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Unbounded growth of the energy density associated to the
Schrödinger map and the binormal flow

Valeria Banica and Luis Vega

Abstract. We consider the binormal flow equation, which is a model for the dynamics of vortex
filaments in Euler equations. Geometrically, it is a flow of curves in three dimensions, explicitly
connected to the one-dimensional Schrödinger map with values on the two-dimensional sphere,
and to the one-dimensional cubic Schrödinger equation. Although these equations are completely
integrable, we show the existence of an unbounded growth of the energy density. The density is given
by the amplitude of the high frequencies of the derivative of the tangent vectors of the curves, thus
giving information about oscillation at small scales. In the setting of vortex filaments, the variation
of the tangent vectors is related to the derivative of the direction of the vorticity, which according to
the Constantin–Fefferman–Majda criterion is relevant in the possible development of singularities
for the Euler equations.

1. Introduction

In this paper we show the existence of an unbounded flux of the energy density of the
solutions of two related partial differential equations which are completely integrable and
have a connection with fluid mechanics. The first equation is the Schrödinger map in one
dimension with values on the two-dimensional sphere, known in the physics literature as
the classical continuous Heisenberg chain model in ferromagnetism:

Tt D T � Txx : (1)

Here t will represent time and x the spatial variable. Equation (1) can be also written in
divergence form. This is due to the fact that (1) can be obtained by simple differentiation
in the spatial variable from the following second equation on curves �.t; x/ in R3:

�t D �x � �xx ; �x D T; jT j D 1: (2)

This latter equation, known as the localized induction approximation (LIA), and also as
the vortex filament equation (VFE) and as the binormal flow (BF), appears naturally as a
formal approximation (see [2, 8, 14, 39]), after a renormalization of time, of the location
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evolution of vortex filaments that move according to the Euler equations. This model is
conjectured to give the right dynamics of vortex filaments in certain situations (see [28]
and the references therein). Through this model, at any given time t , the curve �.t; �/
represents the location of the vortex filament, and the tangent vector to the curve T D �x
represents the direction of the vorticity.

A simple use of the Frenet equations immediately gives that (2) can be written as

�t D cb; (3)

which explains the binormal flow name, and that

Tx D cn; (4)

where n is the normal vector, b the binormal vector, and c the curvature. It is also easy to
see that c2.t; x/ dx is an energy density that from (3) describes the kinetic energy of the
filament and from (4) the interaction energy of the chain. More precisely,Z

j�t .t; x/j
2 dx D

Z
jTx.t; x/j

2 dx D

Z
c2.t; x/ dx; (5)

and for smooth solutions these quantities are conserved in time if they are finite.
Instead of the classical Frenet frame given by the tangent, normal, and the binormal

vectors, for analytical reasons it is much more convenient to use the one given by parallel
frames .T; e1; e2/ constructed as solutions of8̂̂<̂

:̂
Tx D ˛e1 C ˇe2;

e1x D �˛T;

e2x D �ˇT:

(6)

Above, ˛ and ˇ are real scalars. A further simplification can be made defining the complex
vector N D e1 C ie2 2 S2 C iS2 and the complex scalar

u D ˛ C iˇ (7)

to obtain ´
Tx D <. NuN/;

Nx D �uT:
(8)

It was proved in [27] that in order for the constraint Txt D Ttx to hold, u has to solve the
one-dimensional focusing non-linear Schrödinger equation (NLS)

iut C uxx C
1

2
.juj2 � a.t//u D 0; (9)

with a.t/ a real scalar, and the tangent and normal vector have to satisfy the linear system8<:Tt D =.uxN/;Nt D �iuxT C
i

2
.juj2 � a.t//N:

(10)
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Finally, (2) can be written
�t D =. NuN/: (11)

It is a well-known fact that equation (9) is completely integrable and belongs to the so-
called AKNS-ZS hierarchy ([1, 46, 47]; for (1) see [43, 48]). The geometric meaning of u
is clarified when we write (7) in polar form,

u.t; x/ D �.t; x/ei�.t;x/; (12)

as �.t/ and �x.t/ are the curvature and the torsion respectively of the curve �.t/ ([27]).
Conversely, given a solution u of (9), t0; x0 2 R, and B an orthonormal basis of R3,

one can construct a solution of (1) by imposing ¹T;<N;=N º.t0; x0/ D B and solving
(10) for .t; x0/ and then (6) for .t; x/. Then, given a point P 2 R3, a solution of (2) is
constructed by imposing �.t0; x0/ D P and solving �t D T ^ Tx for .t; x0/ and then
�x D T for .t; x/. We shall call this way of constructing a solution of (1)–(2) from a
solution of (9) Hasimoto’s method.

For x either in the real line R or in the torus T , the well-posedness theory of the initial
value problem associated to (9) was established in the function spaces L2.R/ in [44] and
L2.T / in [6]. Observe that (9) is invariant under the scaling u�.t; x/ WD �u.�2t; �x/, and
that according to this scaling L2.R/ is subcritical. Moreover, among the homogeneous
Sobolev spaces, PH�

1
2 is the one invariant with respect to the scaling, thus there is a gap

of 1=2 derivative between L2 and the critical space PH�
1
2 . Beginning with [45], a lot of

attention has been devoted to extend the well-posedness theory to function and distribution
spaces, not necessarily given by the Sobolev class, to make this gap as small as possible.
As observed in [18], a good choice is to consider the so-called Fourier–Lebesgue spaces
that are defined using the Lp norm of the Fourier transform of the solution. Therefore,
they are invariant under translation in phase space or, equivalently, under the so-called
Galilean symmetries. The Fourier–Lebesgue space of functions with Fourier transform in
L1 is also invariant with respect to the scaling. Several results about ill-posedness, either
in the sense that the map datum–solution is not uniformly continuous, or showing what
is known as the norm inflation phenomena, have been proved ([9, 11, 30, 32, 40]). On the
other hand, (local) well-posedness holds for data with Fourier transform in Lp spaces, for
all 2 < p < C1 ([10, 18, 19]). This result can be proved using perturbation techniques
and a fixed point argument. Making strong use of the complete integrability, the gap to
the critical space has been also reduced, even in the quite remarkable case of the non-
homogeneous Sobolev class and for global well-posedness, as recently proved in [26], to
all the subcritical cases; see also [31, 34, 41] for the global-in-time result in the Fourier–
Lebesgue class. As a consequence, no possible unbounded flux in the size of the Fourier
transform of the solution can happen in this subcritical regime. In this paper we focus our
attention on the critical case.

Geometrically, critical regularity for (2) means the possibility of having either corners
or logarithmic spirals. We will concentrate on the particular case of corners, which implies
the existence of jumps for the corresponding tangent vectors. The case of logarithmic
spirals has been considered in [22, 23, 37, 38] and is poorly understood. Nevertheless, we
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think that the extent to which the results shown in this work can be extended to logarithmic
spirals is a relevant question.

The simplest way of obtaining a corner is to look for self-similar solutions of (2), that
is to say, solutions that can be written as �.t; x/ D

p
tG.x=

p
t / for some well-chosen G.

A simple computation gives that such a curve G has to solve the non-linear ODE

1

2
G �

y

2
G0 D G0 �G00: (13)

In [7, 35, 36] it is proved that a solution of (13) is characterized by the property that the
curvature has to be a constant c D ˛, and the torsion � has to be �.y/ D y=2. Thanks to
(12) this amounts to saying that

u˛.t; x/ D
˛
p
t
ei

x2

4t :

As a consequence, if in (9) we take a.t/ D j˛j
2

t
, we observe that u˛ solves (9) with initial

condition
u˛.0; x/ D

p
i˛ı.x/:

Here ı is the Dirac-ı function located at the origin.
Observe that (2) is invariant under rotations. Therefore, it is enough to give the Frenet

frame of the curve given by G at say x D 0 to construct all the solutions of (13). Take this
frame, ¹T .0/; n.0/; b.0/º, to be the canonical orthonormal basis of R3, and call G˛ the
corresponding solution. It was proved in [21] that if

�˛.t; x/ D
p
tG˛

� x
p
t

�
;

then �˛ solves (2) for t > 0 and there exists �˛.0; x/ such that

j�˛.t; x/ � �˛.0; x/j � 2˛
p
t ; t > 0:

Moreover, �˛.0; x/ is given by two half-lines joined at a corner at the origin. Calling �˛
the corresponding interior angle, it is proved in [21] that

sin
�˛

2
D e�

�
2 j˛j

2

: (14)

In our previous works we considered two different scenarios for finding a functional
setting that includes this example and such that at least a local well-posedness result can
be established for the corresponding initial value problem.

The first scenario is when the polygonal line given by �˛.0; x/ is perturbed in such a
way that the angle remains �˛ but outside the corner location the curve is smooth and tends
to two, possibly different, lines at infinity. To find these solutions we study first (9) with
a.t/ D j˛j

2

t
, then we use Hasimoto’s method for positive times, and eventually we deal
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with the limit curves at t D 0. Regarding (9) we use the pseudo-conformal transformation.
More concretely, we look for v with u D T .v/ where

T .v/.t; x/ D
ei

x2

4t

p
t
Nv
�1
t
;
x

t

�
: (15)

Observe that above we also make a change of variables so that the time interval .0; 1/
becomes .1;1/. A standard calculation gives that v has to solve

ivt C vxx C
1

2t
.jvj2 � Qa.t//v D 0; Qa.t/ D

1

t
a
�1
t

�
D j˛j2: (16)

Solutions of the above equation (16) formally preserve the L2 normZ
jvj2 dx; (17)

and
E.v/.t/ WD

1

2

Z
jvx.t/j

2 dx �
1

4t

Z
.jvj2 � j˛j2/2 dx (18)

satisfies
@tE.v/.t/ D

1

4t2

Z
.jvj2 � j˛j2/2 dx:

Finally,

=

Z
x Nvxv dx

is also a conserved quantity. We could also consider any of the infinitely many conserved
quantities of (9) but observe that from the definition of (15) it would be necessary to
assume regularity and decay on v for these quantities to be finite.

Notice that v˛.t; x/ WD ˛ is a particular solution of (16), and the corresponding binor-
mal flow solution is �˛ . In a series of papers (see the introduction of [3] for a survey of the
results), we prove well-posedness and small-data modified scattering results for v � v˛ ,
t � 1, in some appropriate function spaces such that E.t/ given in (18) is finite.

The second scenario was started in [4] and considers solutions of (2) that at time t D 0
are given by a skew polygonal line �0.x/ that tends to two lines when x ! ˙1. The
corners are all located at integers j 2 Z. We use Hasimoto’s method, and at the level of
(9) this problem is related to considering dataX

j

j̨ ı.x � j /

with some appropriate conditions on the size of j̨ . Following [33],1 we look for solutions
of (9) with a.t/ DM=t , where M WD

P
j j j̨ j

2, for t > 0, of the type

u.t; x/ D
X
j

Aj .t/
ei

.x�j /2

4t

p
t

; (19)

1The authors acknowledge Tohru Ozawa for having pointed them to this article.
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with
Aj .t/ D e

�i.j j̨ j
2�M/ log

p
t . j̨ CRj .t//; (20)

and Rj .t/ satisfying decay properties as t goes to zero. The construction is performed for
¹ j̨ º such that X

j

jj j2sj j̨ j
2 <1 for s > 1=2: (21)

Using Hasimoto’s method we construct a solution of the binormal flow for t > 0 such
that we recover at time t D 0 the curve �0, provided that we choose j̨ in a precise way
determined by the curvature and torsion angles of �0 at x D j . In particular, as (14) for
self-similar solutions, we choose

sin
�j

2
D e�

�
2 j j̨ j

2

: (22)

The need of weights in (21) comes from integrating (10) because the coefficients of that
system involve ux . Notice that making the expansion of the square phases in (19) one
immediately computes which is the pseudo-conformal transformation (15) of u. Indeed,
we can write u D T .v/ with v the 2�-periodic function in the x-variable:

v.t; x/ D
X
j

Aj

�1
t

�
e�itj

2Cijx ;

a solution of (16) with Qa.t/ DM . Observe that (17), the L2 conservation law of (16), and
(20) give that for t > 0, X

j

jAj .t/j
2
DM: (23)

Recall that from (6),

jTx.t; x/j
2
D ju.t; x/j2 D

1

t

ˇ̌̌
v
�1
t
;
x

t

�ˇ̌̌2
:

Hence, for any t > 0 the function jTx.t; x/j2 is a 2�t -periodic function in the x-variable
and by (23) the integral on each of the periods isM . Nevertheless, this “conservation law”
does not give any information aboutcTx , the Fourier transform of Tx . We proved in [5] that
(23) can be also understood as a kind of scattering energy of cTx for the solutions of (1)
and (2) that we constructed in [4]. More precisely, if

„.T .t// WD lim
k!1

Z kC1

k

jcTx.t; �/j2 d�; (24)

then for t > 0 we have the conservation law

„.T .t// D 4�
X
j

j j̨ j
2: (25)

It was also proved in [5] that there is a jump discontinuity of„.T .t// at t D 0. From (24)
we can see jcTx.t; �/j2 d� as an asymptotic energy density in phase space. The main result
of this paper is to prove that this energy density can grow in time at specific Fourier modes.
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The procedure used in [4] to construct the solution u with the shape given in (19) is to
solve the infinite-dimensional non-homogeneous dynamical system generated by Aj .t/.
The choice (23) kills all the resonant frequencies except those generated by the interaction
of any mode j with itself. This interaction is easily absorbed by a logarithmic modification
of the phase of Aj .t/ that has already been incorporated in (20). Hence, a fixed point
argument can be performed to solve the system and to obtain the decay properties of
Rj .t/ mentioned above. As a consequence, there is no possible growth for Aj .t/.

The appearance of the logarithmic correction in the phases mentioned above is analo-
gous to the long-range modified scattering that smooth small solutions of (9) satisfy ([42]).
This modified scattering is behind the growth results of high Sobolev norms proved in [25]
for the scalar cubic NLS on R�Td with d � 2. In that setting, which is a mixture of peri-
odic and continuous variables, the authors prove a loglog growth in time of the amplitudes
of the Fourier modes. The key ingredient for this growth is that, differently to what hap-
pens in one dimension, for d � 2 the corresponding infinite-dimensional system has a
non-trivial resonant subsystem that generates solutions whose high Sobolev norms grow
in time – see [12, 20, 24]. All of these equations are not integrable. For this purpose we
recall that growth of Sobolev norms for an integrable equation was proved in the case of
the cubic Szegő equation ([16]; see also [17]).

In Theorem 1.1 below we obtain a precise logarithmic growth in time for cTx , where
T is a solution of (1) and the tangent vector of a curve that evolves according to (2).
This curve at time t D 0 is a polygonal line with just two corners of the same angle that
are located at x D 1 and x D �1. Recall that Tx represents the variation of the direction
of the vorticity that, as proved in [13], plays a crucial role in the possible formation of
singularities of the Euler equations.

Theorem 1.1. Consider a polygonal line �0.x/ with two corners of angle � located at
x 2 ¹�1; 1º. Let �.t; x/ be its evolution by the binormal flow (2) as explained above and
let T .t; x/ be its tangent vector.

There exist t� ; Qt� 2 .0; 1/ and n� 2 N such that for n 2 N; n � n� , t 2 . Qt�
n2 log2 n

;
t�
n2
/,

and � satisfying either j� � 1
2�t
j �

1
n

or j� C 1
2�t
j �

1
n

the following growth holds:

jcTx.t; �/ � V lognj �
1

2
jV j logn; (26)

where V is the non-null vector i.� 2
�
/ log.sin �

2
/.T �1 � 2T 0 C TC1/, and the vectors

T �1, T 0, and TC1 are the directions of the polygonal line �0.x/ on x <�1,�1< x < 1,
and 1 < x respectively.

As a consequence, for t 2 .0; t�
n2
�

/ there exists C� > 0 such that

sup
�

jcTx.t; �/j � C� log t: (27)

Finally, for � satisfying j� � 1
2�t
j �

3
8�t

and j� C 1
2�t
j �

3
8�t

and t 2 .0; 1
4�
/ we have

an upper bound of jcTx.t; �/j depending only on � .
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Let us first note that our result concerns the growth of kcTxk1, the L1 norm of the
Fourier transform of Tx , and therefore we are looking at a critical norm in the class of
Fourier–Lebesgue spaces.

The proof of Theorem 1.1, which is given in Section 2, is based on the computation ofcTx.�/ using (8) with u D ˛ C iˇ satisfying (19). This generates a first sum in j with the
corresponding xAj and their quadratic phases. Then, we use (8) again to integrate by parts,
and a second sum appears with some new amplitudes Ar and new quadratic phases. It was
observed in [5] that a resonance can happen if j � r 2 Z is properly chosen. It is easy to
obtain a logarithmic upper bound for this resonance. It involves a small set of frequencies
� which do not prevent (24) from holding. Our purpose in this paper is to obtain a lower
bound.

In Section 3 we prove the extension of Theorem 1.1 to the case of polygonal lines with
many corners. The exhibited logarithmic growth is a hint that the numerical computations
given in [15] about the unboundedness of kcTxk1 are correct – see [15, equation (8) in
§5]. In that case the initial condition of (2) is a planar regular polygon. The dynamics then
also becomes periodic in time and exhibits a Talbot effect, in the sense that at rational p=q
multiples of the time period, skew polygons emerge with typically as many sides as q;
see [29]. So this (numerical) logarithmic growth also happens at these rational times. A
rigorous proof of this fact is a very challenging question that we propose to address in the
future.

We shall denote systematically by C.kAj .t/kl1/ constants depending only on univer-
sal constants and on a finite number of positive powers of kAj .t/kl1 .

2. Proof of Theorem 1.1

Let n 2 N�. First we recall that for s > 1
2
; 0 <  < 1, it was proved in [4] that

iut C uxx C
1

2

�
juj2 �

P
j j j̨ j

2

t

�
u D 0 (28)

has an unique local solution for t 2 .0; T / of type

u.t; x/ D
X
j2Z

e�i.j j̨ j
2�M/ log

p
t . j̨ CRj .t//

ei
.x�j /2

4t

p
t

; (29)

with
sup

0<t<T

t�kRj .t/kl2;s C tk@tRj .t/kl2;s < C./k j̨ k
3
l2;s
: (30)

The time of existence T is in terms of s,  , k j̨ kl2;s .
As explained in the introduction, the evolution �.t/ of �0 on .0; T / is constructed by

Hasimoto’s method from the solution (29) of (28) with, in view of (22),

j̨ D

r�
�
2

�

�
log
�

sin
�

2

�
DW ˛ for j 2 ¹˙1º; j̨ D 0 otherwise: (31)
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2.1. A general analysis on locating possible growth scenarios

We shall start with a lemma that highlights the part of cTx.t; �/ that can grow for small
times, in general cases of polygonal lines.

Lemma 2.1. Let ¹ j̨ º 2 l2;
1
2

C

and let �.t/ be the evolution through the binormal flow of
the corresponding polygonal line. For t 2 .0; 1

4�n2
/ and � 2 R, the tangent vector of �.t/

satisfiesˇ̌̌̌cTx.t; �/ � i X
jj�rC4�t�j<2nt

Aj .t/Ar .t/e
�i

j2�r2

4t

�

Z
jx�j�4�t�j> 1

n ;

jx�rC4�t�j> 1
n

ei
x.j�rC4�t�/

2t

� 1

x�j�4�t�
�

1

x�rC4�t�

�
T .t; x/ dx

ˇ̌̌̌
�
C.kAj .t/kl1/

n
p
t

:

Proof. From (8) we have Tx.t; x/ D <. NuN/.t; x/ so

cTx.t; �/ D Z 1
�1

ei2�x�<. NuN/.t; x/ dx

D

Z 1
�1

ei2�x�<

�X
j

Aj .t/
e�i

.x�j /2

4t

p
t

N.t; x/

�
dx

D
ei4�

2t�2

2
p
t

X
j

ei2�j�Aj .t/

Z 1
�1

e�i
.x�j�4�t�/2

4t N.t; x/ dx

C
e�i4�

2t�2

2
p
t

X
j

ei2�j�Aj .t/

Z 1
�1

ei
.x�jC4�t�/2

4t N.t; x/ dx:

We start by removing bounded pieces of the integral centered in j˙4�t�, by using a
cutoff function  n vanishing on B.0; 1

4n
/ and valued 1 on cB.0; 1

2n
/. These pieces are

easy to estimate byC kAj .t/kl1
n
p
t

, as the integrants are of constant modulus. On the remaining
pieces we integrate by parts:ˇ̌̌̌cTx.t; �/C iptei4�2t�2X

j

ei2�j�Aj .t/

Z 1
�1

e�i
.x�j�4�t�/2

4t

�N.t; x/ n.x�j�4�t�/
x�j�4�t�

�
x
dx

� i
p
te�i4�

2t�2
X
j

ei2�j�Aj .t/

Z 1
�1

ei
.x�jC4�t�/2

4t

�N.t; x/ n.x�jC4�t�/
x�jC4�t�

�
x
dx

ˇ̌̌̌
� C
kAj .t/kl1

n
p
t

:

When the derivative falls on  n and on the denominator we get terms bounded by
Cn
p
tk¹Aj .t/ºkl1 , and n

p
t � 1

n
p
t

as t 2 .0; 1
4�n2

/. We are left with the part from
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Nx D �uT . Then we getˇ̌̌̌cTx.t; �/ � iX
j

Aj .t/

Z 1
�1

P
r Ar .t/e

i
x.j�rC4�t�/

2t e�i
j2�r2

4t

x�j�4�t�
T .t; x/ n.x�j�4�t�/ dx

C i
X
j

Aj .t/

Z 1
�1

P
r Ar .t/e

i
x.r�jC4�t�/

2t ei
j2�r2

4t

x�jC4�t�
T .t; x/ n.x�jC4�t�/ dx

ˇ̌̌̌
� C
kAj .t/kl1

n
p
t

:

For j˙.j�r/C4�t�
2t

j � n we perform an integration by parts using the linear phase and
get terms bounded by CkAj .t/k2l1 when the derivative falls on  n and on the denomi-
nator. When the derivative falls on T we get <. NuN/ which yields a quadratic phase. We
complete to a quadratic phase incorporating the linear one and the terms to estimate are of
the type

1

n
p
t

X
j;r;k

jAj .t/Ar .t/Ak.t/j

ˇ̌̌̌Z 1
�1

ei
.x�jCr�k�4�t�/2

4t

x�jC4�t�
N.t; x/ n.x�jC4�t�/ dx

ˇ̌̌̌
:

We first note that we can add in the integral the cutoff  n centered where the quadratic
phase cancels. Indeed, as the function to integrate is upper-bounded by Cn the contribu-
tion of 1� n.x�jCr�k�4�t�/ is upper-bounded by C

n
p
t
kAj .t/k

3
l1

. Then we perform
an integration by parts from the quadratic phase and get

2
p
t

n

X
j;r;k

jAj .t/Ar .t/Ak.t/j

ˇ̌̌̌ Z 1
�1

ei
.x�jCr�k�4�t�/2

4t

�

�N.t; x/ n.x�jC4�t�/ n.x�jCr�k�4�t�/
.x�jC4�t�/.x�jCr�k�4�t�/

�
x
dx

ˇ̌̌̌
:

When the derivative falls onN , asNx D�uT we can perform a Cauchy–Schwarz inequal-
ity separating the factors in the denominator to get a CkAj .t/k4l1 upper bound. When the
derivative falls on a term other than N we get directly a Cn

p
tkAj .t/k

3
l1

upper bound.
Summarizing, we have obtained for all � 2 R,ˇ̌̌̌cTx.t; �/ � i X

jj�rC4�t�j<2nt

Aj .t/Ar .t/I
C.t; �; j; r/

C i
X

j�.j�r/C4�t�j<2nt

Aj .t/Ar .t/I
�.t; �; j; r/

ˇ̌̌̌
�
C.kAj .t/kl1/

n
p
t

;

where

I˙.t; �; j; r/ WD e�i
j2�r2

4t

Z
jx�j�4�t�j> 1

n

ei
x.˙.j�r/C4�t�/

2t

x�j�4�t�
T .t; x/ dx:
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For simplicity, in the integrals we have replaced the cutoff function  n by the character-
istic function of B.0; 1

n
/. Indeed, the functions to integrate are upper-bounded by n so

the error term, which comes from integrating on a domain of size C
n

, is upper-bounded
by C.kAj .t/kl1/. The first discrete summation holds for .j; r/ if and only if the second
discrete summation holds for .r; j /, soˇ̌̌̌cTx.t; �/� i X

jj�rC4�t�j<2nt

Aj .t/Ar .t/.I
C.t; �; j; r/� I�.t; �; r; j //

ˇ̌̌̌
�
C.kAj .t/kl1/

n
p
t

:

By the same argument above we can remove from the integrals in IC.t; �; j; r/ and
I�.t; �; r; j / the domains of integration ¹jx�rC4�t�j � 1

n
º and ¹jx�j�4�t�j � 1

n
º

respectively to getˇ̌̌̌cTx.t; �/ � i X
jj�rC4�t�j<2nt

Aj .t/Ar .t/e
�i

j2�r2

4t

�

Z
jx�j�4�t�j> 1

n ;

jx�rC4�t�j> 1
n

ei
x.j�rC4�t�/

2t

� 1

x�j�4�t�
�

1

x�rC4�t�

�
T .t; x/ dx

ˇ̌̌̌
�
C.kAj .t/kl1/

n
p
t

:

2.2. An analysis on locating particular solutions that can exhibit growth

To get the logarithmic growth of the theorem we shall restrict to a particular class of
polygonal lines and we shall look for values of �n such that j4� t

n2
�nj is close to the dis-

tance between the corners. We note that in the case of a single corner we have
˛1˛�1 D 0, so the following lemma ensures that cTx. tn2 ; �n/ is bounded. Therefore the
logarithmic growth comes from the interaction of several corners.

Lemma 2.2. Let ¹ j̨ º be such that

j̨ D 0 for jj j > 1: (32)

We have for all t 2 .0; 1
4�n2

/ and jıj < 1
n

,ˇ̌̌̌cTx�t; 1

2�t
C ı

�
� i˛�1˛1e

i.j˛�1j
2�j˛1j

2/ log t
Z
jx�1j> 1

n ;

jxC1j> 1
n ;

jxj<2

� 1

x�1
�

1

xC1

�
T .t; x/ dx

ˇ̌̌̌

�
C.kAj .t/kl1/

n
p
t

: (33)

A similar estimate holds at � 1
2�t
C ı.

Proof. Denoting � D 1
2�t
C ı implies 4�t� D 2C 4�tı, so we have

jj�rC4�t�j < 2nt <
1

2�n
” r D j C 2;
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and Lemma 2.1 gives usˇ̌̌̌cTx.t; �/ � iX
j

Aj .t/AjC2.t/e
i
.jC2/2�j2

4t

�

Z
jx�j�2�4�tıj> 1

n ;

jx�jC4�tıj> 1
n

eix2�ı
� 1

x�j�2�4�tı
�

1

x�jC4�tı

�
T .t; x/ dx

ˇ̌̌̌
�
C.kAj .t/kl1/

n
p
t

: (34)

First we note that, as j4�tıj < 1
n3

, we obtain by Cauchy–Schwarz,Z
jx�j�2�4�tıj> 1

n ;

jx�jC4�tıj> 1
n ;

jx�j�1j>2

ˇ̌̌̌
1

x�j�2�4�tı
�

1

x�jC4�tı

ˇ̌̌̌
dx

D

Z
jy�1�4�tıj> 1

n ;

jyC1C4�tıj> 1
n ;

jyj>2

ˇ̌̌̌
2C 8�tı

.y�1�4�tı/.yC1C4�tı/

ˇ̌̌̌
dy � C:

Thus we can reduce the integration in (34) to jx�j�1j < 2. In the remaining integrals the
functions to integrate are upper-bounded by Cn on the domain of integration and also 1

n3

far from it. Then, as j4�tıj < 1
n3

, we can shift the domain of integration and remove the
4�tı factors from the denominators to obtainˇ̌̌̌cTx.t; �/ � iX

j

Aj .t/AjC2.t/e
i
.jC2/2�j2

4t

�

Z
jx�j�2j> 1

n ;

jx�j j> 1
n ;

jx�j�1j<2

eix2�ı
� 1

x�j�2
�

1

x�j

�
T .t; x/ dx

ˇ̌̌̌
�
C.kAj .t/kl1/

n
p
t

:

Now, using the fact that j̨ D 0 for jj j > 1 and that the integrals are upper-bounded by
C logn, we haveˇ̌̌̌cTx.t; �/ � i˛�1˛1ei.j˛�1j2�j˛1j2/ log t

Z
jx�1j> 1

n ;

jxC1j> 1
n ;

jxj<2

eix2�ı
� 1

x�1
�

1

xC1

�
T .t; x/ dx

ˇ̌̌̌

�
C.kAj .t/kl1/

n
p
t

C

X
jj j�1

j j̨ j jRjC2.t/j lognC
X
jjC2j�1

jRj .t/j j j̨C2j logn

C

X
j

jRj .t/j jRjC2.t/j logn:

Since jx2�ıj 2 .0; 4�
n
/ and the functions to integrate are upper-bounded by n and the

integration domain is bounded, the factors eix2�ı can be neglected. By using the decay
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(30) of Rj .t/ with  > 1
2

, we get

jRj .t/j � kRk.t/kl2;s � C./t

k˛kk

3
l2;s
�
C

n
k˛kk

3
l2;s
; (35)

thus the conclusion (33) of the lemma. For � D� 1
2�t
C ı we proceed in the same way.

2.3. Proof of the logarithmic growth

Lemma 2.2 and (31)2 ensure that for �n D n2

2�t
C ı with t 2 .0; 1

4�
/ and jıj < 1

n
we haveˇ̌̌̌cTx� t

n2
; �n

�
� i j˛j2

Z
jx�1j> 1

n ;

jxC1j> 1
n ;

jxj<2

� 1

x�1
�

1

xC1

�
T
� t
n2
; x
�
dx

ˇ̌̌̌
�
C.kAj .

t
n2
/kl1/

p
t

:

Now we note that we can further reduce toˇ̌̌̌cTx� t
n2
; �n

�
� i j˛j2

Z
¹ 13>jx�1j>

1
n º

[¹ 13>jxC1j>
1
n º

� 1

x�1
�

1

xC1

�
T
� t
n2
; x
�
dx

ˇ̌̌̌
�
C.kAj .

t
n2
/kl1/

p
t

:

We recall also that from [4, Lemma 4.1] we have the convergenceˇ̌̌
T
� t
n2
; x
�
� T .0; x/

ˇ̌̌
� C.k j̨ kl1;1/.1C jxj/

r
t

n2

� 1

d.x; 1
2
Z/
C

1

d.x;Z/

�
;

so ˇ̌̌̌cTx� t
n2
; �n

�
� i j˛j2

Z
¹ 13>jx�1j>

1
n º

[¹ 13>jxC1j>
1
n º

� 1

x�1
�

1

xC1

�
T .0; x/ dx

ˇ̌̌̌

�
C.kAj .

t
n2
/kl1/

p
t

C C j˛j3
p
t :

As �0 is a polygonal line with T �1, T 0, and TC1 the directions on x <�1,�1 < x < 1,
and 1 < x respectively,Z

¹ 13>jx�1j>
1
n º

[¹ 13>jxC1j>
1
n º

� 1

x�1
�

1

xC1

�
T .0; x/ dx

D T �1
h
log
jx�1j

jxC1j

i�1� 1n
� 43

C T 0
h
log
jx�1j

jxC1j

i� 23
�1C 1

n

C T 0
h
log
jx�1j

jxC1j

i1� 1n
2
3

C TC1
h
log
jx�1j

jxC1j

i 4
3

1C 1
n

;

2Just for simplicity we imposed ˛�1 D ˛1 D ˛, i.e. the corners of the curve �0 have the same angles.
The computations go the same in the general case with ˛�1˛1ei.j˛�1j

2�j˛1j
2/ log t instead of j˛j2.
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and logarithmic growth in n comes from the boundary terms at �1 � 1
n

, �1C 1
n

, 1 � 1
n

,
and 1C 1

n
. Therefore we obtainˇ̌̌̌cTx� t

n2
; �n

�
� i j˛j2.T �1 � 2T 0 C TC1/ logn

ˇ̌̌̌
�
C.kAj .

t
n2
/kl1/

p
t

C C j˛j3
p
t :

Now we compute

jT �1 � 2T 0 C TC1j D 2.1 � cos.� � �//: (36)

The smallest values of this modulus appear for � close to � , equivalent to ˛ close to zero
in view of (22):

1 �
.� � �/2

8

�!�
� cos

� � �

2
D sin

�

2
D e�

�
2 j˛j

2 ˛!0
� 1 �

�

2
j˛j2;

thus

jT �1 � 2T 0 C TC1j D 2.1 � cos.� � �//
�!�
� .� � �/2 � 4�j˛j2:

We then choose t small enough that

C j˛j3
p
t <

1

8
j˛j2jT �1 � 2T 0 C TC1j logn;

which reduces to
p
t < C j˛j logn;

and large enough that

C.kAj .
t
n2
/kl1/

p
t

<
1

8
j˛j2jT �1 � 2T 0 C TC1j logn;

which is implied, in view of (35), by

C.j˛j C j˛j
3

n
/

j˛j4 logn
<
p
t :

Therefore the conditions on t and n with respect to ˛ are

C.j˛j C j˛j
3

n
/

j˛j4 logn
<
p
t < min

®
C j˛j logn; 1

4�

¯
: (37)

We note that the upper and lower conditions on t imply that n has to be chosen large with
respect to ˛.

Summarizing, we have obtained the existence of t� ; Qt� 2 .0; 1/ and n� 2 N such that
for n 2 N, n � n� , and t 2 . Qt�

log2 n
; t� / the following growth holds:ˇ̌̌cTx� t

n2
;
n2

2�t
C ı

�
� i j˛j2.T1 � 2T 0 C TC1/ logn/

ˇ̌̌
�
1

2
j˛j2jT �1 � 2T 0 C TC1j log.n/ 8ı; jıj <

1

n
:

This yields (26) in Theorem 1.1. For the analysis at� n2

2�t
C ı we proceed in the same way.
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As a consequence we get the existence of C� > 0 such that for n� n� and t 2 . Qt�
n2
;
t�
n2
/

we have
sup
�

jcTx.t; �/j � C� logn:

We can choose n� large enough that for all � 2 .Qt� ; t� /,

j log � j <
1

2

ˇ̌̌
log

t�

n2
�

ˇ̌̌
<
1

2

ˇ̌̌
log

�

n2
�

ˇ̌̌
:

Then, for t D �
n2
2 .
Qt�
n2
;
t�
n2
/,

sup
�

jcTx.t; �/j � C�

2
.j log t j � j log � j/ �

C�

4
log t:

Moreover, by choosing n� large enough that

t�

.nC 1/2
>
Qt�

n2
;

we have .0; t�
n2
�

/ D
S
n�n�

.
Qt�
n2
;
t�
n2
/, so (27) holds.

2.4. Bounds away from the growth zone

Finally, we consider for n 2 N� those � such that j� � n2

2�t
j �

3n2

2�t
and j� C n2

2�t
j �

3n2

2�t
,

which means j4� t
n2
� � 2j � 3

4
and j4� t

n2
�C 2j � 3

4
. We denote bym2 Z

2
and d 2 Œ�1

2
; 1
2
Œ

the numbers such that 4� t
n2
� D 2mC d , which in particular implies m … ¹˙1º. Thenˇ̌̌

j�rC4�
t

n2
�
ˇ̌̌
< 2n

t

n2
” r D j C 2m;

and Lemma 2.1 gives us for t 2 .0; 1
4�
/,ˇ̌̌cTx� t

n2
; �
�ˇ̌̌
�

X
j

ˇ̌̌
Aj

� t
n2

�ˇ̌̌ ˇ̌̌
AjC2m

� t
n2

�ˇ̌̌
�

Z
jx�j�2m�d j> 1

n ;

jx�jCd j> 1
n

ˇ̌̌ 1

x�j�2m�d
�

1

x�jCd

ˇ̌̌
dx C

C.kAj .
t
n2
/kl1/

p
t

:

The piece of integration jx�j�mj > 4m is bounded and the remaining part is upper-
bounded by C log.max¹hmi; nº/. Since m … ¹˙1º thenX

j

ˇ̌̌
Aj

� t
n2

�ˇ̌̌ ˇ̌̌
AjC2m

� t
n2

�ˇ̌̌
�

X
jj j�1

j j̨ j

ˇ̌̌
RjC2m

� t
n2

�ˇ̌̌
C

X
jjC2mj�1

ˇ̌̌
Rj

� t
n2

�ˇ̌̌
j j̨C2mj

C

X
j

ˇ̌̌
Rj

� t
n2

�ˇ̌̌ ˇ̌̌
RjC2m

� t
n2

�ˇ̌̌
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D j˛j

�ˇ̌̌
R�1C2m

� t
n2

�ˇ̌̌
C

ˇ̌̌
R1C2m

� t
n2

�ˇ̌̌
C

ˇ̌̌
R�1�2m

� t
n2

�ˇ̌̌
C

ˇ̌̌
R1�2m

� t
n2

�ˇ̌̌�
C

X
j

ˇ̌̌
Rj

� t
n2

�ˇ̌̌ ˇ̌̌
RjC2m

� t
n2

�ˇ̌̌
:

From (30) we have X
j

jj j2s
ˇ̌̌
Rj

� t
n2

�ˇ̌̌2
� C
j˛j3

n
;

so for all j 2 Z, ˇ̌̌
Rj

� t
n2

�ˇ̌̌
�

C j˛j3
p
nhj is

:

Thus ˇ̌̌cTx� t
n2
; �
�ˇ̌̌
� C.˛/ log.max¹hmi; nº/

1
p
nhmis

C
C.˛/
p
t
:

Therefore, for � such that j� � n2

2�t
j �

3n2

2�t
and j� C n2

2�t
j �

3n2

2�t
and t 2 .0; 1

4�
/ we obtainˇ̌̌cTx� t

n2
; �
�ˇ̌̌
�
C.˛/
p
t
;

and the proof of Theorem 1.1 is complete.

3. Several corners

Instead of 2 corners, we consider a planar polygonal line with 2N corners located at
�2N C 1; : : : ; 2N � 1, with the same angle � . Let m 2 ¹1; : : : ; N º. Proceeding similarly
to the proof of Lemma 2.2, we obtain (with constants that can depend on N ) for jıj < 1

n
,ˇ̌̌̌cTx� t

n2
;
mn2

2�t
C ı

�
� i j˛j2

X
j2¹.�2NC1/;:::;
.2N�2m�1/º

e
i
.jC2m/2�j2

4 t
n2

Z
1
n<jx�.jC2m/j<

1
3 ;

1
n<jx�j j<

1
3

� 1

x�.jC2m/
�

1

x�j

�
T .t; x/ dx

ˇ̌̌̌

�
C.kAj .

t
n2
/kl1/

p
t

:

Now we restrict to t and n such that n
2

t
2 8�Z to get rid of the phases in front of the

integrals. Arguing as for the end of the proof of Theorem 1.1 in Section 2.3, we getˇ̌̌̌cTx� t
n2
;
mn2

2�t
C ı

�
� Vm logn

ˇ̌̌̌
�
C.kAj .t/kl1/

p
t

C C j˛j3
p
t logn;
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where

Vm D i
�
�
2

�

�
log
�

sin
�

2

�
�

X
j2¹.�2NC1/;:::;
.2N�2m�1/º

.T .j�/ � T .jC/ � T ..jC2m/�/C T ..jC2m/C//

D i
�
�
2

�

�
log
�

sin
�

2

�
(38)

�
�
T ..�2NC1/�/�T ..�2NC1C2m/�/�T ..2N�1�2m/C/CT ..2N�1/C/

�
:

For N D 1 we recover the vector V in Theorem 1.1 as

V1 D i
�
�
2

�

�
log
�

sin
�

2

�
�
�
T ..�2NC1/�/ � T ..�2NC1/C/ � T ..2N�1/�/C T ..2N�1/C/

�
:

We note that for at least one m 2 ¹1; : : : ; N º we have Vm ¤ 0.
Continuing similarly to Sections 2.3–2.4 we obtain the following result.

Theorem 3.1. Consider a polygonal line �0.x/ with 2N corners of angle � located at
x 2 ¹�2N C 1; : : : ; 2N � 1º. Let �.t; x/ be its evolution by the binormal flow by the
Hasimoto method and denote T .t; x/ the tangent vector.

There exists t�;N ; Qt�;N 2 .0; 1/ and n�;N 2 N such that for n 2 N, n � n�;N , for

t 2 .
Qt�;N

n2 log2 n
;
t�;N
n2
/ satisfying 1

t
2 8�Z, for m 2 ¹1; : : : ; N º, and for � satisfying either

j� � m
2�t
j �

1
n

or j� C m
2�t
j �

1
n

, the following holds:

jcTx.t; �/ � Vm log.n/j �
1

2
jVmj logn; (39)

where Vm is defined in (38).
As a consequence, for t 2 .0; t�;N

n2
�;N

/ there exists C�;N > 0 such that

sup
�

jcTx.t; �/j � C�;N log t: (40)

Finally, for � such that j� � m
2�t
j �

3
8�t

and j� C m
2�t
j �

3
8�t

for all m 2 ¹1; : : : ; N º,
and t 2 .0; 1

4�
/ we have an upper bound of jcTx.t; �/j depending only on � and N .
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Math. Sci. Appl. 26, Gakkōtosho, Tokyo, 2006 Zbl 1189.35309 MR 2409127

[34] H. Koch and D. Tataru, Conserved energies for the cubic nonlinear Schrödinger equation in
one dimension. Duke Math. J. 167 (2018), no. 17, 3207–3313 Zbl 1434.35181
MR 3874652

[35] M. Lakshmanan and M. Daniel, On the evolution of higher-dimensional Heisenberg continuum
spin systems. Phys. A 107 (1981), no. 3, 533–552 MR 624580

[36] M. Lakshmanan, T. W. Ruijgrok, and C. J. Thompson, On the dynamics of a continuum spin
system. Phys. A 84 (1976), no. 3, 577–590 MR 449262

https://zbmath.org/?q=an:1088.35063&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2181058
https://zbmath.org/?q=an:1156.35471&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2390318
https://zbmath.org/?q=an:1311.35284&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3312404
https://zbmath.org/?q=an:1044.35089&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1986056
https://zbmath.org/?q=an:1072.35152&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2097668
https://zbmath.org/?q=an:1264.35214&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3038130
https://zbmath.org/?q=an:1293.35298&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3158811
https://zbmath.org/?q=an:1326.35348&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3406826
https://arxiv.org/abs/2003.05011
https://zbmath.org/?q=an:0237.76010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3363420
https://zbmath.org/?q=an:1371.35205&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3609248
https://zbmath.org/?q=an:1327.53086&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3353807
https://zbmath.org/?q=an:1034.35145&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1813239
https://zbmath.org/?q=an:1428.35452&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3820439
https://zbmath.org/?q=an:1240.35461&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2501679
https://zbmath.org/?q=an:1189.35309&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2409127
https://zbmath.org/?q=an:1434.35181&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3874652
https://mathscinet.ams.org/mathscinet-getitem?mr=624580
https://mathscinet.ams.org/mathscinet-getitem?mr=449262


V. Banica and L. Vega 946

[37] T. Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction
approximation. J. Fluid Mech. 477 (2003), 321–337 Zbl 1063.76521 MR 2011430

[38] T. Lipniacki, Shape-preserving solutions for quantum vortex motion under localized induction
approximation. Phys. Fluids 15 (2003), no. 6, 1381–1395 Zbl 1186.76329 MR 1977895

[39] Y. Murakami, H. Takahashi, Y. Ukita, and S. Fujiwara, On the vibration of a vortex filament.
Appl. Phys. Colloquium (1937), 1–5

[40] T. Oh, A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger
equations in negative Sobolev spaces. Funkcial. Ekvac. 60 (2017), no. 2, 259–277
Zbl 1382.35273 MR 3702002

[41] T. Oh and Y. Wang, Global well-posedness of the one-dimensional cubic nonlinear Schrö-
dinger equation in almost critical spaces. J. Differential Equations 269 (2020), no. 1, 612–640
Zbl 1447.35300 MR 4081534

[42] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension.
Comm. Math. Phys. 139 (1991), no. 3, 479–493 Zbl 0742.35043 MR 1121130

[43] L. A. Takhtajan, Integration of the continuous Heisenberg spin chain through the inverse scat-
tering method Phys. Lett. A 64 (1977), no. 2, 235–237 MR 456051

[44] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funk-
cial. Ekvac. 30 (1987), no. 1, 115–125 Zbl 0638.35021 MR 915266

[45] A. Vargas and L. Vega, Global wellposedness for 1D non-linear Schrödinger equation for data
with an infinite L2 norm. J. Math. Pures Appl. (9) 80 (2001), no. 10, 1029–1044
Zbl 1027.35134 MR 1876762

[46] V. E. Zakharov and S. V. Manakov, On the complete integrability of a nonlinear Schrödinger
equation. Theoret. Math. Phys. 19 (1974), 551–559 Zbl 0298.35016 MR 468821

[47] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz. 61 (1971),
no. 1, 118–134 MR 0406174

[48] V. E. Zakharov and L. A. Tahtadžjan, Equivalence of a nonlinear Schrödinger equation and a
Heisenberg ferromagnet equation. Theoret. Math. Phys. 38 (1979), no. 1, 17–23
MR 525848

Received 8 April 2021; revised 1 September 2021; accepted 9 September 2021.

Valeria Banica
Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, B.C. 187,
4 place Jussieu, 75005 Paris, France; and Institut Universitaire de France;
Valeria.Banica@sorbonne-universite.fr

Luis Vega
BCAM-UPV/EHU, Mazarredo 14, 48009 Bilbao, Spain; lvega@bcamath.org

https://zbmath.org/?q=an:1063.76521&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2011430
https://zbmath.org/?q=an:1186.76329&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1977895
https://zbmath.org/?q=an:1382.35273&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3702002
https://zbmath.org/?q=an:1447.35300&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4081534
https://zbmath.org/?q=an:0742.35043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1121130
https://mathscinet.ams.org/mathscinet-getitem?mr=456051
https://zbmath.org/?q=an:0638.35021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=915266
https://zbmath.org/?q=an:1027.35134&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1876762
https://zbmath.org/?q=an:0298.35016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=468821
https://mathscinet.ams.org/mathscinet-getitem?mr=0406174
https://mathscinet.ams.org/mathscinet-getitem?mr=525848
mailto:Valeria.Banica@sorbonne-universite.fr
mailto:lvega@bcamath.org

	1. Introduction
	2. Proof of Theorem 1.1
	2.1. A general analysis on locating possible growth scenarios
	2.2. An analysis on locating particular solutions that can exhibit growth
	2.3. Proof of the logarithmic growth
	2.4. Bounds away from the growth zone

	3. Several corners
	References

