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An overview of recent analytical developments in the study of epi-
taxial growth is presented. Quasistatic equilibrium is established,
regularity of solutions is addressed, and the evolution of epitaxially
strained elastic films is treated using minimizing movements.

In this paper, we give a brief overview of recent analytical devel-
opments in the study of the deposition of a crystalline film onto
a substrate, with the atoms of the film occupying the substrate’s
natural lattice positions. This process is called epitaxial growth.
Here we are interested in heteroepitaxy, that is, epitaxy when the
film and the substrate have different crystalline structures. At the
onset of the deposition, the film’s atoms tend to align themselves
with those of the substrate because the energy gain associated
with the chemical bonding effect is greater than the film’s strain
due to the mismatch between the lattice parameters. As the film
continues to grow, the stored strain energy per unit area of the
interface increases with the film thickness, rendering the film’s
flat layer morphologically unstable or metastable after the thick-
ness reaches a critical value. As a result, the film’s free surface
becomes corrugated, and the material agglomerates into clusters
or isolated islands on the substrate. The formation of islands in
systems such as In-GaAs/GaAs or SiGe/Si has essential high-end
technology applications, such as modern semiconductor electronic
and optoelectronic devices (quantum dots laser). The Stranski–
Krastanow (SK) growth mode occurs when the islands are sepa-
rated by a thin wetting layer, while the Volmer–Weber (VW) growth
mode refers to the case when the substrate is exposed between
islands.

In what follows, we adopt the variational model considered
by Spencer in [41] (see also [36, 42], and the references contained
therein). To be precise, the free energy functional associated with
the physical system is given by

∫
Ωh

W(E(u)) dx + ∫
Γh

𝜓(𝝂) dℋ2. (1)

Here h ∶ Q → [0,∞) is the function whose graph Γh de-
scribes the profile of the film, assumed to be Q-periodic, with

Q ∶= (0, b)2 ⊂ ℝ2, for some b > 0, Ωh is the region occupied by
the film, i.e., writing x = (x, y, z),

Ωh ∶= {(x, y, z) ∈ Q × ℝ ∶ 0 < z < h(x, y)},

u ∶ Ωh → ℝ3 is displacement of the material, E(u) ∶= 1

2
(Du+DTu)

is the symmetric part of Du. Also, the elastic energy density
W ∶ 𝕄3×3

sym → [0, +∞) is a positive definite quadratic form de-
fined on the space of 3 × 3 symmetric matrices

W(A) ∶= 1
2

ℂA ∶ A,

with ℂ a positive definite fourth-order tensor, so that W(A) > 0
for all A ∈ 𝕄3×3

sym ⧵ {0}, 𝜓 ∶ ℝ3 → [0,∞) is an anisotropic surface
energy density evaluated at the unit normal 𝝂 to Γh, and ℋ2 de-
notes the two-dimensional Hausdorff measure. We suppose that
𝜓 is positively one-homogeneous and of class C2 away from the
origin, so that, in particular,

1
c
|𝝃| ≤ 𝜓(𝝃) ≤ c|𝝃| for all 𝝃 ∈ ℝ3,

for some constant c > 0.
The substrate and the film admit different natural states cor-

responding to the mismatch between their respective crystalline
structures. To be precise, a natural state for the substrate is given by
u ≡ 𝟎, while a natural state for the film is given by u ≡ A0x for some
nonzero 3×3matrixA0. Our models will reflect this mismatch, either
by setting the elastic bulk energy as ∫Ωh

W(E(u)(x) − E0(x)) dx,
where

E0(x) ∶=
⎧⎪
⎨⎪⎩

A0+AT
0

2
if z > 0,

𝟎 if z ≤ 0,
(2)

or by imposing the Dirichlet boundary condition u(x, y, 0) ≡
A0(x, y, 0).

In the two-dimensional static case, existence of equilibrium
solutions and their qualitative properties, including regularity, were
studied in [3, 4, 5, 15, 16, 17, 20, 24, 26, 29, 33]. The variational
techniques and analytical arguments developed in these papers
have been used to treat other materials phenomena, such as voids
and cavities in elastic solids [9, 19].

The scaling regimes of the minimal energy in epitaxial growth
were identified in [2, 30] in terms of the parameters of the problem.
The shape of the islands under the constraint of faceted profiles
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was addressed in [25]. A variational model that takes into account
the formation of misfit dislocations was introduced in [23].

The effect of atoms freely diffusing on the surface (called
adatoms) was studied in [10], where the model involves only sur-
face energies.

A discrete-to-continuum analysis for free-boundary problems
related to crystalline films deposited on substrates was undertaken
in [35, 38].

The three-dimensional static case was studied in [6, 12] in the
case in which the symmetrized gradient E(u) is replaced by the
gradient (see also [4]). More recently, new developments in the
theory of GSBD, i.e., generalized special functions of bounded de-
formation (see [13, 14], and the references therein) have led to
considerable progress on the relaxation of the functional (1) in
the three dimensional case (see [13]). The regularity of equilibrium
solutions remains an open problem. A local minimality sufficiency
criterion, based on the strict positivity of the second variation, was
established in [4], based on the work [29].

To study the morphological evolution of anisotropic epitaxially
strained films, we assume that the surface evolves by surface diffu-
sion under the influence of a chemical potential 𝜇. To be precise,
according to the Einstein–Nernst relation, the evolution is governed
by the volume preserving equation

V = CΔΓ𝜇 , (3)

where C > 0, V denotes the normal velocity of the evolving inter-
face Γ, ΔΓ stands for the tangential laplacian, and the chemical
potential 𝜇 is given by the first variation of the underlying free-
energy functional. In our context, this becomes (assuming C = 1)

V = ΔΓ[divΓ(D𝜓(𝝂)) +W(E(u))] , (4)

where divΓ stands for the tangential divergence along Γh(⋅, t), and
u(⋅, t) is the elastic equilibrium in Ωh(⋅, t), i.e., the minimizer of
the elastic energy under the prescribed periodicity and boundary
conditions (see (7) below).

If the surface energy density 𝜓 is highly anisotropic, there may
be directions 𝝂 for which

D2𝜓(𝝂)[𝝉, 𝝉] > 0 for all 𝝉 ⟂ 𝝂, 𝝉 ≠𝟎

fails, see for instance [18, 40]. In this case, the evolution equation
(4) is backward parabolic, and to overcome the ill-posedness of the
problem we consider the following singular perturbation of the
surface energy

∫
Γh

(𝜓(𝝂) + 𝜀
p
|H|p) dℋ2,

where p > 2, H stands for the sum 𝜅1 + 𝜅2 of the principal curva-
tures of Γh, and 𝜀 is a small positive constant (see [18, 31, 32]). The
restriction p > 2 in ℝ3 is motivated by the fact that the profile h of
the film will belong toW2,p(Q), where Q ⊂ ℝ2, so thatW2,p(Q) is
continuously embedded into C

1, p−2
p (Q). This regularity is strongly

used to prove existence of solutions. In contrast, in ℝ2 we can
assume p ≥ 2 since W2,2((0, b)) is embedded in C1,1([0, b]).

The regularized free-energy functional becomes

∫
Ωh

W(E(u)) dx + ∫
Γh

(𝜓(𝝂) + 𝜀
p
|H|p) dℋ2, (5)

and (3) is replaced by

V = ΔΓ[divΓ(D𝜓(𝝂)) +W(E(u))

− 𝜀(ΔΓ(|H|p−2H) − |H|p−2H(𝜅21 + 𝜅22 −
1
p
H2))]. (6)

Coupling this evolution equation on the profile of the film with the
elastic equilibrium elliptic system holding in the film, and parametriz-
ing Γ using h ∶ ℝ2 × [0, T0] → (0,∞), we obtain the following
Cauchy system of equations with initial and natural boundary con-
ditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
J
𝜕h
𝜕t

= ΔΓ[divΓ(D𝜓(𝝂)) +W(E(u))

−𝜀(ΔΓ(|H|p−2H) − |H|p−2H(𝜅21 + 𝜅22 −
1
p
H2))]

in ℝ2 × (0, T0),
divℂE(u) = 0 in Ωh,

ℂE(u)[𝝂] = 0 on Γh, u(x, y, 0, t) = A0(x, y, 0),

h(⋅, t) and Du(⋅, t) are Q-periodic,

h(⋅, 0) = h0,

(7)

where J ∶= √1 + |Dh|2 and h0 ∈ H2
loc(ℝ2) is a Q-periodic function.

One can find in the literature sixth-order evolution equations of
this type (see, e.g., [31] for the case without elasticity, see [40] for
the evolution of voids in elastically stressed materials, and [7, 39]).

We use the gradient flow structure of (7) with respect to a
suitable H−1-metric (see, e.g., [8]) to solve the equation via a mini-
mizing movement scheme (see [1]), i.e., we discretize the problem
in time and solve suitable minimum incremental problems.

If instead of H−1 we used the gradient flow with respect to
an L2-metric, we would obtain a fourth order evolution equation
describing motion by evaporation-condensation (see [8, 31, 37]).

The short time existence of solutions to (7) established in [22] is
the first such result for geometric surface diffusion equations with
elasticity in three-dimensions. In the recent paper [28] (see also
[27] for the two-dimensional case), the authors proved short-time
existence of a smooth solution without the additional curvature
regularization. They also showed asymptotic stability of strictly
stable stationary sets.

The results summarized here can be found in the papers
[20, 21, 22].

32 EMS MAGAZINE 119 (2021)



1 2D quasistatic equilibrium of epitaxially strained elastic
films

In the following sections we assume self-similarity with respect to
a planar axis and reduce the context to a two-dimensional frame-
work. To be precise, we suppose that the material fills the infinite
strip

Ωh ∶= {x = (x, y) ∶ 0 < x < b, y < h(x)}, (8)

where h ∶ [0, b] → [0,∞) is a Lipschitz function representing the
free profile of the film, which occupies the open set

Ω+
h ∶= Ωh ∩ {y > 0}. (9)

The line y = 0 corresponds to the film/substrate interface.
We assume that the mismatch strain corresponding to differ-

ent natural states of the material in the substrate and in the film,
respectively, is represented by

E0(y) =
⎧
⎨⎩

̂E0 if y ≥ 0,
0 if y < 0,

(10)

with ̂E0 ≠ 𝟎 > 0. We will suppose that the film and the substrate
share material properties, with homogeneous elasticity positive def-
inite fourth-order tensor ℂ. Hence, bearing in mind the mismatch,
the elastic energy per unit area is given by W(E − E0(y)), where

W(E) ∶= 1
2
E ⋅ ℂ[E] (11)

for all symmetric matrices E ≠ 𝟎.
In turn, the interfacial energy density 𝜓 has a step discontinuity

at y = 0, i.e.,

𝜓(y) ∶=
⎧
⎨⎩

𝛾film if y > 0,
𝛾sub if y = 0,

(12)

where the property
𝛾sub ≥ 𝛾film > 0 (13)

will favor the SK growth mode over the VW mode. For the case
𝛾sub < 𝛾film, and for different crystalline materials stress tensors ℂ
for the substrate and for the film, we refer to [15, 16].

The total energy of the system is given by

ℱ(u, h) ∶= ∫
Ωh

W(E(u) − E0) dx + ∫
Γh

𝜓 ds, (14)

where Γh represents the free surface of the film, that is,

Γh ∶= 𝜕Ωh ∩ ((0, b) × ℝ). (15)

Since the functional ℱ is not lower semicontinuous, and thus, in
general, does not admit minimizers, we are led to study its relax-
ation. Let

X ∶= {(u, h) ∶ h ∶ [0, b] → [0,∞) Lipschitz,

∫
b

0
h dx = d, u ∈ H1

loc(Ωh;ℝ2)}

and

X0 = {(u, h) ∶ h ∶ [0, b] → [0,∞) lower semicontinuous,

var[0,b] h < ∞, ∫
b

0
h dx = d, u ∈ H1

loc(Ωh;ℝ2)},

where var[0,b] h stands for the pointwise variation of the function
h. Note that lengthΓh coincides with the pointwise variation of
the function x ∈ [0, b] ↦ (x, h(x)), and so

var[0,b] h ≤ lengthΓh ≤ b + var[0,b] h. (16)

For (u, h) ∈ X0 define

𝒢(u, h) ∶= ∫
Ωh

W(E(u)(x) − E0(y)) dx + 𝛾film lengthΓh. (17)

Theorem 1 (Existence). The following equalities hold:

inf
(u,h) ∈X

ℱ(u, h) = inf
(u,h) ∈X

𝒢(u, h) = min
(u,h) ∈X0

𝒢(u, h).

We refer to [20] for a proof.
Next we study regularity properties of minimizers of 𝒢 in X0.

As customary in constrained variational problems, in order to have
more flexibility in the choice of test functions, we prove that the
volume constraint ∫b

0
h(x) dx = d can be replaced by a volume

penalization.

Theorem 2 (Volume penalization). Let (u0, h0) ∈ X0 be a min-
imizer of the functional 𝒢 defined in (17) with ∫b

0
h0(x) dx = d.

Then there exists k0 ∈ ℕ such that for every integer k ≥ k0, (u0, h0)
is a minimizer of the penalized functional

𝒢k(u, h) ∶= ∫
Ωh

W(E(u) − E0) dx + 𝛾film lengthΓh + k
||||
|
∫
b

0
h dx − d

||||
|

(18)
over all (u, h) ∈ X0.

Proof. An argument similar to that of the proof of Theorem 1
guarantees that for every k ∈ ℕ there exists a minimizer (vk, fk) of
𝒢k. If ∫b

0
fk dx = d for all k sufficiently large, then

𝒢(u0, h0) ≤ 𝒢(vk, fk) = 𝒢k(vk, fk) ≤ 𝒢k(u0, h0) = 𝒢(u0, h0) < ∞,

and so (u0, h0) is a minimizer of 𝒢k.
Assume now that there is a subsequence, not relabeled, such

that ∫b
0
fk dx ≠ d for all k. If

∫
b

0
fk dx > d (19)

for countably many k, define

hk ∶= min{fk, tk},
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where tk > 0 has been chosen so that ∫b
0
hk dx = d. Note that

lengthΓhk ≤ lengthΓfk . Indeed, for every partition x0 = 0 < ⋯ <
xn = b, we have that

(hk(xi) − hk(xi−1))
2 ≤ (fk(xi) − fk(xi−1))

2

for all i = 1,…, n. Hence,

𝒢(vk, hk) = 𝒢k(vk, hk) < 𝒢k(vk, fk),

which is a contradiction. Therefore, for all k sufficiently large

∫
b

0
fk dx < d.

Since
𝒢k(vk, fk) ≤ 𝒢k(u0, h0) = 𝒢(u0, h0) < ∞, (20)

it follows from (18) and (20) that ∫b
0
fk dx → d as k → ∞ and that

supk lengthΓfk < ∞. In turn, by (16), ‖fk‖∞ ≤ c for some constant
c independent of k.

Let k1 be so large that ∫b
0
fk dx > d

2
for all k ≥ k1. Then

tk ∶=
d

∫b
0
fk dx

∈ (0, 2)

and the function hk(x) ∶= tkfk(x), x ∈ (0, b), satisfies

∫
b

0
hk dx = d.

Consider a partition 0 = x0 < ⋯ < xℓ = b. Then

ℓ

∑
i= 1

√(xi − xi−1)2 + (hk(xi) − hk(xi−1))
2

=
ℓ

∑
i= 1

√(xi − xi−1)2 + t2k(fk(xi) − fk(xi−1))
2

≤ tk

ℓ

∑
i= 1

√(xi − xi−1)2 + (fk(xi) − fk(xi−1))
2

≤ tk lengthΓfk ,

where we used the fact that tk > 1. Hence,

lengthΓhk ≤ tk lengthΓfk ,

and so, by (20),

𝛾film lengthΓhk − 𝛾film lengthΓfk
≤ (tk − 1)𝛾film lengthΓfk ≤ (tk − 1)𝒢k(vk, fk)
≤ (tk − 1)𝒢(u0, h0).

We deduce that

𝛾film lengthΓhk ≤ 𝛾film lengthΓfk + (tk − 1)𝒢(u0, h0). (21)

For (x, y′) ∈ Ωhk define

wk(x, y′) ∶= ((vk)1(x,
y′

tk
), 1

tk
(vk)2(x,

y′

tk
)).

By a change of variables and (10), we have

∫
Ωhk

W(E(wk)(x, y′) − E0(y′)) dxdy′

= 1
tk

∫
Ωfk

W( ̃E(vk)(x) − E0(y)) dx,

where ̃E(vk)(x) is the 2 × 2 matrix whose entries are

̃E11(vk)(x) = E11(vk)(x), ̃E12(vk)(x) =
1
tk
E12(vk)(x),

̃E22(vk)(x) =
1

t2k
E22(vk)(x) . (22)

Observe that

(|Ẽ(vk) − E0| + |E(vk) − E0|)|Ẽ(vk) − E(vk)|
≤ c(tk − 1)(|Ẽ(vk) − E0| + |E(vk) − E0|)|E(vk)|
≤ c(tk − 1)(|E(vk)| + |E0|)(|E(vk) − E0| + |E0|)

≤ c(tk − 1)(|E(vk) − E0| + |E0|)
2. (23)

SinceW(E) is a positive definite quadratic form over the 2× 2 sym-
metric matrices (see (11)), we have that

|W(E) −W(E1)| ≤ c(|E| + |E1|)|E − E1|

for all 2 × 2 symmetric matrices E and E1. Hence by (1), (10) and
(23)

∫
Ωhk

W(E(wk)(x, y′) − E0(y′)) dx′ − ∫
Ωfk

W(E(vk)(x) − E0(y)) dx

= 1
tk

∫
Ωfk

[W(Ẽ(vk)(x) − E0(y)) −W(E(vk)(x) − E0(y))] dx

≤ c∫
Ωfk

(|Ẽ(vk) − E0| + |E(vk) − E0|)(|Ẽ(vk) − E(vk)|) dx

≤ c(tk − 1)∫
Ωfk

(|E(vk) − E0| + |E0|)2 dx

≤ c(tk − 1)(𝒢k(vk, fk) + | ̂E0|2) ≤ c(tk − 1)(𝒢(u0, h0) + | ̂E0|2),
(24)

where c depends only on the ellipticity constants of W and
supk ‖fk‖∞. By (20), (21), and (24), we have that

𝒢(u0, h0)

≤ 𝒢(wk, hk) ≤ 𝒢(vk, fk) + (tk − 1)[(c + 1)𝒢(u0, h0) + c| ̂E0|2]

= 𝒢k(vk, fk) + (tk − 1)[(c + 1)𝒢(u0, h0) + c| ̂E0|2]

− k(d − ∫
b

0
fk dx)

= 𝒢k(vk, fk) + (tk − 1)[(c + 1)𝒢(u0, h0) + c| ̂E0|2]

− (tk − 1)k ∫
b

0
fk dx

≤ 𝒢(u0, h0) + (tk − 1)[(c + 1)𝒢(u0, h0) + c| ̂E0|2 − k
d
2
].

Thus, if

k ≥ 2
d
[(c + 1)𝒢(u0, h0) + c| ̂E0|2] + 1,

we get a contradiction, and this completes the proof.
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To prove the regularity of the free boundary we use the follow-
ing internal sphere condition.

Theorem 3 (Internal Sphere’s Condition). Let (u0, h0) ∈ X0 be a
minimizer of the functional 𝒢 defined in (17). Then there exists
r0 > 0 with the property that for every z0 ∈ Γh0 there exists an
open ball B(x0, r0), with B(x0, r0)∩ ((0, b) × ℝ) ⊆ Ωh0, such that

𝜕B(x0, r0) ∩ Γh0 = {z0}.

This result was first proved in a slightly different context by
Chambolle and Larsen [11] (see also [9, 20]). The argument is en-
tirely two-dimensional and its extension to three dimensions is
open.

Remark 4. Note that if 𝝂0 ∈ 𝜕B(0, 1) is the outward unit normal
to B(x0, r0) at z0, then x0 = z0 − r0𝝂0. Thus, the set

Nz0 ∶= {𝝂 ∈ 𝜕B(0, 1) ∶ B(z0− r0𝝂, r0)∩((0, b)×ℝ) ⊆ Ωh0} (25)

is nonempty.

In the next theorem we prove that h0 admits a left and right
derivative at all but countably many points.

Theorem 5 (Left and Right Derivatives of h). Let (u0, h0) ∈ X0 be a
minimizer of the functional 𝒢 defined in (17). Then Γh0 admits a left
and a right tangent at every point z not of the form z = (x, h0(x))
with x ∈ S, where

S ∶= {x ∈ (0, b) ∶ h0(x) < lim inf
t→ x

h0(t)}. (26)

Define
Γcusps ∶= {z ∈ Γh0 ∶ ±e1 ∈ Nz} (27)

and

Γcuts ∶= {(x, y) ∶ x ∈ (0, b)∩ S, h0(x) ≤ y ≤ lim inf
t→ x

h0(t)}, (28)

where Nz is the set defined in (25) and S is the set defined in (26).

Theorem 6 (Cusps and Cuts). Let (u0, h0) ∈ X0 be a minimizer
of the functional 𝒢 defined in (17). Then the sets Γcusps and Γcuts
contain at most finitely many vertical segments.

Remark 7. If −e1 ∈ Nz0, then since B((x0 + r0, y0), r0) ∩ ((0, b) ×
ℝ) ⊆ Ωh0 and h0 is lower semicontinuous, for all x > x0 sufficiently
close to x0, we have that

h0(x) ≥ y0 + √r20 − (x − (x0 + r0))
2,

and so

h0(x) − y0
x − x0

≥ √2r0 − (x − x0)

√x − x0
→ ∞

as x → x+0 . By Theorem 5 it follows that Γh0 admits a right vertical
tangent at z0. Similarly, if e1 ∈ Nz0 then for x < x0, Γh0 admits
a left vertical tangent at z0. In particular, if ±e1 ∈ Nz0 and h0 is
continuous at x0, then

(h0)′−(x0) = −∞, (h0)′+(x0) = ∞. (29)

The next theorem shows that, except for cut and cusp points,
Γh0 is locally Lipschitz.

Theorem 8. Let (u0, h0) ∈ X0 be a minimizer of the functional 𝒢
defined in (17). If z0 ∈ Γh0 ⧵ (Γcuts ∪ Γcusps), then Γh0 is Lipschitz in
a neighborhood of z0.

In order to improve the regularity results for h, we restrict our
attention to the linearly isotropic case in which

W(E) = 1
2
𝜆[tr(E)]2 + 𝜇 tr(E2), (30)

where 𝜆 and 𝜇 are the (constant) Lamé moduli with

𝜇 > 0, 𝜇 + 𝜆 > 0. (31)

Note that in this range, the quadratic form W is coercive. We also
assume that the matrix ̂E0 in (10) takes the form

̂E0 = (
e0 0
0 0

) (32)

for some e0 > 0, which measures the mismatch between the
lattices of the two materials.

Since h0 is now Lipschitz with left and right derivatives at all
but, at most, a finite number of points, we can now obtain classical
decay estimates for the solution u0. In turn, these will exclude
corners in the graph Γh0 of h0.

Theorem 9 (Decay Estimate). Assume (30) and (32). Let (u0, h0) ∈
X0 be a minimizer of the functional 𝒢 defined in (17). Suppose that
Γh0 has a corner at some point z0 ∈ Γh0 ⧵(Γcusps∪Γcuts). Then there
exist a constant c > 0, a radius r0, and an exponent

1

2
< 𝛼 < 1

such that

∫
B(z0, r)∩Ωh0

|∇u0|
2 dx ≤ cr2𝛼 (33)

for all 0 < r < r0.

Using the previous decay estimate, it can be shown that for
(u0,Ω) ∈ X the upper boundary Γh0 is of class C1 away from
Γcusps ∪ Γcuts.

Theorem 10 (C∞ Regularity of Γ). Assume (30) and (32). Let
(u0, h0) ∈ X0 be a minimizer of the functional 𝒢 defined in (17).
Then Γh0 ⧵ (Γcusps ∪ Γcuts) is of class C1.
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Theorem 10 can be significantly improved. Indeed, using an-
other blow-up argument it is possible to show that Γh0 ⧵ (Γcusps ∪
Γcuts) is of class C1,𝛼 for all 0 < 𝛼 < 1

2
. In turn, this implies that

u0 is of class C
1,𝛽 for some 𝛽 > 0 away from the x-axis and from

Γcusps ∪ Γcuts. By a classical bootstrap argument, one can obtain
C∞ regularity and then use results of [34] by Koch, Morini and the
second author to prove analyticity of Γh0 ⧵ (Γcusps ∪ Γcuts) away
from the x-axis. We refer to [20] for more details.

2 Evolution of epitaxially strained elastic films: The 2D case

The evolution of epitaxially strained elastic films depends strongly
on the possible anisotropy of the surface energy density. For this rea-
son, in (17) we replace the isotropic surface energy 𝛾film lengthΓh
by

∫
Γh

𝜓(𝝂) dℋ1,

where 𝜓 ∶ ℝ2 → [0,∞) is a positively one-homogeneous function
of class C2 away from the origin. Also, the mismatch between
the substrate and film crystalline structures is represented by the
Dirichlet condition (see (32))

u(x, 0) = (e0x, 0) for all x ∈ (0, b).

As discussed in the introduction, strong anisotropy of 𝜓 may lead
to the ill-posedness of the evolution law, and thus we add a higher
order regularizing term. To be precise, for 𝜀 > 0 small the energy
under study becomes

ℐ(u, h) ∶= ∫
Ωh

W(E(u)) dx + ∫
Γh

(𝜓(𝝂) + 𝜀
2
k2) dℋ1 , (34)

where k denotes the curvature of Γh and 𝝂 is the outer unit normal
to Ωh.

We consider periodicity conditions. Hence, given a positive
b-periodic function h ∶ ℝ → [0, +∞), with locally finite pointwise
variation, we set

Ω#
h ∶= {x = (x, y) ∶ x ∈ ℝ , 0 < y < h(x)} ,

and
Γ#
h ∶= {x = (x, y) ∶ x ∈ ℝ , y = h(x)} .

Given h ∈ W2,2
♯ ((0, b);ℝ2), where W2,2

♯ ((0, b);ℝ2) is the space
of b periodic functions in W2,2

loc (ℝ;ℝ2), we denote

X#(Ωh;ℝ2)∶= {u ∈ L2loc(Ω#
h;ℝ2) ∶ u(x, y) = u(x+b, y)

for (x, y) ∈ Ω#
h , E(u)|Ωh

∈ L2(Ωh;ℝ2)}

and

Xe0 ∶= {(u, h) ∶ h ∈ W2,2
♯ ((0, b);ℝ2),

u ∈ e0(⋅, 0) + LD#(Ωh;ℝ2) ,

and u(x, 0) = (e0x, 0) for all x ∈ ℝ} .

We next introduce the incremental minimum problems used to
define the discrete time evolutions. This will lead to the existence
of solutions for the evolution equation (40) below via minimizing
movements. Let (u0, h0) ∈ Xe0 be such that

h0 > 0, (35)

and u0 minimizes the elastic energy in Ωh0 among all u with

(u, h0) ∈ Xe0. Given T > 0, N ∈ ℕ, we set ΔT ∶= T

N
. For i = 1,…,N,

we define inductively (ui,N, hi,N) as a solution of the minimum prob-
lem

min{ℐ(u, h)

+ 1
2ΔT ∫

Γhi−1,N

(∫
x

0
(h(𝜁) − hi−1,N(𝜁)) d𝜁)

2

dℋ1(x, y) ∶

(u, h) ∈ Xe0, ‖h′‖∞ ≤ Λ0, ∫
b

0
h dx = ∫

b

0
h0 dx ,

∫
Γhi−1,N

∫
x

0
(h(𝜁) − hi−1,N(𝜁)) d𝜁dℋ1(x, y) = 0}, (36)

where ‖h′0‖∞ < Λ0.
Then for x ∈ ℝ and (i − 1)ΔT ≤ t ≤ iΔT , i = 1,…,N, we set

hN(x, t) ∶= hi−1,N(x) +
1
ΔT (t − (i − 1)ΔT)(hi,N(x) − hi−1,N(x)),

(37)
and we let uN(⋅, t) be the elastic equilibrium corresponding to
hN(⋅, t), i.e., the minimizer of the elastic energy in ΩhN(⋅, t) among
all u such that (hN(⋅, t), u) ∈ Xe0.

We remark the incremental minimum problem can be written
as

min{ℐ(u, h) + 1
2ΔT

‖‖
‖
h − hi−1,N

√1 + h′2i−1,N

‖‖‖
‖

2

H−1(Γi−1,N)
∶ (u, h) ∈ Xe0,

‖h′‖∞ ≤ Λ0, ∫
b

0
h dx = ∫

b

0
h0 dx,

∫
Γhi−1,N

∫
x

0
(h(𝜁) − hi−1,N(𝜁)) d𝜁dℋ1(x, y) = 0}.

We now show that the incremental minimum problem (36) admits
a solution.

Theorem 11. For every i = 1,…,N, the minimum problem (36)
admits a solution (ui,N, hi,N) ∈ Xe0.

Proof. Let {(un, hn)} ⊂ Xe0 be a minimizing sequence for (36).

Since ∫b
0
hn dx = ∫b

0
h0 dx,

sup
n

∫
b

0

(h′′n)2

√1 + (h′n)2
dx < ∞

and ‖h′n‖∞ ≤ Λ0, it follows that ‖hn‖W2,2 ≤ C for some constant
C > 0 and for all n. Then, up to a subsequence (not relabelled),
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we may assume that hn ⇀ h weakly inW2,2
♯ ((0, b);ℝ2), and thus

strongly in C1(ℝ;ℝ2). As a consequence,

∫
Γh

(𝜓(𝝂) + 𝜀
2
k2) dℋ1 ≤ lim inf

n→∞
∫
Γhn

(𝜓(𝝂) + 𝜀
2
k2n) dℋ1, (38)

and

∫
Γhi−1,N

(∫
x

0
(h(𝜁) − hi−1,N(𝜁)) d𝜁)

2
dℋ1

= lim
n→∞

∫
Γhi−1,N

(∫
x

0
(hn(𝜁) − hi−1,N(𝜁)) d𝜁)

2
dℋ1 . (39)

Finally, since supn ∫Ωhn
|E(un)|2 dx < ∞, reasoning as in [20, Propo-

sition 2.2], from the C1 convergence of {hn} to h and Korn’s
inequality we deduce that there exists u ∈ H1

loc(Ω#
h;ℝ2) such

that (u, h) ∈ Xe0 and, up to a subsequence, un ⇀ u weakly in
H1
loc(Ω#

h;ℝ2). Therefore, we have that

∫
Ωh

W(E(u)) dx ≤ lim inf
n→∞

∫
Ωhn

W(E(un)) dx ,

which, together with (38) and (39), allows us to conclude that
(u, h) is a minimizer.

Next, we show that solutions of the discrete time evolution
problems converge to a function h = h(x, t), which is a weak
solution of the following geometric evolution equation,

𝜕h
𝜕t

= [1
J
(𝜀(hxx

J5
)
xx
+ 5𝜀

2
(h

2
xx

J7
hx)

x

+ (𝜓x(−hx, 1))x +W(E(u)))
x
]
x

(40)

for a short time interval [0, T0], where 0 < T0 ≤ T , where T0
depends on (u0, h0). Here J ∶= √1 + (hx)2. Since ‖h′0‖∞ < Λ0, for
all t sufficiently small we have that ‖ 𝜕h

𝜕t
‖∞ < Λ0, and so we are

allowed to take admissible variations of h to obtain (40).

Theorem 12. There exist T0 ∈ (0, T] and C > 0 depending only
(h0, u0) such that:

(i) hN → h in C0,𝛽([0, T0]; C1,𝛼([0, b])) for every 𝛼 ∈ (0, 1
2
),

and 𝛽 ∈ (0, (1 − 2𝛼)/32),
(ii) E(uN(⋅, hN)) → E(u(⋅, h)) in C0,𝛽([0, T0]; C1,𝛼([0, b])) for

every 𝛼 ∈ (0, 1
2
), and 0 ≤ 𝛽 < (1 − 2𝛼)/32, where u(⋅, t) is

the elastic equilibrium in Ωh(⋅, t),

and h is a weak solution to (40) with initial data h0. Moreover,
if 𝜓 ∈ C3(ℝ2 ⧵ {0}) then h(⋅, t) ∈ H5

#(0, b) for almost every
t ∈ [0, T0], and h is the unique solution.

For linearly isotropic energy densities of the form (30), where
𝜆 and 𝜇 satisfy (31), and for sufficiently regular surface energy

densities, we can prove asymptotic stability of the flat configura-
tion hflat ≡ d/b when d is sufficiently small. Consider the Grinfeld
function K defined by

K(y) ∶= max
n∈ℕ

1
n
J(ny), y ≥ 0, (41)

where

J(y) ∶=
y + (3 − 4𝜈p) sinh y cosh y

4(1 − 𝜈p)2 + y2 + (3 − 4𝜈p) sinh2 y
,

and 𝜈p is the Poisson modulus of the elastic material, i.e.,

𝜈p ∶=
𝜆

2(𝜆 + 𝜇) . (42)

It turns out that K is strictly increasing and continuous, K(y) ≤ Cy,
and limy→+∞ K(y) = 1, for some positive constant C.

Theorem 13. Assume that W takes the form (30), where 𝜆 and
𝜇 satisfy (31), and that 𝜓 ∈ C3(ℝ2 ⧵ {0}) satisfies 𝜕2

11𝜓(0, 1) > 0
and

D2𝜓(𝝃)[𝝉, 𝝉] > 0 for all 𝝉 ⟂ 𝝃, 𝝉 ≠ 𝟎

for every 𝝃 ∈ S1. Let dloc ∶ (0,∞) → (0,∞] be defined as

dloc(b) ∶= ∞ if 0 < b ≤ 𝜋

4

(2𝜇+𝜆)𝜕211𝜓(0,1)
e20𝜇(𝜇+𝜆)

, and as the solution

to

K(2𝜋dloc(b)
b

) = 𝜋
4
(2𝜇 + 𝜆)𝜕2

11𝜓(0, 1)
e20𝜇(𝜇 + 𝜆)

1
b

(43)

otherwise. Then, for all d ∈ (0, dloc(b)) the flat configuration
hflat ≡ d/b is asymptotically stable, that is, there exists 𝛿 >
0 such that if h0 ∈ W2,2

♯ ((0, b);ℝ2) with ∫b
0
h0 dx = d and

‖h0 − hflat‖W2,2 ≤ 𝛿, then the solution h to (40) with initial datum
h0 exists for all times and

‖h(⋅, t) − hflat‖W2,2 → 0

as t → ∞.
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