29,30,48]. When the quantity which is related to the free surface
elevation from equilibrium equals zero, the two-component CH equations reduce to the
CH equations. Many researchers have studied the two-component CH equations. The well-
posedness of solutions has been studied in several contexts; refer to [26, 27] for instance.
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The wave breaking phenomenon, one of the most interesting problems of water wave
theory, has also attracted the attention of a large number of scholars; see [12, 26, 27, 56]
for instance. The �-CH equations, the midway equations between the CH equations and
the Hunter–Saxton equations (which are a short-wave limit of the CH equations), share
many remarkable properties as well. For example, well-posedness, the blow-up structure
and wave breaking have been investigated extensively; see [13, 25, 46, 47, 49].

The study of the large time behavior of the solution to the LANS-˛ equation has
attracted researchers’ attention. Bjorland and Schonbek ([4]) have used the Fourier split-
ting method to show that the upper bound of decay rate for the N th-order derivative of
the unfiltered velocity in L2-norm is .1 C t /�

nC2N
4 in n-dimensional whole space with

n D 2; 3; 4, provided the initial data belongs to L1 \HN
� for any positive integer N . It

is worth noting that the L1 integrating condition mentioned before is to ensure that the
Fourier transform of the initial data in lower frequency has an upper bound. Therefore,
the decay rates obtained in [4] are eventually optimal (i.e., the lower bound of decay rate
coincides with the upper one) if we assume the Fourier transform of the initial data at the
zero point (equivalent to the average of the initial data) is nonzero. Thus, the target in this
paper is to study the optimal decay rate of the solution when the average of the initial data
is zero. On this subject, Schonbek and her collaborators ([51, 52]) have completed some
original celebrated results involving a zero average of the initial data for both the classical
incompressible Navier–Stokes and MHD equations. However, to the authors’ knowledge,
there are no relevant results concerning the optimal decay rate for the LANS-˛ equation
when the average of the initial data is zero. Thus, the purpose of this paper is to establish
some decay rate results along this direction. For more decay rate results concerning the
LANS-˛ equation, we also refer interested readers to [1, 3, 5].

Notation. Throughout this paper, we utilize the symbol rk with integer k � 0 to stand, as
usual, for any spatial derivative of order k. Denote Lp.R3/ as the usual Lebesgue space.
DenoteH s.R3/DW s;2.R3/with s � 0 as the usual Sobolev space. Denote PH s.R3/with
s � 0 as the usual homogeneous Sobolev space with norm kuk PH s D .

R
R3 j�j

2sj Ouj2 d�/
1
2 <

1. We useH s
� to represent the completion of the set ¹� 2 C10 .R

3/ j div� D 0º under the
H s-norm. We adopt the following simplified notation:

R
f dx WD

R
R3 f dx. We introduce

two sets as follows:

V D
®
v 2 C10 .R

3/ W div v D 0
¯
; H D closure of V in L2.R3/:

Denote by W1 and W2 the two weighted Lebesgue spaces

W1 D
®
v.x/ W R3 ! R; kvkW1 D

R
R3 jxj

2jv.x/j dx <1
¯
;

W2 D
®
v.x/ W R3 ! R; kvkW2 D

�R
R3 jxj jv.x/j

2 dx
� 1
2 <1

¯
:

The set M is expressed as

M D
®
r� Ov0.0/D 0; limt!1

�
3
2

15�. 32 /

�P
k¤j .Akk.t/�Ajj .t//

2C6
P
k¤j Akj .t/

2
�
D 0

¯
;
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where an element of the 3 � 3 matrix Akj .t/ is expressed by

Akj .t/ D

Z t

0

akj .0; s/ ds;

with the function akj defined in Section 3 and v0 the initial data of the LANS-˛ equa-
tion (1.1).

We first recall the result on an estimate of the solution to the LANS-˛ equation (1.1)
obtained by Bjorland and Schonbek ([4]).

Theorem 1.1 ([4]). Let v (the unfiltered velocity) be the solution to system (1.1) in Rn

with n D 2; 3; 4. Assume that the initial data v0.x/ satisfies v0.x/ 2 Hm
� for any m � 0;

then the solution satisfies the estimate

k@
p
t r

kv.t/k2
L2
C �

Z t

0

k@
p
t r

kC1v.t/k2
L2
ds � C; (1.4)

with 2pC k �m and C a positive constant dependent on the initial data but independent
of time.

In this paper we establish upper and lower bounds of decay rates for the solution to the
LANS-˛ equation (1.1) under the HN (N � 3) framework. Our main results are stated in
the following theorems.

Theorem 1.2. Assume that the initial data of the unfiltered velocity v satisfies that v0 2
H \L1 \HN \W1 \W2, and the initial data of the filtered velocity u satisfies u0 2W2
and ru0 2 W2. Additionally, provided that the velocity v … M , then for all t > T there
exists a positive constant C independent of time such that the following decay rate holds:

c1.1C t /
�
5C2k
2 � kr

kvk2
L2
� C1.1C t /

�
5C2k
2 ; k 2 Œ0; N �: (1.5)

Here, T is a positive large time, and the two positive constants c1 and C1 depend on �, ˛
but do not depend on time.

Remark 1.1. Bjorland and Schonbek investigated the upper bound of decay rate for the
solution under the condition that the initial data belongs toL1.Rn/\HN

� .R
n/withN � 3

and n D 2; 3; 4. The L1 integrating condition proposed in [4] by Bjorland and Schonbek
is used to guarantee that the Fourier transform of the initial data v0.x/ is bounded. That is
to say, when the initial data v0.x/ 2 L1.Rn/, it holds that

j Ov0.�/j � C;

with C a positive constant that is independent of time. Then by applying the Fourier split-
ting method and an inductive argument, the authors obtained decay rates for the unfiltered
velocity v.x; t/ and all of its derivatives. It should be noted that the decay rates obtained
in [4] could be shown to be optimal (i.e., the lower bound of decay rate coincides with the
upper bound) provided the Fourier transform of the initial data at the zero point (equivalent
to the average of the initial data) is nonzero.
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In our manuscript we establish the upper bound of decay rate for the solution provided
the initial data of the solution v.x; t/ satisfies v0.x/ 2 L1.R3/\HN

� .R
3/\W1.R3/. We

use the Borchers lemma to obtain that the initial data satisfies Ov0.0/ D 0. The condition
that the initial data v0.x/ belongs to the weighted Lebesgue spaceW1 is used to ensure that
the Fourier transform of the initial data is twice continuously differentiable with bounded
partial derivatives. That is to say, we can obtain

j Ov0.�/j � C j�jI

see (2.5). So, in this case, we obtain that the upper bounds of decay rates for the kth-order
(k 2 Œ0;N �) spatial derivatives of the solution tending to zero inL2-norm are .1C t /�

5C2k
4

in the HN (N � 3) framework. Our interest is to establish the optimal decay rate for the
solution when the average of the initial data is zero. If the conditions given in Theorem
1.2 hold, we can derive the lower bound of decay rate for the solution, which coincides
with the upper bound.

Remark 1.2. In the HN framework, the highest derivative of the filtered velocity u is
N C 2. With the help of decay rate (1.5), it is easy to deduce that the upper and lower
bounds of decay rates for the kth-order (k 2 Œ0; N � 1�) spatial derivatives of u tending
to zero in L2-norm are .1 C t /�

5C2k
4 . For the case k 2 ŒN; N C 2�, due to the fact that

the faster upper bounds of decay rates for the kth-order (k > N ) spatial derivatives of u
are unavailable, we can get that the upper bounds of decay rates for the kth-order spatial
derivatives of the filtered velocity u tending to zero in L2-norm are .1C t /�

5C2N
4 but the

lower bounds of decay rates for the kth-order spatial derivatives of the filtered velocity u
tending to zero in L2-norm remain unknown.

Remark 1.3. Based on the results in Theorem 1.2, we can apply the Sobolev interpola-
tion inequality to obtain that the upper bounds of decay rates for the kth-order (k 2 Œ0;
N � 1�) spatial derivatives of the filtered velocity tending to zero in Lp.2 < p � 6/-norm
are .1 C t /�.2C

k
2�

3
2p /. Additionally, the upper bounds of decay rates for the kth-order

(k D 0; : : : ;N � 2) spatial derivatives of the filtered velocity tending to zero in L1-norm
are .1C t /�

1
2 .kC4/.

Finally, we state the decay rate for the time derivative of the unfiltered velocity v to
the LANS-˛ equation (1.1).

Theorem 1.3. Assume the conditions in Theorem 1.2 hold; then for all t > T , the unfil-
tered velocity satisfies the following decay rate:

c3.1C t /
� 92 � k@tvk

2
L2
� C3.1C t /

� 92 ;

with T a positive large time and two positive constants c3 and C3 independent of time.

Remark 1.4. By using the same method, the upper and lower bounds of decay rates for
the higher-order time derivatives for the unfiltered velocity can be easily derived.
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We now make some comments on this paper. First of all, we hope to apply the Fourier
splitting method (see [50]) to establish the upper decay rate of the solution. However, it
is not easy to apply the above method to obtain the decay rate for the unfiltered velocity
directly because of the appearance of the second-order derivative in the convective term.
Motivated by the energy differential equality (2.8), our strategy is to derive the upper
bounds of decay rates for the filtered velocity itself and its first-order derivative. Further-
more, the upper bound of decay rate for the first-order derivative of the unfiltered velocity
can be obtained by using the decay rate of the filtered velocity obtained before. Thus, the
decay rate of the unfiltered velocity follows from the relation between the unfiltered veloc-
ity and the filtered one. Then we use mathematical induction to derive the upper bounds
of decay rates for the higher-order derivatives of the unfiltered velocity.

Next we follow the technique introduced in [51, 52] to derive the lower bounds of
decay rates for the solution itself and its high-order derivatives. The main objective is
to compare the decay rates of solutions to the LANS-˛ equation to those of the homo-
geneous heat equations. When the initial data belongs to L1 \HN and some weighted
Sobolev spaces, the Fourier transform of the kth-order (k � N ) derivative of solution has
the form (3.8), which ensures that the lower bounds of decay rates for the solution to the
homogeneous heat equation could be obtained by virtue of Proposition 3.1 when the ini-
tial data of the homogeneous heat equation equals the solution to the LANS-˛ equation
for some time T0. Meanwhile, this guarantees that the difference between the solution to
the homogeneous heat equation and the LANS-˛ equation decays faster when T0 is large
enough.

Finally, we hope to establish the optimal decay rate for the time derivative of the
unfiltered velocity by using equation (1.1). Thus, the main task turns into establishing
the upper decay rate of the first-order derivative of pressure rp. Our method here is to
apply the Sobolev interpolation inequality to control this difficult term rp by using the
quantities p and �p. The latter is a good quantity since it is not involved with the time
derivative of the unfiltered velocity due to the divergence-free condition. Thus, the optimal
decay rate of the time derivative of the unfiltered velocity can be obtained by using the
optimal decay rate of the solution itself and its spatial derivatives.

The remainder of this paper is organized as follows. We establish the upper bounds
of decay rates for the unfiltered velocity in Section 2. We propose some properties of
the heat equation in Section 3.1, and Section 3.2 is devoted to establishing the lower
bounds of decay rates for the higher-order derivatives of the unfiltered velocity. Section 4
is devoted to addressing the upper and lower bounds of decay rate for the time derivative
of the unfiltered velocity. In Section 5 we establish the claimed estimates that are used in
Section 3.

2. The upper bound of decay rate

This section is devoted to obtaining the upper bounds of decay rates for the spatial deriva-
tives of the solution itself and its derivatives under the HN (N � 3) framework.
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In order to achieve this goal, we will bound the Fourier transform of the solution in
the following proposition.

Proposition 2.1. Assume that the initial unfiltered velocity v0.x/ satisfies v0.x/ 2 L1 \
H \W1. Then the Fourier transform of the unfiltered velocity v.x/ satisfies

j Ov.�/j � C j�j C C j�j

�Z t

0

kuk2
L2
ds

� 1
2
�Z t

0

kvk2
L2
ds

� 1
2

;

where the positive constant C does not depend on t and ˛.

Proof. Let us denoteH WD rpC u � rvC v � ruT ; then the first equation of (1.1) could
be expressed as

@tv � ��v D �H: (2.1)

Applying the Fourier transform to equation (2.1), it holds that

Ov.�/ D e��t j�j
2

Ov0.�/ �

Z t

0

e��.t�s/j�j
2
yH.�; s/ ds: (2.2)

In what follows we estimate the term yH.�; s/ first of all. Applying the operator div to
equation (2.1), due to the fact that div v D 0, it follows that divH D 0, that is to say,

�p D � div.u � rv/ � div.v � ruT /: (2.3)

Because divu D 0, we can easily deduce that

div.u � rv/ D
X
j;k

@j @k.uj vk/

and
u � rv D

X
j

@j .uj v/:

Applying the Fourier transform to equality (2.3), one arrives at

Op D �
X
j;k

�j �k

j�j2
F .uj vk/C

i� t

j�j2
F .v � ruT /:

Then we can obtain

yH D F .u � rv/C F .v � ruT /C F .rp/

D i
X
j

�jF .uj v/C F .v � ruT /C i� Op

D i
X
j

�jF .uj v/C F .v � ruT /C

�
�

X
j;k

�j �k

j�j2
F .uj vk/C

i� t

j�j2
F .v � ruT /

�
i�

D i
X
j

�jF .uj v/ �
X
j;k

�j �k

j�j2
F .uj vk/�:
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Setting

akj WD F .uj vk/; �kj WD
�k�j

j�j2
;

we introduce the 3 � 3 matrix A D Œakj �. Then the term yH can be expressed as

yH D i.I � �.�//A.�; t/�:

So we have
jA.�; t/j � C

X
k;j

jakj j � CkukL2kvkL2 ;

with C a positive constant. Then the term j yH j can be estimated by

j yH j � CkukL2kvkL2 j�j: (2.4)

Due to the fact that v0.x/ 2 L1 \H , by Lemma A.4, we find

Ov0.0/ D

Z
v0.x/ dx D 0:

Since v0 2 W1, it is easy to deduce that Ov0.�/ is twice continuously differentiable with
bounded partial derivatives. We expand Ov0.�/ in Taylor series around the origin up to
terms of order 1 as

Ov0.�/ D Ov0.0/CD� Ov0.0/� C o.�/I

then it holds that
j Ov0.�/j � C j�j; (2.5)

with C a positive constant that is independent of time. Substituting inequalities (2.4) and
(2.5) into equality (2.2), together with the Hölder inequality, we acquire

j Ov.�/j � Ce��t j�j
2

j�j C C

Z t

0

j yH.�; s/j ds

� C j�j C C j�j

Z t

0

kukL2kvkL2 ds

� C j�j C C j�j

�Z t

0

kuk2
L2
ds

� 1
2
�Z t

0

kvk2
L2
ds

� 1
2

: (2.6)

Therefore, we have completed the proof of this lemma.

Lemma 2.2. Let v be the solution to the LANS-˛ equation (1.1) which satisfies v0 2
L1 \H \HN \W1 with N � 3. Then for all t � 0, the solution has decay rate

kuk2
L2
C ˛2kruk2

L2
� C.1C t /�

5
2 ; (2.7)

where the positive constant C depends on ˛ and � but not on time.
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Proof. By multiplying both sides of the first equation of system (1.1) by u, with the help
of the incompressibility condition divu D 0, we integrate the result over R3 to get

1

2

d

dt

�Z
juj2 dx C ˛2

Z
jruj2 dx

�
C �

�Z
jruj2 dx C ˛2

Z
jr
2uj2 dx

�
D 0; (2.8)

where we have used integration by parts to deriveZ
u � rv � udx C

Z
v � ruT � udx D 0:

With the aid of the Plancherel theorem, we rewrite equation (2.8) as

d

dt

Z
.1C ˛2j�j2/j Ouj2 d� C 2�

Z
j�j2.1C ˛2j�j2/j Ouj2 d� D 0:

As was shown in [4], similarly, let B.�/ be the ball with radius � and �2 D f 0

2�f
, where

the positive increasing function f will be defined below. Then it is easy to deduce that

d

dt

Z
.1C ˛2j�j2/j Ouj2 d� C 2��2

Z
.1C ˛2j�j2/j Ouj2 d�

� 2��2
Z
B.�/

.1C ˛2j�j2/j Ouj2 d�: (2.9)

Since v D u � ˛2�u, the Plancherel theorem implies

Ou D
Ov

1C ˛2j�j2
I

then it holds that

.1C ˛2j�j2/j Ouj2 � j Ovj2 � C j�j2 C C j�j2
�Z t

0

kuk2
L2
ds

��Z t

0

kvk2
L2
ds

�
: (2.10)

Inserting the equality v D u � ˛2�u into the above inequality (2.10), we have

.1C ˛2j�j2/j Ouj2 � C j�j2 C C j�j2
�Z t

0

kuk2
L2
ds

��Z t

0

kuk2
L2
ds C

Z t

0

k�uk2
L2
ds

�
� C j�j2 C C j�j2

�Z t

0

kuk2
L2
ds

��Z t

0

kuk2
L2
ds C

Z t

0

krvk2
L2
ds

�
� C j�j2 C C j�j2

�Z t

0

kuk2
L2
ds

�2
C C j�j2

�Z t

0

kuk2
L2
ds

��Z t

0

krvk2
L2
ds

�
� C j�j2 C C j�j2t

�Z t

0

kuk2
L2
ds

�
C C j�j2

�Z t

0

kuk2
L2
ds

�
;
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where we have used bound (1.4) and the facts that kuk2
L2
� kvk2

L2
and k�uk2

L2
�

Ckrvk2
L2

. Together with this bound, we get the estimate

d

dt

Z
.1C ˛2j�j2/j Ouj2 d� C 2��2

Z
.1C ˛2j�j2/j Ouj2 d�

� 2��2
Z
B.�/

.1C ˛2j�j2/j Ouj2 d�

� C�2
Z
B.�/

j�j2 d� C C�2t

Z
B.�/

j�j2
�Z t

0

kuk2
L2
ds

�
d�

C C�2
Z
B.�/

j�j2
�Z t

0

kuk2
L2
ds

�
d�

� C�7 C C�7.1C t /

Z t

0

kuk2
L2
ds:

Denoting
R
.1C ˛2j�j2/j Ouj2 d� WD F , it holds that

d

dt
F C 2��2F � C�7 C C�7.1C t /

Z t

0

F ds:

We choose f D .1C t /
7
2 . Substituting �2D f 0

2�f
into the above inequality directly implies

d

dt
Œ.1C t /

7
2F � � C C C.1C t /

Z t

0

F ds:

Integrating the above inequality with respect to time over Œ0; t �, we find

.1C t /
7
2F � F0 � Ct C C.1C t /

2

Z t

0

F ds;

which implies

F � C.1C t /�
5
2 C C.1C t /�

3
2

Z t

0

F ds:

We use the Grönwall inequality to arrive at

kuk2
L2
C ˛2kruk2

L2
D F � C.1C t /�

3
2 : (2.11)

Plugging estimate (2.11) into (2.10) and then into (2.9), we can obtain

d

dt
F C 2��2F � C�2

Z
B.�/

j�j2 d�:

We still choose f D .1C t /
7
2 . By substituting �2 D f 0

2�f
into the above inequality we get

d

dt
Œ.1C t /

7
2F � � C:

Finally, by integrating the above inequality with respect to time over Œ0; t �, one arrives at

kuk2
L2
C ˛2kruk2

L2
D F � C.1C t /�

5
2 :

So we have finished the proof of this lemma.
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Lemma 2.3. Let v be the solution to the LANS-˛ equation (1.1) which satisfies v0 2
L1 \H \HN \W1 with N � 3. Then for all t � T1 with T1 given below, the solution
has decay rate

krvk2
L2
� C.1C t /�

7
2 ; (2.12)

where the positive constant C depends on ˛ and � but not on time.

Proof. By multiplying both sides of the first equation of (1.1) by rv and integrating the
result over R3, together with integration by parts, the incompressibility condition and the
Hölder and Sobolev inequalities, it is easy to deduce that

1

2

d

dt
krvk2

L2
C �k�vk2

L2
�

ˇ̌̌̌Z
u � rv ��v dx

ˇ̌̌̌
C

ˇ̌̌̌Z
v � ruT ��v dx

ˇ̌̌̌
� C

Z
juj jrvj j�vj dx

� CkukL3krvkL6k�vkL2

� CkukH1k�vk2
L2

� C.1C t /�
5
4 k�vk2

L2
;

where we have use the basic fact that

v � ruT D
X
i

r.viui / � u � rv
T ;

to arrive at Z
v � ruT ��v dx D �

Z
u � rvT ��v dx:

We choose t to be large enough such that C.1C t /�
5
4 �

�
2

, i.e., there exists some time T1
such that for t � T1, it holds that C.1C t /�

5
4 �

�
2

, so that we have

d

dt
krvk2

L2
C �k�vk2

L2
� 0:

Similar to (2.7), let B.�/ be the ball with radius �, but the radius � here satisfies �2 D f 0

�f

with positive increasing f given below. By the Plancherel theorem, it is easy to derive

d

dt

Z
j�j2j Ovj2 d� C ��2

Z
j�j2j Ovj2 d� � ��4

Z
B.�/

j Ovj2 d�: (2.13)

Substituting kuk2
L2
� C.1C t /�

5
2 into (2.10) directly yields

j Ovj2 � C j�j2 C C j�j2
�Z t

0

kuk2
L2
ds

��Z t

0

kvk2
L2
ds

�
� C j�j2 C C j�j2

�Z t

0

kuk2
L2
ds

�2
C C j�j2

�Z t

0

kuk2
L2
ds

��Z t

0

k�uk2
L2
ds

�
� C j�j2 C C j�j2

Z t

0

krvk2
L2
ds; (2.14)
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where we have used the basic fact that

k�uk2
L2
� Ckrvk2

L2
;

since v D u � ˛2�u. Then by plugging (2.14) into (2.13) we have

d

dt

Z
j�j2j Ovj2 d� C ��2

Z
j�j2j Ovj2 d�

� C�4
Z
B.�/

j�j2 d� C C�4
Z
B.�/

j�j2
Z t

0

krvk2
L2
ds d�

� C�9 C C�9
Z t

0

krvk2
L2
ds;

which implies

d

dt
krvk2

L2
C ��2krvk2

L2
� C�9 C C�9

Z t

0

krvk2
L2
ds:

Inserting �2 D f 0

�f
into the above inequality and letting f D .1C t /

9
2 , it holds that

d

dt
Œ.1C t /

9
2 krvk2

L2
� � C C C

Z t

0

krvk2
L2
ds:

By integrating the above inequality with respect to time over ŒT1; t �, together with inequal-
ity (1.4) we arrive at

krvk2
L2
� C.1C t /�

7
2 C C.1C t /�

7
2

Z t

0

krvk2
L2
ds:

Then the Grönwall inequality directly yields

krvk2
L2
� C.1C t /�

7
2 :

Thus we have proved the lemma.

In the following we will use estimates (2.7) and (2.12) to give the upper bound of
decay rate for the solution.

Lemma 2.4. Under the conditions of Theorem 1.2, for t � T1 with T1 given above, the
following estimate holds:

kvk2
L2
� C.1C t /�

5
2 ;

with C a positive constant independent of time.

Proof. Due to the fact that

krvk2
L2
D kruk2

L2
C 2˛2kr2uk2

L2
C ˛4kr3uk2

L2
;
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we can easily obtain

kr
2uk2

L2
� Ckrvk2

L2
� C.1C t /�

7
2 : (2.15)

By combining estimates (2.7) and (2.15), we have for t � T1,

kvk2
L2
D kuk2

L2
C 2˛2kruk2

L2
C ˛4k�uk2

L2
� C.1C t /�

5
2 :

Therefore, we have completed the proof of this lemma.

The following lemma is devoted to establishing the upper bounds of decay rates for
the kth-order derivative of the solution with k 2 Œ0; N �.

Lemma 2.5. Let v be the solution to the LANS-˛ equation (1.1) which satisfies v0 2
L1 \HN \W1 with N � 3. Then for all t � T�, with T� defined below, the solution has
the following decay rate:

kr
kvk2

L2
� C.1C t /�

5C2k
2 ; k 2 Œ0; N �; (2.16)

where C is a positive constant independent of time.

Proof. Above, we have obtained for k D 0; 1,

kr
kvk2

L2
� C.1C t /�

5C2k
2 :

In what follows we need to verify that for the case k 2 Œ2;N �, decay estimate (2.16) is also
true. We will prove it by mathematical induction. Assume that, for some time T2, decay
rate (2.16) is true for k 2 Œ0; N � 1� when t � T2. We shall prove that the decay rate is
true when k D N . Multiplying both sides of the first equation of the LANS-˛ equation
(1.1) by �N v and integrating the result over R3, with the aid of integration by parts, the
incompressibility condition and the Young inequality, it holds that

1

2

d

dt
kr

N vk2
L2
C �krNC1vk2

L2
� CkrN�1.u � rv/kL2kr

NC1vkL2

�
�

2
kr

NC1vk2
L2
C CkrN�1.u � rv/k2

L2
; (2.17)

where we used the fact thatZ
v � ruT ��N v dx D

X
i

Z
r.uivi / ��

N v dx �
X
i;j

Z
ui@j vi ��

N v dx

D �

Z
u � rvT ��N v dx:

The Newton–Leibniz formula and the Hölder and Sobolev inequalities imply

kr
N�1.u � rv/k2

L2
� C

N�1X
mD0

kr
mu � rN�mvk2

L2

� CkrN�1u � rvk2
L2
C Cku � rN vk2

L2

C C

N�2X
mD1

kr
mu � rN�mvk2

L2
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� CkrN�1uk2L1krvk
2
L2
C Ckuk2

L3
kr

N vk2
L6

C C

N�2X
mD1

kr
muk2L1kr

N�mvk2
L2

� CkrN�1vk2
L2
krvk2

L2
C Ckvk2

L2
kr

NC1vk2
L2

C C

N�2X
mD1

kr
mvk2

L2
kr

N�mvk2
L2
;

where we have used the interpolation inequality to deduce that

kr
mukL1 � Ckr

mC1uk
1
2

L2
kr

mC2uk
1
2

L2
� CkrmvkL2 :

Substituting the above inequality into (2.17), based on the assumption we get

d

dt
kr

N vk2
L2
C �krNC1vk2

L2
� CkrN�1vk2

L2
krvk2

L2
C Ckvk2

L2
kr

NC1vk2
L2

C C

N�2X
mD1

kr
mvk2

L2
kr

N�mvk2
L2

� C.1C t /�.5CN/ C C.1C t /�
5
2 kr

NC1vk2
L2
: (2.18)

By choosing t large enough such that C.1 C t /�
5
2 �

�
2

, i.e., there exists some time T3
such that for all t � T3, it holds that C.1C t /�

5
2 �

�
2

, then we have

d

dt
kr

N vk2
L2
C
�

2
kr

NC1vk2
L2
� C.1C t /�.NC5/:

For some positive constant R given below, denote the time sphere by

S0 WD
®
� 2 R3

ˇ̌
j�j �

�
R
1Ct

� 1
2
¯
;

it follows immediately that

kr
NC1vk2

L2
�

R

1C t
kr

N vk2
L2
�

R2

.1C t /2
kr

N�1vk2
L2
:

Then we can obtain
d

dt
kr

N vk2
L2
C

�R

2.1C t /
kr

N vk2
L2
�

�R2

2.1C t /2
kr

N�1vk2
L2
C C.1C t /�.NC5/

� C.1C t /�.NC
7
2 / C C.1C t /�.NC5/

� C.1C t /�.NC
7
2 /:

Let T� D max¹T2; T3º. By choosing R D 2NC7
�

and multiplying both sides of the above
inequality by .1C t /NC

5
2 and then integrating with respect to time over ŒT�; t �, it holds

that
kr

N vk2
L2
� C.1C t /�.NC

5
2 /;

where we have used the uniform bound of estimate (1.4). Hence, by the general step of
induction, we have given the proof for estimate (2.16).
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3. The lower bound of decay rate

In this section we will address the lower bounds of decay rates for the spatial derivatives
of the unfiltered velocity. To this end we will establish the lower bounds of decay rates
for the homogeneous heat equation and the upper bounds of decay rates for the difference
between the homogeneous heat equation and the LANS-˛ equation (1.1).

3.1. The property of the homogeneous heat equation

This subsection is devoted to establishing decay rates for the solution to the homogeneous
heat equation. For this aim, we consider the following heat equation:8̂̂<̂

:̂
@t! � ��! D 0;

div! D 0;

!jtD0 D v0.x/:

(3.1)

The divergence-free condition proposed here guarantees that the difference between the
solution to the LANS-˛ equation (1.1) and the heat equation (3.1) satisfies the divergence-
free condition. The following proposition has been shown in [52] for the case k D 0. We
generalize it to the case k � 1 in what follows.

Proposition 3.1. Assume that the initial data v0.x/ of the heat equation (3.1) belongs to
HN .R3/ (N � 3) and there exists a positive constant ı such that the Fourier transform
F .v0/ D Ov0 satisfies

Ov0.�/ D P.�/� C h.�/; j�j � ı; (3.2)

where P.�/ is a homogeneous, 3 � 3 matrix-valued function of degree zero satisfying

kP k D sup
j�jD1

jP.�/j;

with jP.�/j a matrix norm of P.�/, and there exists a positive constant M such that for
all � 2 R3,

jh.�/j �M j�j2; j�j � ı:

Then for any nonnegative integer k, it holds that for all t � 1,

C.ı/

�Z
S2
jP.!0/!j2 d!0

�
t�

5
2�k � kr

k!k2
L2
� C.ı/

�Z
S2
jP.!0/!0j2 d!0

�
t�

5
2�k :

(3.3)
Here the positive constant C.ı/ satisfies�ı2

2

� 5
2
e�2ı

2

� C.ı/ �
�1
2

� 5
2
�
�5
2

�
:

Remark 3.1. It should be noticed that for the case k D 0, Schonbek et al. ([52]) have
given the proof in detail. Applying the same method used in [52], it is easy to prove (3.3)
for the case k � 1. For the sake of simplicity, we omit the proof here.
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3.2. Lower bounds of decay rate

This subsection is devoted to addressing the lower bounds of decay rates for the solution
itself and its derivatives. For this purpose, we will establish the upper bound of decay
rate for the difference between the solution to the LANS-˛ equation (1.1) and the heat
equation (3.1).

Denote the difference between the solution to the LANS-˛ equation (1.1) and the heat
equation (3.1) by D, i.e., D WD v � !. Then D satisfies8̂̂<̂

:̂
@tD � ��D D �u � rv � v � ru

T � rp;

divD D 0;

DjtD0 D 0:

(3.4)

Lemma 3.2. Suppose the functionD.t; x/ is the difference between the LANS-˛ equation
(1.1) and the heat equation (3.1). Then D satisfies

j yDj � C j�j

Z t

0

kvk2
L2
d�; (3.5)

where the positive constant C does not depend on time.

Proof. Taking the Fourier transform of the first equation of system (3.4), it is easy to
deduce that

yD.�/ D �

Z t

0

e��.t�s/j�j
2
yH.�; s/ ds;

where the term H is denoted by H WD rp C u � rv C v � ruT . Since

j yH j � CkukL2kvkL2 j�j � Ckvk
2
L2
j�j;

one arrives at

j yD.�/j � C

Z t

0

j yH.�; s/j ds � C j�j

Z t

0

kvk2
L2
d�:

So we have given the proof for this lemma.

Lemma 3.3. Under the conditions of Theorem 1.2, there exists a time T0 (which will be
determined later) such that for all t � T0,

kr
kDk2

L2
� CT �30 t�

5
2�k ; k 2 Œ0; N �; (3.6)

with C a positive constant independent of time.

Proof. We use the symbolOt .�/ to represent the quantity that depends on � and time. We
claim (a proof will be given in Section 5) that

jr�akj j � Ct; (3.7)
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where the positive constant C depends on the initial data but not on time. Due to the fact
that

yH D i.I � �.�//A.�; t/�;

then we can obtain
yH D i.I � �.�//A.0; t/� COt .�/j�j

2:

Since

Ov.�/ D e��t j�j
2

Ov0.�/ �

Z t

0

e��.t�s/j�j
2
yH.�; s/ ds;

by Taylor expansion around the origin to second order, it is easy to deduce that

Ov.�/ D D� Ov0.0/� � i.I � �.�//A.t/� COt .�/j�j
2;

where the integration A.t/ is defined by

A.t/ D

Z t

0

A.0; s/ ds:

With the help of estimates (1.4) and (2.16) we can deduce thatZ t

0

A.0; s/ ds �

Z T1

0

A.0; s/ ds C

Z t

T1

A.0; s/ ds

� C

Z T1

0

kvk2
L2
ds C C

Z t

T1

kvk2
L2
ds � C:

Denote
P.�/ WD D� Ov0.0/ � i.I � �.�//A.t/;

so that
Ov.�/ D P.�/� COt .�/j�j

2:

Obviously, we can also obtain for any k � 0,

F .rkv/.�/ D .i�/k.P.�/� COt .�/j�j
2/: (3.8)

We note that .I ��.�//2 D I ��.�/, and by Lemma A.5 the integral
R
S2
jP.!0/!0j2 d!0

can be written in the formZ
S2
jP.!0/!0j2 d!0 D

�
3
2

15�.3
2
/

�X
k¤j

.Akk.t/ �Ajj .t//
2
C 6

X
k¤j

Akj .t/
2

�
;

provided D� Ov0.0/ D 0.
For some time T0 � max¹T�; 1º with T0 given below, for t � T0, let the initial data of

the heat equation !.0/ be equal to v.T0/ with v.t; x/ the solution to the LANS-˛ equation
(1.1), i.e., !.0/ D v.T0/. Then by virtue of Proposition 3.1, we can obtain

kr
k!k2

L2
�

�ı2
2

� 5
2
e�2ı

2

�Z
S2
jP.!0/!0j2 d!0

�
t�.

5
2Ck/: (3.9)
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As was shown in [52], by use of Lemma A.6, it is easy to deduce that there exists a positive
constant m such that

kr
k!k2

L2
�

�ı2
2

� 5
2
e�2ı

2

mt�.
5
2Ck/: (3.10)

We will consider the upper bounds of decay rates for rkD.t/ with k � 0 in the following.
Let D.t/ WD v.t C T0/ � !.t/; then D.t/ satisfies the system´

@tD.t/ � ��D.t/ D �H.t C T0/;

divD D 0;
(3.11)

where the functionH is defined byH WD u � rvC v � ruT Crp. We apply the operator
rk to equation (3.11) and take the scalar product in L2 with rkD to get

1

2

d

dt
kr

kDk2
L2
C �krkC1Dk2

L2
D �

Z
r
kH � rkD dx

D �

Z
r
k.u � rv/ � rkD dx

�

Z
r
k.v � ruT / � rkD dx

DW �K1 �K2: (3.12)

For the term K2, we use the Hölder inequality and decay rates (2.16) and (3.9) to obtain

K2 D

Z
r
k.v � ruT / � rkD dx

D

Z
r
k.v � ruT / � rkv dx �

Z
r
k.v � ruT / � rk! dx

� C.krkvkL2 C kr
k!kL2/kr

k.v � ruT /kL2

� C.1C t /�.
5
4C

k
2 /.krkvkL2krukL1 C kvkL1kr

kC1ukL2/

� C.1C t /�.
5
4C

k
2 /.krkvkL2kr

2uk
1
2

L2
kr

3uk
1
2

L2
C krvk

1
2

L2
kr

2vk
1
2

L2
kr

kvkL2/

� C.1C t /�.
9
2Ck/; (3.13)

where we have used the fact that krkC1ukL2 � CkrkvkL2 for any nonnegative integer k.
In the following we only need to estimate the termK1. Integration by parts and the Young
inequality imply

K1 D

Z
r
k.u � rv/ � rkD dx

� kr
k�1.u � rv/kL2kr

kC1DkL2

�
�

2
kr

kC1Dk2
L2
C Ckrk�1.u � rv/k2

L2
:
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We use the Sobolev and interpolation inequalities to find

kr
k�1.u � rv/kL2 � Ckr

k�1ukL2krvkL1 C CkukL1kr
kvkL2

� Ckrk�1ukL2kr
2vk

1
2

L2
kr

3vk
1
2

L2
C Ckruk

1
2

L2
kr

2uk
1
2

L2
kr

kvkL2

� Ckrk�1vkL2kr
2vk

1
2

L2
kr

3vk
1
2

L2
C Ckrvk

1
2

L2
kr

2vk
1
2

L2
kr

kvkL2

� C.1C t /�
1
2 .kC

13
2 /;

where we have used estimate (2.16). So it is easy to obtain

K1 �
�

2
kr

kC1Dk2
L2
C C.1C t /�.kC

13
2 /: (3.14)

Inserting estimates (3.13) and (3.14) into (3.12), we have

d

dt
kr

kDk2
L2
C �krkC1Dk2

L2
� C.1C t /�.

9
2Ck/ C C.1C t /�.

13
2 Ck/

� C.1C t /�.
9
2Ck/:

Multiplying both sides of the above inequality by G.t/ D e2
R t
0 g

2.s/ ds directly yields

d

dt
ŒG.t/krkDk2

L2
� � 2G.t/Œg2.t/krkDk2

L2
� �krkC1Dk2

L2
�

C CG.t/.1C t /�.
9
2Ck/: (3.15)

We choose G.t/ D t (i.e., g2.t/ D 
2t

). The Plancherel theorem implies

g2.t/krkDk2
L2
� �krkC1Dk2

L2
D

Z
j�j2k.g2.t/ � �j�j2/j yDj2 d�

� Cg2C2k.t/

Z
�j�j2�g2.t/

j yDj2 d�

D Cg2C2k.t/

Z
2�t j�j2�

j yDj2 d�:

By virtue of estimate (3.5) and decay rate (2.16), we can get

j yDj � C j�j

Z t

0

kv.s C T0/k
2
L2
ds D C j�j

Z tCT0

T0

kv.s1/k
2
L2
ds1

� C j�j

Z 1
T0

.1C s1/
� 52 ds1 � C j�jT0

� 32 :

Then it is easy to deriveZ
2�t j�j2�

j yDj2 d� � CT �30

Z
2�t j�j2�

j�j2 d� � CT �30 t�
5
2 :
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Substituting these estimates into inequality (3.15) we have

d

dt
ŒtkrkDk2

L2
� � Ct � t�

1
2 �.2C2k/T �30 t�

5
2 C Ct�

9
2�k :

We take  > 9
2
C k and then integrate the above inequality about time over ŒT0; t � to obtain

for k 2 Œ0; N �,
kr

kDk2
L2
� CT0

�3t�
5
2�k ; (3.16)

where we have used the basic fact that

kr
kD.T0/k

2
L2
� Ckrk!.T0/k

2
L2
C Ckrkv.T0/k

2
L2
� C:

Therefore we have completed this proof.

In what follows we will combine estimates (3.10) and (3.6) to derive the lower bounds
of decay rates for the solution.

Lemma 3.4. Under the conditions of Theorem 1.2, the estimate

kr
kvk2

L2
� C.1C t /�

5C2k
2 ; k 2 Œ0; N �;

holds for t > T with T a positive large time and C a positive constant independent of
time.

Proof. We choose T0 D max¹T�; 1; .4C. ı
2

2
/�

5
2 e2ı

2
m�1/

1
3 º. Then it holds for any k 2

Œ0; N � that

kr
kv.t C T /k2

L2
�
1

2
kr

k!k2
L2
� kr

kDk2
L2

�
1

2

�ı2
2

� 5
2
e�2ı

2

mt�
5
2�k � CT0

�3t�
5
2�k

� Ct�
5
2�k : (3.17)

Thus we have obtained the lower bounds of decay rates for the spatial derivatives of the
unfiltered velocity.

We have given the upper and lower bounds of decay rates for the solution to the
LANS-˛ equation in, respectively, Lemmas 2.5 and 3.4, so we have finished the proof
of Theorem 1.2.

4. Optimal decay rate for the time derivative

This section is devoted to establishing the upper bound of decay rate for the time derivative
of the unfiltered velocity. For this purpose, we use the upper and lower bounds of decay
rates for the spatial derivatives of the unfiltered velocity obtained in Section 2 and the first
equation of the LANS-˛ equation (1.1).
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Lemma 4.1. Provided the conditions of Theorem 1.2 are true, then the unfiltered velocity
has the decay rate

C.1C t /�
9
2 � k@tvk

2
L2
� C.1C t /�

9
2 ;

where t � T0 and C is a positive constant independent of time.

Proof. We establish the upper bound of decay rate for the time derivative of the unfiltered
velocity first of all. On the basis of the upper bounds of decay rates for the unfiltered
velocity (1.5), with the help of the interpolation inequality, we can easily obtain

ku � rvkL2 � CkukL1krvkL2 � Ckruk
1
2

L2
kr

2uk
1
2

L2
krvkL2

� Ckrvk
3
2

L2
kr

2vk
1
2

L2
� C.1C t /�

15
4 (4.1)

and

kv � ruT kL2 � CkvkL1krukL2 � Ckrvk
1
2

L2
kr

2vk
1
2

L2
krvkL2

� Ckrvk
3
2

L2
kr

2vk
1
2

L2
� C.1C t /�

15
4 : (4.2)

By combining equation (1.1) and estimates (1.5), (4.1) and (4.2), we can easily get

k@tvk
2
L2
� Ck�vk2

L2
C Ckrpk2

L2
C Cku � rvk2

L2
C Ckv � ruT k2

L2

� C.1C t /�
9
2 C Ckrpk2

L2

and

k@tvk
2
L2
� Ck�vk2

L2
� Ckrpk2

L2
� Cku � rvk2

L2
� Ckv � ruT k2

L2

� C.1C t /�
9
2 � Ckrpk2

L2
:

Thus, we only need to estimate the upper bound of decay rate for the first-order derivative
of the pressure in the following. By use of the interpolation inequality we have

krpk2
L2
� CkpkL2k�pkL2 :

With the aid of equality (2.3), the Sobolev and interpolation inequalities and estimate
(1.5), we can get

k�pkL2 � Ck div.u � rv/kL2 C k div.v � ruT /kL2

� CkrukL2krvkL1 C kukL1kr
2vkL2

C krvkL2krukL1 C kvkL1kr
2ukL2

� CkrvkL2kr
2vk

1
2

L2
kr

3vk
1
2

L2
C krvk

1
2

L2
kr

2vk
3
2

L2

� C.1C t /�
17
4 :

By use of the Plancherel theorem and estimates (1.5) and (5.1), it is easy to find that

kpkL2 D k OpkL2 � C.1C t /
� 52 :
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Thus we have
krpk2

L2
� CkpkL2k�pkL2 � C.1C t /

� 274 :

Then one arrives at
C.1C t /�

9
2 � k@tvk

2
L2
� C.1C t /�

9
2 :

So we have finished the proof of this lemma.

5. Proofs of several technical estimates

In this section we will prove the claimed estimate (3.7), which was used in Section 3.

Proof of inequality (3.7). Recall akj D F .ukvj /. By virtue of the Cauchy inequality, we
can easily deduce that

jr�akj j � C

Z
jxj juj jvj dx � C

Z
jxj juj2 dx C C

Z
jxj jvj2 dx:

We will prove that the following inequality holds:Z
jxj juj2 dx C

Z
jxj jvj2 dx � Ct:

To this end, we multiply both sides of equation (2.1) by jxju and integrate over the whole
space to acquireZ

jxju � @tv dx � �

Z
jxju�v dx D �

Z
jxju � .u � rv/ dx

�

Z
jxju � .v � ruT / dx

�

Z
jxju � rp dx:

Then it holds that

1

2

d

dt

�Z
jxj juj2 dx C ˛2

Z
jxj jruj2 dx � 2˛2

Z
juj2

jxj
dx

�
C �

�Z
jxj jruj2 dx C ˛2

Z
jxj j�uj2 dx

�
D ˛2

Z
ut
x

jxj
rudx � �

Z
x

jxj
urudx � 2˛2�

Z
�u �

1

jxj
udx

� 2˛2�

Z
x

jxj
�urudx C

Z
.u � x/

jxj
v � udx C

Z
p �

x

jxj
udx;
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where we have used integration by parts and the incompressibility condition divu D 0 to
obtain

�

Z
.u � rv/ � jxjudx �

Z
.v � ruT /jxjudx

D �

X
i;j

Z
ui@

ivj jxjuj dx �
X
i;j

Z
vj @

iuj jxjui dx

D

X
i;j

Z
@iuivj jxjuj dx C

X
i;j

Z
uivj @

i
jxjuj dx

C

X
i;j

Z
uivj jxj@

iuj dx �
X
i;j

Z
vj @

iuj jxjui dx

D

X
i;j

Z
uivj @

i
jxjuj dx

D

Z
.u � x/

jxj
v � udx:

Then by the Hölder inequality, one arrives at

1

2

d

dt

�Z
jxj juj2 dx C ˛2

Z
jxj jruj2 dx � 2˛2

Z
juj2

jxj
dx

�
C �

�Z
jxj jruj2 dx C ˛2

Z
jxj j�uj2 dx

�
� CkutkL2krukL2 CCkukL2krukL2 CC

 u
jxj


L2
k�ukL2 CCkrukL2k�ukL2

C Ckuk2
L4
kvkL2 C CkpkL2kukL2 :

With the aid of the Hardy inequality, we can obtain u
jxj


L2
� CkrukL2 :

By the Plancherel theorem, we have kpkL2 D k OpkL2 . Since

v � ruT D
X
r.uivi / �

X
uirvi

D

X
r.uivi / �

X
ui@

j vi

D

X
r.uivi / �

X
ui@

jui C ˛
2
X

ui@
j @k@kui

D

X
r.uivi / �

1

2

X
@j jui j

2
C ˛2

X
@k.ui@

j @kui / �
˛2

2

X
@j j@kui j

2;

by virtue of the Hölder inequality and the Plancherel theorem, it is easy to deduce that

k OpkL2 � CkF .u � v/kL2 C kF .u � u/kL2 C kF .u � r
2u/kL2 C kF jruj

2
kL2

D Cku � vkL2 C ku � ukL2 C ku � r
2ukL2 C k jruj

2
kL2

� CkukL1kvkL2 C Ckuk
2
L4
C CkukL1kr

2ukL2 C CkrukL3krukL6

� Ckvk2
L2
: (5.1)
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Hence we obtain

1

2

d

dt

�Z
jxj juj2 dx C ˛2

Z
jxj jruj2 dx � 2˛2

Z
juj2

jxj
dx

�
C �

�Z
jxj jruj2 dx C ˛2

Z
jxj j�uj2 dx

�
� CkutkL2krukL2 C CkukL2krukL2 C CkrukL2kr

2ukL2

C Ckuk2
L4
kvkL2 C Ckvk

2
L2
kukL2

� CkutkL2krukL2 C Ckvk
2
L2
C Ckvk3

L2

� CkvtkL2krukL2 C Ckvk
2
L2
C Ckvk3

L2
;

where we have used the interpolation inequality and the basic facts that

kvk2
L2
D kuk2

L2
C 2˛2kruk2

L2
C ˛4kr2uk2

L2

and
k@tukL2 � k@tvkL2 :

With the aid of bound (1.4), one arrives at

1

2

d

dt

�Z
jxj juj2 dx C ˛2

Z
jxj jruj2 dx � 2˛2

Z
juj2

jxj
dx

�
C �

�Z
jxj jruj2 dx C ˛2

Z
jxj j�uj2 dx

�
� C:

Finally, we integrate the above inequality with respect to time over Œ0; t � to acquireZ
jxj juj2 dx C ˛2

Z
jxj jruj2 dx � 2˛2

Z
juj2

jxj
dx

C 2�

Z t

0

�Z
jxj jruj2 dx C ˛2

Z
jxj j�uj2 dx

�
ds � Ct;

where we have used the Hölder inequality to obtainZ
ju0j

2

jxj
dx D

Z
jxj�1

ju0j
2

jxj
dx C

Z
jxj�1

ju0j
2

jxj
dx

�

�Z
jxj�1

1

jxj2
dx

� 1
2

ku0k
2
L4
C ku0k

2
L2

� Cku0k
2
L4
C Cku0k

2
L2

� C: (5.2)

Next, we multiply both sides of the first equation of system (1.1) by jxjv and integrate the
result over R3 to get

1

2

d

dt

Z
jxj jvj2 dx C �

Z
jxj jrvj2 dx

D �

Z
x

jxj
v � rv dx �

Z
u � rvjxjv dx �

Z
v � ruT jxjv dx C

Z
x

jxj
v � p dx:
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We exploit integration by parts, the incompressibility condition, the Hölder and Sobolev
inequalities and the bound (1.4) to findZ

u � rvjxjv dx D
X
i;j

Z
ui@

ivj jxjvj dx D �
1

2

Z
.u � x/

jxj
jvj2 dx

� C

Z
juj jvj2 dx � CkukL1kvk

2
L2
� C:

Similarly, we also haveZ
v � ruT jxjv dx D

Z
u � ruT jxjudx � ˛2

Z
�u � ruT jxjudx

� ˛2
Z
u � ruT jxj�udx C ˛4

Z
�u � ruT jxj�udx

� C

Z
jxj juj2jruj dx C C

Z
jxj juj jruj j�uj dx

C C

Z
jxj jruj j�uj2 dx

� Ck jxj
1
2rukL2k jxj

1
2ukL6kukL3

C CkukL1k jxj
1
2rukL2k jxj

1
2�ukL2 C CkrukL1k jxj

1
2�uk2

L2

� Ck jxj
1
2ruk2

L2
C Ck jxj

1
2�uk2

L2
C Ck jxj

1
2uk2

L6
:

Similar to estimate (5.2), the Sobolev inequality directly implies

k jxj
1
2uk2

L6
� Ckr.jxj

1
2u/k2

L2
� C

Z
juj2

jxj
dx C Ck jxj

1
2ruk2

L2

� C C Ck jxj
1
2ruk2

L2
:

Then we have

1

2

d

dt

Z
jxj jvj2 dx C �

Z
jxj jrvj2 dx

� C C CkvkL2krvkL2 C C

Z
jxj jruj2 dx C C

Z
jxj j�uj2 dx C CkvkL2kpkL2

� C C Ckvk2
H1 C Ckvk

3
L2
C C

Z
jxj jruj2 dx C C

Z
jxj j�uj2 dx

� C C C

Z
jxj jruj2 dx C C

Z
jxj j�uj2 dx:

Finally, by integrating the above inequality with respect to time over Œ0; t �, it holds thatZ
jxj jvj2 dx C 2�

Z t

0

Z
jxj jrvj2 dx ds � Ct:

Thus, we have completed the proof for the claimed estimate (3.7).
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A. Analytic tools

In what follows we give several useful lemmas which will be applied to our proof. The
following two inequalities play an important role in establishing estimates. The first one
is called the Sobolev interpolation of the Gagliardo–Nirenberg inequality.

Lemma A.1 ([45]). Let 0 � m; ˛ � l and the function f 2 C10 .R
n/; then we have

kr
˛f kLp � Ckr

mf k1��
L2
kr

lf k�
L2
; (A.1)

where � satisfies
0 � � � 1

and ˛, m, l satisfy

1

p
�
˛

n
D

�1
2
�
m

n

�
.1 � �/C

�1
2
�
l

n

�
�:

Lemma A.2 ([41]). Let jkj � s and assume that the functions f; g 2 H s \ L1; then
there exists a constant C that depends on s such that

kr
k.fg/kH s � C.krsf kL2kgkL1 C kf kL1kr

sgkL2/:

The following Hardy inequality is useful for singular weighted estimates.

Lemma A.3 ([2]). For any function f 2 PH 1.Rn/ with n � 3, it holds that�Z
Rn

jf .x/j2

jxj2
dx

� 1
2

�
2

n � 2
krf kL2 :

The so-called Borchers lemma could be used to obtain some properties of the initial
data of the unfiltered velocity. The proof of this lemma can be found in [52].

Lemma A.4 ([52]). Suppose that the function u 2 L1.Rn/n \H for any n � 1; thenZ
Rn

udx D 0:

The following two auxiliary lemmas, whose proofs are shown in [52], are used to
derive the lower bound of decay rate for the heat equation.

Lemma A.5 ([52]). Denote P.�/ WD I � �.�/ with I the identity matrix and

�.�/ D
1

j�j2
.�k�j /1�k;j�3;

where � D .�1; �2; �3/ 2 R3 n ¹0º. Suppose that S D .skj / is a symmetric matrix; then it
holds that Z

S2
P.!0/S!0 � S!0 d!0 D

�
3
2

6�.3
2
/

�X
k¤j

.skk � sjj /
2
C 6

X
k¤j

s2kj

�
:
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Lemma A.6 ([52]). Let V be a 3 � 3 complex matrix and B be a 3 � 3 real matrix.
Suppose that for every !0 2 S2, it holds that

V!0 � i.I � �.!0//B!0 D 0I

then we have that the matrix V D 0 and the matrix B is a scalar matrix.
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