
At the crossroads of simulation and data analytics

Patrice Hauret

For more than three years, the EU-MATHS-IN Industrial Core Team¹
has been developing transverse influences to advertise the role of
Digital Twins at the service of European industry, as a key enabler
for advanced products and connected services. Digital Twins has
also spread to growing areas like health and climate monitoring.
Behind this buzzword, the complementarity of first principle mod-
elling and data analytics plays an instrumental role. In the present
article, we depict the context and the opportunities, the European
environment with its funded programs, some open software plat-
forms, and most importantly a mathematical toolbox to address
the underlying challenges, all of which testify to the tremendous
vitality of this field.

1 Introduction

When identifying, within EU-MATHS-IN, a subject that would rally
a majority of companies, from banks to aeronautics, from the
health sector to the need of renewal in the energy business, Digital
Twins emerged as a rather natural choice [17].

The concept was first created by NASA. Throughout its entire
life cycle, a product or process can be accompanied by a virtual
representation, called its Digital Twin. Digital Twins allow novel
digital assistance for design optimisation, process control, life-
cycle management, predictive maintenance, or risk analysis. Digital
Twins have become so important to business today that they
were identified as one of Gartner’s Top 10 Strategic Technology
Trends [18,27,47]. They are becoming a business imperative, cov-
ering the entire lifecycle of an asset or process and forming the
foundation for connected products and services. New business op-
portunities will emerge, benefitting from the cooperation between
large companies, SMEs, startups and academia. To turn this vision
into reality, novel mathematical and computer science technologies
are required to describe, structure, integrate and interpret across
many engineering disciplines.

¹ ATOS, Bosch, Dassault Aviation, EcoMT, EY, Michelin, NORS Group,
Shell, Siemens

Supporting this development requires a combination of efforts.
High fidelity modelling is key to account for multi-physics and multi-
scale systems, and to identify new design levers at the smallest
scales. It is often derived from first principle approaches and relies
on the power provided by High Performance Computing to deliver
the expected prediction in a reasonable time frame. On the other
hand, reduced order modelling must provide real-time estimates
to enable system optimisation, or in combination with statistical
learning to achieve efficient modelling compliant with available
data in real time during operation. An example of that kind of need
is given by autonomous transport. In particular, corresponding solu-
tions must be realised on the edge to provide sufficiently fast and
robust interactions with the real process. The fields of application
are growing rapidly in the health sector (e.g., www.digitwin.org)
and in climate monitoring [3].

Key to digital twinning is a joint use of data and first principle
approaches. In the frequent cases where large amounts of data
prove not to be available, this complementarity makes it possible to
realise Smart Data concepts, fostering the efficiency and the robust-
ness of predictions and enabling the quantification of associated
uncertainties and risks.

The economic impact of related applications is estimated to
cover a worldwide market of 90 billion euros per year by 2025.
These opportunities are clearly reinforced by the high concentration
of simulation firms in Europe, the highest in the world. Europe also
benefits from a long-standing proficiency in mathematics. Several
reports [11,14,15] have additionally shown the economic impact
of mathematical sciences in the US, the Netherlands and France.
Furthermore, US studies [41] in the past have also highlighted the
European strength in the field.

This being said, the combined use of statistical learning and
first principle modelling is not new. Model calibration is an old
topic. The Kalman filter lay at the core of space conquest, and has
been essential in the efficient control of remote systems. There
remain, however, several challenges for achieving a clever way of
combining simulation methods for complex systems, data collec-
tion, correction procedures and uncertainty quantification. Besides
this, Digital Twins are expected to become self-learning objects
that can actually provide guidance and high level services in op-
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eration, digesting sensor data with the help of reduced models.
A significant part of these ambitions relies on a set of mathematical
methods as well as integrated environments.

2 A favourable environment

2.1 European Commission Programs
Horizon Europe² is a Research and Innovation funding program
that is in place until 2027, with a total budget of 95.5 billion euros.
Its three pillars are (I) Excellent Science, (II) Global Challenges and
European Industrial Competitiveness, (III) Innovative Europe. The
European Research Council (President: J.-P. Bourguignon) supports
pillar I, while the DG Connect Directorate (Dir: K. Rouhana) spe-
cifically supports the present topic, as well as High Performance or
Quantum Computing, as part of pillar II. Calls are the mechanisms
through which individual projects get funded.

Of key importance is the EuroHPC Joint Undertaking. This is
a joint initiative between the EU, European countries and private
partners to develop a World Class Supercomputing Ecosystem in
Europe. The initiative has two major partners onboard: ETP4HPC
and the Big Data Value Association, which reflects the ambition to
establish synergies between highly accurate simulations and data
analytics. It is also oriented towards large companies and SMEs,
in order to boost innovation potential and competitiveness, while
widening the use of HPC in Europe. EU-MATHS-IN is involved in the
TransContinuum Initiative, as a binding effort between ETP4HPC
and BDVA, and contributes to a Strategic Research Agenda co-
ordinated by Zoltán Horváth.

2.2 Some open platforms and funded projects
Open software enables new actors including SMEs, potentially with
the help of a proper knowledgeable accompaniment, to access
highly technological solutions, develop new ideas and start new
businesses depending on associated exploitation rights. It clearly
shifts development effort from low-value work to value creation.
Open platforms can also act as binding environments to interface
commercial products with clear added value. Sharing software
components between academia and industry may be a way to
reinforce the European momentum on the development of new
mathematical algorithms in order to, e.g., take advantage of new
European HPC architectures or data-simulation hybridation. The
development of better interoperability is expected to accelerate
innovation and boost European leadership.

² ec.europa.eu/info/horizon-europe_en

Open software has been developed ranging from simulation
tools to data analysis with applications like mechanics or biology.
Furthermore, it has clearly evolved to provide integrated envir-
onments, especially relying on Python interfacing which is a key
element to foster collaboration, to integrate various expertises and
to make content widely accessible. Let us mention here two pro-
jects supported by the European Community that clearly support
this ambition.

MSO4SC
Societal challenges are increasing in complexity, and contribut-
ing to their resolution requires a holistic approach. It is necessary
to provide decision-makers with tools that allow long-term risk
analysis, improvements or even optimisation and control. One of
the key technologies in this process is the use of mathematical
Modelling, Simulation and Optimisation (MSO) methods, which
have proven to be effective tools for solving problems such as
the realistic prediction of wind fields, solar radiation, air pollu-
tion and forest fires, prediction of climate change, improving the
filtration process for drinking water treatment and optimisation
methods for intensity-modulated radiation therapy. These meth-
ods are highly complex and are typically processed via the most
modern tools of ICT, including high performance computing and
access to big data bases; they usually require the support of skilled
experts, who are often not available, in particular in small and
medium-sized businesses. The main goal of this project is to con-
struct an e-infrastructure that provides, in a user-driven, integrative
way, tailored access to the necessary services, resources and even
tools for fast prototyping, also providing the service producers
with the mathematical framework. The e-infrastructure consists
of an integrated MSO application catalogue containing models,
software, validation and benchmark and the MSO cloud, a user-
friendly cloud infrastructure for selected MSO applications and
developing frameworks from the catalogue. This will reduce the
‘time-to-market’ for consultants working on the above-mentioned
societal challenges.

Open Dream Kit
OpenDreamKit is a project that brings together a range of projects
and associated software to create and strengthen virtual research
environments. The most widely-used research environment is the
Jupyter Notebook from which computational research and data
processing can be directed. The OpenDreamKit project provides
interfaces to well-established research codes and tools so that they
can be used seamlessly and combined from within a Jupyter Note-
book. OpenDreamKit also supports open source research codes
directly by investing into structural improvements and new features
to not only connect all of these tools, but also enrich them and
make them more sustainable.
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3 A mathematical toolbox

We emphasise here four complementary perspectives on the joint
exploitation of simulation and data: (i) techniques coming from
optimal command, ranging from calibration to filtering, that allow
identification of hidden parameters, model correction and hand-
ling noisy forcing terms, (ii) solution space reduction that enables
fast solving and efficient correction, (iii) multi-fidelity co-kriging
in order to merge and prioritise the feedback issuing from simula-
tions and measurements on given observables, (iv) physics-inspired
neural networks that directly learn the model solution, based on
an a priori (set of) underlying model(s). Each of these approaches
corresponds to a different balance in the roles of physical models
and collected data. In this text, we do not claim any exhaustiv-
ity, and mathematical descriptions will remain formal. The idea
is to provide a fairly broad overview of the field while remaining
accessible to the vast majority of mathematician readers.

3.1 Optimal control: From calibration to filtering
General setting
Let Λ be a vector space of parameters. For every λ∈ Λ, the solution
uλ∈𝒰 of the “best-knowledge”model is defined to be the solution
of the partial differential system

𝒜(λ,uλ) = 0 in 𝒱∗,

in a weak formal form, where 𝒱 is a Hilbert space and 𝒱∗ its
dual. The parameter space Λ encompasses modelling choices, the
domain shape and the boundary conditions, as well as forcing
terms.

Additionally, the physical quantity

Z∶ λ ∈ Λ ↦ Z(λ) ∈ 𝒵

is known, potentially with some noise, at the sampling points
(λk) ∈ Λ as (ℤk). The purpose of our quest is to take benefit from
this information to estimate Z(λ) outside the sampling points, or
to improve the solution uλ itself given by the model.

Calibration and model correction. As an example, let us augment
Λ into Λ×𝒱 in order to account for a modelling error term in 𝒱
as we consider the augmented system

𝒜(λ,uλ,ξ) + ξ = 0 in 𝒱∗,

where ξ ∈ 𝒱. For each sampling point λk, the idea is to find the
most adequate parameter λ of the model close to λk and the model
correction ξ ∈𝒱 in order to best account for the measurement ℤk.
The calibration and model correction in the vicinity of λk can be
formulated as finding

(λ∗
k , ξ

∗
k ) = arg inf

λ,ξ
{1
2
|J(λ,u) − ℤk|2

+ α
2
|λ− λk|2 +

β
2
|ξ|2}, (1)

where 𝒜(λ, u) + ξ = 0 in 𝒱∗, and | ⋅ | stands for the Hilbertian
norms in 𝒵, Λ and 𝒱. The scalar coefficients α,β ∈ ℝ∗

+ are taken
sufficiently large. As classically given by the techniques of optimal
control [30], the solution is characterised by the following system:

𝒜(λ,u) − 1
β
p = 0, (2)

⟨du𝒜,p⟩𝒱∗,𝒱 + Δ ⋅ duJ = 0, (3)

⟨dλ𝒜,p⟩𝒱∗,𝒱 + Δ ⋅ dλJ+ α(λ− λk) = 0, (4)

in𝒱∗,𝒰∗ and Λ∗ respectively, with Δ= J(λ,u)−ℤk. Equation (3)
is called the adjoint problem and equation (4) defines the gradient
of the cost function with respect to λ, that must vanish. The gradi-
ent expression enables an iterative calibration in order to avoid the
resolution of the coupled system (2)–(3)–(4). One has ξ ∗

k = − 1
βp

and we use the notation p∗
k ≔ p in 𝒱.

Once the calibration and error corrections are performed at
sampling points, let us introduce the functions ̂λ∗(λ), ̂ξ∗(λ), ̂p∗(λ)
obtained by kriging under the form

□̂∗(λ) = ∑
k

fk(λ)□∗
k , □ ∈ {λ, ξ,p},

that comply with values (λ∗
k ), (ξ ∗

k ), (p∗
k ) at sampling points (λk).

For every λ ∈ Λ, an updated model can be formulated as finding
the solution ̂uλ ∈ 𝒰 such that

𝒜( ̂λ∗(λ), ̂uλ) + ̂ξ∗(λ) = 0 in 𝒱∗, (5)

with the estimator ̂Z(λ) = J( ̂λ∗(λ), ̂uλ). For purposes of efficiency,
the spaces 𝒰 and 𝒱 can be replaced by some reduced basis
approximation in (5).

Bayesian inference. Parameters λ and measurements Z(λ) can be
considered as random variables. The relevance of this point of
view is supported by their potential discrete natures and by the
uncertainties and noise attached to them. Assume p (resp. q) is
the probability density followed by λ (resp. Z). Bayesian inference
provides the conditional density

p(λ|Z) = q(Z|λ)p(λ)
∫q(Z|λ)p(λ)dλ

∝ q(Z|λ)p(λ),

where p(λ) is called the prior, i.e., the a priori distribution expected
on λ; q(Z|λ) is the output likelihood given λ, i.e., the uncertainty on
the output measurement or simulation. It results in an assessment
of the λ|Z distribution, known as posterior, that can be used as
a new prior and so on, until uncertainties are judged satisfactory
[22,26].

From a practical standpoint, a Markov Chain Monte Carlo
approach can be used to simulate samples according to the distri-
bution followed by λ, and a surrogate model – for instance relying
on reduced bases – can be used to diminish the computational
cost required to determine the output Z.
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Figure 1. Perseverance Rover landing map on Mars (Credit:
ESA/DLR/FU-Berlin/NASA/JPL-Caltech, visit mars.nasa.gov/mars2020)

Selection of parameters. In order to make the approaches as effi-
cient as possible, the parametric space Λmust be reduced. A rather
natural approach relies on variance decomposition, i.e. on the iden-
tification of subspaces within Λ for which the covariance matrix
𝔼[Z ′ ⊗ Z ′] possesses the largest components; Z ′ = Z−𝔼(Z). This
can be done by Sobol decomposition or Principal Component Ana-
lysis for linear models [23]. Observe that in the vicinity of λ, the
privileged most influential subspaces are given by the singular value
decomposition of dλZ⊗ dλZ in TλΛ× TλΛ, the differential being
computed by the adjoint method.

Sometimes, the parameters correspond to local characteristics
of the model, such as material laws, and can be selected without
involving the full resolution of the model. This is the case in Ortiz
et al. [24, 28], which rely on local measurements or simulations
with a closest-point projection approach.

Filtering: From space conquest to cardiovascular modelling
The complementarity between first principle modelling and data
analytics was pioneered in a uniquemanner by space conquest. This
clever combination makes it possible to benefit from the predictive
power of simple dynamic models and the ability to cope with noise
and uncertainties within the environment; as a result, it offers the
possibility of automated decisions when long transmission times
allow for neither full real-time feedback on the system state nor
efficient human steering. We describe the main associated ideas
within a linear framework; cf. [5,6,13,30].

Filtering and optimal control. The above motivation was the main
boost for the development of Kalman filtering, which is closely
related to optimal control. Let u(t) ∈ ℝn describe the state of the
system at time t ∈ [0, T] such that

̇u = Au+ Bλ+ F, u(0) = u0 + ξ, (6)

where λ ∈ ℝp, p < n, stands for an unknown forcing contribution
and ξ for the uncertainty on the initial condition. Measurements
Z = Hu+ ε ∈ ℝm over [0, T], with m < n, up to an error ε, are
available in order to help estimate the real trajectory, through the
determination of λ and ξ such that

1
2
|ξ|2N + 1

2
∫

T

0
|Hu− Z|2M + 1

2
∫

T

0
|λ|2L

is infimised. Optimality is achieved for λ(t) = L−1B⊤p(t) and ξ =
N−1p(0), where the adjoint state p is a solution of the backward
system in time

̇p = −A⊤p+ H⊤M(Hu− Z), p(T) = 0.

In order to avoid the difficulty of a two-end problem in u and p,
the optimal solution u can be proven to decompose as u= ̂u+ Pp,
where P is the operator solution from Riccati’s equation

̇P − PA⊤ − AP+ PH⊤MHP− BL−1B⊤ = 0, P(0) = N−1.

The component ̂u obeys the filtered dynamics

̇̂u = A ̂u+ F+ K(Z− H ̂u), ̂u(0) = u(0),

where K= PH⊤M is Kalman’s gain; it reaches the optimal trajectory
at time t = T, as p(T) = 0. Beyond this Linear Quadratic setting,
filtering can incorporate robust control, and adapt in many ways to
the case of nonlinear systems (Extended Kalman Filter, Unscented
Kalman Filter).

Hamilton–Jacobi–Bellman. Dynamic programming is of particular
importance in order to proceed to nonlinear extensions. For every
q ∈ ℝn and t ∈ [0, T], let us define the cost-to-come function

V(q, t) = min
λ;u(t)=q

{1
2
|ξ|2N + 1

2
∫

t

0
|Hu− Z|2M + 1

2
∫

t

0
|λ|2L},

where the minimum is taken over controls τ ∈ [0, t] ↦ λ(τ) ∈ ℝp

and trajectories τ ∈ [0, t] ↦ u(τ) ∈ ℝn with end-points u(0) =
u0 + ξ and u(t) = q. The cost function V is a solution of the
Hamilton–Jacobi–Bellman equation

̇V −ℋ∗(u,∇uV(u, t), t) = 0,

in the sense of viscosity solutions, where

ℋ∗(u,p; t) = ℋ(u,p, L−1B⊤p; t),

ℋ(u,p,λ; t) = 1
2
|Hu− Z|2M + 1

2
|λ|2L − ⟨Au+ Bλ+ F,p⟩.
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Observe that the optimality equations above read

̇u = −∂ℋ∗

∂p
, ̇p = ∂ℋ∗

∂u
.

Taking V(u, 0) = 1
2 |u− u0|2N as an initial condition, let us assume

the HJB equation admits a solution V ∈ C 1(0, T;ℝn). Then, for all
t ∈ [0, T] the optimal command is given by

λ∗(t) = arg min
λ∈ℝp

ℋ(u(t),∇uV(u(t), t),λ, t).

This provides the estimated dynamics

̇̂u = A ̂u+ F− (∇2
uV)−1H⊤M(Z− H ̂u), ̂u(0) = u0.

In the present linear setting, one has [37]

V(u, t) = 1
2
(u− ̂u(t))⊤P(t)−1(u− ̂u(t))

+ 1
2
∫

t

0
|H ̂u(s) − Z(s)|2M ds.

Stochastic perspective. Assume equation (6) is interpreted as a
stochastic differential equation, where λ(t) and ε(t) are zero-mean
independent Gaussian processes with covariance matrices Q and R
respectively. The best mean square estimator ̂u(t) = 𝔼[u(t)|Z(t)]
follows the same equation as in the previous paragraphs with
M = R−1 and L = Q−1. The covariance matrix P(t) = 𝔼[(u− ̂u) ⊗
(u− ̂u)] obeys Riccati’s equation.

Figure 2. Aortic simulation for which viscoelastic boundary conditions are
calibrated from medical imaging (courtesy of Moireau et al., see [38]).

Figure 3. Heat equation resolved from an initial condition to a given
end-time. The best-knowledge model uses single material, when the true
solution corresponds to a bi-material. 121 measurement points are spread
over the domain. Left: solution for the bk model (values from 17.80 °C
to 18.25 °C). Right: Synthetic true solution using a bi-material plate
(values from 17.90 °C to 18.23 °C) relying on seven basis vectors
(courtesy of Benaceur, see [4]).

Stability and control. Kalman’s gain achieves control optimality in
the sense detailed above. Nevertheless, it can prove costly to de-
termine, and difficult to access for distributed systems. As a matter
of fact, some feedback terms acting as Lyapunov functions can
suffice for practical purposes. Let us assume in the above that the
gain K is chosen in the form K = αH⊤ℳ with a symmetric definite
positive matrix ℳ and a coefficient α to determine. It follows that
the error e = u− ̂u satisfies

̇e = (A− KH)e+ Bλ− Kε, e(0) = ε,

and can be made rapidly decreasing provided that λ and ε remain
moderate and α is taken sufficiently large. This approach has been
implemented with multiple refinements by Moireau et al. [39],
comparing in-depth the displacement vs. velocity controls.

3.2 Solution space reduction
Reduced bases. The notion of reduced bases makes it possible
to resolve the equations of the model in a low-dimensional sub-
space of solutions, rather than a large full finite element space for
instance. It is reputed to go back to Rayleigh’s intuition, and is
key to benefit from surrogate models that comply with the first
physical principles, with high computational efficiency. It is particu-
larly useful for high-dimensional models, as in Quantum Mechanics
for instance. The approach has been made particularly popular by
the work of Maday, Patera et al. [32]. Some interesting challenges
rise when handling highly nonlinear problems [33]; it is particularly
striking when contact mechanics is involved [4], when structure
preservation is concerned [20, 21], or when local accuracy is of
particular importance [46]. The efficiency of the method is well
established when the Kolmogorov n-width of the solution manifold
rapidly decreases as n → +∞; cf. [2,8].
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Reduced order bases allow physical models to be interrogated
(almost) as efficiently as data sets, making it possible to foster
standard statistical learning methods [1,19].

Parameterised-Background Data-Weak (PBDW) approach. Let

ℳbk ≔ {ubk(λ); λ ∈ Λ} ⊂ 𝒰

be the solution manifold for the “best-knowledge” model. It can
be gradually approximated with diminishing errors by solutions of
the model in reduced spaces ℛ1 ⊂ ⋯ ⊂ ℛN ⊂ ⋯ ⊂ 𝒰.

The true solution utrue ∈ 𝒰 is unknown, but can be partially
captured by experimental observations ℓobs

m ∈ 𝒰∗ given as con-
tinuous linear forms of the solution: 1 ≤ m ≤ M. They provide the
scalar quantities ℤm = ℓobs

m (utrue) ∈ ℝ. Let us write (qm) for the
associated liftings satisfying (qm, v) = ℓobs

m (v) for all v ∈𝒰, where
(⋅, ⋅) denotes the inner product in the Hilbert space 𝒰. It is im-
perative that the sensors be numerous enough (N ≤ M) to control
the components of the reduced solution in the selected space ℛM;
more specifically, one must have ℛN ∩𝒰⟂

M = {0} where 𝒰⟂
M is

orthogonal to 𝒰M ≔ span{qm, 1 ≤ m ≤ M} in 𝒰.
The PBDWmethod [34–36] determines the approximation uN,M

of the solution utrue in the form

uN,M = rN,M + ηN,M ∈ ℛM ⊕𝒰,

where

(uN,M,q) = (utrue,q) for all q ∈ 𝒰M, (7)

and the norm ‖ηN,M‖𝒰 is infimised. It boils down to finding rM,N ∈
ℛM and ηM,N ∈ 𝒰M such that

(rN,M,q) + (ηN,M,q) = (utrue,q) for all q ∈ 𝒰M,

(ηN,M, r) = 0 for all r ∈ ℛN.

This has been extended to a dynamic setting by Benaceur [4],
in collaboration with Patera. The method allows for a real-time
correction of the solution, based upon available measurements. In
case of noisy measurements, a regularisation is required and the
following functional:

γ‖ηN,M‖2𝒰 + 1
M

M

∑
m=1

|ℓobsm (rN,M + ηN,M) − ℤm|2, γ > 0,

is infimised in order to compromise between the minimisation of
the term ‖ηN,M‖𝒰 and the constraint (7), thus avoiding overfitting.

Data-driven reduced modelling. Each time the above reconstruc-
tion generates a prediction uN,M(λk) for a given state λk ∈ Λ of
the system, the vector ubk(λk) can be replaced by uN,M(λk) in the
reduced basis for the system. This can be done by the dynamic
reduced basis low rank adaption proposed by Peherstorfer and
Wilcox [42].

Another point of view consists in fitting the expression of the
operators involved in the best-knowledge model, when projec-

Figure 4. Co-kriging makes it possible to take joint advantage of
(i) accurate but costly data (in red) and (ii) fast but inaccurate models
(in green); computed using OpenMDAO and Scikit Learn Python
packages.

ted onto an a priori reduced basis. This idea was proposed by
Peherstorfer and Wilcox [43], who named it operator inference.

Finally, composite spaces can be constructed by the assembling
of subdomains in which key driving parameters are retained and
local reduced bases are adopted; coupling between subdomains
can be performed via Lagrange multipliers, and the hidden para-
meters (for instance describing certain levels of damage within
a structure) can be determined by statistical classification methods.
Such approaches have been developed by Patera et al., and are
called Port-Reduced Reduced-Basis Component (PR-RBC) methods;
cf. [7,16,48].

Tensor approximation of solutions. Since functions in separable
form are dense in spaces of sufficiently regular functions, one can
decompose the solution of the parameterised model problem in
the form

uλ = ∑
ℓ

wℓ(λ)uℓ in 𝒰, for all λ ∈ Λ,

by means of Proper Generalised Decompositions [10]. Of course, λ
can easily incorporate a wide variety of correction terms, so as to
account for the current state of the system. This general philosophy
has been widely popularised by Chinesta and Nouy; see [9,40] and
the references therein.

3.3 Multi-fidelity prediction and co-kriging
In many practical cases, several sources of information (simula-
tion and measurement campaigns) provide predictions of various
accuracies for the observables. Let Λ be the parameter space under
consideration. For every 1 ≤ j ≤ J, the j-th measurement or simu-
lation campaign is performed at sampling points Dj = (λ j

k)1≤ k≤Kj

with the model Zj and provides data points ℤj;k = Zj(λ
j
k). The
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accuracy increases with j and the most accurate forecast therefore
corresponds to j = J.

Kriging. We set j = 1, and recall the construction of the univer-
sal kriging ̂Z1(λ) as a non-biased approximation of Z1(λ) with
minimum variance in the form

̂Z1(λ) =
K1

∑
k=1

w1;k(λ)ℤ1;k = w1(λ)⊤ℤ1.

Universal kriging additionally assumes that Z1(λ) is a Gaussian
process with unknown average of the form

𝔼(Z1(λ)) =
I1

∑
i=1

f1; i(λ)β1; i = f1(λ)⊤β1,

and space correlation σ2
1 r1(λ,λ′;θ), where σ1 is a variance scaling

factor and θ a parameter of the space-correlation function r1. The
parameters β1, σ1 and θ can be determined through maximum like-
lihood. The non-biased minimum variance predictor is achieved for
w1(λ) = C−1(c(λ) + F⊤(FC−1F⊤)−1b(λ)), where the matrices
F,C are given by their components

Fik = f1; i(λ1k ), Ckℓ = cov(ℤ1;k,ℤ1;ℓ),

and the vectors c,b by

ck(λ) = cov(Z1(λ),ℤ1;k), b(λ) = f1(λ) − FC−1c(λ).

Recursive co-kriging. Co-kriging was pioneered by Kennedy and
O’Hagan [25]. The recursive multi-fidelity adaptation introduced
by Le Gratiet and Garnier [29] reads

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

Zj+1(λ) = ρj(λ) ̃Zj(λ) + δj(λ),

̃Zj(λ) independent of δj(λ),

ρj(λ) = gj(λ)⊤γj,

where the following Gaussian processes are defined by their means
and covariance matrices as

δj(λ) ∼ GP(fj(λ)⊤βj;σ2
j rj(λ,λ′)),

Z1(λ) ∼ GP(f1(λ)⊤β1;σ2
1 r1(λ,λ′));

̃Zj(λ) is a Gaussian process with distribution

[Zj(λ)|Z(j) = ℤ(j),βj, γj−1,σ2
j ],

where Z (j) = (Z1(D1),…, Zj(Dj)) and ℤ(j) = (ℤ1,…,ℤj).
The combined use of reduced models, full accuracy simulations

and measurements clearly allow for very efficient and accurate
surrogate models. The co-kriging above, further developed in [44],
has the huge advantage of recursiveness and as a result, a very
accessible computational cost.

3.4 Physics-Informed Neural Network
Neural networks have had great success with classification prob-
lems, together with Support Vector Machines for instance [1]. They
generate functions that are dense among continuous functions
(cf. Cybenko [12]), and conciliate smoothness with the ability to
represent thresholds quite accurately. Fitting can be performed by
a back descent gradient inspired by optimal control techniques.
Furthermore, robust and powerful Python libraries, like Tensor

Flow, are freely available.
Physics-Informed Neural Networks were introduced by Raissi,

Perdikaris and Karniadakis [45]. They combine the statistical learn-
ing of the solution, say u on the space-time domain [0, T] × Ω
sampled on points (tn, xi) as un

i , under the penalised constraint
that u is expected to resolve a partial differential equation of the
form 𝒜(u) = 0 in [0, T] ×Ω. This reads as the infimisation

inf
̃u
{∑
n, i

| ̃u(tn, xi) − uni |2 +∑
n, i

|𝒜( ̃u)(tn, xi)|2},

which is close to (1) when J(λ, u) = u. A Bayesian approach can
be used to identify the parameters from the model, as developed
in [49]. Lucor et al. have developed the approach for the thermo-
mechanical simulation of an incompressible viscous flow [31];
cf. Figures 5 and 6.

4 Conclusion

The combined use of first principle models and data analytics is
an avenue for predictive sciences. It is a privileged way to syner-
gise the modelling knowledge present in simulation software with
the relevance of available data, while guaranteeing a high level
of predictiveness in operation. Beyond the necessity of a growing
mathematical toolbox to handle problems of optimal control with
extreme efficiency, several challenges are implied: (i) the neces-
sity of developing porosity at the interface between competences
(numerical analysis, optimal control and automatism, high per-
formance computing, statistics, computer sciences), (ii) the need
for integrated development environments, with a role to play in
the question of open software, and (iii) data protection, as data
becomes an outstanding source of value.
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Figure 5. Left: computation domain containing an incompressible viscous flow heated at the bottom (the yellow box
materialises the training subdomain); right: iso-temperature surfaces as reconstructed in the training subdomain by the
Physics-Inspired Neural Network (courtesy of Didier Lucor, Atul Agrawal and Anne Sergent; see [31]).
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Figure 6. Learning curve displaying the cost function to infimise along
with iterations (courtesy of Didier Lucor, Atul Agrawal, and Anne Sergent;
see [31]).
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