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Interfaces are surfaces that separate two regions of space with
different physical properties: molecule A/molecule B, ice/water,
charges/void, etc. The understanding of their geometric structure
has boosted the development of Nonlinear Elliptic PDEs during
the second half of the 20th century, and continues to do so at the
beginning of the 21st.

1 Background: Minimal surfaces

Plateau’s problem. Given a curve in ℝ3, is there a surface with
minimal area having this curve as boundary? This question, raised
by Joseph-Louis Lagrange in 1760, is one of the most classical and
influential problems in the Calculus of Variations. It is known as
Plateau’s problem, after the 19th century Belgian physicist Plateau,
who experimented with soap films. Due to surface tension, soap
films provide natural examples of area minimizing surfaces.

In 1930, Douglas and Radó gave the first solutions of Plateau’s
problem in the context of immersions. Later, other notions of solu-
tion were proposed by De Giorgi, Federer and Fleming, Reifenberg,
and Almgren, among others. Heuristically, the weaker a notion
of solution is, the easier it becomes to prove its existence. But
solutions of Plateau’s problem fail to be unique, so how can we
be sure of not finding spurious solutions? Are all weak solutions
“genuine” ones? Regularity theory gives detailed answers to this
sort of question.

The regularity theory of area minimizing hypersurfaces. Let
Ω ⊂ ℝn be some bounded domain, n ≥ 2. We say that a hyper-
surface1 S ⊂ ℝn is area minimizing2 in Ω if the following holds:

• The boundary of S ∩Ω is contained in 𝜕Ω.
• For every hypersurface S′ such that the boundaries of S′∩Ω and

of S ∩Ω coincide, we have area(S′ ∩Ω) ≥ area(S ∩Ω).

Throughout the 20th century, many outstanding geometers and
analysts worked on the following question: Are area minimizing
hypersurfaces smooth, or might they have “singularities”? They ar-
rived at a detailed and complete answer which can be summarized
as follows:

(i) Any area minimizing hypersurface is smooth (analytic) in di-
mensions n ≤ 7 (Fleming [24], De Giorgi [14, 15], Almgren
[2], and Simons [40]).

(ii) In dimensions n ≥ 8 the Simons cone {x21 + x22 + x23 + x24 =
x25 + x26 + x27 + x28} ⊂ ℝn is an example of area minimizing hy-
persurface with a (n − 8)-dimensional singular set (Bombieri,
De Giorgi, and Giusti [7]).

(iii) In dimensions n ≥ 8 area minimizing hypersurfaces are
smooth (analytic) outside of a closed singular set of Hausdorff
dimension ≤ n − 8 (Federer [19]).

The earlier regularity theory, together with Almgren’s [3] prodi-
gious extension of it to m-surfaces in ℝn with 2 ≤ m ≤ n − 2,
inspired several other theories for geometric variational problems,
interfaces, and free boundaries. We will refer to it a few times in
what follows.

Stable minimal surfaces. Consider a soap film between two par-
allel circles of diameter 1, at small distance. We obtain a catenoid
as in the left picture of Figure 1. When the separation (distance)
between the two circles is small, the catenoid is an area mini-
mizing surface. However, as we separate the circles more and
more, we will reach a first critical separation, after which the
area of the catenoid will be greater than 2𝜋. Now the catenoidal
soap films are no longer minimizers of the area (two flat disks
joined with a thin neck would outperform them) but this does
not cause any instability. Then, if we continue separating the
circles, we reach a second critical separation, after which the
soap film breaks into two disconnected disks, as shown in Fig-
ure 1.

1 (n − 1)-dimensional surface.
2 This is an intentionally imprecise notion: more rigorously, S can be the boundary of a set of minimal perimeter, or a mass minimizing integer rectifiable current.
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Figure 1. Unstabilizing a soap-film catenoid: Pictures from [25], reproduced with the authors’ authorization

What happens between the two critical separations? The an-
swer is given by the notion of stable minimal surface: although
these catenoids are not “absolute” minimizers of the area, they
still have a lesser area than any small variation of them. And this is
enough to stabilize them.

As the previous example shows, not only energyminimizers are
found in nature. Also stable solutions, i.e., those outperforming
any small perturbation of them, are of physical interest. How-
ever, for Plateau’s problem, as well as for several other important
non-convex variational problems, fundamental questions that are
well-understood in the case of minimizers remain completely open
in the case of stable solutions. We next give a concrete example
that will motivate some of our results described later.

A priori curvature bounds. The nowadays standard regularity
theory for area minimizers – see (i) above – implies the following:

Theorem 1. Let n ≤ 7 and S ⊂ ℝn be an area minimizing hyper-
surface in the unit ball B1 ⊂ ℝn. Then the curvatures of S inside
the half ball B1/2 are bounded by dimensional constants.

It has long been conjectured3 that

Conjecture 2. Theorem 1 holds replacing “area minimizing hyper-
surface” by “stable minimal hypersurface”.

By a simple (though clever) scaling and compactness argument
of White (see [44]), Conjecture 2 is equivalent to

Conjecture 3. Let n ≤ 7 and S ⊂ ℝn be a connected, complete,
stable minimal hypersurface. Then S is an hyperplane.

The previous conjectures have been proved only in the case
n = 3 (surfaces in ℝ3); the earliest proofs date from the 1970’s,

see [12]. But, unfortunately, their beautiful and relatively short
proofs are extremely specific to the case of minimal surfaces in ℝ3:
they cannot be extended to higher dimensions, nor even to other
interface models in ℝ3 which are very similar to minimal surfaces.

2 Interfaces in phase transitions

The Allen–Cahn equation. Consider a binary fluid, i.e., a mixture
containing two types of molecule: A and B (like oil and water).
In many cases, these molecules have an energetic preference to
be surrounded by others of their same kind. It undergoes phase
separation into A-rich and B-rich regions.

Phase transition and phase separation phenomena – such as
the previous one – are modelled by means of the scalar Ginzburg–
Landau energy:

J𝜀(v) ∶=
ż

Ω
( 1

2
|∇v| + 1

4𝜀2
W(v)) dx, 𝜀 > 0,

defined on scalar fields v ∶ Ω → [−1, 1], where Ω ⊂ ℝn. Here
W(v) is a so-called double-well potential with “wells” (i.e., minima)
at ±1. Typically one takes W(v) = (1 − v2)2.

Scalar fields u𝜀 ∶ ℝn → [−1, 1] satisfying
d
dt

|
|t = 0

J𝜀(u𝜀 + t𝜉) = 0

for all 𝜉 ∈ C∞
c (Ω) are called critical points (in Ω) of J𝜀. They solve

the Allen–Cahn equation: −Δu𝜀 =
1

𝜀2
(u𝜀 − u3𝜀). A critical point u𝜀 is

called a minimizer (in Ω) if J𝜀(u𝜀 + 𝜑) ≥ J𝜀(u𝜀), for all 𝜑 ∈ C∞
c (Ω).

Let us come back to the binary fluid example to see how the
scalar fields u𝜀 encode A-rich and B-rich regions. The idea is to inter-
pret

1

2
(u𝜀(x)+1), a number in the interval [0, 1], as the relative den-

sity of molecules of type A at x. In other words, u𝜀(x) ∈ (0.99, 1]
means that x belongs to a A-rich region while u𝜀(x) ∈ [−1, −0.99)
means that x belongs to a B-rich region.

3 In the case n = 4 this is Schoen’s conjecture (see [12, Chapter 2]).
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When the parameter 𝜀 > 0 is small the potential
1

4𝜀2
W(v)

strongly penalizes intermediate states v ∈ (−0.99, 0.99) and the
space essentially splits into two regions, {u𝜀 > 0.99} (A-rich re-
gion) and {u𝜀 < −0, 99} (B-rich region), which are separated by an
interface {|u𝜀| < 0.99} (mixture of both molecules). The interface is
a “fat surface” of thickness ≤ C𝜀. On the other hand, the Dirichlet
term of the energy

ş

ℝn

1

2
|∇v|2 makes transitions between ±0.99

costly, so interfaces are energetically expensive.
The zero level set {u𝜀 = 0} can be thought as the surface which

best approximates the interface {|u𝜀| < 0.99}.
An important family of explicit solutions to the Allen–Cahn

equation is given by

Ue,b
𝜀 (x) = tanh(e ⋅ x − b

‘

2 𝜀
), (2.1)

where e ∈ 𝕊n−1 and b ∈ ℝ. Via a calibration argument [4], one
can see that Ue,b

𝜀 are minimizers of J𝜀 in all of ℝn.

Connection with minimal surfaces. By the results in [10, 30], if
u𝜀k is a sequence of minimizers of J𝜀k , then the surfaces {u𝜀k = 0}
converge locally uniformly4, as 𝜀k → 0, towards area minimizing
hypersurfaces.

It is then natural to ask if the surfaces {u𝜀 = 0} inherit the
regularity properties of the area minimizing hypersurfaces to which
they converge. In other words:

Is {u𝜀 = 0} smooth in dimensions n ≤ 7, with robust estimates as
𝜀 → 0?

This delicate question is nowadays completely understood in the
case of energy minimizers. Indeed, Savin established in 2009 the
following celebrated result.

Theorem 4 ([36]). Assume that n ≤ 7. Let u𝜀 be a minimizer of
J𝜀 in B1 ⊂ ℝn with u𝜀(0) = 0. Then {u𝜀 = 0} ∩ B1/2 is a C1,𝛼

hypersurface, with robust estimates as 𝜀 ↓ 0.

A “famous” consequence of Theorem 1 and scaling is that any
minimizer of J1 in all of ℝn must be either ±1 or of the form (2.1)
with 𝜀 = 1.

Combining Savin’s result with the recent C2,𝛼 estimates of
Wang and Wei [42] we obtain:

Theorem 5 ([36,42]). Assume that n ≤ 7. Let u𝜀 be a minimizer
of J𝜀 in B1 ⊂ ℝn with u𝜀(0) = 0. Then, the curvatures of the
hypersurface {u𝜀 = 0} are bounded by dimensional constants in
B1/2.

Conjectures on stable solutions. As in the case of soap films, it is
very natural to ask:

Does Theorem 5 hold when “minimizer” is replaced by “stable
critical point” (i.e., minimizer among small perturbations)?

Like for minimal surfaces, thanks to the striking results from
[42], the previous question can be reduced to the following long-
standing

Conjecture 6. Assume that n ≤ 7. Let u be a stable critical point
of J1 in the whole space ℝn different from ±1. Then u must be of
the form (2.1) with 𝜀 = 1.

Even in the case of ℝ3, Conjecture 6 is a very challenging and
completely open problem (although the analogous result for mini-
mal surfaces in ℝ3 is known, its very rigid proof does not generalize
to stable critical points of J𝜀). The case of n = 2, which is already
nontrivial, was proven by Ambrosio and Cabré [4] in 2000.

Interestingly, Conjecture 6 is known to imply a famous
1979 conjecture of De Giorgi [16]: for all n ≤ 8 (one dimension
more than before) any solution of the Allen–Cahn equation in the
whole space ℝn satisfying 𝜕xnu > 0must be of the form (2.1), with
𝜀 = 1 and e ⋅ en > 0.

“Counterexamples” to Theorem 5 and Conjecture 6 for n ≥ 8,
and to De Giorgi’s conjecture for n ≥ 9 were obtained – via very
delicate and involved constructions – in [17,29].

The Peierls–Nabarro equation. Introduced in the early 1940’s
in the context of crystal dislocations [32,33], the Peierls–Nabarro
equation also models phase transitions with line-tension effects [1]
and boundary vortices in thin magnetic films [27]. It concerns the
energy functional

I𝜀(v) ∶=
ĳ

ℝn×ℝn

|
|v(x) − v( ̄x)

|
|
2

|x − ̄x|n+1 dx d ̄x +1𝜀

ż

ℝn

W(v) dx .

As in the previous section, v ∶ ℝn → [−1, 1] is a scalar field and
W(v) is a double-well potential.

In this context a natural double-well potential is W(v) ∶=
1+ cos(𝜋v), and for this choice ofW an explicit family of solutions
is given by

Ue,b
𝜀 (x) = 2

𝜋arctan(
e ⋅ x − b

𝜀 ). (2.2)

The two functionals J𝜀 and I𝜀 behave similarly, and there is an al-
most perfect parallel between their interface regularity theories.
To start with, by [1, 38], if u𝜀k is a sequence of minimizers of I𝜀k
then the interfaces {u𝜀k = 0} converge locally uniformly as 𝜀k → 0
towards area minimizing hypersurfaces, just as they do for J𝜀.

In this context the analogue of Theorem 4 – i.e., a local C1,𝛼

estimate for {u𝜀 = 0} in the case of energy minimizers – was
obtained in [37], also by Savin, using similar techniques.

Given the parallel between J𝜀 and I𝜀, it is conjectured that for
3 ≤ n ≤ 7 all stable critical points of I1 in the whole space ℝn must

4 In the sense of the Hausdorff distance and up to subsequences.
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be of the form (2.2) with 𝜀 = 1 (in other words that the analogue
of Conjecture 6 replacing J𝜀 by I𝜀 holds).

While Conjecture 6 (for J𝜀 ) remains completely open in dimen-
sions 3 ≤ n ≤ 7, Figalli and the author [23] were able to establish
it for I𝜀 in dimension n = 3.

Theorem 7 ([23]). Let u be a stable critical point of I1 in the whole
space ℝ3. Then u must be of the form (2.2) with 𝜀 = 1.

This result finally broke the parallel of known results for J𝜀 and
I𝜀, in favour of I𝜀. Its proof exploits the “long-range interactions”
from the term

ĳ

ℝn×ℝn

|u(x) − u( ̄x)|2
|x − ̄x|n+1 dx d ̄x,

borrowing ideas from a paper of Cinti, the author, and
Valdinoci [11] on nonlocal minimal surfaces.

3 The obstacle problem and Stefan’s problem

Pushing an elastic membrane with an obstacle. Given some
smooth domain Ω ⊂ ℝn, 𝜑 ∶ Ω → ℝ and g ∶ 𝜕Ω → ℝ, both
smooth and satisfying g ≥ 𝜑|𝜕Ω, consider the convex minimization
problem

min{
ż

Ω
|∇v|2dx ∶ v ≥ 𝜑, v = g on 𝜕Ω}.

For n = 2, one can think of x3 = v(x1, x2) as the equilibrium posi-
tion of an elastic membrane whose boundary is held fixed while it
is pushed from below by an obstacle (the hypograph of 𝜑).

The function u ∶= v − 𝜑 ≥ 0 can be shown to satisfy
Δu = (−Δ𝜑)𝜒{u> 0} inΩ. In the “model case”Δ𝜑 ≡ −1 one obtains

u ≥ 0, Δu = 𝜒{u> 0} in Ω. (3.1)

In other words, the domain Ω is split into two subdomains {u > 0}
and {u = 0} and inside the first one we have Δu = 1. The un-
known interface between the two subdomains, denoted 𝜕{u > 0},
is called the free boundary. Since u must satisfy (3.1) (in the sense
of distributions) in Ω, not only u but also |∇u| must vanish continu-
ously on 𝜕{u > 0}. In this “double constraint” (3.1) encodes the
geometric information about the free boundary.

As an interesting fact, solutions u of (3.1) minimize the follow-
ing convex energy functional:

ż

Ω
( 1

2
|∇u|2 +max(0, u)) dx. (3.2)

A potential theoretic motivation of the obstacle problem. Imag-
ine a cloud made of a very large number of identical point charges
in ℝ3. They interact through the standard Coulomb potential, re-
pelling each other. In absence of external forces the cloud would
expand indefinitely, but inside some exterior potential the cloud
will reach an equilibrium, occupying only a bounded region of the
space. This motivates the introduction of the so-called (Frostman)
equilibrium measure for Coulomb interactions with an external
“field” V (growing at infinity), defined as the unique probability
measure 𝜇 on ℝ3 which minimizes

ĳ

ℝ3×ℝ3

1
|x − y|d𝜇(x) d𝜇(y) +

ż

ℝn

V(x)d𝜇(x). (3.3)

Denoting by v(x) ∶=
ş

ℝ3

d𝜇(y)
|x−y|

the potential generated by 𝜇, the
equilibrium measure 𝜇 is compactly supported and uniquely charac-
terized by the fact that there exists a constant c such that v ≥ c − V

2
in ℝ3 and v = c − V

2
on the support of 𝜇. In other words u solves

the obstacle problem in the whole space with obstacle 𝜑 = c − V

2
.

Ice melting in water. Dating back to the 19th century, Stefan’s
problem [41] aims to describe the temperature distribution in a
homogeneous medium undergoing a phase change, typically a
body of ice at zero degrees centigrade submerged in water.

Its most classical formulation is as follows: let Ω ⊂ ℝ3 be some
bounded domain, and let 𝜃 = 𝜃(x, t) denote the temperature of
the water at the point x ∈ Ω at time t ∈ ℝ+ ∶= [0, +∞). We
assume that 𝜃 ≡ 0 on the ice and 𝜃 > 0 in the water. The tem-
perature satisfies the heat equation 𝜕t𝜃 = Δ𝜃 inside the water
{𝜃 > 0} and the Stefan condition5 𝜕t𝜃 = c|∇𝜃|2 on the inter-
face 𝜕{𝜃 > 0}.

Baiocchi and Duvaut [5, 18] introduced the transformation
u(x, t) ∶=

şt

0
𝜃(x, 𝜏)d𝜏 and showed that the new scalar field u

satisfies6

u ≥ 0, 𝜕tu ≥ 0, and (Δ − 𝜕t)u = 𝜒{u> 0}. (3.4)

In addition, by definition of u we have {u > 0} ≡ {𝜃 > 0} and

𝜕tu > 0 inside {u > 0}. (3.5)

Interestingly, the evolution (3.4) is the gradient flow of the convex
functional (3.2). Thanks to this convex structure, some basic ques-
tions such as existence and well-posedness of Stefan’s problem
– which would be very non-obvious in the original formulation –
can be shown via standard Functional Analysis methods.

Other motivations. Stefan’s and obstacle problems have other
well-known applications in physics, biology, or financial mathemat-
ics. Some examples are: the dam problem, the Hele–Shaw flow,

5 The normal velocity V⃗ of 𝜕{𝜃 > 0} is proportional to the flux of heat (which is used to melt the ice). By Fourier’s law this flux is proportional to the gradient of
temperature, hence V⃗ = −c∇𝜃. But, since 𝜃 ≡ 0 on the moving interface we obtain 𝜕t𝜃 + V⃗ ⋅ ∇𝜃 = 0 on 𝜕{𝜃 > 0}, from which Stefan’s condition follows.

6 Near points that were inside the ice at initial time and for c = 1.
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pricing of American options, quadrature domains, randommatrices,
etc.

Regularity of free boundaries: Main questions and difficulties.
Any solution u of (3.4) can be shown to be of class C1,1 in space
and C0,1 in time. This regularity is optimal because the right hand
side 𝜒{u> 0} in (3.4) forces (Δ − 𝜕t)u to be discontinuous across
𝜕{u > 0}.

The most interesting regularity questions concern the free
boundary 𝜕{u > 0}:

• Is the free boundary a smooth hypersurface, or may it have
singularities?

• If the singular set is nonempty, how “large” can it be?

Classical examples by Lévy and Schaeffer (some known from be-
fore the 1970’s) show that solutions of the obstacle problem with
non-smooth free boundaries exist already in the smallest nontrivial
dimension n = 2; see [26]. Hence, any positive regularity result on
the free boundary must be “conditional”.

It was not until 1977, with the groundbreaking paper of Caf-
farelli [8], that a regularity theory for the free boundaries of so-
lutions of (3.4) was established. Since (3.1) is a particular case
of (3.4) – that of constant in time solutions – Caffarelli’s results
apply at the same time to both the obstacle problem and Stefan’s
problem.

Caffarelli’s breakthrough. The approach of Caffarelli to the regu-
larity of free boundaries of (3.4) – or of (3.1) – has some similarities
with the regularity theory of area minimizing hypersurfaces de-
scribed in Section 1. In Caffarelli’s regularity theory (as in minimal
surfaces) blow-ups are very important actors. Informally speaking,
one looks at the free boundary through a microscope, and then
tries to infer its “macroscopic properties” from its “microscopic”
ones.

For (3.4) the scaling of the problem suggests considering, for
given (x∘, t∘) ∈ 𝜕{u > 0} and r > 0,

ux∘, t∘, r(x, t) ∶= 1
r2
u(x∘ + rx, t∘ + r2t).

It is easy to see that ux∘, t∘, r is again a solution of (3.4). Blow-ups
are defined as accumulation points of ux∘, t∘, r as r ↓ 0.

The main results from [8] (combined with [26], [9] and [6]) can
be summarized as follows:

Theorem 8. LetΩ ⊂ ℝn×ℝ and u ∶ Ω → ℝ be a solution of (3.4).
For every (x∘, t∘) belonging to the free boundary 𝜕{u > 0} one of
the following two alternatives holds:

(a) ux∘, t∘, r → 1

2
(max(0, e ⋅ x))2 as r ↓ 0, for some e ∈ 𝕊n−1; and

the free boundary is a (moving) analytic embedded (n − 1)-
surface near (x∘, t∘).

(b) ux∘, t∘, r → 1

2
x ⋅ Ax as r ↓ 0, for some nonnegative definite

matrix A with trace equal to 1; and the free boundary has a
singularity7 at (x∘, t∘).

Further known results on singular points. After the results of
Caffarelli [8], a natural question is: what else can be said about
singular points?

For the obstacle problem (3.1) in dimension n = 2, Sakai [34,35]
used methods in complex analysis to give an extremely accurate
description of the possible singularities. In particular, the results
of Sakai imply that at every singular free boundary point x∘ of a
solution of (3.1) in ℝ2 we have

u(x∘ + x) = 1

2
x ⋅ Ax + 𝜔(x). (3.6)

with |𝜔(x)| ≤ C|x|3. This significantly improved the qualitative de-
scription of Theorem 8(b), which is equivalent to 𝜔(x) = o(|x|2),
and entailed some interesting consequences. Unfortunately, Sakai’s
complex analysis methods cannot work in higher dimensions, nor
for Stefan’s problem (not even for n = 2). Thus, improving Caf-
farelli’s result for (3.1) in dimensions n ≥ 3 required new ideas.

Understanding singularities better. The first new result in this
direction for n ≥ 3 was established by Colombo, Spolaor, and
Velichkov in 2017 [13]. By improving and refining the methods of
Weiss [43], they proved that at every singular point, the expan-
sion (3.6) holds with explicit logarithmic modulus of continuity
|𝜔(x)| ≤ C|x|2(log |x|)−𝛾, where 𝛾 > 0. Independently and with dif-
ferent methods, Figalli and the author proved in [22] the following:

Theorem 9 ([22]). Let u be a solution of the obstacle problem (3.1)
with Ω ⊂ ℝn. For all singular points outside some “anomalous”
set of Hausdorff dimension ≤ n−3, (3.6) holds with |𝜔(x)| ≤ C|x|3.
Moreover, there exist examples in ℝ3 of isolated singular points
for which |𝜔(x)| ≫ |x|2+𝜀 as |x| → 0 for all 𝜀 > 0.

The previous theorem suggests, for one thing, that we may
be able to give a very precise quantitative description of most sin-
gularities. However, the existence – already in ℝ3 – of singular
points for which |𝜔(x)| ≫ |x|2+𝜀 for all 𝜀 > 0 tells us that we can-
not hope for some analytic structure of singularities as in Sakai’s
result for ℝ2: in higher dimensions some singularities may be very
complicated.

Another insightful result from [22] is that, for all singular points
outside some (n − 2)-dimensional set we have, after rotation, the

7 For the evolutionary problem (3.4) singularities are associated to changes of topology of the ice {u = 0}. For instance, the ice may develop a very thin shrinking neck
which eventually breaks into two pieces after producing a singular point.
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improved expansion u(x∘ + x) = 1

2
x2n + xnQ(x) + o(|x|3), where Q

is some quadratic polynomial satisfying Δ(xnQ) = 0. This invites us
to investigate higher order expansions that hold at most singular
points (although proving this turned out to be quite a delicate task,
and the tools needed to complete it were only developed later
in [20]).

It is interesting to notice that the methods introduced in [22]
for the obstacle problem are closely connected with Almgren’s
regularity theory [3] for mass minimizing m-surfaces in ℝn with
n ≥ m + 2. In particular, Almgren’s frequency formula plays an
important (and unexpected) role.

The size of the singular set. An important consequence of The-
orem 8 is that, in both the obstacle and Stefan’s problems, the
singular sets enjoy spatial C1-regularity, in the sense that they can
be covered by (n − 1)-manifolds of class C1 (see [6,9]). Note, how-
ever, that this is not a very useful piece of information on the size
of the singular set, since the regular part of the free boundary is
also (n − 1)-dimensional and thus, a priori, the singular part could
be as large as the regular one.

As explained above, Theorem 8 applies at the same time to
both the obstacle problem and Stefan’s problem, since (3.1) is a
particular case of (3.4). However, when we seek to obtain improved
bounds on the size of their singular sets, the two problems need
to be treated in completely different ways. On the one hand, in
Stefan problem it is natural to try to exploit (3.5) – which was not
used in Caffarelli’s theory – and to ask if the free boundary is free of
singularities most of the time. On the other hand, for the stationary
problem (3.1), the previous evolutionary point of view makes no
sense. In the absence of time, the only thing one can hope to prove
is that for “generic” boundary values, solutions of (3.1) do not have
singular points. This is actually something that has been expected
to be true since the 1970’s [39]:

Conjecture 10 (Schaeffer, 1974). Generically, solutions of the ob-
stacle problem have smooth free boundaries.

Until recently Conjecture 10 was only known to hold in the
plane ℝ2 (see [31]).

Generic regularity for the obstacle problem. Building on themeth-
ods initiated in [22] we were recently able to obtain a positive
answer to Schaeffer’s conjecture in low dimensions:

Theorem 11 ([20]). Conjecture 10 holds in ℝ3 and ℝ4.

Our strategy towards this theorem is reminiscent of Sard’s the-
orem in analysis. By adding 𝜏 ∈ ℝ to the boundary values we

produce a monotone 1-parameter family of solutions. We then
prove that the set of “singular values” of 𝜏 has measure zero by
improving the order of approximation of certain polynomial ex-
pansions at most singular points. This is a long and delicate proof
because the singular sets need to be split into several different
strata, and in each of them the corresponding singular values have
measure zero for very different reasons.

The singular set in Stefan’s problem. As said above, in order to
investigate the size of the singular set in Stefan’s problem, we
will use (3.5). In particular, from now on solutions will never be
stationary.

FixΩ ⊂ ℝn×ℝ and let u ∶ Ω → ℝ be a solution of (3.4)–(3.5). It
will be useful to define the spatial and time projections 𝜋x(x, t) ∶= x
and 𝜋t(x, t) = t.

Let us denote by Σ ⊂ ℝn ×ℝ the set of all singular free bound-
ary points of u.

Caffarelli’s regularity theory implies (see [6,9]) that every “time
slice” of Σ∩𝜋−1

t ({t∘}) can be locally covered by (n− 1)-manifolds
of class C1. This may not seem like a very strong piece of informa-
tion, since the regular part of the free boundary is also (n − 1)-
dimensional. However, it is not difficult to construct solutions of
(3.4)–(3.5) with rotational symmetry u(x, t) = U(|x|, t) such that
for countably many times ti the time slice Σ ∩ 𝜋−1

t ({ti}) contains
some (n − 1)-sphere 𝜕BRi(0) × {ti}.

The previous examples show that even for countably many
times, the singular set can have positive (n − 1)-dimensional mea-
sure. At those times, the singular set is as large as the regular
part of the free boundary. Still, inspection of explicit examples
suggests that Σ should be smaller in some sense than the regular
part of the free boundary, perhaps as a subset of the “space-time”
ℝn × ℝ.

Until recently, the best results available in this direction, such
as [28], could not even rule out Σ ∩ 𝜋−1

t ({t∘}) being (n − 1)-
dimensional for every time t∘!

In the forthcoming article [21], we are able to prove a much
stronger result, which gives a precise structure and sharp dimen-
sional bounds on the singular set of Stefan’s problem.

Theorem 12 ([21]). There exist Σ∞ ⊂ Σ such that the following
holds:

(i) dimpar(Σ ⧵ Σ∞) ≤ n − 2, where dimpar denotes the parabolic
Hausdorff dimension;8

(ii) 𝜋x(Σ∞) ⊂ ℝn can be covered by countably many C∞ (n−1)-
manifolds;

(iii) 𝜋t(Σ∞) ⊂ ℝn has zero Hausdorff dimension.

8 For E ⊂ ℝn × ℝ and 𝛽 ≥ 0, we say that dimpar(E) ≤ 𝛽 if, for all 𝛽′ > 𝛽 , E can be covered by countably many parabolic cylinders Bri(xi) × (ti − r2, ti + r2i ) making
∑i r

𝛽′

i arbitrarily small. This notion of Hausdorff dimension is well-adapted to the parabolic scaling (rx, r2t) under which (3.4) is invariant.
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This is a very precise result. Recall that in radial examples the
singular set can contain some (n−1)-sphere countably many times.
Such spheres would be covered by the set Σ∞ in Theorem 12. Now,
we cannot prove that in general 𝜋t(Σ∞) is countable as it is in
such examples, but we do show that it is a 0-dimensional set (and
Hausdorff dimension cannot distinguish between countable and 0-
dimensional sets, so the result is sharp in this sense). However, the
complement of Σ∞ inside Σ is a set of “bad” singular points. These
“bad” points do not a priori enjoy any extra spatial regularity, but
in exchange they are lower-dimensional: their parabolic Hausdorff
dimension is bounded by n − 2. This bound is also optimal, as can
be shown by considering any radial solution in ℝ2 with a singular
point at (0, 0).

An important consequence of Theorem 12 is the following:

Corollary 13 ([21]). The set of singular times for Stefan’s problem
in ℝ3 has Hausdorff dimension at most 1/2. In particular, it has
measure zero.

Also, Theorem 12 implies that in ℝ2 the set of singular times
for Stefan’s problem has zero Hausdorff dimension (prior to our
results it was not even known that in ℝ2 the set of singular times
had measure zero).
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