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Two-dimensional gravity waves at low regularity II:
Global solutions

Albert Ai, Mihaela Ifrim, and Daniel Tataru

Abstract. This article represents the second installment of a series of papers concerned with low
regularity solutions for the water wave equations in two space dimensions. Our focus here is on
global solutions for small and localized data. Such solutions have been proved to exist in Ionescu–
Pusateri [Invent. Math. 199 (2015)], Alazard–Delort [Ann. Sci. Éc. Norm. Supér. (4) 48 (2015)],
Hunter et al. [Comm. Math. Phys. 346 (2016)], and Ifrim–Tataru [Bull. Soc. Math. France 144
(2016)] in much higher regularity. Our goal in this paper is to improve these results and prove
global well-posedness under minimal regularity and decay assumptions for the initial data. One key
ingredient here is represented by the balanced cubic estimates in our first paper. Another is the
nonlinear vector field Sobolev inequalities, an idea first introduced by Ifrim–Tataru [Ann. Sci. Éc.
Norm. Supér. (4) 52 (2019)] in the context of the Benjamin–Ono equations.
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1. Introduction

We consider the two-dimensional water wave equations with infinite depth, with grav-
ity but without surface tension, governed by the incompressible Euler equations with
boundary conditions on the water surface. Under the additional assumption that the flow is
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irrotational, the fluid dynamics can be expressed in terms of a one-dimensional evolution
of the water surface, coupled with the trace of the velocity potential on the surface.

The choice of the parametrization of the free boundary plays an important role here,
and can be viewed as a form of gauge freedom. Historically there are three such choices
of coordinates; the first two, namely the Eulerian and Lagrangian coordinates, arise in the
broader context of fluid dynamics. The third employs the so-called conformal method,
which is specific to two-dimensional irrotational flows; this leads to what we call the
holomorphic coordinates, which play a key role in the present paper.

Our objective in this series of papers is to improve, streamline, and simplify the anal-
ysis of the two-dimensional gravity wave equations. This is a challenging quasilinear,
nonlocal, nondiagonal system. We aim to develop its analysis in multiple ways, including

(1) prove better, scale-invariant energy estimates,

(2) improve the existing results on long time solutions,

(3) refine the study of the dispersive properties and improve the low regularity theory.

The first step of this program was carried out in [3], where we developed a new class of
estimates, which we called balanced energy estimates, which led to drastic improvements
in the study of the low regularity well-posedness for this problem.

In the present article we carry out the second step of this program, and obtain an
enlarged class of global solutions, with decaying initial data of minimal regularity. In a
nutshell, our result reads as follows.

Theorem 1. Small and localized data leads to global solutions, which exhibit dispersive
t�

1
2 uniform decay.

Compared to the prior work of the last two authors ([9, 11]), in this paper we bring
forth several key improvements:

(i) We lower the regularity requirements for the initial data both at low and at high
frequency, to almost optimal levels. In other words, our global well-posedness
results are nearly scale invariant, at almost the same regularity level that would
be required for an equivalent, semilinear, cubic nonlinear Schrödinger (NLS)
problem.

(ii) We use the sharp, cubic balanced energy estimates of [3], as well as the Alazard–
Delort idea in [7] of performing a partial normal form transformation in order
to further simplify and streamline the proof.

(iii) At a technical level, we develop in this context the idea of nonlinear paradiffer-
ential vector field Sobolev inequalities, which was first introduced by the last
two authors in the Benjamin–Ono context ([13]).

1.1. Holomorphic coordinates

It has been known since the work of Zakharov ([19]) that under an irrotationality con-
dition, the water wave equations can be viewed as a self-contained system for the water
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surface, together with the trace of the velocity potential on the free surface. For a two-
dimensional fluid, this yields a fully nonlinear first-order system in one space dimension.

In addition, one has the freedom of choosing the parametrization of the free sur-
face in a favorable manner. Classical parametrizations rely on either the Eulerian or the
Lagrangian coordinates. But in the two-dimensional case, there is a better choice, that is
the holomorphic (conformal) coordinates, which are based on conformally representing
the two-dimensional fluid domain as a half-plane. These coordinates were independently
introduced by Wu ([18]) and Zakharov et al. ([15]) in the study of the dynamical prob-
lem, though conformal coordinates of various types had been used before in the study of
traveling and solitary waves.

In this article we will use the holomorphic coordinates, but in an alternative1 formula-
tion developed in the prior work of the last two authors ([9]), jointly with Hunter. Denoting
by ˛ the variable on the real line and by ˛C iˇ the complex, conformal coordinates in the
lower half-space, the water wave equations are written as a system for a pair of complex-
valued functions .W;Q/ on the real line, as follows:

• ˛ ! ˛ CW.˛/ represents the conformal parametrization of the fluid surface, which
is a non-self-intersecting curve but not necessarily a graph.

• ˛!Q.˛/ represents the complex velocity potential on the free surface, where the real
part ofQ is the real velocity potential and its imaginary part is its harmonic conjugate,
namely the stream function. It is only defined modulo constants.

Here .W;Q/ are further restricted to the class of functions that by a slight abuse we
call holomorphic, i.e. which admit holomorphic extensions to the lower half-space, with
suitable decay conditions in depth. In the infinite depth case these are exactly the functions
which are frequency localized to negative frequencies. One significant advantage of this
choice is that this class of functions forms an algebra.

With this choice of variables, following [9], the nonlinear water waves system takes
the form ´

Wt C F.1CW˛/ D 0;

Qt C FQ˛ � iW C P Œ xRR� D 0;
(1.1)

F D P
hQ˛ � xQ˛

J

i
; J D j1CW˛j

2; R D
Q˛

1CW˛
;

where P is the projector to negative frequencies. The factor R above has an intrinsic
meaning, namely it is the complex velocity on the water surface. Also note that J repre-
sents the Jacobian of the conformal change of coordinates. We can also reexpress F in
terms of Y , where the function Y , given by

Y WD
W

1CW
and W WD W˛; (1.2)

1This should be compared with the use of real-valued functions in [15], or with a second-order evolu-
tion formulation in [18].
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is introduced in order to avoid rational expressions above and in many places in the sequel;
then we have

F D RC P Œ xRY �R xY �:

This system admits a conserved energy (Hamiltonian)

E.W;Q/ D

Z
1

2
jW j2 C

1

2i
.Q xQ˛ � xQQ˛/ �

1

4
. xW 2W˛ CW

2 xW˛/ d˛: (1.3)

We also consider the system for the differentiated good variables .W; R/, which are
what we call the diagonal variables,

.W; R/ WD
�
W˛;

Q˛

1CW˛

�
:

Differentiating (1.1) yields a self-contained system in .W; R/:8̂̂<̂
:̂
DtWC

.1CW/R˛

1C xW
D .1CW/M;

DtR D i
�W � a
1CW

�
;

(1.4)

which is satisfied in full but is equivalent to its projected version onto the holomorphic
class. Here Dt D @t C b@˛ plays the role of the material derivative, b is the advection
velocity and is given by

b D P
h R

1C xW

i
C xP

h xR

1CW

i
;

and 1C a is the Taylor coefficient, which represents the normal derivative of the pressure
on the free surface, and is given by

a WD i. xP Œ xRR˛� � P ŒR xR˛�/: (1.5)

Finally the auxiliary function M , closely related to the material derivative of a, has the
expression

M WD
R˛

1C xW
C

xR˛

1CW
� b˛ D xP Œ xRY˛ �R˛ xY �C P ŒR xY˛ � xR˛Y �: (1.6)

To complete our description of the equations we also need to add the linearized equa-
tions which are best seen not as an evolution for the linearized variables .w; q/ associated
to .W;Q/, but rather as an evolution for the good linearized variables

.w; r/ D A.w; q/ D .w; q �Rw/: (1.7)

These equations have the form8̂̂<̂
:̂
PDtw C P

h 1

1C xW
r˛

i
C P

h R˛

1C xW
w
i
D PG0.w; r/;

PDtr � iP
h 1C a
1CW

w
i
D PK0.w; r/;

(1.8)

where .G0;K0/ represent perturbative terms; see [9].
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1.2. Sobolev spaces and local well-posedness

The well-posedness for the water wave system (1.1) is naturally considered on a scale of
Sobolev spaces inspired by the conserved energy in (1.3). Its quadratic part corresponds
to the Hilbert space H with norm

k.w; r/k2H D kwk
2
L2
C krk2

PH
1
2
:

For higher regularity we use the scale of Sobolev spaces H s , which we recall from [9]
and [3], endowed with the norm

k.w; r/kH s WD khDis.w; r/k
L2� PH

1
2
;

where s 2 R.
Since many of the estimates in both this paper and its predecessor ([3]) are scale invari-

ant, to describe them it is very useful to also have homogeneous versions of the above
spaces, namely the spaces PH s endowed with the norm

k.w; r/k PH s WD k jDj
s.w; r/k

L2� PH
1
2
:

We caution the reader that, in order to streamline the exposition here, our notation for the
energy spaces differs slightly from the notation used in [9].

For the local well-posedness problem, it suffices to work with the differentiated system
(1.4). For this we have the following result.

Theorem 2 ([3]). The differentiated water wave system (1.4) is locally well posed in H s

for s � 3
4

.

For reference one should compare from below with scaling which corresponds to
s0 D

1
2

. This result represents the current best result, following a succession of several
other results. This started with the work of Alazard et al. ([6]), who proved energy esti-
mates and well-posedness roughly for sD 1C ı with ı > 0. Using the holomorphic setting
and further structural properties of the equations, the energy estimates were improved by
the last two authors together with Hunter ([9]) to the case ı D 0. This is an important
threshold as it is where the Lipschitz property for the velocity is lost. Further improve-
ments were obtained in subsequent work of Alazard et al. ([4, 5]), who proved and used
appropriate Strichartz estimates for this system. Their result in two dimensions yields local
well-posedness for ı D �1=24. This was followed by the results of the first author, who
was able to further improve this first to ı D �1=10 in [1] and then to ı D �1=8 in [2], and
finally to the result above.

A family of energy estimates developed by the authors in [3], which we call balanced
energy estimates, played the key role in the proof of this result. The same estimates play an
essential role in the present paper, as they are part of what allows us to reach the optimal
regularity threshold. They are described in detail in Section 3.
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1.3. Global solutions and the main result

In order to state our main result, we introduce appropriate weighted norms which are
based on the scaling symmetry of the problem. Precisely, equations (1.1) are invariant
with respect to the scaling law

.W.t; ˛/;Q.t; ˛//! .��2W.�t; �2˛/; ��3Q.�t; �2˛//:

The generator of this symmetry is the scaling operator

S.W;Q/ D ..S � 2/W; .S � 3/Q/;

where we define the scaling vector field by

S D t@t C 2˛@˛:

Writing
.w; r/ D AS.W;Q/; (1.9)

where A represents the diagonalization operator

A.w;q/ WD .w;q �Rw/; R D
Q˛

1CW˛
; (1.10)

and � > 11=4, we define the weighted energy norm

k.W;Q/.t/k
WH ] D k.W;Q/.t/k

PH
1
4
C k.W; R/.t/k PH��1 C k.w; r/.t/k PH

1
4
: (1.11)

We remark that at time t D 0 this simply becomes

k.W;Q/.0/k
WH ] � k.W;Q/.0/k

PH
1
4
C k.W; R/.0/k PH��1 C k˛.W; R/.0/k

PH
1
4
: (1.12)

In order to track the uniform, dispersive decay of the solutions, we will also use a
pointwise control norm, namely

k.W; R/.t/kX D k jDj
� 12WkL1 C kRkL1 C kWk

PB
1
4
1;2

C kRk
PB
3
4
1;2

;

where the above homogeneous Besov norms are defined as

kuk2
PBs1;2
D

X
k2Z

22kskPkuk
2
L1

with Pk denoting the standard spatial Littlewood–Paley projectors at dyadic frequency 2k .
Given these definitions, our main result is as follows:

Theorem 3. Assume that the initial data for the water wave system (1.1) satisfies

k.W;Q/.0/k
WH ] � "� 1: (1.13)
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Then the solution .W;Q/ is global in time, and satisfies the global energy bounds

k.W;Q/.t/k
WH ] � "hti

c"2 (1.14)

with a universal constant c, as well as the global pointwise bounds

k.W; R/.t/kX . "hti�
1
2 : (1.15)

To place this result into context, one should start with Wu’s almost global result ([17]),
which was based on a mix of conformal and Lagrangian coordinates. Her work was further
developed by Ionescu–Pusateri ([14]) to a global result. Independently, Alazard–Delort
([7]) obtained a different proof of the global result, based on a new idea which they
called paradiagonalization, which combines a partial normal form transformation with a
microlocal diagonalization of the remaining system, which is done at the paradifferential
level. Both of these results required extensive arguments, as well as very high regularity
for the initial data.

Shortly afterward, the last two authors’ work in [9,11], the first also joint with Hunter,
brought a new perspective and a new proof of the global result for this problem, with
shorter, simpler arguments at far lower regularity, which corresponds to H6 with the nota-
tion above. These advances were primarily due to two new ideas, implemented in the
context of holomorphic coordinates:

(i) the modified energy method, which asserts that, in quasilinear problems, it is
more efficient to construct normal-form-inspired modified energies which are
accurate to quartic order, rather than trying to directly apply a normal form
transformation;

(ii) wave packet testing, which is an efficient way to capture asymptotic equations
in a modified scattering scenario.

Another key idea in [9] was that the main estimate, and the bulk of the analysis, should
be carried out at the level of the linearized equations rather than on the full equations. This
contributed to both strengthening the results and streamlining the arguments.

The aim of the present paper is to take advantage of further gains in understanding the
best ideas and methods that can be applied to this class of problems, in order to obtain a
near optimal result. Compared to [9, 11], there are four such improvements:

(i) In terms of energy estimates, we are able to replace the cubic energy estimates
of [9] with sharper ones, which we call balanced energy estimates. These esti-
mates, recently proved by the authors in [3], are still cubic, akin to [9], but have
a better balance of regularity in the control norms, which allows us to lower the
required data regularity in the result. Notably, these estimates hold both at the
level of the full equation and at the level of the linearized equation.

(ii) In terms of normal form analysis, we borrow an idea from Alazard–Delort ([7]),
which is to “prepare” the problem with a partial normal form transformation.
This allows us to ultimately reduce a good portion of the analysis to a more
favorable, paradifferential setting, without losing any regularity in the process.
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(iii) In order to convert vector field energy estimates to pointwise bounds, we use
an idea inspired from the last two authors’ work ([13]) on the Benjamin–Ono
equation, and prove the pointwise bounds in a nonlinear, paradifferential setting,
rather than in a linear setting as in [11]. This is important because the reduction
to the linear setting inherently loses derivatives.

(iv) Wave packet testing, which uses the same principle as in [11], is now also
applied in the paradifferential setting rather than in a more NLS-like scenario,
as in [11]. This creates additional difficulties, but ultimately does not affect the
asymptotic equation.

Our refined analysis in this article allows us not only to relax the initial data regularity
at high frequency to the nearly optimal level PH� with � > 11=4, but also to relax the
initial data regularity at low frequency to PH

1
4 , which in particular allows for initial data

with infinite energy. An improvement of this type has been previously obtained by Wang
([16]), but only to PH

1
5 .

1.4. On optimality

Our goal here is to heuristically explain why our result is nearly optimal, by comparing it
with its sharp counterpart for the cubic NLS problem.

We begin by recalling the optimal result for cubic NLS,

iut ��u D ˙ujuj
2; u.0/ D u0:

Small and localized data for this problem leads to global solutions. A good starting point
here for instance is the result of the last two authors in [10], which asserts that an appro-
priate smallness condition is

ku0kL2 C kxu0kL2 � 1:

This is not scale invariant, but by scaling one can replace it with a scale-invariant counter-
part

ku0kL2kxu0kL2 � 1; (1.16)

which roughly corresponds to
x
1
2u0 2 L

2:

On the other hand, for the water wave problem, our smallness assumption for the initial
data reads

k.W; R/k PH��1 C k.W;Q/k PH
1
4
C k˛.W; R/k

PH
1
4
� 1:

Consider the limiting case � D 11
4

. Then by scaling one can replace this smallness condi-
tion with

k.W; R/k PH��1.k.W;Q/k PH
1
4
C k˛.W; R/k

PH
1
4
/� 1: (1.17)

Here the last two norms were kept together, as they have the same scaling and are in effect
related via a Hardy-type inequality at the linear level.
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We will argue that, in a suitable interpretation, the two smallness relations (1.16) and
(1.17) are essentially equivalent in a frequency localized setting. To see why this is so one
should think in terms of NLS approximation results for water waves, for which we refer
the reader to [12] and references therein, and also [8]. In a nutshell, these results assert that
water waves are well approximated by the (focusing) cubic NLS in well-chosen regimes
as follows:

• The frequency of the solutions is well localized near a given frequency �0, around
which the water waves linear dispersion relation � D ˙

p
j�j is well approximated by

its quadratic approximation.

• The water wave to NLS connection is given via a normal form transformation, which
eliminates quadratic interactions and leaves only cubic interactions, as in the NLS
case.

For water waves, after diagonalization and normal form analysis we have a cubic non-
linearity, which for a diagonal variable

v D zW C i jDj
1
2 zQ

has roughly the form
ivt � jDj

1
2 v D jDj

5
2 .vjvj2/: (1.18)

Here we neglect the exact placement of derivatives, only counting the total number, as this
approximation is valid anyway only near a fixed frequency. At this level, our smallness
assumption (1.17) becomes

kv.0/k PH� k˛v˛.0/k PH
1
4
� 1: (1.19)

To relate this problem with the cubic NLS, we consider solutions v at a fixed fre-
quency �. For the dispersion relation, we approximate our relation with a quadratic one,
neglecting the constant and the linear part (as in Galilean invariance). At frequency � we
have

@2

@�2
j�j

1
2 � ��

3
2 :

Then our reduced equation (1.18) should be compared with the NLS-type problem

ivt � �
� 32�v D �

5
2 vjvj2:

To eliminate the scaling parameters without changing the v frequency �, we substitute

v.t; x/ D ��2u.��
3
2 t; x/:

Now u solves the cubic NLS.
It remains to compare the smallness assumptions. At frequency �, the smallness con-

dition (1.17) for v reads

k�
11
4 v.0/kL2k�

5
4 xv.0/kL2 � 1;
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or equivalently
kv.0/kL2k˛v.0/kL2 � ��4:

Translated to u, we have arrived exactly at (1.16).

2. An overview of the proof

By our prior results in [3, 9], the water wave system (1.1) expressed in holomorphic coor-
dinates is locally well posed in the space

.W;Q/ 2 PH
1
4 ; .W; R/ 2 PH��1:

The objective of the proof is to use a continuity argument to extend these local solutions
to global-in- time solutions, by simultaneously tracking the Sobolev WH ] norm and the
uniform X norm of the solutions.

Our energy estimates are based on [3], where we construct cubic energy functionals
equivalent to k.W; R/k PH s for all s � 0. Unfortunately, in [3] there is no cubic energy
estimate at the level of k.W;Q/k

PH
1
4

, so we need to do this here. Our remedy is to use
instead the cubic PH

1
4 energy estimates proved in [3] for the linearized equation. To make

such an argument possible, we will work with a one-parameter family of solutions instead
of a single solution. Precisely, for h 2 Œ0; 1�, we consider the family of initial data

.W h
0 ;Q

h
0/ D h.W0;Q0/

and the corresponding solutions .W h; Qh/, and we will simultaneously track the energy
and the pointwise size for the entire family of solutions. To avoid cumbersome notation,
we will omit the index h for the rest of the paper. The h dependence will be important, and
indeed, critically used in a single place in the paper, namely in the proof of Proposition 3.1.

In order for us to be able to provide a modular proof, it is convenient at the beginning
to make the following bootstrap assumption in a time interval Œ0; T �:

k.W; R/.t/kX � C"hti
� 12 ; jt j � T: (2.1)

This will be assumed to hold uniformly for h 2 Œ0; 1�. Then the main steps of our argument
are as follows:

(1) Energy estimates. Using the bootstrap assumption, as well as the balanced energy
estimates of [3] (recalled here in Theorems 4 and 5) we obtain the energy estimates with
a slight growth,

k.W;Q/.t/k
WH ] . "htiC"

2

: (2.2)

Here, the notation . indicates a universal implicit constant, which in particular does not
depend on C in (2.1). This is done in Section 3.

(2) Normal form reduction. In Section 4 we apply a partial normal form reduction, whose
primary goal is to eliminate the balanced quadratic interactions from the equations. Using
a partial normal form transformation, the variables .W;Q/ are replaced by normal form
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alternates . zW ; zQ/, for which we obtain an equation with paradifferential quadratic terms
and full cubic terms, modulo quartic error terms; see Proposition 4.4.
We reexpress the bounds (2.1) and (2.2) in a paradifferential fashion in terms of . zW ; zQ/,

k. zW˛; zQ˛/.t/kX � k.W; R/.t/kX . C"hti�
1
2 ; jt j � T; (2.3)

respectively
k. zW ; zQ/.t/keWH

. k.W;Q/.t/k
WH ] . "htiC"

2

: (2.4)

Here the nonlinear WH ] energy functional is replaced by a linear counterpart eWH ,
defined later in (4.8). This step is carried out in Section 4. At the conclusion of this step,
the problem has been reduced to the study of the evolution of the normal form variables
. zW ; zQ/, for which we need to improve the counterpart of the bootstrap assumption (2.1),
and show that

k. zW˛; zQ˛/.t/kX . "hti�
1
2 ; jt j � T: (2.5)

(3) Nonlinear vector field Sobolev inequalities. The goal in Section 5 is to derive a prelim-
inary pointwise bound for the normal form variables . zW ; zQ/ starting from the weighted
Sobolev bound eWH in (2.4). Precisely, under the same bootstrap bound (2.4) we show
that

k. zW˛; zQ˛/.t/kX] . k. zW ; zQ/.t/keWH
: (2.6)

Here the X] norm, defined later in (5.14), is a microlocal improvement of the X norm,
which provides an additional frequency gain away from waves of frequency 1which prop-
agate with unit speed. Precisely, the X] norm is stronger than the X norm in two ways:

• It has additional gains away from the frequency 1.

• It has additional gains away from the hyperbolic region.

One could think of this as akin to Sobolev embeddings, with the key caveat that the norm
eWH is not a classical, elliptic norm, and instead has a “hyperbolic” component in a certain
subset of the phase space.
We interpret estimate (2.6) as a linear paradifferential estimate, which generalizes in a non-
perturbative fashion a corresponding linear vector field Sobolev bound in [9]. We remark
that the idea of replacing linear bounds with more robust (though also more difficult to
prove) nonlinear vector field Sobolev bounds was first introduced by the last two authors
in the Benjamin–Ono context in [13].

(4) Pointwise bounds via wave packet testing. In this final step in Section 6, we use the
method of wave packet testing (see [10, 11]) to propagate sharp pointwise bounds along
rays, in order to prove the desired pointwise bound (2.5) and close the argument. By virtue
of the X] bound, this is needed only in a time-dependent range of frequencies around
frequency 1.
In a nutshell, the idea is to use well-chosen wave packets in order to define a good asymp-
totic profile 
.t; v/ which describes the leading-order evolution of the solution at infinity
along rays x D vt , and then to show that 
 is an approximate solution to an appropriate
asymptotic equation.
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3. The energy estimates

Our goal here is to recall first the energy estimates of [3, 9], and then to use them to
prove the bound (2.2), which contains the global energy bounds for our time-dependent
weighted norm WH ].

The energy estimates for the solutions in both [9] and [3] are described in terms of the
(time-dependent) uniform control norms. The two control norms in [9], denoted by A and
B , and redenoted by A0 and A 1

2
in [3], are

A0 D A WD kWkL1 C kY kL1 C k jDj
1
2RkL1\B01;2

; (3.1)

respectively
A 1
2
D B WD k jDj

1
2WkBMO C kR˛kBMO: (3.2)

By contrast, in [3] the leading role was played by an intermediate control norm interpo-
lating between A0 and A 1

2
,

A 1
4
WD kWk

PB
1
4
1;2

C kRk
PB
3
4
1;2

: (3.3)

Here the subscript of A represents the difference in terms of derivatives between our
control norm and scaling. In particular, As corresponds to and is controlled by the homo-
geneous PH

1
2Cs norm of .W; R/, and A0 is a scale-invariant quantity. Concerning A 1

4
, we

note the following inequality:

k jDj
1
4WkBMO C k jDj

3
4RkBMO . A 1

4
: (3.4)

In addition to the pointwise scale-invariant norm measured by A, we will also need a
secondary stronger scale-invariant Sobolev control norm A] defined by

A] WD kD
1
4WkL4 C kD

3
4RkL4 : (3.5)

In [3] this is used to control implicit constants in some of the energy estimates.
We now recall from [3] the balanced cubic energy estimates. We begin with the full

differentiated system (1.4).

Theorem 4. For each s � 0 there exists an energy functional Es associated to the differ-
entiated equation (1.4) with the following two properties:

(i) energy equivalence if A� 1:

Es.W; R/ � k.W; R/k2
PH s
I (3.6)

(ii) balanced cubic energy bound:

d

dt
Es.W; R/ .A A21

4

k.W; R/k2
PH s
: (3.7)
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Here the notation .A indicates that the implicit constant is allowed to depend on A;
this has no impact here, as A will be shown to stay small for all solutions we work with.
We continue with the bounds for the linearized system (1.8), respectively.

Theorem 5. AssumeA. 1 andA 1
4
2L2. Then the linearized equation (1.8) is well posed

in PH
1
4 . Furthermore, there exists an energy functional E

1
4

lin.w; r/ so that we have

(a) norm equivalence:

E
1
4

lin.w; r/ �A] k.w; r/k
2

PH
1
4
I

(b) energy estimates:
d

dt
E

1
4

lin.w; r/ .A] A21
4

k.w; r/k2
PH
1
4
:

In the present work, we use both theorems above combined with the pointwise boot-
strap assumption (2.1) in order to establish the energy estimate (1.14).

Theorem 6. Assume that in a time interval Œ�T; T � we have a solution .W;Q/ to (1.1)
with small energy

k.W;Q/.0/k
WH ] � "� 1;

and satisfying the pointwise bootstrap estimate (2.1). Then we have the energy estimate

k.W;Q/.t/k
WH ] . "htiC1"

2

; t 2 Œ�T; T � (3.8)

for some universal C1 � C 2.

Proof. (a) For the PH��1 bound for .W; R/ we use the energy estimates in Theorem 4
with s D � � 1. The same energy estimates can be applied with s D 0, which yields the
bound

k.W; R/.t/kH0 . "htiC1"
2

:

Interpolating these energy estimates with the pointwise bootstrap bound (2.1), using suit-
ably chosen intermediate norms in both cases, this gives a bound for the A] control norm,
e.g. by writing

A] . .Ak.W;R/k
PH
1
2
/
1
2 . C

1
2 "htiC1"

2� 14 :

For small enough " this yields in particular the uniform-in-time smallness

A] � 1: (3.9)

This will be needed in parts (b), (c) below in order to control the implicit constants in the
energy estimates for the linearized equation.

(b) For the energy bounds in WH ] on .w; r/D AS.W;Q/, it suffices to use the balanced
cubic energy estimates for the linearized equations in Theorem 5. Using the Grönwall
inequality, the pointwise bootstrap assumption (2.1), and (3.9), we have

k.w; r/.t/k
PH
1
4

. e

R t
0 A

2
1
4

ds
k.w; r/.0/k

PH
1
4

. e
R t
0 C

2"2hsi�1 ds
k.w; r/.0/k

PH
1
4

. "eC
2"2 log t :
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(c) The energy bounds in PH
1
4 do not follow from Theorem 4, so we need to prove them

here. We will show the following result.

Proposition 3.1. Assume the bootstrap bound (2.1) holds. Then we have the estimate

k.W;Q/.t/k
PH
1
4

. htiC"2k.W;Q/.0/k
PH
1
4
: (3.10)

Proof. This is the only place in the article where we use the fact that we work with a
one-parameter family of solutions depending on the parameter h 2 Œ0; 1�. We will denote

.w; q/ D
d

dh
.W;Q/; r D q �Rw:

Then for each h, .w;q/ solves the linearized equation around .W;Q/, and in particular we
can apply the energy estimates in Theorem 5, which, in view of our bootstrap assumption
(2.1), yield the estimate

k.w; r/.t/k
PH
1
4

. htiC"2k.w; r/.0/k
PH
1
4
; t 2 Œ0; T �; h 2 Œ0; 1�: (3.11)

Our task is now to first estimate the initial data .w; r/.0/, and show that

k.w; r/.0/k
PH
1
4

.A k.W0;Q0/k PH 1
4
: (3.12)

Secondly, we want the reverse estimate at times t 2 Œ0; T �,

sup
h2Œ0;1�

k.W;Q/.t/k
PH
1
4

.A sup
h2Œ0;1�

k.w; r/k
PH
1
4
: (3.13)

Together with (3.11), these two bounds imply the conclusion of the proposition.

Proof of (3.12). We have

.w; r/.0/ D .W0;Q0 �R0W0/:

Hence the only nontrivial expression to estimate is R0W0, for which we use Coifman–
Meyer-type estimates to write

kR0W0k PH
3
4

. kW0kL4k jDj
3
4R0kL4 C kR0kL3k jDj

3
4W0kL6 ;

where the first term accounts for the high–low interactions, the second for the low–high
interactions, and the balanced interactions can go either way.

The first term is estimated directly using a Sobolev embedding,

kW0kL4k jDj
3
4R0kL4 . kW0k PH 1

4
k jDj

3
4R0kL4 . A]k.W0;Q0/k PH

1
4
:

For the second term we use interpolation instead:

kR0kL3 . kR0k
2
3

PH
� 14

k jDj
1
2R0k

1
3

BMO . kR0k
2
3

PH
� 14

k jDj
3
4R0k

1
3

L4
;
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respectively

k jDj
3
4W0kL6 . kW k

1
3

PH
1
4

k@˛W k
2
3

BMO . kW k
1
3

PH
1
4

k jDj
1
4 @˛W k

2
3

L4
:

Combining the two and assuming the equivalence (to be proved shortly)

kRk
PH
� 14
�A;A] kQ˛k PH�

1
4
; (3.14)

we obtain
kR0W0k PH

3
4

. A]k.W0;Q0/k PH
1
4
;

which suffices.

Proof of (3.14). We have the relations R D .1 � Y /Q˛ and Q˛ D .1CW˛/R, where

kW˛k
W

1
4 ;4\L1

. AC A] � 1;

and, by the algebra property for the space W
1
4 ;4 \ L1,

kY k
W

1
4 ;4\L1

. AC A] � 1:

Hence, using also duality, it remains to show that we have a bound of the form

kYf k
PH
1
4

. kY k
W

1
4 ;4\L1

kf k
PH
1
4
:

But this is a standard multiplicative estimate, which is left for the reader.

Proof of (3.13). There is nothing to do for W , since it is the antiderivative of w,

W.h/ D

Z h

0

w.h1/ dh1:

It remains to consider Q, where we write

Q.h/ D

Z h

0

r.h1/C .Rw/.h1/ dh1:

The first term is straightforward, but we still need to estimate the second, where there is
an apparent loss of derivatives. To rectify this we replace Q by Q � TRW , which is akin
to a good variable. Computing

d

dh
R D .q˛ � w˛R/.1 � Y / D r˛.1 � Y /C wR˛.1 � Y /

we see that

.Q � TRW /.h/ D

Z h

0

r C TwRC….w;R/ � Tr˛.1�Y /CwR˛.1�Y /W dh1:
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The second term on the left plays a perturbative role, in view of the bound

kTRW k PH
3
4

.A A]kQk PH 3
4
� kQk

PH
3
4
;

where R is related to Q˛ via (3.14).
Hence it remains to estimate the nonlinear terms under the integral in PH

3
4 . For the first

two we have a Coifman–Meyer-type bound

kTwRk PH
3
4
C k….w;R/k

PH
3
4

. A]kwk
PH
1
4
:

This leaves us with the last one. There, all frequencies in the factors of the para-coefficient
are negative so must be smaller in size than the frequency of W . Hence we can bound the
full expression as

kTr˛.1�Y /CwR˛.1�Y /W k PH
3
4

. k jDj
1
4W˛kL4k jDj

� 12 .r˛.1 � Y /C wR˛.1 � Y //kL4

. A].k jDj
1
2 rkL4k1 � Y kL1

C kwkL4k jDj
1
2RkL1k1 � Y kL1/

.A A]k.w; r/k PH 1
4
:

Here, in estimating the parafactor r˛.1 � Y / C wR˛.1 � Y / we took advantage of the
fact that all factors are holomorphic, so the jDj�

1
2 operator always acts at the highest

frequency. This concludes the proof of (3.13) and thus the proof of the proposition.

Finally, Proposition 3.1 completes the proof of Theorem 6.

4. The paradifferential normal form

We begin by recalling from [9] the classical normal form variables´
zW D W � P Œ2<W �W˛�;

zQ D Q � P Œ2<W �R�;
(4.1)

which solve equations of the form´
zWt C zQ˛ D zG;

zQt � i zW D zK;
(4.2)

with sources . zG; zK/ which contain only cubic and higher-order terms.
We also recall the linear scaling operator

zS0. zW ; zQ/ WD .2˛@˛ zW � t@˛ zQ; 2˛@˛ zQC i t zW /;

which was also used in [9] as the main vector field at the level of the normal form variables.
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Using (4.2), this can be expressed in terms of the scaling vector field S as follows:

zS0. zW ; zQ/ D .S zW ;S zQ/ � t . zG; zK/: (4.3)

In this paper, we will instead use a paradifferential substitute of the normal form (4.1),
defining ´

zW D W � TW˛W �….W˛; 2<W /;

zQ D Q � TRW �….R; 2<W /;
(4.4)

where here and throughout, we let both paradifferential operators T and … include an
implicit projection P , so that T D PT and…D P…. This somewhat unusual convention
is motivated by the fact that our flow evolves in spaces of holomorphic functions.

This can no longer be seen as a full normal form transformation, but, instead, only as
a partial normal form. This idea was introduced by Alazard–Delort in [7] in the context of
the Eulerian formulation of the equations.

Here and throughout, we fix a self-adjoint quantization for the paraproduct operator T
viewed as a pseudodifferential operator. For instance, we may use the Weyl quantization,
or simply the average

1

2
.T C T �/:

In the following sections, we will use several classical multilinear estimates for T and ….
We refer the reader to [9, Appendix B] and [3, Section 2] for such estimates.

Our objectives in this section are as follows:

(i) To transfer the H s bounds from .W;Q/ to . zW ; zQ/:

Proposition 4.1. Assume (2.1). Then we have

k. zW˛; zQ˛/k PH��1 � k.W; R/k PH��1 ; (4.5)

as well as
k. zW ; zQ/k

PH
1
4
� k.W;Q/k

PH
1
4
: (4.6)

We also prove the following similar bound associated to the scaling vector field S .

Proposition 4.2. Assume (2.1). Then we have

k.S zW ;S zQ/k
PH
1
4

. k.w; r/k
PH
1
4
C k.W;Q/k

PH
1
4
; (4.7)

with .w; r/ as in (1.9).

Given the two propositions above, it is natural to define the linear energy functional of
. zW ; zQ/ as

k. zW ; zQ/k2eWH
D k. zW ; zQ/k2

PH
1
4 \ PH�

C k.S zW ;S zQ/k2
PH
1
4
: (4.8)

Then, as a consequence of the last two propositions, it follows that the energy bound (2.2)
for the original variables .W; Q/ implies the corresponding bound (2.4) for the normal
form variables . zW ; zQ/.
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(ii) To allow the transfer of the pointwise bounds between .W;Q/ and . zW ; zQ/:

Proposition 4.3. Assume (2.1). Then

k. zW˛ �W; zQ˛ �R/kX . "hti�
1
2 k.W; R/kX : (4.9)

On one hand, this bound allows us to transfer the bootstrap assumption to . zW ; zQ/, i.e.
show that (2.1) implies (2.3).
On the other hand, it shows that it suffices to improve the bootstrap condition for . zW ; zQ/,
i.e. prove (2.5); this in turn implies a similar improvement for (2.1).

(iii) To compute the paradifferential equation (4.2) for . zW ; zQ/, which is written in the
form ´

zWt C zQ˛ C T2< zW˛
zQ˛ � T2< zQ˛

zW˛ D zG;

zQt � i zW � T2< zQ˛
zQ˛ D zK;

(4.10)

with a good description of the source terms . zG; zK/. Precisely, we identify the leading-
order cubic terms in . zG; zK/, while proving improved decay estimates for the remaining
quartic terms:

Proposition 4.4. Assume that (2.1) and (2.2) hold. Then . zW ; zQ/ solve an equation of the
form (4.10), where the source terms . zG; zK/ satisfy the bound

k. zG; zK/k
PH
1
4

.A0 k.W; R/k2Xk.
zW ; zQ/k

PH
1
4 \ PH�

: (4.11)

Furthermore, . zG; zK/ can be split into

. zG; zK/ D . zG.3/; zK.3//C . zG.4C/; zK.4C//;

where . zG.3/; zK.3// are explicit cubic expressions in . zW ; zQ/ given by (4.15) which satisfy
the bound

k. zG.3/; zK.3//k
PH
1
4

.A0 k.W; R/k2Xk.
zW ; zQ/k

PH
1
4 \ PH�

; (4.12)

while . zG.4C/; zK.4C// are quartic and higher-order expressions which satisfy the better
bound

k. zG.4C/; zK.4C//k
PH
1
4

. k.W; R/k3Xk.
zW ; zQ/k

PH
1
4 \ PH�

: (4.13)

We remark that, in view of equations (4.10), it is natural to replace the linear scaling
operator zS0 used in [9] via (4.3) with a nonlinear, paradifferential counterpart

zS. zW ; zQ/ WD
�
2˛@˛ zW � t@˛ zQC t .T2< zW˛

zQ˛�T2< zQ˛
zW˛/;2˛@˛ zQC i t zW � tT2< zQ˛

zQ˛
�
;

so that we have
zS. zW ; zQ/ D .S zW ;S zQ/ � t . zG; zK/: (4.14)

This system of equations for . zW ; zQ/ will play a key role in the next section.

We record the explicit cubic expressions for . zG.3/; zK.3// below. Here we have parti-
tioned the terms of zG.3/ into three components:
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• zG
.3/
1 corresponds to the perturbative cubic terms that arise from the time differentiation

@t zW ;

• zG
.3/
2 corresponds to additional cubic terms that arise after cancellations with zQ˛;

• zG
.3/
3 corresponds to cubic terms that arise from rewriting the remaining quadratic

expressions in terms of the normal form variables.

The partition of zK.3/ is similar. We remark that these decompositions are consistent with
the computations later in this section, but not so much with the resonant/nonresonant/null
decomposition in Section 5; for this reason, in Section 5 we reorganize them in a more
useful way.

It is convenient to denote the quadratic component of F , rewritten in terms of the
normal form variables . zW˛; zQ˛/, as follows:

zF .2/ D P Œ
xzQ˛ zW˛ � zQ˛

xzW˛�:

Then we have

zG.3/ D zG
.3/
1 C

zG
.3/
2 C

zG
.3/
3 ;

zG
.3/
1 D T zW˛ .

zQ˛ zW˛/C T. zQ˛ zW˛/˛
zW C…. zW˛; 2<Œ zQ˛ zW˛�/C….. zQ˛ zW˛/˛; 2< zW /;

zG
.3/
2 D �

zW˛ zF
.2/
C T zF .2/˛

zW C….@˛ zF
.2/; 2<W /C…. zF .2/; W˛/C…. zW˛;

xzF .2//

�….
xzW 2
˛ ;
zQ˛/C….

xzQ˛; zW
2
˛ / � T xzW 2

˛

zQ˛ � T xzW˛
zF .2/ C T xzQ˛

zW 2
˛ ;

zG
.3/
3 D T2<.T zW˛

zWC…. zW˛ ;2< zW //˛
zQ˛

C T2< zW˛ .�
zQ˛ zW˛ C zF

.2//C T2< zW˛ .T zQ˛
zW C…. zQ˛; 2< zW //˛

C T2<. zQ˛ zW˛�.T zQ˛
zWC…. zQ˛ ;2< zW //˛/

zW˛

� T2< zQ˛ .T zW˛
zW C…. zW˛; 2< zW //˛; (4.15)

zK.3/ D zK
.3/
1 C

zK
.3/
2 C

zK
.3/
3 ;

zK
.3/
1 D T. 12 zQ

2
˛CPŒj zQ˛ j2�/˛

zW C T zQ˛ .T zW˛
zQ˛ C…. zW˛; zQ˛//

C…..1
2
zQ2
˛ C P Œj

zQ˛j
2�/˛; 2< zW /C…. zQ˛; 2<Œ zQ˛ zW˛�/

�…. zW˛ zQ˛; zQ˛/C…. zQ˛;
xzF .2// � T zQ˛ zW˛

zQ˛;

zK
.3/
2 D iT zW 2

˛

zW C i…. zW 2
˛ ; 2<

zW / � T
PŒ
xzQ˛ zW˛� zQ˛

xzW˛ �
zQ˛;

zK
.3/
3 D �T2<.T zQ˛

zWC…. zQ˛ ;2< zW //˛
zQ˛ � T2< zQ˛ .T zQ˛

zW C…. zQ˛; 2< zW //˛

C T2<. zQ˛ zW˛/
zQ˛ C T xzQ˛

. zQ˛ zW˛/C T zQ˛T zQ˛
zW˛:

4.1. The paradifferential equation

We begin by computing the cubic and higher-order perturbative source terms . zG; zK/
for the paradifferential normal form variables (4.4) above, simultaneously identifying the
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paradifferential quadratic potentials that we will collect on the left-hand side in equation
(4.10). First we compute the time derivative,

@t zW D Wt � @tTW˛W � @t….W˛; 2<W /

D �F.1CW˛/

C TW˛ .F.1CW˛//C T.F .1CW˛//˛W

C….W˛; 2<ŒF .1CW˛/�/C…..F.1CW˛//˛; 2<W /:

We collect the cubic terms below in zG1:

@t zW D �F.1CW˛/C TW˛F C TF˛W C….W˛; 2<F /C….F˛; 2<W /C
zG1;

where

zG1 D TW˛ .FW˛/C T.FW˛/˛W C….W˛; 2<ŒFW˛�/C…..FW˛/˛; 2<W /: (4.16)

On the other hand, we have

@˛ zQ D Q˛ � @˛TRW � @˛….R; 2<W /

D R.1CW˛/ � @˛TRW � @˛….R; 2<W /;

so that

@t zW C @˛ zQ D �F.1CW˛/C TW˛F C TF˛W C….W˛; 2<F /C….F˛; 2<W /C
zG1

CR.1CW˛/ � @˛TRW � @˛….R; 2<W /

D T2<W˛F � T2<RW˛ C
zG1 C zG2;

where zG2 contains only cubic and higher-order terms,

zG2 D .R � F /W˛ C T.F�R/˛W C…..F �R/˛; 2<W /C….F �R;W˛/

C…. xY � xW˛; R/C P Œ….W˛; xF / �…. xR; Y /�

C .T xYR � T xW˛F /C .T xRW˛ � T xRY /: (4.17)

Lastly, we exchange the variables in the quadratic potentials for their normal form
counterparts . zW ; zQ/:

@t zW C @˛ zQD T2< zW˛
zQ˛ � T2< zQ˛

zW˛ C zG1C zG2C zG3DW T2< zW˛
zQ˛ � T2< zQ˛

zW˛ C zG;

where zG3 contains the cubic and higher terms in the difference,

zG3 D T2<W˛F � T2< zW˛
zQ˛ C T2< zQ˛

zW˛ � T2<RW˛: (4.18)

For the second equation, we have

@t zQ D Qt � @tTRW � @t….R; 2<W /

D iW � FQ˛ � P ŒjRj
2�

C TbR˛�i.1Ca/YCiaW C TRŒF .1CW˛/�

C….bR˛ � i.1C a/Y C ia; 2<W /C….R; 2<ŒF .1CW˛/�/:
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We collect the cubic terms below in zK1:

@t zQ D iW � TFQ˛ � T xRR � iTYW C TRTFW˛ � i….Y; 2<W /C
zK1;

where

zK1 D TbR˛�iaYCiaW C TR.TW˛F C….W˛; F //

C….bR˛ � iaY C ia; 2<W /C….R; 2<ŒFW˛�/

C Œ….R; 2<F / �….F;Q˛/ �…. xR;R/�C TR�Q˛F: (4.19)

As a result, we have

@t zQ � i zW D iW � TFQ˛ � T xRR � iTYW C TRTFW˛ � i….Y; 2<W /C
zK1

� i.W � TW˛W �….W˛; 2<W //

D �T xRR � TR.Q˛ � TFW˛/C
zK1 C zK2;

where
zK2 D i.TW˛W � TYW /C i….W˛ � Y; 2<W /C TR�FQ˛: (4.20)

Lastly, we exchange the variables on the right-hand side for their normal form coun-
terparts . zW ; zQ/:

@t zQ � i zW D �T2< zQ˛
zQ˛ C zK1 C zK2 C zK3 WD zK;

where
zK3 D T2< zQ˛

zQ˛ � T xRR � TR.Q˛ � TFW˛/: (4.21)

We conclude ´
@t zW C @˛ zQ � T2< zW˛

zQ˛ C T2< zQ˛
zW˛ D zG;

@t zQ � i zW C T2< zQ˛
zQ˛ D zK:

(4.22)

4.2. Energy bounds on the normal form

Here we prove Proposition 4.1, transferring the energy estimates from .W; Q/ to the
normal form variables . zW ; zQ/, together with Proposition 4.2, which is concerned with
estimates on .S zW ;S zQ/.

Proof of Propositions 4.1, 4.2. For zW , we estimate the quadratic corrections to W . We
have

kTW˛W C….W˛; 2<W /k PH� . kW˛kL1kW˛k PH��1

so that using (2.1) suffices. The PH
1
4 estimate is similar.

For zQ, we first write

zQ˛ D RCRW˛ � @˛.TRW C….R; 2<W //

D RC TW˛RC….R;W˛/ � TR˛W � @˛….R; 2<W /:
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We estimate the quadratic terms. First we have, using both (3.8) and (2.1),

kTW˛RC….R;W˛/ �….R; 2<W˛/k PH�� 12
. kW˛kL1kRk PH�� 12

. k.W; R/kXk.W;Q/kWH ] :

Similarly, we have

kTR˛W C….R˛; 2<W /k PH�� 12
. k jDj

1
2RkL1kW k PH� . k.W; R/kXk.W;Q/kWH ] :

For the PH
1
4 bound, we directly estimate

kTRW C….R; 2<W /k PH
3
4

. k jDj�
1
4RkL2kW˛kL1 . k.W;Q/k

WH ]k.W; R/kX ;

where at the second step we have used (3.14).
It remains to show the bounds for .S zW ;S zQ/. Writing

.w; r/ D AS.W;Q/ D ..S � 2/W; .S � 3/Q �R.S � 2/W /;

we have

S zW D w � .Tw˛W C TW˛wC….w˛; 2<W /C….W˛; 2<w/

� zTW˛W � P
z….W˛; 2<W //

C 2W � .T2W˛W C TW˛2W C….2W˛; 2<W /C….W˛; 4<W //;

where the zT and z… arise from commutators with ˛,

zTW˛W D 2.T.˛W˛/˛W C TW˛˛W˛/ � 2˛.TW˛˛W C TW˛W˛/;

z….W˛; 2<W / D 2.…..˛W˛/˛; 2<W /C….W˛; 2<.˛W˛///

� 2˛.….W˛˛; 2<W /C….W˛; 2<W˛//:

Then it is straightforward to estimate each term on the right-hand side in PH
1
4 , combining

(3.8) and (2.1) as before. We remark that we gain a derivative in the commutator, so both
of these terms are estimated in a scale-invariant fashion by

k zTW˛W k PH
1
4
C k z….W˛; 2<W /k PH

1
4

. kW˛kL1kW k PH 1
4
:

For S zQ, we write

S zQ D SQ

� .TSRW C TRwC….SR; 2<W /C….R; 2<w/ � zTRW � P z….R; 2<W //

� .TR2W C….R; 4<W //

D rC TwR � .TSRW C….SR; 2<W /C….R; xw/ � zTRW � P z….R; 2<W //

� .TR2W C….R; 4<W //C 3Q � 2RW: (4.23)
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We estimate the unbalanced terms on the right-hand side of (4.23), as the correspond-
ing balanced terms are similar. First, we have by Sobolev embeddings,

kTwRk PH
3
4

. kwkL4k jDj
3
4RkL4 .A] kwk PH 1

4
:

Using (3.14), we also have

kTRW k PH
3
4

. k jDj�
1
4RkL2kW˛kL1 .A] kQk PH 3

4
:

Next we estimate the last two terms on the right-hand side. The estimate for Q is
immediate. For RW , TRW and ….R;W / may be estimated as before, and we have

kTWRk PH
3
4

. kW kL4k jDj
3
4RkL4 .A] kW k PH 1

4
:

To estimate TSRW , we use the identity

.S � 1/R D
r˛ CR˛w

1CW˛
:

Consider the contribution T.1�Y /r˛W from r˛ . The cases of three unequal frequencies
may be estimated as follows:

kTT1�Y r˛W k PH
3
4
C kTTr˛Y

W k
PH
3
4

. .1C kW˛kL1/krk PH
3
4
kW˛kL1 .A krk PH 3

4
:

Since Y and r˛ are both holomorphic, there is no frequency cancellation in the balanced
case ….Y; r˛/, and so this case may be treated in the same way.

For the contribution from R˛w, we have T.1�Y /R˛wW . We consider the cubic term;
the quartic term is similar, measuring Y 2 L1 in all cases. We have

kTTR˛wW k PH
3
4

. k jDj
1
2RkL1kwk PH

1
4
kW˛kL1 .A kwk PH 1

4
;

kTTwR˛W k PH
3
4

. kwkL4k jDj
1
2RkL1k jDj

5
4W kL4 .A] kwk PH 1

4
:

As with the r˛ contribution, the balanced frequency case has no cancellation and may be
treated as either of these two cases.

4.3. Pointwise bounds on the normal form

Here we prove Proposition 4.3, transferring pointwise estimates from . zW ; zQ/ to the orig-
inal variables .W;Q/.

Proof of Proposition 4.3. Recall, our objective is to show that

k. zW˛ �W; zQ˛ �R/kX . "hti�
1
2 k.W; R/kX :

For the zW bound, we first consider the unbalanced paraproduct quadratic terms. For the
high frequency estimate, using (2.1) we have

k@˛TW˛W k
PB
1
4
1;2

. kW˛kL1kWk
PB
1
4
1;2

. "hti�
1
2 k.W; R/kX ;
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so it suffices to consider the low frequency L1 estimate with W�1. In this case we may
gain derivatives from the low frequency W˛ in the paraproduct. For instance, we may use
the estimate

k jDj�
1
2 @˛TW˛W�1kL1 . k jDj

3
4W kL1

X
��1

k jDj
3
4W�kL1

. k jDj
3
4W kL1k jDj

1
2W kL1 . "hti�

1
2 k.W; R/kX :

Next we estimate the balanced quadratic corrections in zW . Here, we likewise consider
the high and low frequencies separately. For the high frequencies,

k@˛….W˛;<W /�1k
PB
1
4
1;2

. k jDj
1
8W˛kL1kWk

PB
1
4
1;2

. "hti�
1
2 k.W; R/kX :

For the low frequency estimate, we have room as before to rebalance derivatives from the
first instance of W˛ . Here, note that the summation permitted by the rebalancing likewise
allows for the estimate of the implicit projection P in our notation for …. Precisely,

k jDj�
1
2 @˛….W˛;<W /�1kL1 .

X
��1

k jDj�
1
2 @˛….W˛;<W /�kL1

. k jDj
3
4W kL1k jDj

1
2W kL1 . "hti�

1
2 k.W; R/kX :

For zQ˛ , we have

zQ˛ �R D TW˛RC….W˛; R/ � TR˛W � @˛….R; 2<W /:

The estimates for the quadratic errors are similar to before: we consider the high and low
frequency estimates separately, and observe that the balance of derivatives is favorable for
each term so that we have room to rebalance as necessary. We present here the analysis
for the unbalanced paraproduct terms. Considering first the high frequency estimate, we
have

kTW˛Rk
PB
3
4
1;2

. kW˛kL1kRk
PB
3
4
1;2

. "hti�
1
2 k.W; R/kX ;

kTR˛W k
PB
3
4
1;2

. k jDj
1
2RkL1kW˛k

PB
1
4
1;2

. "hti�
1
2 k.W; R/kX :

For the low frequency L1 estimate, we have

kTW˛R�1kL1 . k jDj
3
4W kL1

X
��1

k jDj
1
4R�kL1

. k jDj
3
4W kL1kRkL1 . "hti�

1
2 k.W; R/kX ;

kTR˛W�1kL1 . k jDj
1
4RkL1

X
��1

k jDj
3
4W�kL1

. k jDj
1
4RkL1k jDj

1
2W kL1 . "hti�

1
2 k.W; R/kX :
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4.4. Bounds on the source term

Next we estimate the cubic and higher source terms . zG; zK/ in equation (4.10), and thus
prove Proposition 4.4.

Proof of Proposition 4.4. To estimate zG, we observe that all the terms in zGi , i D 1; 2; 3
(see (4.15)) are cubic and higher-order expressions with variables .W˛;R/ or their respec-
tive normal form counterparts . zW˛; zQ˛/, and also possibly Y instead of W˛ , within the
following set of rules:

(i) R or its equivalent zQ˛ appears exactly once.

(ii) W˛ or its equivalents Y , zW˛ appear at least twice.

Similarly, after extracting the cubic terms zG.3/ as a trilinear expression in zG.3/. zQ˛; zW˛;
zW˛/, the remaining quartic and higher-order terms share a similar description, but with

(ii) replaced by

(ii)0 W˛ or its equivalents Y , zW˛ appear at least three times.

In terms of estimates, these equivalent sets of variables are interchangeable by Proposi-
tions 4.1 and 4.3. To bound the cubic terms, we may rebalance the derivatives such that
the lowest frequency variable is estimated by

k. zW ; zQ/k
PH
1
4
�A0 k.W˛; R/k PH�

3
4
;

while the remaining two variables are controlled by A21
4

. To bound the quartic and higher
terms, we argue in the same fashion, with the adjustment that the two highest frequency
factors are controlled by A21

4

, while the intermediate frequencies are controlled by A0.
To estimate zK, the discussion is similar but slightly more complex. As we will see

below, its cubic terms may be placed into three cases:

(i) cubic terms with zW˛ , zW˛ , zW , where zW is in the place of the highest frequency;

(ii) cubic terms with zQ˛ , zQ˛ , zW˛ , where a zQ˛ is in the place of the highest fre-
quency;

(iii) cubic terms with zQ˛ , zQ˛˛ , zW , where zW is in the place of the highest frequency.

As above, we allow for substitutions with equivalent variables zW˛ �W˛ � Y , respectively
zQ˛ � R. Then to classify the quartic and higher-order terms, we obtain contributions

similar to the three above, but with an additional W˛ factor which is at or below the
highest frequency as described in (i)–(iii). In addition to this, we obtain one more term,
namely

(iv) a quartic term with R, R;W˛ , W˛ and highest frequency W˛ .

This categorization is immediate for the terms of zK1 and zK2. For zK3, write

zK3 D T2<R zQ˛ � T xRR � TR.Q˛ � TFW˛/C T2<. zQ˛�R/
zQ˛

D T2<R.Q � TRW �….R; 2<W //˛ � T xRR � TR.Q˛ � TFW˛/

C T2<.YQ˛�.TRWC….R;2<W //˛/
zQ˛
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D TRŒTFW˛ � .TRW /˛� � T2<R.….R; 2<W //˛ C T xRŒRW˛ � .TRW /˛�

C T2<.YQ˛�.TRWC….R;2<W //˛/
zQ˛

D TRŒTF�RW˛ � TR˛W � � T2<R.….R; 2<W //˛

C T xRŒTW˛RC….W˛; R/ � TR˛W �

C T2<.YQ˛�.TRWC….R;2<W //˛/
zQ˛:

The first term on the right-hand side is quartic, recalling that

R � F D P ŒR xY � xRY �:

In terms of estimates, as with zG, in all of the cubic cases (i)–(iii) we may rebalance
derivatives such that the lowest frequency variable is estimated by

k. zW ; zQ/k
PH
1
4
;

while the remaining two variables are controlled by A21
4

. For the corresponding quartic
terms we addA0 bounds for the additionalW˛ terms. On the other hand, for the remaining
quartic term in (iv) we use W˛ 2 PH

3
4 for the highest frequency W˛:

kTRTPŒR xY� xRY �W˛k PH
3
4

.A0 kRkL1kRkL1kW˛kL1kW˛k PH 3
4
:

Next we identify the leading-order cubic source terms . zG.3/; zK.3// in . zG; zK/, with
respect to the normal form variables . zW ; zQ/.

First, we identify the cubic terms in zG. Using the identities

F D Q˛ �Q˛Y C P Œ xRY �R xY �;

W D zW C TW˛W C….W˛; 2<W /;

Q D zQC TRW C….R; 2<W /;

(4.24)

the first term of zG1 may be written

TW˛ .FW˛/ D T zW˛ .
zQ˛ zW˛/C g; (4.25)

where g consists of quartic terms with variables R, W˛ , W˛ , W˛ , possibly interchanged
with their normal form counterparts. By a similar reexpression of the remaining terms of
zG1, we may write

zG1 D T zW˛ .
zQ˛ zW˛/C T. zQ˛ zW˛/˛

zW

C…. zW˛; 2<Œ zQ˛ zW˛�/C….. zQ˛ zW˛/˛; 2< zW /C zG
.4C/
1 :

From the last two lines of zG2, we observe that the quadratic components cancel:

…. xY � xW˛; R/C P Œ….W˛; xF / �…. xR; Y /�C .T xYR � T xW˛F /C .T xRW˛ � T xRY /

D �…. xW˛ xY ;R/C P Œ….W˛; xP ŒR xY � xRY �/C…. xR;W˛Y /�

� T xW˛ xYR � T xW˛ .P Œ
xRY �R xY �/C T xRW˛Y
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so that

zG2 D � zW˛P Œ
xzQ˛ zW˛ � zQ˛

xzW˛�C T
PŒ
xzQ˛ zW˛� zQ˛

xzW˛ �˛
zW

C….P Œ
xzQ˛ zW˛ � zQ˛

xzW˛�˛; 2<W /C….P Œ
xzQ˛ zW˛ � zQ˛

xzW˛�; W˛/

�….
xzW 2
˛ ;
zQ˛/C P Œ…. zW˛; xP Œ zQ˛

xzW˛ �
xzQ˛ zW˛�/C….

xzQ˛; zW
2
˛ /�

� T xzW 2
˛

zQ˛ � T xzW˛
.P Œ
xzQ˛ zW˛ � zQ˛

xzW˛�/C T xzQ˛
zW 2
˛ C

zG
.4C/
2 :

For zG3, we likewise observe that the quadratic components cancel:

zG3 D T2<.TW˛WC….W˛ ;2<W //˛Q˛

C T2<W˛ .�Q˛Y C P Œ
xRY �R xY �/C T2< zW˛ .TRW C….R; 2<W //˛

C T2<.RW˛�.TRWC….R;2<W //˛/
zW˛ � T2<R.TW˛W C….W˛; 2<W //˛;

so that

zG3 D T2<.T zW˛
zWC…. zW˛ ;2< zW //˛

zQ˛

C T2< zW˛ .�
zQ˛ zW˛ C P Œ

xzQ˛ zW˛ � zQ˛
xzW˛�/C T2< zW˛ .T zQ˛

zW C…. zQ˛; 2< zW //˛

C T2<. zQ˛ zW˛�.T zQ˛
zWC…. zQ˛ ;2< zW //˛/

zW˛ � T2< zQ˛ .T zW˛
zW C…. zW˛; 2< zW //˛

C zG
.4C/
3 :

Next we identify the cubic terms in zK. From the last line of zK1, we first observe the
quadratic cancellations:

Œ….R; 2<F / �….F;Q˛/ �…. xR;R/�C TR�Q˛F

D �….YQ˛; F /C….R; xP Œ xRY �R xY �/ � TQ˛YF

so that

zK1 D T
2.< zQ˛/ zQ˛˛C2i=PŒ zQ˛

xzQ˛˛ �
zW C T zQ˛ .T zW˛

zQ˛ C…. zW˛; zQ˛//

C….2.< zQ˛/ zQ˛˛ C 2i=P Œ zQ˛
xzQ˛˛�; 2< zW /C…. zQ˛; 2<Œ zQ˛ zW˛�/

�…. zW˛ zQ˛; zQ˛/C…. zQ˛; xP Œ
xzQ˛ zW˛ � zQ˛

xzW˛�/ � T zQ˛ zW˛
zQ˛ C zK

.4C/
1 :

For zK2, the quadratic cancellations are straightforward from the definition of Y and
we obtain

zK2 D iT zW 2
˛

zW C i…. zW 2
˛ ; 2<

zW / � T
PŒ
xzQ˛ zW˛� zQ˛

xzW˛ �
zQ˛ C zK

.4C/
2 :

For zK3, we have the quadratic cancellations

zK3 D T2< zQ˛
zQ˛ � T xRR � TR.Q˛ � TFW˛/

D �T2<.TRWC….R;2<W //˛
zQ˛ � T2<Q˛ .TRW C….R; 2<W //˛

C T2<.Q˛Y /Q˛ C T xR.Q˛Y /C TRTFW˛;
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and hence

zK3 D �T2<.T zQ˛
zWC…. zQ˛ ;2< zW //˛

zQ˛ � T2< zQ˛ .T zQ˛
zW C…. zQ˛; 2< zW //˛

C T2<. zQ˛ zW˛/
zQ˛ C T xzQ˛

. zQ˛ zW˛/C T zQ˛T zQ˛
zW˛ C zK

.4C/
3 :

5. The pointwise estimates

So far, we have used the pointwise bootstrap assumption (2.1) in order to derive the energy
estimates (2.2) with tC"

2
loss for .W;Q/, which we then transferred to normal form vari-

ables . zW ; zQ/, see (2.4), with a similar tC"
2

loss. The remaining objective is to obtain an
improvement of the bootstrap assumption (2.1), which has in turn been reduced to proving
its counterpart for the normal form variables, namely the bound (2.5). All the work in the
last two sections of the paper happens at the level of the normal form variables . zW ; zQ/.

Our primary objective in this section is to consider . zW ; zQ/ at fixed time, and to convert
the energy estimates (2.4) into pointwise bounds, via vector field Sobolev-type inequali-
ties.

This will in particular yield the pointwise bound

k. zW˛; zQ˛/kX . "t�
1
2CC"

2

: (5.1)

However, this does not suffice in order to prove (2.5) because of the tC"
2

loss. For this
reason, we will instead obtain a sharper version of (5.1), where the loss is replaced with
a gain for most components of . zW ; zQ/. To describe this gain, we will produce an ellip-
tic/hyperbolic decomposition

. zW ; zQ/ D . zW ; zQ/ell C . zW ; zQ/hyp: (5.2)

Here the elliptic component contains a nearly full range of frequencies, but satisfies
stronger, elliptic bounds, and in particular has better decay,

k. zW˛; zQ˛/ellkX . "t�
1
2�ı ; ı > 0; (5.3)

which suffices for (2.5).
The hyperbolic component, on the other hand, is frequency localized on a scale which

depends on the velocity v D ˛=t . While retaining the tC"
2

loss, it has another redeeming
feature, namely a gain of min¹jvj�b; jvjbº away from velocity jvj � 1, with a universal
small b. This will defeat the tC"

2
loss outside a small region of the form

�ı D ¹t�ı . jvj . tıº; ı � 1: (5.4)

That will leave us, at the conclusion of this section, with the remaining task of improv-
ing the pointwise bounds for . zW ; zQ/hyp within the above region �ı . This can no longer
be done via a fixed time analysis, and instead has to be accomplished dynamically. That
will be the objective of the last section of the paper, where we use our wave packet test-
ing method to capture a good asymptotic parameter 
.t; v/ and its associated asymptotic
equation.
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5.1. A fixed time system for . zW ; zQ/

We recall from (4.14) that we have

zS. zW ; zQ/ D S. zW ; zQ/ � t . zG; zK/;

where the nonlinear paradifferential vector field zS is given by

zS. zW ; zQ/D .2˛@˛ zW � t@˛ zQC t .T2< zW˛
zQ˛�T2< zQ˛

zW˛/; 2˛@˛ zQC i t zW � tT2< zQ˛
zQ˛/:

Thus we can think of . zW ; zQ/ at fixed time as the solutions to a system governed by
the operator zS, ´

2˛@˛ zW � t@˛ zQC t .T2< zW˛
zQ˛ � T2< zQ˛

zW˛/ D G;

2˛@˛ zQC i t zW � tT2< zQ˛
zQ˛ D K;

(5.5)

where, by Propositions 4.1 and 4.4, we control L2-type norms as

k. zW ; zQ/k
PH
1
4 \ PH�

C k.G;K/k
PH
1
4

. "tC"
2

: (5.6)

At first we will regard this as a linear system for . zW ; zQ/, where the paradifferential
coefficients are decoupled from the main variables, and are instead assumed to have t�

1
2

decay in the uniform X norm,

k. zW˛; zQ˛/kX . C"t�
1
2 : (5.7)

The pointwise bounds we will prove for solutions to this system hold irrespective of the
origin of zW and zQ. To emphasize this, we will more generally consider any solution
.w; q/ to the system zS.w; q/ D .g; k/ or in expanded form´

2˛w˛ � tq˛ C t .T2< zW˛q˛ � T2< zQ˛w˛/ D g;

2˛q˛ C i tw � tT2< zQ˛q˛ D k:
(5.8)

In a nutshell, our goal will be to obtain pointwise bounds for .w; q/ in terms of Sobolev
bounds for .w; q/, respectively .g; k/. A simplified version of our main estimate is as
follows.

Proposition 5.1. Assume that . zW ; zQ/ satisfy the bootstrap bound (5.7). Then the follow-
ing pointwise bound holds for solutions .w; q/ to (5.8):

k.w˛; q˛/kX . t�
1
2 .k.w; q/k

PH
1
4 \ PH�

C k.g; k/k
PH
1
4
/: (5.9)

However, such a bound does not suffice for our purposes due to the tC"
2

loss in (5.6),
so in the next subsection we perform a finer analysis, where we replace the X norm above
with a stronger norm, which we call X].
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5.2. The elliptic–hyperbolic decomposition and the X ] norm

To better understand system (5.8) we begin with a heuristic discussion. The starting point
is to consider a dyadic decomposition for ˛. In a fixed dyadic region ˛ � ˛0, system (5.8)
is microlocally elliptic unless the frequency � is comparable to

�0 D
t2

˛20
;

in which case the system is microlocally hyperbolic. Thus in this region we distinguish
between

• elliptic low frequencies, j�j � �0;

• hyperbolic intermediate frequencies, j�j � �0;

• elliptic high frequencies, j�j � �0.

The above phase space decomposition applies for a range of ˛0, but not for all. We
separate two extreme cases:

(a) Very low ˛, namely
˛ � ˛lo WD t

3
4 :

This corresponds to �0 � t
1
2 and to jvj � vlo WD t

� 14 . In this range we simply separate
frequencies into low and high relative to the frequency �lo D t

1
2 :

• elliptic low frequencies, j�j � �lo;

• high frequencies, j�j & �0,

where, in the high frequency region, the PH
1
4 regularity of the source terms in (5.8) is

superseded by the PH� bound for .w; q/.

(b) Very high ˛, namely
˛ � ˛hi WD t

2:

This corresponds to �0 � t�2 and to v � vhi WD t . In this range we again separate fre-
quencies into low and high:

• low frequencies, j�j . �hi;

• elliptic high frequencies, j�j � �hi;

where, in the low frequency region, the PH
1
4 regularity of the source terms in (5.8) is

superseded by the PH
1
4 bound for .w; q/.

Corresponding to the above decomposition of the phase space, we consider an asso-
ciated decomposition of .w; q/. Our strategy will be to localize spatially first, and then
in frequency. Some care is required at the level of the spatial localization. At low fre-
quency we havew 2 PH

1
4 , which is a localizable norm. On the other hand, at low frequency

q 2 PH
3
4 , which is not a localizable norm; in particular, q is only defined modulo constants.

Hence, rather than localizing q it is better to localize q˛ . Thus, given a bump function �,
we define the associated localization operator, which we denote by �, as

�.w; q/ D .w1; q1/ iff w1 D �w; q1;˛ D �q˛:
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We now use these localization operators to define theX] norm via a full decomposition
of .w; q/. We begin with the spatial decomposition,

.w; q/ D ��˛lo.w; q/C ��˛hi.w; q/C
X

˛lo.˛0.˛hi

�˛0.w; q/: (5.10)

Then the summand in the last term is further decomposed in frequency,

�˛0.w; q/ D P��0�˛0.w; q/C P�0�˛0.w; q/C P��0�˛0.w; q/; (5.11)

into an elliptic low frequency component, a hyperbolic component, and an elliptic high
frequency component. We note that these truncations do not preserve the spatial localiza-
tions; however, the ensuing tails are smooth and rapidly decreasing away from the original
support and do not have any effect on the arguments that follow.

For later use, we employ these truncations in order to define a decomposition of .w;q/
into an elliptic and a hyperbolic part,

.w; q/ D .well; qell/C .whyp; qhyp/; (5.12)

where the hyperbolic part is defined as

.whyp; qhyp/ D
X

˛lo.˛0.˛hi

P�0�˛0.w; q/: (5.13)

As hinted earlier, to measure the size of .w; q/ we will not simply use the X norm;
instead we introduce a stronger norm X] which we now define. Based on the decomposi-
tion above, we set

k.w; q/kX] D k��˛lo.w; q/kX]lo
C k��˛hi.w; q/kX]hi

C sup
˛lo.˛0.˛hi

k�˛0.w; q/kX]˛0
; (5.14)

where the first two of the component norms are

k.w; q/k
X
]
lo
WD t

1
2 k.w; q/k

PH
3
4
; (5.15)

k.w; q/k
X
]
hi
WD t

3
2 k.w˛; q˛/k PH

1
4
: (5.16)

For the last component we distinguish between the case �0 < 1 (which corresponds to
˛0 > t) and �0 > 1 (which corresponds to ˛0 < t). In the first case, we set

k.w; q/k
X
]
˛0

WD t
1
2 �
� 12
0 kP>�0.w; q/˛k PH

1
4

C t
1
2 kP<�0.w; q/˛k PH�

1
4
C ��a0 kP�0.w; q/kX0 ; (5.17)

while in the second case we define

k.w; q/k
X
]
˛0

WD t
1
2 �
� 12
0 kP>�0.w; q/˛k PH

1
4
C t

1
2 kP<�0.w; q/˛k PH�

1
4

C �b0kP�0.w; q/kX0 ; (5.18)
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where
a D 5

4
; b D 1

4

�
� � 11

4

�
:

Here the X0 norm, used above as a reference norm, corresponds exactly to A 1
4
:

k.w; q/kX0 D kw˛k
PB
1
4
1;2

C kq˛k
PB
3
4
1;2

:

If ˛0 < t , which corresponds to �0 > 1, then in the hyperbolic region the X0 norm
controls the full X norm, and so it suffices to have a small gain b > 0. On the other hand,
if ˛0 > t , which corresponds to �0 < 1, then the X0 norm no longer controls the full X
norm at frequency �0, so we need a gain a > 3

4
for the X norm; we actually get 5

4
.

The elliptic portion in our decomposition will play a perturbative role in our analysis.
For this reason, it is convenient to separately define a norm X

]
ell in order to measure it.

Precisely, we set

k.w; q/k
X
]
ell
D k��˛lo.w; q/kX]lo

C k��˛hi.w; q/kX]hi

C sup
˛lo.˛0.˛hi

k�˛0.w; q/kX]˛0;ell
; (5.19)

where
k.w; q/k

X
]
˛0;ell
D t

1
2 �
� 12
0 k.w; q/˛k PH

1
4
C t

1
2 k.w; q/˛k PH�

1
4
: (5.20)

5.3. Bounds for the linear system (5.8)

The main objective here is to use the X] norm in order to state and prove an enhanced
form of Proposition 5.1.

Proposition 5.2. Assume that . zW ; zQ/ satisfy the bootstrap bound (5.7). Then the follow-
ing bound holds for solutions .w; q/ to (5.8):

k.w; q/kX] . t�
1
2 .k.w; q/k

PH
1
4 \ PH�

C k.g; k/k
PH
1
4
/: (5.21)

Proof. In the constant coefficient case, in the absence of the paradifferential quadratic
terms, the bound (5.21) essentially follows from [9]. The argument in [9] begins with a
frequency localization, and then identifies spatially the elliptic and hyperbolic regions.
In our case, such an argument is no longer possible because the frequency localization
no longer commutes with zS, i.e. the commutator of Littlewood–Paley projectors with the
paradifferential terms is not perturbative (does not have enough time decay). But what we
can do instead is change the order of the two steps, i.e. first localize spatially in dyadic
regions and then identify the elliptic and hyperbolic frequency ranges.

Step 1: Localization. To localize spatially we consider a unit bump function � which
selects a dyadic spatial range ˛ � ˛0 with ˛lo . ˛0 . ˛hi. Then j�0j . ˛�10 . We replace
.w; q/ by .w1; q1/ D �.w; q/, and seek a good equation for .w1; q1/. We begin with

˛@˛w1 D �˛@˛w C ˛�
0w;
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which is acceptable since multiplication by � or ˛�0 preserves PH
1
4 . Similarly, by duality,

it also preserves PH�
1
4 so the q˛ truncation is also acceptable.

Next we consider the commutator of � with the paraproducts. For these we need the
following lemma.

Lemma 5.3. Assume that the pointwise bound (5.7) holds. Then we have the commutator
bounds

kŒ�; T zQ˛ �w˛k PH
1
4

. t�1kwk
PH
1
4
; (5.22)

kŒ�; T zQ˛ �q˛k PH
3
4

. t�1kqk
PH
3
4
; (5.23)

kŒ�; T zW˛ �q˛k PH
1
4

. t�1kqk
PH
3
4
: (5.24)

Proof. We start with (5.22). Since � is essentially localized at frequencies . ˛�10 , we
first eliminate the low frequencies in w, namely those below ˛�10 . Their contribution is
estimated directly, without using the commutator structure:

kŒ�; T zQ˛ �P<˛�10
w˛kL2 . k zQ˛kL1kP<˛�10 w˛kL2 . ˛

� 34
0 k
zQ˛kL1kwk PH

1
4

. t�
1
2˛
� 34
0 kwk PH

1
4
:

Each additional derivative contributes an ˛�10 factor, so we get

kŒ�; T zQ˛ �P<˛�10
w˛k PH

1
4

. t�
1
2˛�10 kwk PH

1
4
;

which suffices since ˛0 & ˛lo D t
3
4 .

Next we replace � by T�. Suppose w is localized at frequency � > ˛�10 . Then we
estimate

kP&��kL1 . .�˛0/
�N ;

and repeat the computation above to obtain

kŒ� � T�; T zQ˛ �P�w˛k PH
1
4

. t�
1
2˛�10 .�˛0/

�N
kwk

PH
1
4
:

Finally, we consider the paraproduct commutator ŒT�; T zQ˛ �, where the input and output
frequencies are equal and equal to � > ˛�10 . This vanishes if either � or zQ˛ are constant,
so it is natural to think of it as a bilinear form in their derivatives �˛ , respectively zQ˛˛ .
Indeed, we can write the commutator in the form

ŒT�; T zQ˛ �P�w˛ D �
�1Lllh.�˛; zQ˛˛; P�w/

whereLllh stands for a translation invariant trilinear form with uniformly integrable kernel
and lower frequencies in the first two entries. Hence we have the L2 bound

kŒT�; T zQ˛ �P�w˛k PH
1
4

. k�˛kL1k zQ˛kL1kP�wk PH 1
4

. t�
1
2˛�10 kP�wk PH

1
4
;

which suffices, exactly as above.
This concludes the proof of (5.22). The proof of (5.23) is identical.
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Finally, we consider (5.24), where we carry out the same steps. For the very low
frequencies we have

kŒ�; T zW˛ �P<˛�10
q˛k PH

1
4

. ˛�10 kD
1
2W kL1kqk PH

3
4

. ˛�10 t�
1
2 kqk

PH
3
4
;

for the high � frequencies we gain extra .�˛0/�N factors, and the paraproduct commuta-
tor is the same as above.

To summarize, we have reduced the problem to three localized settings, i.e. where
.w; q˛/ are localized in one of the following three regions:

(1) low ˛, j˛j � ˛lo D t
3
4 , where it suffices to prove a low frequency elliptic bound;

(2) high ˛, j˛j � ˛hi D t
2, where it suffices to prove a high frequency elliptic bound;

(3) intermediate dyadic ˛, ˛� ˛0, with t
3
4 . ˛0 . t2, where we will do a full elliptic–

hyperbolic decomposition.

We consider each of these three cases in turn.

Step 2: The low ˛ region, j˛j � ˛lo. Here for the high frequencies j�j & �lo D t
1
2 , we

simply use the PH� bound.
The same PH� bound allows us to treat perturbatively the input of the high frequencies

to equations (5.8),
kzSP��lo.w; q/k PH

1
4

. k.w; q/k PH� :

Here, we use the bound on the size of ˛ within the support of .w; q/. The frequency
projector P��lo does not have a localized kernel, but it decays rapidly on the t

1
2 scale, so

it only generates O.t�N / errors.
Thus we are left with an equation of form (5.8) for the low frequency component

.wlo; qlo/ D P��lo.w; q/,
LŒ.wlo; qlo/� D .glo; klo/;

where the localization is again retained up to negligible tails.
We rewrite this system as´

tqlo;˛ D 2˛wlo;˛ C t .T2< zW˛qlo;˛ � T2< zQ˛wlo;˛/ � glo;

i twlo D �2˛qlo;˛ C tT2< zQ˛qlo;˛ C klo;

with source terms .glo; klo/ satisfying the same bounds as .g; k/. Here we directly obtain
the elliptic bound

k.qlo;˛; wlo/k PH
1
4

. t�1k.glo; klo/k PH
1
4
;

simply by treating all the terms we have moved to the right in a perturbative manner, using
both the frequency and the spatial2 localization. This in turn can be rewritten as

k.wlo; qlo/k PH
3
4

. t�1k.glo; klo/k PH
1
4

. t�1.k.w; q/k
PH
1
4 \ PH�

C k.g; k/k
PH
1
4
/;

as needed for the X]lo norm.

2Up to negligible tails.
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Step 3: The high ˛ region, j˛j� ˛hi. Here we apply the same strategy as in the previous
case, but reverse the role of high and low frequencies. Precisely, for frequencies below
�hi D t

�2 we only retain the starting PH
1
4 bound for .w; q/. This suffices in order to place

the contribution of the low frequencies into the source term in (5.8),

kzSP.�hi.w; q/k PH
1
4

. k.w; q/k
PH
1
4
:

We note that here the left-hand side cannot be estimated directly due to the large ˛ factors.
Instead, we need to commute zS and P.�hi . Thus, we obtain a system of the same form as
(5.8) for the high frequencies .whi; qhi/D P��hi.w; q/. We rewrite this system in the form´

2˛whi;˛ D tqhi;˛ � t .T2< zW˛qhi;˛ � T2< zQ˛whi;˛/C ghi;

2˛qhi;˛ D �i twhi C tT2< zQ˛qhi;˛ C khi:

On the left we use the localization to j˛j > ˛hi D t
2 to estimate from below

t2k.whi;˛; qhi;˛/k PH
1
4

. k.˛whi;˛; ˛qhi;˛/k PH
1
4
C k.w; q/k

PH
1
4
:

Using this bound allows us to estimate perturbatively all the terms we have moved to the
right, and thus obtain the elliptic bound

k.whi;˛; qhi;˛/k PH
1
4

. t�2.k.w; q/k
PH
1
4 \ PH�

C k.g; k/k
PH
1
4
/;

as needed for the X]hi norm.

Step 4: The intermediate ˛ region, ˛lo . ˛0 . ˛hi. Here we assume that .w; q˛/ are
localized in the dyadic region j˛j � ˛0. The difficulty we have in this region is that the
potentials are nonperturbative, at least in the hyperbolic region. To address this difficulty,
we first use perturbative analysis to estimate .w; q/ in the elliptic region.

Step 4(a): The elliptic analysis. This has two components:

(i) High frequency, � � �0. Here, the leading component is ˛@˛; therefore we would like
to prove the bound

kP��0.w; q/k PH
5
4

.
1

˛0
D
1

t
j�0j

1
2 : (5.25)

With j > 0 we apply the projector P�2j �0 respectively in equations (5.8), and commute
to obtain an equation for .wj ; qj / D P�2j �0.w; q/. We obtain´

2˛wj;˛ � tqj;˛ C t .T2< zW˛qj;˛ � T2< zQ˛wj;˛/ D gj ;

2˛qj;˛ C i twj � tT2< zQ˛qj;˛ D kj ;
(5.26)

with source terms´
gj D P�2j �0g C t .ŒP�2j �0 ; T2< zW˛ �qj;˛ � ŒP�2j �0 ; T2< zQ˛ �wj;˛/;

kj D P�2j �0k C t ŒP�2j �0 ; T2< zQ˛ �wj;˛:
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We estimate the source terms in PH
1
4 , using (5.7), as follows:

k.gj ; kj /k PH
1
4

. k.g; k/k
PH
1
4
C t�

� 12
0 .kD

1
2 zQ˛kL1 C k zW kL1/k.wj�1;˛; qj�1;˛/k PH

1
4

. k.g; k/k
PH
1
4
C t

1
2 �

1
2
0 k.wj�1;˛; qj�1;˛/k PH

1
4
;

where .wj�1; qj�1/ arise due to the fact that the commutators have a slightly larger fre-
quency support.
Then we consider system (5.26), where we observe that all but the first terms in each
equation can be treated perturbatively at frequencies� �0. Hence we obtain the bound

k.wj;˛; qj;˛/k PH
1
4

. ˛�10 k.gj ; kj /k PH
1
4

. t�1�
1
2
0 k.g; k/k PH

1
4
C t�

1
2 k.wj�1;˛; qj�1;˛/k PH

1
4
:

Reiterating this bound several times, we are eventually able to use our a priori bound on
.w; q/ to conclude that for some large fixed j (e.g. j D 5) we obtain

k.wj;˛; qj;˛/k PH
1
4

. t�1�
1
2
0 .k.w; q/k PH

1
4 \ PH�

C k.g; k/k
PH
1
4
/;

thus proving (5.25).

(ii) Low frequency, �� �0. Here the leading component is the linear t component; there-
fore we would like to show that

kP��0.w; q/k PH
3
4

.
1

t
.k.w; q/k

PH
1
4 \ PH�

C k.g; k/k
PH
1
4
/: (5.27)

The argument is identical to the one in case (i) above, so the details are omitted.

(iii) Once we have the bounds in the elliptic region, we can truncate in frequency to the
hyperbolic region � � �0, using the elliptic bounds to estimate the truncation errors in
system (5.8). Thus we will assume from here on that both .w; q/ are localized at fre-
quency �0. This localization will destroy the spatial localization, but we will neglect this
in the analysis that follows since the generated tails are of size t�N and rapidly decreasing.

Step 4(b): The hyperbolic analysis. Here, as discussed in (iii) above, we assume that
.w; q/ are frequency localized at dyadic frequency �0, spatially localized in the dyadic
region j˛j � ˛0, and the right-hand side in the equation satisfies the same bounds as in the
theorem. It suffices to prove the desired pointwise bound forw, as q˛ can then be obtained
directly from either of the equations in (5.8).

Our next step is to eliminate q˛ from the two equations. To do this we use the para-
product product and commutator formulas from our previous paper [3, Lemmas 2.4, 2.5].
This gives

.4˛2 � 8˛tT
< zQ˛
C 4t2T.< zQ˛/2/w˛ C i t

2.1 � T2< zW˛ /w D 2˛g1; (5.28)

where g1 is given by

2˛g1 D 2.˛ � tT< zQ˛ /g C t .1 � 2T< zW˛ /k C t
2.Lw˛ CMq˛/;
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with
L D 4.T

< zQ˛
T
< zQ˛
� T.< zQ˛/2/; M D ŒT2< zW˛ ; T2< zQ˛ �:

We can show that g1 and g are essentially equivalent:

Lemma 5.4. The function g1 satisfies the same bounds as g,

kg1k PH
1
4

. .k.w; q/k
PH
1
4 \ PH�

C k.g; k/k
PH
1
4
/: (5.29)

Proof. Here it is easiest to use a result from [3], precisely Lemma 2.5 there. Applied with

1 D 
2 D

3
4

and using our bootstrap bound (5.7), it yields

kLP�0kL2!L2 . �
� 32
0 kD

3
4 zQ˛k

2
BMO .

1

t
�
� 32
0 A21

4

:

This is exactly as needed since in our case the argument of L is spatially localized in the
region ˛� ˛0, so the output has a similar localization modulo tails which decrease rapidly
on the ��10 scale.

ForM we also use [3, Lemma 2.5] but now with 
1 D 1
4

and 
2 D 3
4

, where the former
corresponds to zW˛ and the latter to zQ˛ . We obtain

kLP�0kL2!L2 . �
� 32
0 kD

1
4 zW˛kBMOkD

3
4 zQ˛kBMO .

1

t
��10 A21

4

;

which again suffices.

Consider now (5.28), which we rewrite in the shorter form

.1 � TV1/w˛ C i
t2

˛2
.1 � TV2/w D .2˛/

�1g1; (5.30)

where the potentials V1 and V2 are given by

V1 D �
2t

˛
< zQ˛ C

t2

˛2
.< zQ˛/

2; V2 D 2<W˛:

We carry out another reduction, which is to eliminate the paracoefficient of w˛ . This
is achieved by applying the operator 1C TV1=.1�V1/ in (5.30). Using paraproduct calculus
again, exactly as in the above lemma, (5.30) is rewritten as

w˛ C i
t2

˛2
w � i�0TVw D 2˛

�1g2; (5.31)

where g2 satisfies the same bound as g1 and V is given by

V D
t2

˛2
��10

V2 � V1

1 � V1
:

Here we pulled out the �0 factor because in the region of interest j˛j � ˛0 we have
t2

˛2
��10 � 1. The contributions of V outside a size ˛0 neighborhood of this region have

size O.t�N / and can be harmlessly discarded.
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In view of (5.7), in the above region the potential V is real valued and has the follow-
ing properties:

(i) small size,

kV kL1 � �
1
2
0 t
� 12 . t�

1
4 I

(ii) smaller gradient,

kP<�0V˛kL1 � t�
1
2 �

3
4
0 :

For solutions to equation (5.31) we seek to prove a uniform bound of the form

kwkL1 . c.�0/t
� 12 �

� 54
0 .kwk

PH
11
4
C kwk

PH
1
4
C kg2k PH

1
4
/; (5.32)

where the �
� 54
0 factor corresponds to theA 1

4
norm while c.�0/ denotes any additional gain,

as required by the X]˛0 norm.
Here we distinguish two cases depending on the size of �0.

Case 1: �0 > 1. Then we will establish a bound based on the PH
11
4 norm for w, and will

instead show that
kwkL1 . t�

1
2 �
� 54
0 kwk

1
2

PH
11
4

kg2k
1
2

PH
1
4

: (5.33)

Sincew is localized at frequency �0, replacing the PH
11
4 norm with PH � with � > 11

4
yields

a gain of c.�0/ D �
1
2 .
11
4 ��/

0 in (5.32), which exactly corresponds to our choice of b in the
X] norm.

Taking into account the localization at frequency �0, we can replace the Sobolev norms
by L2 norms in (5.33), and rewrite it as

kwkL1 . t�
1
2 �
� 54
0 .�

11
4
0 kwkL2/

1
2 .t�

� 14
0 k˛

�1g2kL2/
1
2 ;

or equivalently, as a bound for solutions to (5.31), as

kwkL1 . kwk
1
2

L2
k˛�1g2k

1
2

L2
: (5.34)

We postpone the proof of this bound in order to discuss the second case.

Case 2: �0 < 1. Then we will establish a bound based on the PH
1
4 norm for w, and will

show that
kwkL1 . t�

1
2 kwk

1
2

PH
1
4

kg2k
1
2

PH
1
4

: (5.35)

This corresponds to choosing c.�0/ D �
5
4

0 in (5.32), which in turn corresponds to our
choice of a in the X] norm. Taking into account the localization at frequency �0, and the
spatial localization at j˛j � ˛0, this bound also reduces to (5.34).

It remains to prove the bound (5.34) for solutions to (5.31). Here the paradifferential
coefficients are nonperturbative. Part of the difficulty is also the fact that these coefficients
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are in paradifferential form. If that were not the case, then we could simply take advantage
of the critical fact that they are real, calculate

@˛jwj
2
D 2<w �

1

2˛
g2;

and integrate to get
kwk2L1 . kwkL2k˛�1g2kL2 ;

as needed.
To prove (5.34), we discard the spatial localization and restate the result in a simpler

form:

Lemma 5.5. Suppose that the function u 2 L2 is localized at frequency �0 and solves the
equation

u˛ C iT
w
V u D f; (5.36)

where the potential V is real and satisfies

V � �0; (5.37)

krV kL1 . M � �20 : (5.38)

Then we have the pointwise bound

kuk2L1 . kukL2kf kL2 : (5.39)

Proof. For a suitable smooth, bounded, and nondecreasing function � we multiply the
equation by �u and integrate by parts. We get

1

2

Z
�0juj2 d˛ D t�1<

Z
�u Nf d˛ C<

Z
i ŒT wV ; ��u � Nud˛:

To ensure that the term on the left is nonnegative we choose � increasing from 0 to 1
in an interval I of a fixed length r , and constant elsewhere. Here r is chosen above the
uncertainty principle threshold r > ��10 . Then we have

j�0j . r�1;

and �0 is further supported in I . Then the commutator has L2 size

kŒT wV ; ��P�0kL2!L2 . ��20 kP<�0V˛kL1k�
0
kL1 . ��20 Mr�1:

Further, we observe that the commutator is essentially localized in 2I , modulo rapidly
decreasing tails on the ��10 scale. We can account for the rapidly decreasing tails using
translates of the interval I , which has size at least ��10 . Then we arrive at the estimate

kŒT wV ; ��P�0ukL2 . ��20 Mr�1 sup
c2R
kukL2.ICc/:
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Hence from the previous integral identity we obtain

r�1kuk2
L2.I /

. kukL2kf kL2 C ��20 Mr�1 sup
c2R
kuk2

L2.ICc/
;

but we can also apply this bound with I replaced by translates of I . This yields

r�1 sup
c2R
kuk2

L2.ICc/
. kukL2kf kL2 C ��20 Mr�1 sup

c2R
kuk2

L2.ICc/
:

Since M��10 � 1, we can absorb the second term on the right on the left, to obtain

r�1 sup
c2R
kuk2

L2.ICc/
. kukL2kf kL2 :

Using the frequency localization of u as well as the bound r > ��10 , this yields a similar
bound for the derivative of u, namely

r�1 sup
c2R
ku˛k

2
L2.ICc/

. �0kukL2kf kL2 :

One may obtain L1 bounds for u in any interval I C c from L2 bounds for u and u˛ in
the same interval,

kuk2L1.ICc/ . r�1kuk2
L2.ICc/

C rku˛k
2
L2.ICc/

:

Then we arrive at

sup
c2R
kuk2L1.ICc/ . .1C r2�20 /kukL2kf kL2 :

Choosing r as small as possible,
r � ��10 ;

we finally obtain
kuk2L1 . kukL2kf kL2 ;

as desired, concluding the proof of the lemma.

Once we have the above lemma, we can apply it to prove (5.34), which in turn con-
cludes the proof of Proposition 5.2.

To complete our discussion of the X] bounds we need to compare them with the X
bounds. This is best carried out in terms of the elliptic–hyperbolic decomposition (5.12).

We begin with the hyperbolic part, for which we have that its X size is controlled by
the full X] norm, with an additional gain away from unit velocity. To quantify this gain
we use the region �ı defined in (5.4), and denote by ��ı a bump function which selects
the region�ı and is smooth at both ends on the appropriate dyadic ˛ scale. Then we have
the following proposition.
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Proposition 5.6. We have the bounds

k.w; q/hyp;˛kX . k.w; q/kX] ; (5.40)

respectively
k.1 � ��ı /.w; q/hyp;˛kX . t�bık.w; q/kX] : (5.41)

Proof. For the hyperbolic part we use the decomposition in (5.13), which we recall here:

.whyp; qhyp/ D
X

˛lo.˛0.˛hi

P�0�˛0.w; q/:

We now distinguish between small and large velocities:

(a) Small velocities: ˛lo < ˛0 . t . This corresponds to dyadic velocities v0 D ˛0=t in the
range

˛lo

t
D vlo < v0 . 1;

and to frequencies �0 D v�20 & 1.
In this case, we use theX] norm component given by the last term in (5.18). Since �0 & 1,
at frequency �0 the X norm agrees with the X0 norm, so we obtain

kP�0�˛0.w; q/kX . ��b0 k.w; q/kX] D v
2b
0 k.w; q/kX] : (5.42)

This suffices directly for (5.40), while in (5.41) we capture the extra gain due to the trun-
cation to the range v0 < t�ı .

(b) Large velocities: t . ˛0 < ˛hi. This corresponds to dyadic velocities v0 in the range

1 . v0 < vhi D
˛hi

t
;

and to frequencies �0 D v�20 . 1.
Now we use instead theX] norm component given by the last term in (5.18). Since �0 . 1,

at frequency �0 the X norm is �
� 34
0 times the X0 norm, so we obtain

kP�0�˛0.w; q/kX . �
a� 34
0 k.w; q/kX] D v

�2.a� 34 /

0 k.w; q/kX] : (5.43)

This suffices directly for (5.40), while in (5.41) we capture the extra gain due to the trun-
cation to the range v0 > tı .

Next we consider the elliptic part of .w;q/, where we have a simpler objective, namely
to show that it satisfies better bounds both in the energy sense and in the pointwise sense.

Proposition 5.7. Let .w; q/ be a pair of functions satisfying

t
1
2 k.w; q/k

X
]
ell
C k.w; q/k

PH
1
4 \ PH�

� 1: (5.44)
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Then we have the energy bound

k.w˛; q˛/k PH�
1
4

. t�1; (5.45)

as well as the uniform bound
k.w; q/˛kX . t�b : (5.46)

Proof. For .w; q/ we consider the decomposition (5.10), and prove the desired bound
separately for each frequency. The L2 estimate (5.45) is trivial; we have only added it in
the proposition for easy reference. For the uniform bound (5.46), on the other hand, we
need to appropriately apply Bernstein’s inequality.

(a) The low ˛ component,
.wlo; qlo/ D ��˛lo.w; q/:

Here by (5.44) and by the definition of the X] norm, see (5.15), we control

tk.wlo; qlo/k PH
3
4
C k.wlo; qlo/k PH

1
4 \ PH�

. 1:

Then we can bound uniformly the dyadic pieces of .wlo; qlo/ using Bernstein’s inequality
as follows, neglecting the PH

1
4 norm:

kP�.wlo; jDj
1
2 qlo/kL1 . min¹���C

1
2 ; t�1��

1
4 º;

where the first component is smaller if � > �lo D t
1
2 .

Hence, for the high frequency part of the X norm (i.e. at frequencies � 1) we have

kP�1.jDj
5
4wlo; jDj

7
4 qlo/k

2
B01;2

.
X
��1

min¹���C
7
4 ; t�1�º2 D t�1�2ılo ; ılo D

� � 11
4

2.� � 3
4
/

as needed. The bound for the low frequency part of the X norm is similar but better.

(b) The intermediate ˛ component. Here we fix a dyadic region j˛j � ˛0 2 Œ˛lo; ˛hi� and
consider the component

.wmid; qmid/ D �˛0.w; q/;

which is in turn decomposed into low frequencies (< �0) and high frequencies (> �0):

(i) Low frequencies, � < �0. Here, by the second term in (5.20) along with the PH� bound
in (5.44), we have

tkP<�0.wmid; qmid/k PH
3
4
C kP<�0.wmid; qmid/k PH� . 1:

We split into dyadic frequency regions � < �0, and use Bernstein’s inequality to estimate

kP�.wmid; jDj
1
2 qmid/kL1 . min¹t�1��

1
4 ; ���C

1
2 ºk.wmid; qmid/kX]hi

:

Neglecting the � component, after dyadic � summation this implies

kP<�0.jDj
1
2wmid; jDjqmid/kL1 . t�1�

1
4

0 D t
�1
jv0j
� 12 :
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Since �0 < �lo D t
1
2 , this suffices for the low frequency part of theX norm, and completes

the argument if �0 < 1, i.e. if v0 > 1.
However, if �0 > 1 then we also need to consider the high frequency part of the X norm,
where we can no longer neglect the � term. Hence we write instead

kP<�0.jDj
5
4wmid; jDj

7
4 qmid/k

2
B01;2

.
X
�<�0

min¹t�1�;���C
7
4 º
2:

We neglect the � range and bound this by the maximum of the right-hand side summand,

kP<�0.jDj
5
4wmid; jDj

7
4 qmid/k

2
B01;2

. t�1�2ılo

with ılo exactly as in case (a).

(ii) High frequencies, � > �0. Here we use instead the first term in (5.20); then we have

t�
� 12
0 kP>�0.wmid; qmid/k PH

5
4
C kP<�0.wmid; qmid/k PH� . 1:

Then we use Bernstein’s inequality to estimate for � > �0,

kP�.wmid; jDj
1
2 qmid/kL1 . min¹t�1�

1
2
0 �
� 34 ; ���C

1
2 º:

Neglecting the � component, after dyadic � summation this implies

kP>�0.jDj
1
2wmid; jDjqmid/kL1 . t�1�

1
4
0 D t

�1
jvj�

1
2 ;

which, as before in case (b)(i), suffices for the low frequency part of the X norm. For the
high frequency part of the X norm we again can no longer neglect the � term, so we write
instead

kP>�0.jDj
5
4wmid; jDj

7
4 qmid/k

2
B02;1

.
X
�>�0

min¹t�1�
1
2
0 �

1
2 ; ���C

7
4 º
2:

Replacing �0 by � we arrive exactly at the same computation as in case (b)(i), in which
the � range was neglected.

(c) The high ˛ component,

.whi; qhi/ D ��˛hi.w; q/:

Here we combine the expression in (5.16) with the second term in (5.44) to obtain

t2k.whi; qhi/k PH
5
4
C k.w; q/k

PH
1
4 \ PH�

. 1:

Then, using Bernstein’s inequality we have

kP�.whi; jDj
1
2 qhi/kL1 . min¹�

1
4 ; ���C

1
2 ; t�2��

3
4 ºk.whi; qhi/kX]hi

:
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For the low frequency part of the X norm we neglect the � component to get

k.jDj
1
2whi; jDjqhi/kL1 .

X
�

min¹�
3
4 ; t�2��

1
4 º D t�

3
2 ;

better than needed.
The estimate for the high frequency part of the X norm is similar:

k.jDj
5
4whi; jDj

7
4 qhi/k

2
B01;2

.
X
�

min¹�
3
2 ; ���C

7
4 ; t�2�

1
2 º
2 . t�

8
3 ;

as needed. Here we have instead neglected the first term, and replaced � by 11
4

.

5.4. Back to the normal form variables

We now return to . zW ; zQ/, and we apply the results of the previous subsection to them,
both directly and in terms of the corresponding elliptic–hyperbolic decomposition (5.12).

Corollary 5.8. Assume that .W;Q/ satisfy the bootstrap bound (2.1). Then the following
pointwise bound holds:

k. zW˛; zQ˛/kX] . t�
1
2 .k. zW ; zQ/k

PH
1
4 \ PH�

C kzS. zW ; zQ/k
PH
1
4
/: (5.47)

In particular, if (5.6) holds then

k. zW ; zQ/kX] . "t�
1
2CC": (5.48)

Furthermore, its hyperbolic and elliptic components satisfy bounds as follows:

k.1 � ��ı /.
zW ; zQ/hypkX . "t�

1
2�bıCC"

2

; (5.49)

respectively elliptic L2 and L1 bounds

k. zWell; zQell/kX]ell
. "2t�

1
2CC"

2

; (5.50)

k. zWell;˛; zQell;˛/k PH�
1
4

. "2t�1CC"
2

; (5.51)

and
k. zWell;˛; zQell;˛/kX . "2t�

1
2�b=2CC"

2

: (5.52)

The reason we care about the better bounds for the elliptic part is that its contribution
to the analysis of the normal form equation (4.10) is mostly perturbative. This is fully
the case for the cubic source terms . zG.3/; zK.3//, but also to some extent for the para-
differential quadratic terms. Indeed, an interesting observation is that in all paradifferential
interactions in the original system (5.5) for . zW ; zQ/, at least one of the two inputs has to
be in the elliptic region. Precisely, we have the following proposition.
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Proposition 5.9. (a) Denote by . zG.3/ell ;
zK
.3/
ell / any expression with one elliptic entry, i.e. of

the form
zG.3/. zWell;˛; zW˛; zQ˛/; zG.3/. zW˛; zW˛; zQell;˛/;

and similarly for zK.3/ell . Then we have

k. zG
.3/
ell ;
zK
.3/
ell /k PH

1
4

. .k. zWell; zQell/kX]ell
C t�

1
2 k. zWell; zQell/k PH

1
4 \ PH

11
4
/

� k. zW ; zQ/k2X : (5.53)

(b) For the paradifferential term we have the improved bound

k.T
< zW˛
zQ˛ � T< zQ˛

zW˛; T< zQ˛
zQ˛/k PH

1
4

. "2t�
5
4C2C"

2

: (5.54)

Proof. (a) For the elliptic entry we use only the translation-invariant part of theX]ell norm,
i.e.

k. zWell; zQell/k PH
3
4

. t�
1
2 k. zWell; zQell/kX]ell

:

Interpolating the PH
3
4 norm with the PH

1
4 \ PH

11
4 norm we obtain

k. zWell;˛; zQell;˛/k PH s . t�
1
2 k. zWell; zQell/k PH

1
4 \ PH

11
4
C k. zWell; zQell/kX]ell

; �1
2
� s � 3

4
:

It remains to show that

k. zG
.3/
ell ;
zK
.3/
ell /k PH

1
4

. k. zWell; zQell/k PH
1
2 \ PH

7
4
k. zW ; zQ/k2X : (5.55)

We consider the following three cases:

(i) The elliptic variable is the lowest frequency. Beginning with zG.3/, we have three proto-
typical terms in zG.3/,

TT zQ˛
zW˛
zW˛; TT zW˛

zQ˛
zW˛; TT zW˛

zW˛
zQ˛;

noting that the cases when two of the frequencies are matched are entirely similar to these.
For the first of these cases, we estimate

kTT zQ˛
zW˛
zW˛k PH

1
4

. k zQ˛kL2k zW˛kL1kD
1
4 zW˛kBMO;

as needed. For the second of these cases, we estimate

kTT zW˛
zQ˛
zW˛k PH

1
4

. k zW˛kL2k zQ˛kL1kD
1
4 zW˛kBMO;

and likewise the third,

kTT zW˛
zW˛
zQ˛k PH

1
4

. k zW˛kL2k zW˛kL1kD
1
4 zQ˛kL1 :

All terms of zG.3/ are similar to one of these cases, or may have an additional derivative
falling on the elliptic variable. This last situation is estimated in the same way as one of
the above cases, since we are free to rebalance the derivative.
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We continue with zK.3/. Here we have four prototypical terms,

TT zQ˛
zW˛
zQ˛; TT zW˛

zQ˛
zQ˛; TT zW˛

zW˛
zW ; T@˛T zQ˛

zQ˛
zW ;

observing that terms of the form TT zQ˛
zQ˛
zW˛ cancel. The analysis of the first two terms is

analogous to the first two terms discussed for zG.3/. For the third term,

kTT zW˛
zW˛
zW k
PH
3
4

. k zW˛kL2k zW˛kL1k jDj
3
4 zW kL1

suffices, and for the last term,

kT@˛T zQ˛
zQ˛
zW k
PH
3
4

. k zQ˛kL2k jDj
1
2 zQ˛kL1k zW˛k

B
1
4
1;2

:

(ii) The elliptic variable is the middle frequency. The analysis in this case is similar to the
analysis in the first case, except we measure in each case the middle frequency term in L2.

(iii) The elliptic variable is the highest frequency. For zG.3/, we directly measure the two
lower frequency variables in X . For instance,

kTT zW˛
zQ˛
zW˛k PH

1
4

. k zW˛kL1k zQ˛kL1k zW˛k PH 1
4
:

The analysis of zK.3/ is similar. For instance (using here the boundedness of @˛P ),

kTPŒj zQ˛ j2�˛
zW k
PH
1
4

. k zQ˛kL1k zQ˛kL1k zW˛k PH 1
4
:

(b) We use the elliptic–hyperbolic decomposition of . zW ; zQ/, noting that the above
expressions only allow for low–high interactions, therefore the hyperbolic � hyperbolic
case is forbidden. We separately consider each of the three remaining cases:

(i) The elliptic–hyperbolic case. We consider a dyadic region j˛j � ˛0, and the corre-
sponding localized components of . zWell; zQell/, respectively . zWhyp; zQhyp/. There we need
to estimate the quadratic terms:

kT2< zQ˛
zW˛;�0k PH

1
4

. �
1
4
0 k
zQ˛;<�0kL4k

zW˛;�0kL4 . t�
1
2 k zQk

X
]
ell
k zW˛k

1
2

Xk
zW k

1
2

PH
5
4

. "2t�
5
4C2C";

which suffices.
The bound for T

< zQ˛
zQ˛ is identical. Finally,

kT
< zW˛
zQ˛k PH

1
4

. �
1
4
0 k
zW˛;<�0kL2k

zQ˛;�0kL1 . t�
1
2 k zW k

X
]
ell
k zQ˛kX . "2t�

3
2C2C":

(ii) The hyperbolic–elliptic case. After localizing the high frequency factor at a frequency
� > �0, here we need to bound the dyadic �0–� interactions as follows:

k< zQ˛;�0
zW˛;�k PH

1
4

. k zQ˛;�0kL1k zW˛;�k PH 1
4

. t�
1
2 k zQ˛kXk zW kX]ell

;

which suffices. The bound for T
< zQ˛
zQ˛ is again identical. Finally,

kT
< zW˛;�0

zQ˛;�k PH
1
4

. k zW˛;�0kL1k zQ˛;�k PH 1
4

. t�
1
2 k zW kXk zQkX]ell

:
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(iii) The elliptic–elliptic case. Here, on one hand there are more subcases, but on the other
hand the gains are also larger, and one only needs to use the X]ell norm and Bernstein’s
inequality. This case is left for the reader.

The second part of the previous proposition allows us to reiterate, ultimately eliminat-
ing the paradifferential terms from system (5.5):

Proposition 5.10. The functions . zW ; zQ/ also are solutions for a system of the form´
2˛@˛ zW � t@˛ zQ D G;

2˛@˛ zQC i t zW D K;
(5.56)

where we control
k. zW ; zQ/k

PH
1
4 \ PH�

C k.G;K/k
PH
1
4

. "tC"
2

: (5.57)

Proof. We know that . zW ; zQ/ solve system (5.5), and satisfy (5.6). Then estimate (5.57)
follows directly from (5.54).

As a corollary of the last proposition, it follows that similar bounds apply to the com-
ponents of the hyperbolic part given by (5.13):

Corollary 5.11. The summands in (5.13) applied to . zWhyp; zQhyp/ satisfy the bounds

kP�0�˛0.
zW ; zQ/k

PH
1
4 \ PH�

. "tC"; (5.58)

and solve an equation of the form (5.56) with source terms .G˛0 ; K˛0/ with

k.G˛0 ; K˛0/k PH
1
4

. "tC": (5.59)

This can be seen by applying the results of Section 5.3 to . zW ; zQ/ as in Proposi-
tion 5.10. This is of course an overkill, as the analysis simplifies considerably when the
paradifferential coefficients vanish, and one could also essentially cite the results of [11].

6. Wave packets and long time pointwise bounds

The goal of this section is to close the circle of ideas in this paper, i.e. to use the bootstrap
assumption and the energy estimates, along with the vector field Sobolev bounds in the
previous section, in order to derive the long time pointwise bound (2.5) on the solutions
at the level of the normal form variables. This is accomplished by studying an appropri-
ate asymptotic equation, which is captured using the method of testing by wave packets
developed earlier by the last two authors; see [10, 11]. The main result of this section is
the following.

Proposition 6.1. Assume that the normal form variables . zW ; zQ/ satisfy the pointwise
bootstrap bounds (2.3) as well as the energy bounds (2.4). Then they satisfy (2.5).
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As a starting point for the proof of this proposition we recall the properties that we have
available for . zW ; zQ/. First of all, . zW ; zQ/ solves system (4.10) with a cubic nonlinearity
. zG.3/; zK.3// given by (4.15), and a source term . zG.4C/; zK.4C// satisfying the bound

k. zG.4C/; zK.4C//k
PH
1
4

. ""4htiC1"
2� 32 : (6.1)

For . zW ; zQ/ we recall the energy estimates from Proposition 5.10:

k. zW ; zQ/k
PH�\ PH

1
4

. "hti2C" (6.2)

and
k.2˛@˛ zW � t@˛ zQ; 2˛@˛ zQC i t zW /k PH

1
4

. "hti2C": (6.3)

Given this starting point, our objective is to show that we have the pointwise bound

k. zW˛; zQ˛/kX . "hti�
1
2 : (6.4)

For . zW ; zQ/ we take advantage of the analysis in the previous section, where . zW ; zQ/
are decomposed into the elliptic and hyperbolic parts

. zW ; zQ/ D . zW ; zQ/ell C . zW ; zQ/hyp:

For the elliptic part we can use the bounds (5.52) from Corollary 5.8 to conclude that

k. zW˛; zQ˛/ellkX . "2hti�
1
2�

b
2CC"

2

;

which suffices for " small enough. Hence it remains to prove that (6.4) holds for the
hyperbolic part

k. zW˛; zQ˛/hypkX . "hti�
1
2 : (6.5)

On the other hand, for the hyperbolic part we have the pointwise bounds from Corol-
lary 5.8:

k. zW˛; zQ˛/hypkX] . "t�
1
2CC"

2

; (6.6)

which are not good enough because of the tC"
2

loss. However, the X] norm includes an
additional gain away from dyadic velocity 1, which is captured by the bound (5.49) which
we recall here:

k.1 � ��ı /.
zW ; zQ/hypkX . "t�

1
2�bıCC"

2

: (6.7)

This gives enough decay outside the region�ı defined in (5.4). Hence it remains to obtain
a bound inside �ı , and show that

k��ı .
zW ; zQ/hypkX . "t�

1
2 : (6.8)

In order to establish the global pointwise decay estimates (6.5) in �ı we use the
method of testing by wave packets, first introduced in [10] in the context of the one-
dimensional cubic NLS equation, and then used in the water waves context in [11] and
other subsequent works. The construction of the wave packets is identical to the one we
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have used ([11]), but for convenience we recall it here. This method, as emphasized in all
our results, requires localization of the initial data.

The premise of the wave packet testing is that, at leading order, nonlinear waves travel
in a linear fashion along a ray which is connected to their spatial frequency via the linear
Hamilton flow. We take the ray to be ¹˛ D vtº, and we refer to v as the velocity; the
associated frequency will be denoted by �v D v�2. Our goal is to establish decay for the
pair . zW ; zQ/ along this ray by testing it with a wave packet evolving along the ray. The
wave packet testing will only see a certain frequency of . zW ; zQ/ along the ray, namely �v;
but this will suffice for our uniform decay bounds.

In our context here, by a wave packet we mean an appropriately localized approximate
solution, i.e. with O.1=t/ errors, of the linear system´

Wt CQ˛ D 0;

Qt � iW D 0:
(6.9)

We recall some key facts about how one should envision a wave packet. The dispersion
relation � D ˙

p
j�j gives that a ray with velocity v is associated with waves which have

spatial frequency

�v D �
1

4v2
D �

t2

4˛2
:

This is associated with the phase function

�.t; ˛/ D
t2

4˛
;

which can also be seen as a solution to the appropriate eikonal equation, and is exactly the
phase of the fundamental solution, as predicted by the stationary phase method.

Then our wave packets will be combinations of functions of the form

u.t; ˛/ D v�
3
2�
�˛ � vt
t
1
2 v

3
2

�
ei�.t;˛/;

where � is a smooth compactly supported bump function with integral 1:Z
�.y/ dy D 1: (6.10)

Our packets are localized around the ray ¹˛ D vtº on the scale ı˛ D t
1
2 v

3
2 . This exact

choice of scale is determined by the phase function �. Precisely, the quadratic expansion
of � near ˛ D vt reads

�.t; ˛/ D �.t; vt/C .˛ � vt/�˛.t; vt/CO.t
�1v�3.˛ � vt/2/;

and our scale ı˛ represents exactly the scale on which � is well approximated by its
linearization. We further remark that there is a threshold v� t above which � is essentially
zero, and the above considerations are no longer relevant. By contrast, the above phase
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blows up at ˛ D 0. In order to avoid proximity to either of these extreme scenarios, we
confine our analysis to a region of the form

�0 WD ¹t�
1
100 � jvj � t

1
100 º; (6.11)

which contains the smaller region�ı . These powers of t in the definition of�0 are chosen
rather arbitrarily; they need to be universal, small enough constants.

Under this assumption, the function u is strongly localized at frequency �v . For later
use, we record here some ways to express this localization. We recall here some of the
results in [9, 11] that we will rely on without further adjustments.

Lemma 6.2. (a) Let u be defined as above. Then its Fourier transform and that of @vu
have the form

Ou.�/ D t
1
2�1

�� C .4v2/�1
t�

1
2 v�

3
2

�
e�it

p
j�j;

@v Ou.�/ D tv�
3
2�2

�� C .4v2/�1
t�

1
2 v�

3
2

�
e�it

p
j�j;

(6.12)

where �1 and �2 are Schwartz functions, so that in addition,Z
�i .�/ d� D 1CO.v

1
2 t�

1
2 /; i D 1; 2: (6.13)

(b) For s � 0, �v D .4v2/�1, and P�v the associated dyadic frequency projector, we have

P�v .jDj
s
� .4v2/�s/u.˛; t/ D .4v2/�st�

1
2 v

1
2�3

�˛ � vt
t
1
2 v

3
2

�
ei�.t;˛/; (6.14)

where �3 is also a Schwartz function.

Our use of the method of testing by wave packets proceeds in a similar fashion as in
[11]. The linear correlation between our unknowns . zW ; zQ/ makes it easier to choose one
wave packet for one of the variables, and then match it for the second variable. As our
linear system (6.9) is simple enough, it suffices to first choose the zQ component and then
use the second of the two linear equations in (6.9) to match zW ,

.w;q/ D .�iv@tu; vu/;

where w and q are the wave packets associated to zW , and zQ respectively.
Then we have

w D
1

2
uC

�
vt � ˛

2˛
�
�˛ � vt
t
1
2 v

3
2

�
C
i.vt C ˛/

2t
3
2 v

1
2

�0
�˛ � vt
t
1
2 v

3
2

��
v�

3
2 ei�.t;˛/: (6.15)

The second term above is better by a v
1
2 t�

1
2 factor, so it will play a negligible role in most

of our analysis. However, it is crucial in improving the error in the first linear equation in
(6.9), which is given by

g WD @twC @˛q D v.@˛ � i@2t /u: (6.16)
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Indeed, computing the error in (6.16) we obtain

.@˛ � i@
2
t /u D

ei�

v
3
2

@˛

h .˛ � vt/
2˛

� � i
.˛ C vt/2

4v
3
2 t

5
2

�0
i

C
ei�

v
3
2

h .˛ � vt/
2˛2

� � i
.˛ � vt/

4v
3
2 t

5
2

�0
i
: (6.17)

The leading term is the first one, which, as expected, has size t�1 times the size of w; the
presence of @˛ endows it with a critical structural property which we will take advantage
of later on. The second term is better by another t

1
2 factor, and will only play a perturbative

role in the sequel.
The reader is cautioned that one should not think about the above wave packets as a

global approximate solution for the linear system. Instead, as in [10] and as in [11], our
test packets .w; q/ are good approximate solutions for the linear system associated to our
problem only on the dyadic time scale ıt � t .

The outcome of testing the normal form solutions to the water wave system with the
wave packet .w;q/ is the scalar complex-valued function 
.t; v/, defined by


.t; v/ D h. zW ; zQ/; .w;q/i PH0 ;

which we will use as a good measure of the size of . zW ; zQ/ along our chosen ray. Here
it is important that we use the complex pairing in the inner product. Note that here we
are following [11] and using the original energy space PH0, and not the fractional Sobolev
space PH

1
4 .

While the above asymptotic profile 
 is defined everywhere, we will only use it in the
region �0 in (6.11). This is because we already have sufficient decay outside this region,
indeed outside the smaller region �ı . Furthermore, we will see that 
 primarily carries
information about the hyperbolic part of . zW ; zQ/, but this is all that is needed.

Now we have two tasks. Firstly, we need to show that 
 is a good representation of the
pointwise size of . zW ; zQ/hyp and their derivatives:

Proposition 6.3. Assume that (6.2) and (6.3) hold. Then in �0 we have the following
bounds for 
 :

kv�
1
2 
kL2v C kv

1
2 @v
kL2v C k
kL1 . "tC"

2

; v & 1; (6.18)

kv�2�
kL2v C kv
1
2 @v
kL2v C kv

1
4��
kL1 . "tC"

2

; v . 1; (6.19)

as well as the approximation bounds for . zW ; zQ/hyp and their derivatives:

.jDjs zW ; jDjsC
1
2 zQ/hyp.t; vt/ D j�vj

st�
1
2 ei�.t;vt/
.t; v/.1; sgn v/C errs; (6.20)

where
kv2s�1errskL2v . "t�1; kv2s�

1
4 errskL1 . "t�

3
4 : (6.21)
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Compared to the work in [11], here we do not limit the range for s because we are
only comparing the profile 
 with . zW ; zQ/hyp, and not with the full pair . zW ; zQ/. Also
[11] contains similar relations between the Fourier transforms of . zW ; zQ/ and 
 , which for
brevity we omit here.

Secondly, we need to show that 
 stays bounded, which we do by establishing a dif-
ferential equation for it:

Proposition 6.4. Assume that (6.2), (6.3), (6.6), and (6.1) hold. Then within the set �0

the function 
 solves an asymptotic ordinary differential equation of the form

P
 D
i

2t.2v/5

 j
 j2 C e; (6.22)

where e satisfies the L2 and L1 bounds

kv
19
8 ekL1 . "2t�

9
8CC"

2

; (6.23)

kv�
1
2 ekL2v . "2t�

5
4 tC"

2

: (6.24)

We now use the two propositions to conclude the proof of (6.8). By virtue of (6.20)
and (6.21), in order to prove (6.8) it suffices to establish its analogue for 
 , namely

j
.t; v/j . "min¹v1
�

; v
5
2

C

º in �ı : (6.25)

Here by 1�, respectively 5
2

C
we denote universal constants slightly smaller than 1, respec-

tively slightly larger than 5=2; these are needed in order to ensure dyadic frequency
summation in the Besov norms in the definition of the X norm.

On the other hand, from (6.18) and (6.19) we directly obtain

j
.t; v/j . "min¹1; v��
1
4 ºtC"

2

in �0: (6.26)

Our goal now is to use the ODE (6.22) in order to transition from (6.26) to (6.25) along
rays ˛ D vt . We consider three cases for v:

(i) Suppose first that v � 1, i.e. j˛j � t . Then we initially have

j
.t/j . "; t � 1:

Integrating (6.22) we conclude that

j
.t/j . "; t � 1;

and then (6.25) follows.

(ii) Assume now that v � 1, i.e. j˛j � t . Then, as t increases, the ray ˛ D vt enters �0

at some point t0 with v � t
� 1
100

0 . Then by (6.26) we obtain

j
.t0; v/j . "v��
1
4 tC"

2 . "v
5
2

C

:
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We use this to initialize 
 . For larger t we use (6.22) to conclude that

j
.t/j . "v
5
2

C

C

Z 1
t0

"s�
9
8CC

2"2v�
19
8 ds � "v

5
2

C

C "t
� 18CC"

2

0 v�
19
8 . "v

5
2

C

; t > t0:

Then (6.25) follows.

(iii) Finally, consider the case v � 1, i.e. j˛j � t . Again, as t increases, the ray ˛ D vt

enters �0 at some point t0 with v � t
1
100
0 ; therefore by (6.26) we obtain

j
.t0; v/j . "tC"
2

0 . "v1
�

:

We use this to initialize 
 . For larger t we use (6.22) to conclude that

j
.t/j . "v1
�

C

Z 1
t0

"s�
9
8CC"

2

v�
19
8 ds � "v1

�

C "t
� 18CC

2"2

0 v�
19
8 . "v1

�

; t > t0:

Then (6.25) again follows.

We remark that a more precise conclusion of the above analysis is the fact that as
t ! 1, the asymptotic profile 
.t; v/ is well approximated by solutions to the exact
asymptotic equation,


.t; v/ D 
1.v/e
ic.v/ ln t j
1.v/j2 C err
 ;

where the error err
 decays to 0 in both weighted L2 and in weighted L1 norms. This
leads to a good asymptotic representation of the solutions .W;Q/ in terms of its scattering
data represented by 
1. We do not pursue this here, but instead we refer the reader to
similar analysis already carried out in [11].

The remainder of this paper is devoted to the proofs of the two propositions above.

6.1. Approximation errors

Here we prove Proposition 6.3. In what follows in this subsection, the analysis happens
all at fixed time, based on the elliptic/hyperbolic decomposition of .W; zQ/ in the previ-
ous section. We first recall the decomposition of . zW ; zQ/ from the previous section into
localized components

. zW ; zQ/ D
X
˛0

�˛0.
zW ; zQ/;

which we only need in the region �0. Because the bump functions �˛0 have essentially
disjoint supports, it suffices to consider a single one of them, which is supported in the
region ˛ � ˛0, and corresponds to velocities v � v0 D ˛0=t . The hyperbolic frequencies
associated with this component are comparable to �0 D v�20 . On the other hand, because
of the spatial localization, such a component will interact with our wave packet only if the
velocity of the wave packet is also comparable with v0. Hence, the wave packet is also
essentially supported at frequencies comparable to �0.
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For this component we consider the decomposition of the pair . zW ; zQ/ into elliptic and
hyperbolic parts,

�˛0.
zW ; zQ/ D . zW˛0;ell; zQ˛0;ell/C . zW˛0;hyp; zQ˛0;hyp/;

where

. zW˛0;ell; zQ˛0;ell/ D .1 � P�0/�˛0.
zW ; zQ/; . zW˛0;hyp; zQ˛0;hyp/ D P�0�˛0.

zW ; zQ/:

At this point we observe that the elliptic part is frequency separated from our wave
packet so its contribution to 
 is of size O.t�N /, with N large, and thus negligible. We
conclude that


.t; v/ D h. zWhyp; zQhyp/; .w;q/i PH0 CO.t
�N /:

So from here on we focus on the hyperbolic component only, which is fully localized in
frequency, at dyadic frequency �0.

Borrowing an idea from [11], we symmetrize the problem by introducing the normal-
ized variables

.w; r/ D . zW˛0;hyp; jDj
1
2 zQ˛0;hyp/;

which satisfy the bounds

k.w; r/k
PH
1
4 \ PH�

� "tC
2"2 ;

k.2˛@˛w � i t jDj
1
2 r; 2˛@˛r � i t jDj

1
2w/k

PH
1
4
˛

. "tC
2"2 ;

or equivalently, using the frequency localization at �0 � v�2,

k.w; r/kL2 � "t
C 2"2 min¹v

1
2 ; v2�º;

k.2˛@˛w � i t jDj
1
2 r; 2˛@˛r � i t jDj

1
2w/kL2˛ . "tC

2"2v
1
2 :

Then we rewrite 
 in terms of these variables as


 D

Z
wxwC rD

1
2 Nq d˛:

Here, following [11], we discard acceptable errors, and redefine 
 as


.t; v/ D
1

2

Z
.w ˙ r/ Nu d˛: (6.27)

Then Proposition 6.3 is a consequence of the following lemma.

Lemma 6.5. Let 
 be defined as in (6.27) in the region�0, where .w; r/ are holomorphic
functions, localized at frequency �0, which satisfy

k.w; r/kL2 � min¹v
1
2 ; v2�º;

k.2˛@˛w � i t jDj
1
2 r; 2˛@˛r � i t jDj

1
2w/kL2˛ . v

1
2 :

(6.28)
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Then 
 satisfies the bounds

kv�
1
2 .1C v�2/��

1
4 
kL2v C kv

1
2 @v
kL2v . 1; j
 j . .1C v�2/�.

�
2�

1
8 /: (6.29)

Moreover, the following error bounds for 
 also hold:

jDjs.w; r/.t; vt/ D j�vj
st�

1
2 ei�.t;vt/
.t; v/.1; sgn v/C errs; (6.30)

where
kerrskL2v . v1�2s0 t�1; kerrskL1 . v

1
4�2s

0 t�
3
4 ; 0 � s: (6.31)

Proof. The proof is similar to the argument in [11], but simpler. The reason for this is that
the pair of functions .w; r/ are already frequency localized in the hyperbolic region. In
order to fix signs, we first need to differentiate between the two symmetric cases v0 > 0
and v0 < 0. Without any restriction in generality we take v0 > 0. We express everything
in terms of w � r and y D w C r . Then w � r does not contribute to 
 , but it contributes
to the error. In addition, subtracting the two components in the second term in (6.28) we
obtain

k.2˛jDj C t jDj
1
2 /.w � r/kL2 . v

1
2
0 :

The operator above is elliptic in ¹˛ � v0tº; therefore we obtain

kw � rkL2 . t�1v
1
2
0 �
� 12
0 D t�1v

3
2
0 :

Thus, we can directly bound its contribution jDjs.w � r/ to the error term in L2 and
in L1 by Bernstein’s inequality. We note that the exponents will not match with (6.31);
instead, here we obtain a gain, which is akin to the similar gain for the elliptic component
of . zW ; zQ/.

We now consider the contribution of y, noting that 
 is already expressed in terms
of y. To reduce the problem to an estimate for y we need one last step. Combining again
the two components in the second term in (6.28) we obtain

k jDj
1
2 .4˛2@˛ C i t

2/.w; r/kL2˛ . tv
1
2
0 ;

which yields the same bound for y. In view of frequency localization at frequency � �0
we conclude that

kLykL2˛ . v
� 12
0 t�1; L D @˛ C

i t2

4˛2
: (6.32)

On the other hand, from the first relation in (6.28) we obtain

kykL2˛ . v
1
2 .1C v�20 /

1
4�� : (6.33)

From here on we will work only with the function y.
Following [11] we rewrite the bounds on y in terms of the auxiliary function u WD

e�i�y, which satisfies @˛u D e�i�.@˛ C it2

4˛2
/y. Then for u we have

k@˛ukL2˛ . v
� 12
0 t�1; kukL2˛ . v

1
2

0 .1C v
�2
0 /

1
4�� : (6.34)
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Combining these bounds we get by interpolation,

kukL1 . t�
1
2 .1C v�20 /

1
8�

�
2 ;

which also is transferred back to y,

kykL1 . t�
1
2 .1C v�20 /

1
8�

�
2 : (6.35)

The bounds (6.33) and (6.35) lead directly to L2 and L1 bounds for 
 ,

k
kL2v . v
1
2
0 .1C v

�2
0 /

1
4�� ; k
kL1 . .1C v�20 /

1
8�

�
2 : (6.36)

To estimate @v
 D hy; @vuiL2 we write @vu in the form

@vu D �v�
3
2 ei�

�
t@˛�

�˛ � vt
t
1
2 v

3
2

�
C
3

2

˛ � vt

t
1
2 v

5
2

�0
�˛ � vt
t
1
2 v

3
2

��
;

and compute using integration by parts,

@v
 D

Z
v�

3
2 t@˛u.t; ˛/�

�˛ � vt
t
1
2 v

3
2

�
d˛ �

Z
v�

3
2u.t; ˛/

3

2

˛ � vt

t
1
2 v

5
2

�0
�˛ � vt
t
1
2 v

3
2

�
d˛:

Now we can bound the two integrals using (6.34) to obtain

k@v
kL2v . v
� 12
0 ;

which, together with (6.36), concludes the proof of (6.29).
It remains to estimate the L2 and L1 norms of the error in (6.21). We begin with the

case s D 0, were we bound the the difference

err D y.t; vt/ � t�
1
2 ei�.t;vt/hy;uiL2

in both L2v and L1 in terms of kykL2˛ and kLykL2˛ , exactly as in [11]:

kerrkL1 . v
3
4
0 t

1
4 kLykL2˛ ; kerrkL2v . v

3
2
0 kLykL2˛ : (6.37)

This is exactly what we need for (6.21) in the case sD 0. Due to the frequency localization
for y, adding extra derivatives simply adds factors of �s0 D v

�2s
0 to the bound.

6.2. The asymptotic equation for 


Here we track the evolution of 
.t;v/ and prove Proposition 6.4. The computation is based
on the energy conservation relation for the linear system (6.9). If both . zW ; zQ/ and .w; q/
were solutions to the homogeneous linear system (6.9), then we would get P
 D 0. As it is,
P
 depends on the source terms in the linear equation (6.9) applied to . zW ; zQ/, respectively
.w;q/. The source term in the .w;q/ equation is .g; 0/ with g given by (6.16). The source
term in the similar . zW ; zQ/ equation comes from (4.10). Thus we obtain the relation

P
.t/ D

Z
. zG � T2< zW˛

zQ˛ C T2< zQ˛
zW˛/xwC zW NgC i. zK C T2< zQ˛

zQ˛/˛ Nq d˛: (6.38)
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We successively consider all terms on the right. With the exception of a single term,
namely the resonant part of zG (see below), all contributions will be placed into the error
term � .

We need to estimate at fixed time the terms in P
 in the region �0. The wave packet
components are localized on the scale t

1
2 v

3
2 around the ray ˛ D vt . Therefore we can

harmlessly regard . zW ; zQ/ as being also localized in the corresponding dyadic region
˛ � vt .

To estimate the error terms it is convenient to begin with a lemma that captures the
main computations that lead to the error bound.

Lemma 6.6. Let f be supported in a dyadic region v � v0 and

�.v/ WD

Z
f .˛/u.˛/ d˛: (6.39)

Then the following bounds hold:

k�kL2v . kf kL2˛ ; (6.40)

respectively
k�kL1v . t

1
2 .t

1
2 v

3
2 /
� 1p kf kLp˛ : (6.41)

The result does not depend on the choice of the bump function � in the definition of u.

Proof. Here we only use the size of the function u, which is a bump function on the scale
t
1
2 v

3
2 with norms

kukL1˛ . t
1
2 ; kukL1˛ . v�

3
2 :

Then the bounds are obtained akin to Young’s inequality with the minor difference that
the integral defining � is not an exact convolution, but can be bounded by 1 (in absolute
value).

A. The contribution of Ng

This is

I1 D v
� 32

Z
zW e�i�

�
@˛

h .˛ � vt/
2˛

� � i
.˛ C vt/2

4v
3
2 t

5
2

�0
i

C

h .˛ � vt/
2˛2

� � i
.˛ � vt/

4v
3
2 t

5
2

�0
i�
d˛:

We use (6.20) and (5.2) to replace zW in terms of 
 :

zW � t�
1
2 ei�
.t; v/ D zWell C . zWhyp � t

� 12 ei�
.t; v//:

The elliptic part zWell is mismatched with Ng in frequency, so its contribution isO.t�N /. The
contribution of the second term above is directly estimated in both L2 and L1 via (6.21).
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The contribution of 
 , on the other hand, is written using integration by parts as

QI1 WD v
� 32 t�

1
2

Z
�
˛

h .˛ � vt/
2˛

� � i
.˛ C vt/2

4v
3
2 t

5
2

�0
i

C 

h .˛ � vt/

2˛2
� � i

.˛ � vt/

4v
3
2 t

5
2

�0
i
d˛:

Now we can easily bound the two terms using (6.18), (6.19), and Lemma 6.6 to obtain

k QI1kL2v . t�1v
1
2 k
˛kL2˛ C t

�2v�
1
2 k
kL2˛ . t�

3
2 "tC"

2

;

respectively

k QI1kL1v . t�1v
1
2 t

1
4 v�

3
4 k
˛kL2˛ C t

�2v�
1
2 t

1
2 k
kL1˛

. t�
5
4 v�

3
4 "tC"

2

C t�
3
2 v�

1
2 "tC"

2

. t�
5
4 v�

3
4 "tC"

2

:

Here, at the last step, we used that we are in the region �0, given by (6.11).

B. The contribution of the paradifferential source terms

This is given by

I2 WD

Z
.�T2< zW˛

zQ˛ C T2< zQ˛
zW˛/xwC i.T2< zQ˛

zQ˛/˛ Nq d˛:

As before, the goal is to estimate I2 in L2v and L1v . For the L2v bound it suffices to use
the estimate in (5.54), with the observations that up to rapidly decaying tails only the
frequencies of size �0 will contribute. Combining this observation with Lemma 6.6 we
have

kI2kL2v . �
� 14
0



.�T2< zW˛ zQ˛ C T2< zQ˛ zW˛; T2< zQ˛ zQ˛/

 PH 1
4
v

. v
1
2
0 "
2t�

5
4 tC"

2

:

Unfortunately, (5.54) is no longer sufficient to estimate the L1v bound of I2, so we
need a more refined analysis.

The three terms in I2 are mostly similar, with the first one being a little bit better in
terms of the time decay. We will discuss the second one in detail, and the third one will be
identical to the second one. Hence, in what follows we seek to estimate

I2;2 WD

Z
T2< zQ˛

zW˛ xw d˛:

We start with a simple observation, namely that xw is localized at frequency �0 which
means that the only nontrivial contribution arises from the component zW˛ which is also
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localized at frequency �0. This in turn implies that for zQ˛ we only use frequencies� �0.
Thus we can replace zW˛ by zWhyp;˛ , and zQ˛ is replaced by zQell;˛ , to write

I2;2 D

Z
T2< zQell;˛

zWhyp;˛ xw d˛ CO.t�N /:

The advantage of working with the low frequency elliptic component of zQ is that it satis-
fies a better L2-type bound which is part of the X] bound in Corollary 5.8. Precisely we
have

k zQell;˛k PH
1
4

. "t�1tC"
2

; (B.1)

which is the only bound we will need for the paradifferential coefficient. Using Bernstein’s
inequality this also gives the pointwise bound

k zQell;˛kL1 . "v
� 12
0 t�1tC"

2

: (B.2)

This is better than the t�
1
2 decay in the hyperbolic region, but still not enough.

The next step is to use the zWhyp;˛ representation in (6.20) which gives

zWhyp;˛ � t
� 12 �0P�0 Œ
e

i� �C err1;

where err1 satisfies the pointwise bound

jerr1j . "t�
3
4 v
� 74
0 :

The contribution of err1 to I2;2 is estimated via Lemma 6.6 to obtain

I2;2 D t
� 12 �0

Z
T2< zQell;˛

P�0 Œ
e
i� �xw d˛ CO."2t�

5
4 v
� 94
0 t2C"

2

/:

Our next simplification is to freeze 
 to its values at the center of the packet, which we
denote by 
0. Within the support of the packet the difference can be estimated by Hölder’s
inequality and (6.18)–(6.19):

j
 � 
0j .
Z
jv�v0j.t

� 12 v
3
2
0

j@v
 j dv . t�
1
4 v

3
4
0 k@v
kL2v . "tC"

2

t�
1
4 v

1
4
0 :

Estimating directly the corresponding error, and using the expression of xw, we arrive at

I2;2 D v
� 32 t�

1
2 �0
0

Z
T2< zQell;˛

P�0 Œe
i� ��e�i� d˛ CO."2t�

5
4 v
� 94
0 t2C"

2

/;

where we can easily drop the projector P�0 because the exponential is already frequency
localized around the same frequency �0. It remains to bound the following integral in L1:

I 02;2 D v
� 32 t�

1
2 �0
0

Z
ŒT2< zQell;˛

ei� ��e�i� d˛:
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We decompose zQell into low and high frequencies in comparison to the �0 frequency:

zQell WD zQ
low
ell C

zQ
high
ell ;

where the truncation threshold comes from the wave-packet frequency scale:

zQlow
ell WD .

zQell/
<v
� 32 t

� 12
; zQ

high
ell WD .

zQell/
�v
� 32 t

� 12
:

The same notation will apply to a similar decomposition in frequencies for zQell;˛ .
It is easier to first estimate the contribution of lower frequencies in zQell,

I 02;2 D v
� 32 t�

1
2 �0
0

Z
ŒT2<. zQlow

ell;˛/
ei� ��e�i� d˛:

which we bound directly as follows using Lemma 6.6,

kI 02;2kL1˛ . �0
0kT2<. zQlow
ell;˛/

ei�kL1˛ . �0
0k zQ
low
ell;˛kL1˛ . "v�2t2C"

2

k zQlow
ell;˛kL1˛ :

We bound the last term separately by means of Bernstein’s inequality and (5.51) to get

k zQlow
ell;˛kL1˛ . v�

3
8 t�

1
8 k zQlow

ell;˛k
PH
1
4
˛

. "v�
3
8 t�

9
8 tC"

2

:

The final estimate is the contribution of the high frequencies of zQ to the L1˛ bound. It
involves the L operator defined in (6.32). We begin by observing the representation

T zQhigh
ell;˛
D Œ@˛; T zQhigh

ell
�

D ŒL; T zQhigh
ell
� � Œi t

2

˛2
; T zQhigh

ell
�:

We now estimate separately the two contributions. For the first one we integrate by parts,

I 02;3 D v
� 32 t�

1
2 �0
0

Z
ŒL; T zQhigh

ell
�ei��e�i� d˛ D v�

3
2 t�

1
2 �0
0

Z
T zQhigh

ell
Œei� ��˛e

�i� d˛:

Here we used
Lei� D 0; L�e�i� D 0;

where L� is the adjoint operator. We have

kI 02;3kL1˛ . �0
0v
� 32 t�

1
2 kT

2<. zQ
high
ell /
ei�kL1˛ k�˛kL1

. v�
3
2 t�

1
2 �0
0k zQ

high
ell kL1˛

. "v�
3
2 t�

1
2 v�2v

9
8 t

3
8C2C"

2

k zQell;˛k
PH
1
4
˛

. "2v�
19
8 t�

9
8C2C"

2

:

The last integral is

I 02;4 D v
� 32 t�

1
2 �0
0

Z
Œi t

2

˛2
; T zQhigh

ell
�ei��e�i� d˛:
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Thus, using [3, Lemma 2.5] we get

kI 02;4kL1˛ . �0
0kŒi
t2

˛2
; T zQhigh

ell
�ei�kL1˛ kv

� 32 t�
1
2�kL1

. ��10 
0kt
2˛�3kL1˛ k

zQ
high
ell;˛kL1˛

. "v�1t�1C2C"
2

k zQ
high
ell;˛kL1˛

. "2v�1t�
13
8 C2C"

2

:

Adding up all contributions we conclude that in the region �0 we have the bound

kI2kL1v . "2v�
19
8 t�

9
8C2C"

2

:

C. The contributions of zG and zK

For this we consider in more detail the structure of zG and zK. We will successively peel
off favorable terms until we are left only with the leading resonant part. We decompose
them into cubic and higher terms,

zG D zG.3/ C zG.4C/; zK D zK.3/ C zK.4C/:

To start with we decompose them into quartic and higher-order terms.

C.1. Quartic and higher-order terms

We denote their contribution by

I3 WD

Z
zG.4C/xwC i zK.4C/˛ Nq d˛:

In view of (4.13) and Lemma 6.6, we can estimate the contribution of the quartic and
higher terms in L1,

kI3kL1 . t
1
2 t�

1
4 v�

3
4 �
� 14
0 k.w;q/k PH 1

4
. "4v�

1
4 t�

5
4C3C

2"2 ;

which suffices in �0. The L2 bound is similar, using again (4.13) and Lemma 6.6.

C.2. Cubic terms

It remains to consider the contributions arising from the cubic terms, which can be viewed
as translation-invariant trilinear forms

zG.3/ D zG.3/. zW˛; zW˛; zQ˛/; zK.3/ D zK.3/. zW˛; zQ˛; zQ˛/:

These trilinear expressions include also the complex conjugates. Here, we first peel off
some perturbative terms by substituting in . zG.3/; zK.3// the following sequence of trans-
formations:

. zW˛; zQ˛/! . zWhyp;˛; zQhyp;˛/! i�vP�0 Œ
 t
� 12 ei�.1; j�vj

� 12 sgn v/�;
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where we denote the final outcome by

i�vP�0 Œ
 t
� 12 ei�.1; j�vj

� 12 sgn v/� DW . zW 0
˛ ;
zQ0
˛/: (C.1)

To control the errors we need to estimate the difference

. zG
.3/;0
ell ; zK

.3/;0
ell / WD . zG.3/. zW˛; zW˛; zQ˛/; zK

.3/. zW˛; zQ˛; zQ˛//

� . zG.3/. zW 0
˛ ;
zW 0
˛ ;
zQ0
˛/;
zK.3/. zW 0

˛ ;
zQ0
˛;
zQ0
˛//:

For this transition we have the unlocalized elliptic difference bounds

k. zW˛; zQ˛/ � . zW
0
˛ ;
zQ0
˛/kX]ell

. "tC"
2� 12 ; (C.2)

which are a consequence of (5.50), (6.20), (6.21).
Then we can estimate . zG.3/;0ell ; zK

.3/;0
ell / using (5.53) to obtain

k. zG
.3/;0
ell ; zK

.3/;0
ell /k

PH
1
4

. "4t�
3
2 tC"

2

:

This allows us to conclude the bound as in the case of the quartic bound.
Now we consider one last transition from

. zW 0
˛ ;
zQ0
˛/ D i�vP�0 Œ
 t

� 12 ei�.1; j�vj
� 12 sgn v/�

! i�0
0t
� 12 ei�.1; j�0j

� 12 sgn v/ WD . zW 1
˛ ;
zQ1
˛/;

where we emphasize that . zW 1; zQ1/ depend also on the wave packet parameters �0 and v0.
Now we need to estimate the difference

. zG
.3/;1
ell ; zK

.3/;1
ell / WD . zG.3/. zW 0

˛ ;
zW 0
˛ ;
zQ0
˛/;
zK.3/. zW 0

˛ ;
zQ0
˛;
zQ0
˛//

� . zG.3/. zW 1
˛ ;
zW 1
˛ ;
zQ1
˛/;
zK.3/. zW 1

˛ ;
zQ1
˛;
zQ1
˛//:

Here it is important that these differences are only needed within the support of the
wave packet .w; q/. There the leading contribution comes from the difference between
. zW 0; zQ0/ and . zW 1; zQ1/, within a slightly larger region of comparable size ¹j˛ � vt j �
cv

3
2 t

1
2 º, with c a large positive constant.

This difference can be estimated by Hölder’s inequality as

k
 � 
0kL2 . t
1
2 v

3
2 k
˛kL2 . "tC"

2

v; k
 � 
0kL1 . .t
1
2 v

3
2 /

1
2 k
˛kL2 . "tC"

2

v
1
4 t�

1
4

where at the last step we have used the bound for @v
 in (6.18), (6.19). Using these bounds,
the contribution of . zG.3/;1ell ; zK

.3/;1
ell / can be estimated as in the quartic case.

We are now left with the task of estimating the contribution to P
 of the cubic expres-
sions . zG.3/. zW 1

˛ ;
zW 1
˛ ;
zQ1
˛/;
zK.3/. zW 1

˛ ;
zQ1
˛;
zQ1
˛//. To achieve this, we need to consider the

structure of the cubic terms.
Following [9], we have the following classification of the terms in . zG.3/; zK.3//:

A. Nonresonant trilinear terms: these are either (A1) terms with no complex conju-
gates, or (A2) terms with two complex conjugates.
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B. Resonant trilinear terms: terms with exactly one conjugation. For such terms one
may further define a notion of principal symbol, which is the leading coefficient
in the expression obtained by substituting the factors in the trilinear form by the
expressions in (6.20).3 Thus one can isolate a linear subspace of resonant terms
for which this symbol vanishes, which we call null terms. Hence on the full class
of resonant trilinear terms we can further define an equivalence relation, modulo
null terms.

Based on this, we reorganize zG.3/ into resonant, nonresonant, and null terms:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

zG
.3/
r WD ….. zQ˛ zW˛/˛;

xzW /C….
xzQ˛; zW

2
˛ /;

zG
.3/
nr WD T zW˛ .

zQ˛ zW˛/C T. zQ˛ zW˛/˛
zW C…. zW˛; 2<Œ zQ˛ zW˛�/

C…. zQ˛ zW˛/˛; zW /

C T2<.T zW˛
zWC…. zW˛ ; zW //˛

zQ˛ � T2< zW˛ .
zQ˛ zW˛/

C T2< zW˛ .T zQ˛
zW C…. zQ˛; 2< zW //˛

C T2<. zQ˛ zW˛�.T zQ˛
zWC…. zQ˛ ; zW //˛/

zW˛

� T2< zQ˛ .T zW˛
zW C…. zW˛; 2< zW //˛ �….

xzW 2
˛ ;
zQ˛/

� T xzW 2
˛

zQ˛ � T xzW˛
. zF .2//C T xzQ˛

zW 2
˛ ;

zG
.3/
null WD T zF .2/˛

zW � zW˛ zF
.2/
C…. zF .2/˛ /; 2<W /C…. zF .2/; W˛/

C T2< zW˛
zF .2/ C T

2<.…. zW˛ ;
xzW //˛
zQ˛ C T

2<.…. zQ˛ ;
xzW /˛/
zW˛

C…. zW˛;
xzF .2//:

(C.3)

We do the same for zK.3/:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

zK
.3/
r WD 0;

zK
.3/
nr WD iT zW 2

˛

zW � T2<.T zQ˛
zWC…. zQ˛ ; zW //˛

zQ˛

� T2< zQ˛ .T zQ˛
zW C…. zQ˛; 2< zW //˛

C T2<. zQ˛ zW˛/
zQ˛ C T xzQ˛

. zQ˛ zW˛/

C T zQ˛T zQ˛
zW˛ C T zQ˛ zQ˛˛

zW C T zQ˛ .T zW˛
zQ˛ C…. zW˛; zQ˛//

C…. zQ˛; 2<Œ zQ˛ zW˛�/ �…. zW˛ zQ˛; zQ˛/ � T zQ˛ zW˛
zQ˛;

zK
.3/
null WD � T2<.…. zQ˛ ; xzW //˛

zQ˛ � T zF .2/
zQ˛ C…. zQ˛;

xzF .2//C TPŒj zQ˛ j2�˛
zW

C 2….<W; zQ˛ zQ˛˛ C i zW
2
˛ /C 2….<W; @˛P Œj

zQ˛j
2�/:

(C.4)

In these expressions we will substitute . zW˛; zQ˛/ by . zW 1
˛ ;
zQ1
˛/.

We will place all cubic contributions into the error term e, except for the contribution
of the resonant part zG.3/r .

3Which corresponds to all three frequencies being equal.
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We note that for the most part the exact form of the expressions above is irrelevant.
The only significant matter is the coefficient of the terms in zG.3/r , which needs to be real.4

We also remark that the leading projection in all terms can be harmlessly discarded,
since it can be moved onto the wave packets, which decay rapidly at positive frequencies,

k.w;q/ � P.w;q/kHN . t�N :

C.2(a). The contribution of the null terms. This is given by zG.3/null.
/ and zK.3/null.
/:

zG
.3/
null.
/ WD

Z
R

zG
.3/
null.
zW 1
˛ ;
zQ1
˛/xw d˛; zK

.3/
null.
/ WD �i

Z
R

zK
.3/
null.
zW 1
˛ ;
zQ1
˛/ Nq˛ d˛:

Here we simply note that zG.3/null.
/ D 0 and zK.3/null.
/ D 0, so after the previous step there
is nothing left to do. We remark that cancellation actually occurs at the bilinear level for
the “null expressions” of type

zW˛
xzQ˛ �

xzW˛ zQ˛; .j zQ˛j
2/˛; zQ˛ zQ˛˛ C i zW

2
˛ :

C.2(b). The contribution of the nonresonant terms. This is given by zG.3/nr .
/ and
zK
.3/
nr .
/:

zG.3/nr .
/ WD

Z
R

zG.3/nr .
zW 1
˛ ;
zQ1
˛/xw d˛; zK.3/nr .
/ WD �i

Z
R

zK.3/nr .
zW 1
˛ ;
zQ1
˛/ Nq˛ d˛:

Here it is important that we integrate against w and q, as that fixes the frequency of
the output at � D � 1

4v2
. On the other hand, the nonresonant trilinear expression will be

concentrated at frequency 3� if no complex conjugate occurs, respectively at frequency
�� if two conjugates occur. Thus, because of this mismatch of the frequencies the only
contributions here arise due to rapidly decaying tails,

. zG.3/nr .
/;
zK.3/nr .
// D O.t

�N /:

C.2(c). The contribution of the resonant term. This is given by zG.3/r .
/:

zG.3/r .
/ WD

Z
R

zG.3/r . zW 1
˛ ;
zQ1
˛/xw d˛:

Given the expression above we have

zG.3/r .
/ WD

Z
R

�
….. zQ1

˛
zW 1
˛ /˛;

xzW 1/C….
xzQ1
˛; .
zW 1
˛ /
2/
�
xw d˛:

Replacing P by I � P or … by I �… yields nonresonant terms of size O.t�N /. Hence
we obtain

zG.3/r .
/ D

Z
R

�
. zQ1

˛
zW 1
˛ /˛
xzW 1
C
xzQ1
˛.
zW 1
˛ /
2
�
xw d˛ CO.t�N /:

4A similar constraint would be required of the coefficients in zK.3/r , if they were nonzero.
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Substituting . zW 1
˛ ;
zQ1
˛/ from (C.1) we obtain the integral

zG.3/r .
/ D 
.t; ˛=t/j
.t; ˛=t/j2
Z

i

t
3
2

� t
2˛

�5
e�i� xw d˛:

Here, e�i� xw has the form

e�i� xw D
1

2
v�

3
2�
�˛ � vt
t
1
2 v

3
2

�
C v�1t�

1
2 Q�
�˛ � vt
t
1
2 v

3
2

�
with Schwartz functions � and Q� so that

R
� D 1. Thus we obtain

zG.3/r .
/ D
i

2t
.2v/�5
.t; v/j
.t; v/j2 CO.t�

3
2 /;

as needed.

Acknowledgments. The authors are very grateful to the anonymous referee for the care-
ful reading of the paper, which led to many clarifications and improvements in exposition.

Funding. The first author was supported by the Henry Luce Foundation. The second
author was supported by a Luce Associate Professorship, by the Sloan Foundation, and by
an NSF CAREER grant DMS-1845037. The third author was supported by the NSF grant
DMS-1800294, as well as by a Simons Investigator grant from the Simons Foundation.

References

[1] A. Ai, Low regularity solutions for gravity water waves. Water Waves 1 (2019), no. 1, 145–215
Zbl 1451.35125 MR 4161284

[2] A. Ai, Low regularity solutions for gravity water waves II: The 2D case. Ann. PDE 6 (2020),
no. 1, Paper No. 4, 117 Zbl 1462.35275 MR 4098033

[3] A. Ai, M. Ifrim, and D. Tataru, Two dimensional gravity waves at low regularity I: Energy
estimates. 2019, arXiv:1910.05323

[4] T. Alazard, N. Burq, and C. Zuily, On the water-wave equations with surface tension. Duke
Math. J. 158 (2011), no. 3, 413–499 Zbl 1258.35043 MR 2805065

[5] T. Alazard, N. Burq, and C. Zuily, Strichartz estimates for water waves. Ann. Sci. Éc. Norm.
Supér. (4) 44 (2011), no. 5, 855–903 Zbl 1260.35140 MR 2931520

[6] T. Alazard, N. Burq, and C. Zuily, On the Cauchy problem for gravity water waves. Invent.
Math. 198 (2014), no. 1, 71–163 Zbl 1308.35195 MR 3260858

[7] T. Alazard and J.-M. Delort, Global solutions and asymptotic behavior for two dimensional
gravity water waves. Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 5, 1149–1238
Zbl 1347.35198 MR 3429478

[8] W.-P. Düll and M. Heß, Existence of long time solutions and validity of the nonlinear
Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations
264 (2018), no. 4, 2598–2632 Zbl 1386.35377 MR 3737848

[9] J. K. Hunter, M. Ifrim, and D. Tataru, Two dimensional water waves in holomorphic coordi-
nates. Comm. Math. Phys. 346 (2016), no. 2, 483–552 Zbl 1358.35121 MR 3535894

https://zbmath.org/?q=an:1451.35125&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4161284
https://zbmath.org/?q=an:1462.35275&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4098033
https://arxiv.org/abs/1910.05323
https://zbmath.org/?q=an:1258.35043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2805065
https://zbmath.org/?q=an:1260.35140&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2931520
https://zbmath.org/?q=an:1308.35195&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3260858
https://zbmath.org/?q=an:1347.35198&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3429478
https://zbmath.org/?q=an:1386.35377&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3737848
https://zbmath.org/?q=an:1358.35121&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3535894


A. Ai, M. Ifrim, and D. Tataru 884

[10] M. Ifrim and D. Tataru, Global bounds for the cubic nonlinear Schrödinger equation (NLS) in
one space dimension. Nonlinearity 28 (2015), no. 8, 2661–2675 Zbl 1330.35402
MR 3382579

[11] M. Ifrim and D. Tataru, Two dimensional water waves in holomorphic coordinates II: Global
solutions. Bull. Soc. Math. France 144 (2016), no. 2, 369–394 Zbl 1360.35179
MR 3499085

[12] M. Ifrim and D. Tataru, The NLS approximation for two dimensional deep gravity waves. Sci.
China Math. 62 (2019), no. 6, 1101–1120 Zbl 1415.76070 MR 3951883

[13] M. Ifrim and D. Tataru, Well-posedness and dispersive decay of small data solutions for the
Benjamin-Ono equation. Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 2, 297–335
Zbl 1423.35350 MR 3948114

[14] A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2d.
Invent. Math. 199 (2015), no. 3, 653–804 Zbl 1325.35151 MR 3314514

[15] A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Surface singularities of
ideal fluid. Phys. Lett. A 221 (1996), no. 1-2, 73–79

[16] X. Wang, Global infinite energy solutions for the 2D gravity water waves system. Comm. Pure
Appl. Math. 71 (2018), no. 1, 90–162 Zbl 1381.35129 MR 3730012

[17] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math.
130 (1997), no. 1, 39–72 Zbl 0892.76009 MR 1471885

[18] S. Wu, Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177
(2009), no. 1, 45–135 Zbl 1181.35205 MR 2507638

[19] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid.
J. Appl. Mech. Tech. Phys. 9 (1968), no. 2, 190–194

Received 22 November 2020; revised 8 August 2021; accepted 18 August 2021.

Albert Ai
Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706, USA;
aai@math.wisc.edu

Mihaela Ifrim
Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706, USA;
ifrim@wisc.edu

Daniel Tataru
Department of Mathematics, University of California Berkeley, Evans Hall, Berkeley, CA 94720,
USA; tataru@math.berkeley.edu

https://zbmath.org/?q=an:1330.35402&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3382579
https://zbmath.org/?q=an:1360.35179&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3499085
https://zbmath.org/?q=an:1415.76070&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3951883
https://zbmath.org/?q=an:1423.35350&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3948114
https://zbmath.org/?q=an:1325.35151&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3314514
https://zbmath.org/?q=an:1381.35129&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3730012
https://zbmath.org/?q=an:0892.76009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1471885
https://zbmath.org/?q=an:1181.35205&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2507638
mailto:aai@math.wisc.edu
mailto:ifrim@wisc.edu
mailto:tataru@math.berkeley.edu

	Contents
	1. Introduction
	1.1. Holomorphic coordinates
	1.2. Sobolev spaces and local well-posedness
	1.3. Global solutions and the main result
	1.4. On optimality

	2. An overview of the proof
	3. The energy estimates
	4. The paradifferential normal form
	4.1. The paradifferential equation
	4.2. Energy bounds on the normal form
	4.3. Pointwise bounds on the normal form
	4.4. Bounds on the source term

	5. The pointwise estimates
	5.1. A fixed time system for (\tilde W, \tilde Q)
	5.2. The elliptic–hyperbolic decomposition and the X^\sharp norm
	5.3. Bounds for the linear system (5.8)
	5.4. Back to the normal form variables

	6. Wave packets and long time pointwise bounds
	6.1. Approximation errors
	6.2. The asymptotic equation for \gamma

	A. The contribution of \bar g
	B. The contribution of the paradifferential source terms
	C. The contributions of \tilde G and \tilde K
	C.1. Quartic and higher-order terms
	C.2. Cubic terms
	C.2(a) The contribution of the null terms
	C.2(b) The contribution of the nonresonant terms
	C.2(c) The contribution of the resonant term


	References

