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In the 20th century, some artists took to using mathematical con-
cepts (such as the golden ratio) in their works, in the belief that
these would encapsulate a certain form of universal beauty. Por-
tuguese artist Almada Negreiros was among them. However, he
did more than absorb mathematical elements, he actually proved
somemathematical results about them. This paper addresses some
of these discoveries, setting them in the context of the author’s
views on mathematics and art.

Figure 1. Almada
Negreiros in the
late 1940s

José de Almada Negreiros (São Tomé and
Príncipe, 1893 – Lisbon, 1970) was a key
figure of 20th century Portuguese cul-
ture, in both visual arts and literature. His
visual work went through several stages:
starting with mostly figurative work, he
became increasingly closer to geometric
abstractionism, which he came to adopt
completely in 1957, in four works dis-
playing simple geometric figures in black
and white.

This progressive change in style was
not just the result of an aesthetic choice,
but also the consequence of a way of thinking about the relation-
ship between art and geometry. In fact, Almada – this was his
own choice of name – believed in a universal geometric system,
underlying all visual art, throughout time. He called his system “The
Canon”.

This belief in the universality of mathematics as a foundation
for art may remind us of Le Corbusier’s belief that his Modulor
system, based on three simple concepts – unit, the double and the
golden section – would tap into an abstract and universal form
of beauty. Other authors of his time, such as Matila Ghyka, also
developed similar lines of thought.

Almada’s system involved several geometrical elements, such
as rectangles with known proportions – such as √2,𝜑 (the golden
rectangle), √3, 2,√5,√𝜑 – divisions of the circle into equal parts,
and the golden angle. These were used by Almada to describe and

understand artistic artifacts, and were seen as a sign that there
was a collection of such constructions that was used, consciously
or unconsciously, by artists of all styles and origins.

However, also like Le Corbusier, Almada also actually proved
mathematical statements. In his book Le Modulor [2, p. 37] Le
Corbusier suggests a construction for a right angle, placed within
a rectangle, according to certain rules. The construction (which
is not presented in full clarity and detail) actually does lead to an
approximate right angle.

Almada goes much farther in his speculative geometry. In two
collections of drawings as well as some artist’s notebooks, com-
prising more than a hundred completed works as well as many
additional sketches, he presents constructions of a geometric na-
ture which can rightly be regarded as artworks, but which are at
the same time geometric results related to the elements of the
Canon, showing their intrinsic proximity. Figures 2 and 3 present
two examples from the collection “Language of the square”, a set
of about forty-five finished drawings on paper, 50 × 70 cm.

Both drawings can be regarded as protocols for geometric con-
structions, both starting with a square divided in two equal parts by
a horizontal line, with an inscribed quarter circle. The construction
in Figure 2 leads to two red lines, marked √5 and 𝜑, indicating
that these lines are diagonals of rectangles with those proportions,
and sides parallel to the sides of the square.

It is not difficult to verify the correctness of the proportions. If
we take half of the side of the square as our unit measure, then,
by the Pythagorean Theorem, the green diagonal measures √5,
and as this measure is transported, by compass, to the top side of
the square, we do obtain a rectangle with this proportion.

The small green horizontal line would then measure √5 − 2,
and as we add it to half the square, we get a length of 1+√5−2 =
√5 − 1. The proportion of the rectangle having as diagonal the
red line marked 𝜑 would then be

2

√5 − 1
=

2(√5 + 1)
4

= 1 +√5
2

= 𝜑.

The numbers 9 and 10 on the right refer to the divisions of the
circle into 9 and 10 parts, which are achieved by the intersection
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of the red lines with the circle arc. As it happens, the proportions
of the rectangles are precise, but the divisions of the circle are not:
they represent very good approximations, each having an error
of about 0.7%. In the book [4], the authors present a few more
analyses of this type concerning about 30 of Almada’s drawings.

In Figure 3, a similar but more intricate construction leads to
four points marked a, b, c and o, and three lengths, which Almada
interprets as follows:

ab = ⊙
14

, ao = ⊙
10

, ac = ⊙
9
.

This is again a reference to the division of the circle into equal parts.
In this case, the 10th part is exact, the 14th part has an error of
1% and the 9th part has an astonishingly tiny error of 0.001%.1

In the history of mathematics, the problem of dividing the circle
into n equal parts with straightedge and compass has a respectable
place. Thinking about prime values of n, it has known since ancient
Greece that it is possible to divide the circle into 3 and 5 parts, but
no method was found for 7, 11 or 13 parts. It was Gauss, in 1796,
who proved that it was possible to divide the circle into 17 parts,
a result that came to be included in Section VII of Disquisitiones
Arithmeticae.2 Eventually, he found a sufficient condition for the
division into n parts, and stated that this condition should also be
necessary. In 1837, Pierre Wantzel proved the necessity, leading to
the result that became known as the Gauss–Wantzel theorem.

Gauss–Wantzel’s theorem. A circle can be divided into n parts
with straightedge and compass if and only if

n = 2kp1⋯pt

where p1,…, pt are distinct Fermat primes, that is, primes of the
form 22

r + 1. The only known Fermat primes are 3, 5, 17, 257
and 62237.

Going back to Almada’s constructions, we note that 7 is not a
Fermat prime, and 9 = 3 × 3 (3 is a Fermat prime that occurs twice
in the factorization). Therefore, a circle cannot be divided precisely
into 9 and 14 parts using only straightedge and compass.

The purpose of these constructions is mainly to show that the
various elements of Almada’s Canon have a natural and harmo-
nious relationship amongst themselves, which is revealed by the
elegance and simplicity of the geometric constructions he presents.
Thus, the aim is primarily symbolic and philosophical rather than
mathematical. Nevertheless, these drawings also present original
constructions for the divisions of the circle and for producing rect-
angles with a given proportion, so in fact, they represent original
mathematical results, even though some of them are approximate.

Many more drawings exist, some of them leading to general
statements which one might regard as theorems, if it weren’t for
the fact that they represent approximations. One of these state-
ments is

2
⊙
9
+ ⊙
10

= 2r.

The meaning of this equality is that 2 chords of the 9th part of
the circle plus a chord of the 10th part will equal the diameter of
the circle (two times the radius). The first side of the equation is
actually equal to 1.986r, an error of 0.7%.

The presence of the numbers 9 and 10 in this equality (and in
many geometric constructions) is not fortuitous. Almada believed

1 The article [3] compares the approximation for the 9th part of the circle achieved by this construction with that of other constructions and concludes this is one is the
best of all those analysed.

2 There is an anecdote that Gauss was so pleased by this result that he requested that a regular heptadecagon be inscribed on his tombstone. The stonemason
declined, stating that the difficult construction would essentially look like a circle.
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there was a special connection between these two numbers, which
he called the “Relation 9/10” and strove to seek for them and to
connect them with other elements of his Canon. This is also the
reason for the presence of these numbers in Figures 2 and 3.

The statement above is used in an approximate construction
for the pentagram (another of Almada’s favourite figures, be-
cause of its relation to the Pythagoreans). The construction starts
with a circle with two elements marked: a diameter and a 9th
part, measured from one of the extremes of the diameter. In Fig-
ure 4, the 9th part is the arc AP9, on the left, and the diameter is
marked AB.

The construction now goes as follows. The arc of a circle cen-
tred at A is drawn from the point P9 to the diameter, marking point
D, through which one of the lines of the pentagram is drawn: CE,
perpendicular to AB. This point D is now the centre of the half
circle AF. Point F now determines a new arc of a circle with centre
B, yielding points G and H, through which the remaining lines of
the pentagram are defined.

According to this construction, lines AD and DF are chords
of the 9th part of the circle, and line FB is the chord of the 10th
part (which is the chord of both arcs BG and GH). These three
lines add up to a diameter, which illustrates the previous equation,
connecting it to the pentagram.

We emphasize that this is not an accurate construction – it
is actually impossible for it to be accurate, according to Gauss–
Wantzel’s theorem, since otherwise the 9th part of the circle would
be constructible, if we could start with a pentagon and extract
point P9 from it.

The fact that some of these results are approximations, and that
these appear among exact results with no distinction, is actually
quite revealing of Almada’s methods. We have reason to believe
that Almada didn’t actually compute the exact measures of the
elements he claimed to produce, but probably only checked them

visually, using instruments of measure or other elements of compar-
ison. So, his way of establishing geometric results is not the same
as the one used by mathematicians. And even though Almada was
aware that some of his results were approximate, he stuck to them
and never distinguished between exact and approximate ones.
This was probably because he was more interested in the visual
aspects of such results, and for this effect, some approximations
are acceptable.

One of his last artworks, which can be considered his geometric
legacy and a summary of many of his statements on this subject, is
the mural Começar (To begin, 1968), which is located in the main
hall of the building of the Gulbenkian Foundation in Lisbon. It is a
very intricate collection of lines and circles, inscribed in stone, with
dimensions 12.87 × 2.31m (see Figure 5).

The mural is usually divided into five parts. The first one displays
the pentagram with the construction presented in Figure 4 as the
main motif. Then, we find a 16-point star, which is an allusion to
a drawing by Leonardo da Vinci appearing (apparently by mistake)
in Geneva’s codex of Luca Pacioli’s Divina Proportione. The central
element is again a pentagram, which Almada associates to a coin,
minted by Portugal’s first king, which is set in the midst of many
other constructions that Almada used to study some 15th century
Portuguese paintings. The right part of the mural presents refer-
ences to the Minoan civilization and to a medieval poem associated
with a guild of cathedral stonemasons. There is a virtual guided
tour at gulbenkian.pt/almada-comecar/en/ where the reader can
find more detailed information about this mural. However, what
we wish to point out with these brief remarks is that Almada’s
geometry is truly an effort to unite all art and all cultures.

A thorough study of the geometric works in Almada’s estate
has been undertaken, in a collaboration between Simão Palmeirim
and the author; some of its results can be found in [4]. We hope
that this study can bring to light not only the remarkable visual

Figure 4. A construction of the pentagram from the 9th part of the circle
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Figure 5. Mural Começar by Almada Negreiros (1968)

aspects of Almada’s geometric work, but also the mathematics
behind it, which not only yield new geometric results, but also rep-
resent a powerful statement about the author’s thought regarding
geometry and art.
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